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Simultaneous cell growth and ethanol production
from cellulose by an engineered yeast consortium

displaying a functional mini-cellulosome

Garima Goyal®, Shen-Long Tsai', Bhawna Madan', Nancy A DaSilva® and Wilfred Chen"

Abstract

overall efficiency for ethanol production.

Background: The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient
hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant
microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of
great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-
cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin
pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the
simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC).

Results: A yeast consortium composed of four different populations was engineered to display a functional mini-
cellulosome containing an endoglucanase, an exoglucanase and a (-glucosidase. The resulting consortium was
demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L
corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only
the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for
the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in
PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with
the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome.

Conclusions: This report represents a significant step towards the goal of cellulosic ethanol production. This
engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow
on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast consortium
secreting only the three cellulases. The use of more complex cellulosomal structures may further improve the

Keywords: cellulose, cellulosome, ethanol, yeast, consolidated bioprocessing

Background

It has been estimated that 1.3 billion mega-tons (dry
weight) of terrestrial plants are produced annually on a
world-wide basis [1]. Due to its renewable, abundant, and
sustainable nature, lignocellulosic biomass is the only feed-
stock to potentially substitute for fossil fuels. Ethanol,
which is generally expected to be the first major commer-
cial product of this emerging cellulosic biofuel technology,
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has great potential to lessen our country’s dependency on
fossil fuel [2].

Unfortunately, the recalcitrant nature of cellulosic
materials and the high cost of enzymes required for effi-
cient hydrolysis are the major limiting steps to the more
widespread exploitation of this natural resource [3].
Consolidated bioprocessing (CBP), which combines the
production of enzymes, hydrolysis of cellulose, and
fermentation of glucose and xylose to ethanol in one
reactor, is gaining increasing recognition as a potential
breakthrough for cellulosic ethanol production as up to
a four-fold reduction in cost can be potentially achieved

© 2011 Goyal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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[2,4]. An ideal microorganism for CBP should possess
the capability of efficient enzyme production and simul-
taneous cellulose saccharification and ethanol fermenta-
tion. Saccharomyces cerevisiae is an attractive candidate
because of its high ethanol productivity and inherent
ethanol tolerance [5]. In recent years, attempts have
been made to engineer S. cerevisiae for cellulose hydro-
lysis under anaerobic conditions with only varying
degrees of success [6-8].

Cellulosomes are naturally occurring elaborate enzyme
complexes found in many anaerobic microorganisms that
can efficiently hydrolyze cellulose based on the high level
of enzyme-substrate synergy [9]. The synergistic effects
are due to (1) the targeting effect of the cellulose binding
module, (2) the proximity effect of the enzymes, and (3)
the elimination of substrate inhibition from the quick
uptake of glucose. We have recently reported the use of a
yeast consortium for the functional presentation of a
mini-cellulosome structure onto the yeast surface by
exploiting the specific interaction of the different cohe-
sin-dockerin pairs employed [10]. We demonstrated not
only the feasibility and flexibility of the consortium sys-
tem, but also the benefit of mini-cellulosomes to facilitate
ethanol production. Unfortunately, direct ethanol pro-
duction from phosphoric acid swollen cellulose (PASC)
was achieved only using resting-cell cultures and the fea-
sibility of simultaneous growth and ethanol production
had not been demonstrated. In this paper, we demon-
strate for the first time the use of this synthetic yeast con-
sortium for direct growth and ethanol production from
PASC, an important first step toward the ultimate goal of
CBP. Quantitative polymerase chain reaction (qPCR) was
used to investigate the dynamics of the individual popula-
tions during fermentation.

Results and discussion

Surface display of the mini-scaffoldin Scaf-ctf using the
constitutive Agal anchor system

To enable the direct growth and ethanol production on
PASC by the synthetic yeast consortium, the Agal-Aga2
anchor system used in the previous study [10] which
required galactose for induced expression was replaced
by a constitutively expressed Agal anchor system using a
strong PGK promoter (Figure 1A). In addition, the entire
expression cassette was transferred to a CEN/ARS-based
plasmid (YCplac33-AGa-scaf3) containing the centro-
meric sequence to ensure a constant copy number and
improved protein expression. This plasmid was subse-
quently transformed into S. cerevisiae strain BY4742,
which was then denoted as strain SC.

To demonstrate the display of Scaf-ctf, immunofluores-
cence assays were carried out using the anti C-myc anti-
body (Figure 1B). A detectable fluorescence signal was
observed for over 85% of cells, which is higher than the
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60% observed for cells using the Agal-Aga2 anchor
system. This improved percentage of surface display can
be attributed to the improved plasmid stability using the
CEN/ARS-based plasmid and the reported superior dis-
play efficiency of the Agal anchor system [11].

Growth and ethanol production from PASC

The ability of the consortium to grow and produce ethanol
directly from PASC was investigated. In addition to the
newly constructed strain displaying Scaf-ctf (SC) under a
constitutive promoter, three other strains secreting either
an endoglucanase (AT), an exoglucanase (CB) or a B-glu-
cosidase (BF) tagged with a different dockerin domain and
flanked by a His6 tag used in the consortium were as
described before (Table 1) [10]. Different yeast strains
were initially grown separately in SDC medium overnight
and then mixed in the optimized ratio (7:2:4:2) to a total
initial cell density of 8 x 10° cell/ml to form the functional
consortium (C1) [12]. A strain carrying the plasmid
pCEL15 (CE) with no heterogenous protein expression
was used as a control population (Table 1). To compare
the performance, two other consortia composed of either
only the Scaf-ctf-displaying cells (SC) and CE (C2) or cel-
lulase-secreting cells (AT/CB/BF) and CE (C3) at the same
ratio as C1 were used. All consortia developed are
depicted in Figure 2.

An initial glucose concentration of 0.2 g/L was added
to allow the synthesis and assembly of the cellulosome
structure. For the consortium C2 containing only SC, no
appreciable level of cell growth and PASC degradation
was observed; only the added glucose was converted to
ethanol (Figure 3A and 3B). In comparison, a significant
level of cell growth was observed for the consortium C1
containing the functionally displayed cellulosome, and
only minimum growth was detected for the consortium
C3 secreting only cellulases (Figure 3A). The enhance-
ment in cell growth was also reflected in both PASC
degradation and ethanol production; the final ethanol
level of 1.25 g/L is 3-fold higher than the consortium
secreting only cellulases (Figure 3B). The final ethanol
yield of 0.43 g ethanol/g PASC is equivalent to 87% of
the theoretical value. Even though the ethanol productiv-
ity is much lower than required in practice [13], our
results successfully demonstrated the concept of using a
microbial consortium for the simultaneous growth and
ethanol production from cellulose. However, further
improvements of the consortium system are required to
significantly improve the overall productivity.

Verification of mini-cellulosome assembly

Whole cell fluorescence measurements were undertaken
to verify and quantify the assembly of secreted cellulases
onto the cell surface. Cells were harvested after fermenta-
tion and washed three times with buffer before probing
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cells harboring pCEL15 were used as the control.

Figure 1 Improved surface display of scaffoldin Scaf-ctf using the Aga1 anchor and the constitutive PGK promoter. (A) Schematic
representation of the two different surface display approaches. (B) Confirmation of surface displayed Scaf-ctf by immunofluorescence
microscopy. Cells were probed with anti-Cmyc sera and fluorescently stained with a goat anti-mouse IgG conjugated with Alexa Fluor 488. Yeast

Table 1 Strains and plasmids used in this study

Strain Plasmid Phenotype Source

CE pCEL15 Secretes a small peptide (negative control) Tsai et al, 2010
AT pAt Secretes the endoglucanase At (CelA from C. thermocellum with its native dockerin) Tsai et al, 2010
CB pCBH2c Secretes the cellobiohydrolase CBHc (CBHII from T. reesei fused with a dockerin from C. cellulolyticum) Tsai et al, 2010
BF PBGLf Secretes the B-glucosidase Bglf (Bg1l from T.aurantiacus fused with a dockerin from R. flavefaciens) Tsai et al, 2010
SC pAga-scaf3 Display of Scaf-ctf by an Aga.1 anchor in a centromeric plasmid This study

S. cerevisiae strain BY4742 was used in all cases.
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Figure 2 A schematic of the different consortia used in this study.
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a-agglutinin anchor protein

with both anti-Cmyc (Scaf-ctf) and anti-His antibodies (his
tagged cellulases). As shown in Figure 3C, the correct
assembly of the mini-cellulosome was observed only for
consortium C1, which showed an appreciable level of
whole-cell fluorescence toward both antibodies, indicating
the simultaneous display of Scaf-ctf, and docking of cellu-
lases. In contrast, fluorescence was detected only with the
Cmyc antibody for consortium C2 displaying only Scaf-ctf
and only background levels of fluorescence were observed
with consortium C3 (Figure 3C). These results are signifi-
cant as they demonstrate, for the first time, that a syn-
thetic consortium can be successfully engineered for the
functional display of cellulosomes for cellulosic ethanol
production in a CBP-like setting.

Dynamics of the yeast consortium by qPCR

To gain a better understanding of the synthetic yeast con-
sortium, qPCR was used to probe the dynamics of all four
yeast populations during fermentation. Primers (Table 2)
were designed to target a ~250 bp region of a unique gene
of each population coding for either the endoglucanase
(AT), the exoglucanase (CB), the B-glucosidase (BF), or
the displayed Scaf-ctf (SC). Total DNA was individually
extracted from the four different populations and a linear
standard curve spanning three-log concentrations from
10* to 10° cell/ml was generated under optimized condi-
tions (Data not shown). Using the qPCR method, cell

growth was clearly demonstrated for all four populations
during fermentation (Figure 4). However, the final cell
density increased by over 3-fold for the strain displaying
the functional mini-cellulosome (SC), while roughly a 2-
fold increase was observed for the other three populations.
This difference in the growth rates is consistent with other
reports indicating that the use of a ternary cellulose-
enzyme-microbe complex (SC) yields much higher rates of
cellulose utilization than using only a cellulose-enzyme
complex (AT, CB, and BF) [14]. It is interesting to note
that strains secreting enzymes (AT, CB, BF) were growing
at slightly different rates probably a result of dissimilar
levels of metabolic burden due to expression of different
cellulases. Even with the differences in growth, the final
population ratio of 7:1.8:3.4:1.9 did not change signifi-
cantly from the initial inoculation ratio. It should be noted
that the growth curve obtained using the qPCR method
was in 90% agreement with the results obtained from
direct cell counting, indicating the validity of the qPCR
method to rapidly track the temporal dynamics of the
individual population during fermentation.

Similarly, the dynamics of consortium C3 secreting
only cellulases was probed using qPCR (Figure 4). Again,
all three enzyme-secreting strains (AT, CB, and BF) were
shown to grow during the fermentation. Although cell
growth for all three strains was slower than in consor-
tium Cl1, the total final cell density of the three strains
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Figure 3 Cell growth and ethanol production by the cell consortia. (A) Cell growth and (B) PASC hydrolysis (dotted line) and ethanol
production (solid line) by the different yeast consortia, i.e, consortium C2 without secreting enzymes (#), consortium C3 only secreting enzymes
(e) and consortium C1 forming the cellulosome structure (m). (C) Surface display of the mini-cellulosome was probed with either anti-C-myc sera
for the displayed scaffoldin or anti-C-His6 sera for the three cellulases docked on the scaffoldin and fluorescently stained with a goat anti-mouse
IgG conjugated with Alexa Fluor 488. Whole cell fluorescence was determined using a fluorescent microplate reader. Data shown are the mean
values (+ standard deviation) obtained from 3 independent experiments.

Table 2 Primers used in this study

Primers Sequence (5'-3') Relevance

PgkFp CCGCCATGGTGTTTGCAAAAAGAACAAAACTG Subcloning of Ago.-Scaf
PgkRp CCGCCATGGCCCTATGCGGTGTGAAATACC Subcloning of Ago.-Scaf
Fxba1-Sctf GCGCTCTAGAGGCGATTCTCTTAAAGTTACAGT Subcloning of Aga-Scaf
ScafFP GCGCCAAAAGCTCTTTTATCTCAACC gPCR

ScafRP CCACATCACTAATCACTTCTGATGTGGTG gPCR

AtFP GCAGAATGGGAAGACTGGAAGAGC gPCR

AtRP CCGCCGTCATGACTTGTAACATTGTTG gPCR

CBHIIFP CGCAAAGGTTCCCTCTTTTATGTGGC gPCR

CBHIIRP TCCGGATATCGGAATATTCCACGACAA gPCR

BglfFP ATCATGGCGGCCTTTTACAAGGTTG gPCR

BglfRP CCTCTCCAAAAACTCCGGTGAAC C gPCR
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Figure 4 Growth dynamics of individual populations in (A) consortium C1 that could form cellulsosome structure and (B) consortium
C3 that can only secret enzymes. Changes in cell number of individual yeast populations were probed by gPCR. Data shown are the mean

was ~85% of that of consortium C1. This slight reduction
in the cell density cannot explain the observed 3-fold dif-
ference in PASC hydrolysis and ethanol production.
Instead, the substantial increase in ethanol production is
consistent with our previously reported synergistic effect
on cellulose hydrolysis using the displayed mini-cellulo-
some structure when compared with free enzymes [10].

Conclusions

In this era of high energy demand, there is an urgent need
to develop new cost-effective methods that can convert
complex cellulosic biomass into simple sugars and even-
tually ethanol. Our group has recently mimicked the

natural anaerobic cellulose degradation mechanism by dis-
playing a mini-cellulosome on the yeast surface and
observed a similar synergistic effect on cellulose hydrolysis
and ethanol production compared to free enzymes [10,12].
To accomplish the goal of simultaneous cell growth and
ethanol production on cellulose, we engineered a yeast
consortium capable of the surface assembly of a functional
mini-cellulsome via intercellular complementation. The
resulting consortium can grow on cellulose and produce
ethanol more efficiently than a similar consortium secret-
ing only cellulases because of the synergistic action on cel-
lulose hydrolysis by the mini-cellulosome structure.
Although the level of ethanol production is relative
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modest, this is a promising first step toward the goal of
CBP using an engineered yeast consortium. Further
improvements in the overall productivity necessitate the
use of more complex cellulosome structures as in natural
anaerobic microorganisms. The flexibility of the consor-
tium design offers the possibility of displaying more com-
plex cellulosomes by manipulating the individual
population involved in the consortium.

Methods

Strains, plasmids, and media

Escherichia coli strain JM109 [recAl end Al supE44
hsdR17 gyrA96 thi, relAl, ,"* A(lac-proAB) F traD36
proAB laclqZ DM15] was used as a host for genetic
manipulations. Cells were grown in LB medium (5 g/l
yeast extract, 10 g/l NaCl, 10 g/l tryptone) supplemented
with ampicillin (100 mg/l) when required. S. cerevisiae
strain BY4742 (MATa his3A1 leu2A0 lys2A0 ura3A0)
was used for displaying the scaffoldin and secretion of
cellulases. The phenotypes and sources of the yeast
strains and plasmids that were used in this study are
listed in Table I. Yeast strains were routinely cultured in
SDC medium (20 g/l dextrose, 6.7 g/l yeast nitrogen
base, and 5 g/l casamino acids) at 30°C on a rotary shaker
at 250 rpm.

Construction of YCplac33-AGa-Scaf3 for constitutive
surface-display of Mini-scaffoldin Scaf-ctf

A centromeric plasmid, YAGa-Scaf3, used for surface dis-
play of the trifunctional mini-scaffoldin Scaf-ctf, was con-
structed as described below. All primers used in cloning
are given in Table 2. The Scaf-ctf fragment, consisting of
three different cohesins from Clostridium cellulolyticum,
Clostridium thermocellum and Ruminococcus flavefaciens
and a cellulose binding module (CBM), was amplified
from the plasmid pSctf [10] by PCR using primers FXbal-
Sctf and Sctf-SallR. The resulting fragment (2046 bps)
was digested with Xbal and Sall and cloned into the
Xbal and Sall sites of a multiple copy surface-display vec-
tor pSSAGoa., which consisted of the yeast 3-phosphoglyce-
rate kinase (PGK1) promoter, the secretion signal of
Rhizopus oryzae amylase, a C-myc tag, the C-terminus o-
agglutinin gene AGal and the PGK1 terminator. The
resulting plasmid was named pAGa-Sctf. The entire
expression cassette encoding the PGK promoter to the
PGK terminator was then amplified from plasmid pAGo.-
Sctf by PCR using primers PgkFp and PgkRp. The PCR
product obtained was then subcloned into the Smal site
of the CEN/ARS-based vector YCplac33 via blunt end
ligation after kinase treatment. Transformants were con-
firmed by restriction digestion and named YCplac33-
AGo-scaf3. The YCplac33-AGa-scaf3 plasmid was trans-
formed in S. cerevisiae BY4742 using the standard lithium
acetate procedure [15].
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Anaerobic fermentation

PASC was prepared as described by Walseth from Avicel
PH101 (Sigma) [16]. For anaerobic fermentation, differ-
ent consortia were grown in rubber stoppered glass
serum bottles containing SC-PASC medium (6.7 g/l yeast
nitrogen base w/o amino acids, 20 g/l casamino acids,
and 10 g/l PASC supplemented with 10 mM CaCl,, 0.01
g/l ergosterol and 0.42 g/l tween 80). Precultures of each
yeast population were grown separately in SDC media
(20 g/l glucose, 6.7 g/l yeast nitrogen base, 5 g/l casamino
acids), harvested, and washed with sterile water to pre-
vent media carry over. For co-culturing of the synthetic
consortia, each strain was mixed initially in the optimized
ratio to a total optical density of 0.8. Samples were col-
lected periodically through a capped syringe needle
pierced through the bottle stopper [12]. Yeast cells in fer-
mentation media were counted in triplicate on SDC
plates by the plate count method.

Reducing sugar and ethanol assays

Reducing sugars were measured by the DNS method.
Samples were collected periodically and mixed immedi-
ately with equal amount of DNS reagents (10 g/l dinitrosa-
licylic acid, 10 g/I sodium hydroxide, 2 g/1 phenol, 0.5 g/l
sodium sulfite) and incubated for 5 tol5 min at 95°C. 1 ml
of 40% Rochelle salts was added to fix the color before
measuring the absorbance at 575 nm using a spectrophot-
ometer. The glucose concentration was determined by
using a Sigma HK assay kit. For measuring the amount of
unhydrolyzed cellulose, the phenol-sulfuric acid method
described by Dubois et. al. was used [17]. Ethanol concen-
tration was measured using a gas chromatograph (model
6890, Hewlett Packard, USA) with a HP-FFTP column
and a flame ionization detector (FID) detector.

Immunofluorescence assay

Immuno-fluorescence microscopy was done as described
previously [10]. In short, cells were washed with PBS
(phosphate buffered saline) and resuspended in PBS con-
taining 1 mg/ml BSA (bovine serum albumin). Either anti-
His6 or anti-Cmyc antibody were added and incubated at
room temperature for 1 h on a rotary shaker. After wash-
ing, AlexaFluor™488 - conjugated anti-mouse secondary
antibody was added. Cells were then washed three times
with PBS buffer and resuspended in PBS buffer mixed
with 1 mg/ml BSA. Whole-cell fluorescence images were
obtained using a fluorescence microscope (Olympus
BX51) with an excitation wavelength at 485 nm and an
emission wavelength at 535.

Real time quantitative PCR

Total DNA from each strain was extracted using the High
Pure PCR Template Preparation Kit (Roche Applied
Science, Germany), and the concentration was determined
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using a Nano-drop spectrophotometer at 260/280 nm. All
primers used for PCR reactions are listed in Table II.
Quantitative PCR assays were done in 25 pl final volumes
containing 2 pl DNA template, 0.2 uM each respective pri-
mer, and 12.5 pl of SYBR Green Master Mix (Fisher Scien-
tific). All amplifications were carried out in optical grade
96 well plates from Bio-rad with an initial step at 95°C for
3 min followed by 40 cycles of 95°C for 15 s, 57°C for 1
min, 72°C for 30 s. All samples were triplicated in culture
and analysis. To quantify the individual yeast population, a
standard curve was generated for each individual cell
population by ten-fold dilutions from 10° CFU/ml to
10* CFU/ml.

Abbreviations

CBM: cellulose binding module; CBP: consolidated bioprocessing; FID: flame
jonization detector; PASC: phosphoric acid swollen cellulose; PBS: phosphate
buffered saline; PCR: polymerase chain reaction; gPCR: quantitative
polymerase chain reaction.
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