
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
New Paradigms For Efficient Password Authentication Protocols

Permalink
https://escholarship.org/uc/item/7qm0220s

Author
Gu, Yanqi

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qm0220s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

New Paradigms For Efficient Password Authentication Protocols

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Networked Systems

by

Yanqi Gu

Dissertation Committee:
Professor Stanislaw Jarecki, Chair

Professor Athina Markopoulou
Professor Michael Goodrich

2024

Chapter 3 © 2021 Springer, Cham
Chapter 4 © 2022 Springer, Cham
Chapter 5 © 2023 Springer, Cham

All other materials © 2024 Yanqi Gu

DEDICATION

To my parents

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Problem Statement . 1

1.1.1 Roadmap . 4

2 Preliminaries 5
2.1 Cryptographic Assumptions . 5
2.2 Cryptographic Primitives . 5
2.3 Security Models and Frameworks . 9

2.3.1 The Random Oracle Model and Ideal Cipher Model 9
2.3.2 Universally Composability Framework 9
2.3.3 Functionalities . 10

3 KHAPE: Asymmetric PAKE from Key-Hiding Key Exchange 17
3.1 Introduction . 17
3.2 The Key-Hiding AKE UC Functionality . 21
3.3 3DH as Key-Hiding AKE . 29
3.4 HMQV as Key-Hiding AKE . 43
3.5 SKEME as Key-Hiding AKE . 53
3.6 Compiler from key-hiding AKE to aPAKE 63
3.7 Concrete aPAKE Instantiation: KHAPE-HMQV 80
3.8 Curve Encodings and Ideal Cipher . 82

3.8.1 Quasi bijections . 82
3.8.2 Implementing quasi-bijective encodings 83
3.8.3 Ideal Cipher Constructions . 85

iii

4 OKAPE:Asymmetric PAKE with low computation and communication 87
4.1 Introduction . 87
4.2 Key-hiding one-time-key AKE . 94

4.2.1 2DH as key-hiding one-time-key AKE 98
4.2.2 One-Pass HMQV as key-hiding one-time-key AKE 110
4.2.3 1/2-SKEME as one-time-key AKE 119

4.3 Protocol OKAPE: asymmetric PAKE construction 130

5 Randomized Half-Ideal Cipher on Groups with application to UC (a)PAKE152
5.1 Introduction . 152
5.2 Universally Composable Randomized Ideal Cipher 162
5.3 Randomized Ideal Cipher Construction: Modified 2-Feistel 165
5.4 Encrypted Key Exchange with Randomized Ideal Cipher 183

5.4.1 EKE with Randomized Ideal Cipher : the KEM version 197
5.5 Applications of HIC to asymmetric PAKE 207
5.6 Lattice-Based UC PAKE from EKE and Saber KEM 219

6 Generic compiler from PAKE to asymmetric PAKE using KEM 224
6.1 Introduction . 224

6.1.1 Prior aPAKE Constructions . 226
6.1.2 Our Contributions . 232

6.2 Compiler from PAKE to asymmetric PAKE 237
6.3 An Efficient Instantiation of Our Compiler 247

Bibliography 253

iv

LIST OF FIGURES

Page

2.1 FpwKE: UC symmetric PAKE functionality (original version from [48]) 11
2.2 FaPAKE: asymmetric PAKE with explicit C-to-S authentication used in KHAPE 13
2.3 FaPAKE: asymmetric PAKE functionality used in OKAPE 14
2.4 FaPAKE: asymmetric PAKE with explicit C-to-S authentication 15

3.1 FkhAKE: Functionality for Key-Hiding AKE . 23
3.2 Protocol 3DH: “Triple Diffie-Hellman” Key Exchange 30
3.3 Simulator SIM showing that 3DH realizes FkhAKE (abbreviated “F”) 32
3.4 3DH: Environment’s view of real-world interaction (Game 0) 33
3.5 3DH: Environment’s view of ideal-world interaction (Game 7) 36
3.6 Protocol HMQV [100] . 43
3.7 Simulator SIM showing that HMQV realizes FkhAKE (abbreviated “F”) 45
3.8 HMQV: Environment’s view of real-world interaction (Game 0) 46
3.9 HMQV: Environment’s view of ideal-world interaction (Game 7) 48
3.10 Protocol SKEME: KEM-authenticated Key Exchange 54
3.11 Simulator SIM showing that SKEME realizes FkhAKE (abbreviated “F”) 55
3.12 SKEME: Environment’s view of real-world interaction (Game 0) 57
3.13 SKEME: Environment’s view of ideal-world interaction (Game 7) 58
3.14 Protocol KHAPE: Compiler from Key-Hiding AKE to aPAKE 64
3.15 Simulator SIM showing that protocol KHAPE realizes FaPAKE: Part 1 69
3.16 Simulator SIM showing that protocol KHAPE realizes FaPAKE: Part 2 70
3.17 Game 0: Z’s interaction with real-world protocol KHAPE 72
3.18 Proof of KHAPE security: Game 4 . 75
3.19 KHAPE: Z’s view of ideal-world interaction (Game 8) 78
3.20 KHAPE with HMQV: Concrete aPAKE protocol KHAPE-HMQV 81

4.1 Symmetric PAKE: EKE (a) vs. our asymmetric PAKE’s (b) 90
4.2 FotkAKE: Functionality for key-hiding one-time key AKE 96
4.3 otkAKE protocol 2DH . 99
4.4 2DH: Environment’s view of real-world interaction (Game 0) 101
4.5 Simulator SIM showing that 2DH realizes FotkAKE (abbreviated “F”) 102
4.6 2DH: Environment’s view of ideal-world interaction 104
4.7 otkAKE protocol One-Pass HMQV . 110
4.8 One-Pass HMQV: Environment’s view of real-world interaction (Game 0) 112
4.9 Simulator SIM showing that protocol One-Pass HMQV realizes FotkAKE 113

v

4.10 One-Pass HMQV: Environment’s view of ideal-world interaction (Game 7) 117
4.11 FrotkAKE: Functionality for “restricted” key-hiding one-time key AKE 120
4.12 otkAKE protocol 1/2-SKEME . 121
4.13 Simulator SIM showing that 1/2-SKEME realizes FrotkAKE (abbreviated “F”) . . . 122
4.14 1/2-SKEME: Environment’s view of real-world interaction (Game 0) 123
4.15 1/2-SKEME: Environment’s view of ideal-world interaction (Game 7) 126
4.16 Protocol OKAPE: Compiler from key-hiding otkAKE to aPAKE 131
4.17 real-world (left) vs. simulation (right) for protocol OKAPE 134
4.18 Simulator SIM showing that protocol OKAPE realizes FaPAKE: Part 1 135
4.19 Simulator SIM showing that protocol OKAPE realizes FaPAKE: Part 2 136
4.20 Game 0: Z’s interaction with real-world protocol OKAPE 138
4.21 OKAPE Game 5: changes before replacement of protocol with the functionality . . 139
4.22 OKAPE Game 6: replacing the protocol with the functionality FotkAKE 141
4.23 OKAPE Game 5: delaying password file creation 144
4.24 OKAPE Game 8: Removing the kdf . 146
4.25 OKAPE Game 9: rnd sessions and removing password usage 148
4.26 OKAPE Game 10: Z’s view of ideal-world interaction 151

5.1 Left: two-round Feistel (2F) used in McQuoid et al. [109]; Right: our circuit
m2F. The change from 2F to m2F is small: If k = H ′(pw , T), then 2F sets
s = k ⊕ r, whereas m2F sets s = BC.Enc(k, r), where BC is a block cipher. . . 157

5.2 Ideal functionality FRIC for (Randomized) Half-Ideal Cipher on D = R× G . 163
5.3 Simulator SIM for the proof of Theorem 5.1 168
5.4 The ideal-world Game 00, and its modification Game 11 (text in gray) . . . 169
5.5 Game-changes (part 1) in the proof of Theorem 5.1 170
5.6 Game-changes (part 2) in the proof of Theorem 5.1 171
5.7 Fresh queries to m2F.Dec are replaced by the circuit 175
5.8 Expanding BC.Dec . 177
5.9 Replacing usage of TRIC by direct access to TBC 179
5.10 Full description of Game 8: one step away from the real-world 180
5.11 Game 9: the real-world interaction between Z and m2F 181
5.12 EKE: Encrypted Key Exchange with Randomized Ideal Cipher 184
5.13 Simulator SIM for the proof of Theorem 5.2 . 186
5.14 Game changes for the proof of Theorem 5.2 (compare Fig. 5.13 for notation) 189
5.15 EKE-KEM: Encrypted Key Exchange with Randomized Ideal Cipher (KEM version) 198
5.16 Simulator SIM for the proof of Theorem 5.3 . 201
5.17 Game changes for the proof of Theorem 5.3 205
5.18 protocol KHAPE using Randomized Ideal Cipher (changes from [74] marked so) . 209
5.19 Game 0: Z’s interaction with real-world protocol KHAPE 210
5.20 Simulator SIM showing that protocol KHAPE realizes FaPAKE 212
5.21 KHAPE: Z’s view of ideal-world interaction (Game 8) 214
5.22 Protocol EKE-KEM of Section 5.4.1 instantiated with Saber KEM 220

6.1 Ω-method: PAKE to aPAKE compiler using Signatures [72] 227
6.2 Protocol HJK+(2): PAKE to aPAKE complier using DH KEM [84] 230

vi

6.3 Protocol APAKEM: PAKE to aPAKE compiler using CCA-secure KEM 234
6.4 Simulator SIM showing that protocol APAKEM realizes FaPAKE:Part 1 239
6.5 real-world (left) vs. simulation (right) for protocol APAKEM 240
6.6 Game 0: Z’s interaction with real-world protocol APAKEM 241
6.7 Z’s view after Game 5 . 244
6.8 Key-Generation Oblivious variant of our PAKE-to-aPAKE compiler 248
6.9 A three-round UC asymmetric PAKE using compiler APAKEM instantiated

with UC PAKE protocol from [67] . 250
6.10 Simulator SIM showing that protocol APAKEM realizes FaPAKE:Part 2 251
6.11 Game 8: Z’s interaction with ideal-world protocol APAKEM 252

vii

LIST OF TABLES

Page

4.1 Comparison of UC aPAKE schemes, with our schemes marked [∗]: (1) f,v
denote resp. fixed-base and variable-base exponentiation (expo), two-base
multi-expo is counted as 1.2v, O(1) stands for significantly larger costs in-
cluding bilinear maps; (2) x(C) and x(S) denote x rounds if respectively client
starts or server starts, while ”1” denotes a single-flow protocol; (3) EA column
lists the parties that explicitly authenticate their counterparty at protocol ter-
mination. OPAQUE-HMQV appeared in [88], but above we give optimized
performances characteristics due to [89]. 89

5.1 Comparison of lattice-based PAKE protocols based on bandwidth, rounds,
security assumptions, security claims, and security model 223

6.1 Comparison of UC aPAKE constructions. Comments: (1)For all PAKE-to-
aPAKE results we assume two-round PAKE instantiated from LWE [67, 22,
19]; (2)Given current LWE-based NIZK’s this scheme is not more efficient than
Ω-method; (3)Current lattice-based OPRF’s are significantly more costly than
KEM’s; (4)kh-AKE stands for key-hiding AKE, for which there are no current
lattice-based solutions; . 235

viii

ACKNOWLEDGMENTS

First and foremost, I want to express my heartfelt gratitude to my PhD advisor, Stanislaw
Jarecki. Stas performed his magic show on his cryptograhy class and drew me into this
amazing area, and I’m extremely fortunate to receive his mentorship. Stas’s unwavering
support and patience have been super helpful throughout my academic journey. Whenever I
went though obstacles in my research, Stas has always been there providing guidance, support
and encouragement. Under his mentorship, I not only acquired knowledge in cryptography
but also became a better researcher, and I anticipate to continue to glean insights from his
wisdom in the future.

I would also love to thank my committee members, Athina Markopoulou and Michael
Goodrich for their constructive advice and feedback. It’s my honor to have such great
researchers on my PhD committee. Special thanks go to Athina, who encouraged me and
gave me precious support at the beginning of my PhD.

I am indebted to my dear labmates at UC Irvine: Jiayu Xu, Tatiana Bradley, Bruno Freitas
Dos Santos, Po-Chu Hsu, Apurva Rai, and Phillip Matthew Nazarian. Their friendship have
enriched my experience, both professionally and personally.

I also want to thank all my co-authors: It’s my great pleasure to collaborate on research and
write papers with them, and without them this thesis would be impossible.

My gratitude extends to Sanjam Garg for facilitating my summer visit to UC Berkeley,
and also to the remarkable researchers I had the pleasure of meeting and working with at
Berkeley, including Mingyuan Wang, Aarushi Goel, Guru Vamsi Policharla, James Bartusek,
Sruthi Sekar, Arka Rai Choudhuri, and Dimitris Kolonelos. Their warmth made my stay
truly unforgettable.

I am immensely grateful for the friendships I have forged in Irvine during my PhD journey.
To all my friends in Irvine, I extend my sincerest appreciation for their unwavering support,
and I am truly blessed to have them in my life.

Last but not least, my biggest gratitude goes to my family for their love and support through-
out the years. Thanks to my parents who raised me up and did their best to help me
overcome the obstacles of life, whose guidance and encouragement have been a beacon of
strength. Their belief in my abilities has been a constant source of motivation, for which I
am profoundly grateful. I also want to thank Nicole for giving me invaluable support during
my PhD.

This work is funded by National Science Foundation (NSF) award #1817143. The articles
involved were previously published by Springer who gives permission to incorporate those
articles into this work.

ix

VITA

Yanqi Gu

EDUCATION

Doctor of Philosophy in Networked Systems 2024
University of California, Irvine Irvine, CA

Master of Science in Networked Systems 2024
University of California, Irvine Irvine, CA

Bachelor of Science in Electrical Information Engineering 2018
Beijing University of Posts and Telecommunications Beijing, CN

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2024
University of California, Irvine Irvine, California

Research Intern Summer 2022
Intel Santa Clara, California

Research Intern Summer 2021
JD.com Mountain View, California

Data&Applied Scientist Intern Summer 2020
Microsoft Redmond, Washington

R&D Intern Summer 2019
Intertrust Sunnyvale, California

TEACHING EXPERIENCE

x

TA, Introduction to Discrete Mathematics (ICS 6D) Spring 24
University of California, Irvine Irvine, CA

TA, Introduction to Discrete Mathematics (ICS 6D) Fall 23
University of California, Irvine Irvine, CA

TA, Introduction to Discrete Mathematics (ICS 6D) Winter 23
University of California, Irvine Irvine, CA

TA, Projects in AI (CS 175) Spring 22
University of California, Irvine Irvine, CA

TA, Introduction to Optimization (CS 268P) Fall 21
University of California, Irvine Irvine, CA

TA, Projects in AI (CS 175) Winter 21
University of California, Irvine Irvine, CA

TA, Introduction to Optimization (CS 169/268) Fall 19
University of California, Irvine Irvine, CA

TA, Introduction to Discrete Mathematics (ICS 6D) Winter 19
University of California, Irvine Irvine, CA

xi

PAPERS IN SUBMISSION OR UNDER REVIEW

Generic compiler from PAKE to asymmetric PAKE us-
ing KEM

2024

Preprint

Threshold PAKE with Security against Compromise of
all Servers

2024

Preprint

REFEREED CONFERENCE PUBLICATIONS

Randomized Half-Ideal Cipher on Groups with applica-
tions to UC (a)PAKE

2023

Theory and Applications of Cryptographic Techniques (EUROCRYPT)

Asymmetric PAKE with low computation and commu-
nication

2022

Theory and Applications of Cryptographic Techniques (EUROCRYPT)

KHAPE: Asymmetric PAKE from Key-Hiding Key Ex-
change

2021

International Cryptology Conference (CRYPTO)

xii

ABSTRACT OF THE DISSERTATION

New Paradigms For Efficient Password Authentication Protocols

By

Yanqi Gu

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2024

Professor Stanislaw Jarecki, Chair

In the last few years the subject of password authenticated key exchange (PAKE) protocols,

particularly in the client-server setting (called asymmetric PAKE, or aPAKE for short), has

seen renewed interest due to the weaknesses of password protocols and the ongoing standard-

ization effort at the Internet Engineering Task Force. In particular, due to vulnerabilities in

PKI systems and TLS deployment, the standard PKI-based encrypted password authentica-

tion (or “password-over-TLS”) often leads to disclosure of passwords and increased exploita-

tion of phishing techniques. Even when the password is decrypted at the correct server, its

presence in plaintext form after decryption, constitutes a security vulnerability as evidenced

by repeated incidents where plaintext passwords were accidentally stored in large quantities

and for long periods of time even by security-conscious companies. Both problems of relying

on PKI and server seeing password in clear are properly solved by PAKE protocols in the

password-only setting.

While many PAKE protocols have been proposed, an interesting question is that whether

there is an efficiency limit (for computation or communication) for PAKE protocols, and how

to achieve that. Attempting to push such limit, this dissertation proposes a new paradigm

for building efficient (a)PAKE protocols. First we present a minimal-cost aPAKE compiler

called KHAPE, which offers the best performance in terms of exponentiations with less than

xiii

the cost of an exponentiation on top of an un-authenticated Diffie-Hellman key exchange.

In the followup work we propose OKAPE, which further improve the round complexity

of KHAPE to only two rounds of messages by leveraging a unilaterally authenticated key

exchange. Since both KHAPE and OKAPE relies on Ideal Cipher (IC) Model, and existng

construction for Ideal Cipher on groups all have drawbacks, we present a weakened version

called Randomized Ideal Cipher (RIC) by giving up randomness of part of the ciphertext

but still can be used as a drop-in replacement for IC applications. We proved that the

modified 2-Feistel realizes this notion, which further improves the computation efficiency for

our aPAKE compilers. Furthermore, by replacing IC with RIC in EKE protocol we get a

PAKE compiler from any CPA-secure and anonymous KEM, which also opens the door for

efficient lattice-based PAKE. Finally, we develop a PAKE-to-aPAKE compiler from KEM,

which by embedding the previous KEM-based PAKE we can achieve an aPAKE compiler

from KEM.

xiv

Chapter 1

Introduction

1.1 Problem Statement

Password, as one of the most common and prevalent ways for authentication, has been widely

used in the digital world for a long time. Although password has been widely adopted in real-

world authentication scenarios, there are various attacks against it. Because of our limited

memory, the passwords we choose are usually of low entropy and easy to guess compared

to cryptographic keys. Also we tend to reuse the same or correlated passwords. The result

is that, attacker can try to guess which password we use from a dictionary of commonly

used passwords, and if one of the passwords get leaked, all the applications we use which

authenticated with this password can be in danger. The user side is pretty problematic.

However, the server side is also not optimistic.

Password-over-TLS. The current password authentication method in practice is the PKI-

based ”password-over-TLS” protocol. The client will first receive a server public key verified

by a Certificate Authority (CA), and then run the TLS handshake protocol and establish

a secure channel between client and server, and send its password to the server through

1

this secure channel. On the serve side, server will receive the password in clear and hash

it to verify against the stored password file, which contains a salted hash of the password,

where this salt is a random value picked by server. On the first glance of this authentication

process the protection here seems obvious: an attacker has to compromise the server in order

to gets access to the password file, and even then the attacker cannot directly retrieve the

client’s password, instead the attacker is forced to run an exhaustive offline dictionary attack

to find the client’s password given a dictionary of candidate passwords. However, there are

two disadvantages of this approach: (1) everytime the client tries to login, server can see

the password in clear (and you don’t want some random guy working in the service provider

company to see your passwords!) and (2) the security relies on the TLS channel and breaks

immediately if attacker compromises the CA company and establish a TLS channel with an

adversarial public key. Today a large portion of the CA market is occupied by small and

non-competent companies which are vulnerable against attackers and thus relying on CA as

a trusted party is not a good choice. Many previous password leakages have happened for

this reason[1][2].

Password Authenticated Key Exchange (PAKE). Password authentication protocols

have been extensively studied in the cryptgraphic literature, starting from [28]. The majority

of work focuses on password-only protocols where there is no assumption of any secure chan-

nel built from Public Key Infrastructure (PKI). The basic setting is modeled as Password-

Authenticated Key Exchange (PAKE), where two parties only input a low-entropy password

on both sides, and they will establish the same high-entropy session key if and only if their

input passwords are same, otherwise they will abort or receive random different keys. The

security of the PAKE protocol requires security against offline dictionary attack, i.e. against

an active attacker possessing a dictionary of candidate passwords. The only allowed attack

is the unavoidable online guessing attack where the adversary guesses a password and run

the PAKE protocol with either party, and succeeds if adversary picks the correct password.

2

This above PAKE protocol is symmetric, password-only (no PKI needed!) and secure against

offline dictionary attack. It has been used in many real world applications such as E-Passport.

However, this symmetric setting is not suitable for the client-server setting in the Internet

authentication protocols, since a compromise of the server would immediately leak all the

client passwords. In an asymmetric PAKE (aPAKE) protocol, the server stores a password

file, which consists of a one-way image of the password, as in the previously mentioned

password-over-TLS approach. Hence, even after compromising the server and stealing the

password file, the attacker still needs to perform an exhaustive offline dictionary attack as

in password-over-TLS. If the password client chooses is of high-entropy, it will take a long

time for this exhaustive search to succeed.

An even stronger notion of asymmetric PAKE called saPAKE further strenthens aPAKE

by requiring the server to store a salted hash of the password using a private random salt.

SaPAKE prevents a pre-computation attack where an attacker can pre-compute hashes of

passwords from a candidate password dictionary D, and once attacker compromises server,

the brute-force search for the matching password can be done in only log|D| time, instead

of |D| which we would expect. This pre-computation attack is solved by [88] leveraging

Oblivious Pseudorandom Function (OPRF) to achieve a saPAKE. In fact, one can combine

any aPAKE with an OPRF to derive a saPAKE.

Efficiency Measurement. Here we use the most commonly considered efficiency mea-

surement for cryptographic protocols, i.e. computation cost and communication cost. Our

measurement on computation cost focuses on the most time consuming operations, e.g. ex-

ponentiation, hash-onto-curve, etc. In terms of communication cost, we basically count the

message flows, and also the bandwidth.

3

1.1.1 Roadmap

In Chapter 2 we provide all the preliminary information including notations, cryptographic

assumptions and cryptographic primitives. In Chapter 3 we present a minimal-cost aPAKE

compiler called KHAPE, which essentially matches the computational cost of unauthenti-

cated key exchange. In Chapter 4 we propose OKAPE, which takes only two rounds of com-

munications while still enjoying the benefit of minimal computational cost. Both KHAPE

and OKAPE rely on Ideal Cipher Model, and in Chapter 5 we further propose an efficient

construction for Ideal Cipher on groups, apply it onto (a)PAKEs to achieve best perfor-

mance, and open the door for efficient post-quantum PAKE. Finally, in Chapter 6 we also

propose a general PAKE-to-aPAKE compiler from KEM which has efficient post-quantum

instantiations.

4

Chapter 2

Preliminaries

2.1 Cryptographic Assumptions

For the following definitions, let g generate a cyclic group G of prime order p. We assume

that |p| is polynomial in terms of the security parameter κ.

CDH and Gap CDH. The Computational Diffie-Hellman (CDH) assumption on G states

that given (X, Y) = (gx, gy) for (x, y)
r←− (Zp)

2 it is hard to find cdhg(X, Y) = gxy. The Gap

CDH assumption states that CDH is hard even if the adversary has access to a Decisional

Diffie-Hellman oracle ddhg, which on input (A,B,C) returns 1 if C = cdhg(A,B) and 0

otherwise.

2.2 Cryptographic Primitives

Single-round Key Exchange (KE) Scheme. A (single-round) KE scheme is a pair of

algorithms KA = (msg, key), where:

5

• msg, on input a security parameter κ, generates message M and state x;

• key, on input state x and incoming message M ′, generates session key K .

The correctness requirement is that if two parties exchange honestly generated messages then

they both output the same session key. The KE security requirement is that a KE transcript

hides the session key. Note that an additional property of KE called a random-message

property, namely that messages output by msg are indistinguishable from values sampled

from a uniform distribution over some domainM, is required by our protocols in this work.

Definition 2.1. KE scheme (msg, key) is secure if distributions {(M1,M2,K)} and {(M1,M2,

K ∗)} are computationally indistinguishable, where (x1,M1)← msg(1κ), (x2,M2)← msg(1κ),

K ← key(x1,M2), and K ∗
r←− {0, 1}κ.

Definition 2.2. KE scheme (msg, key) has the random-message property on domain M,

indexed by κ, if the distribution {M | (x,M)← msg(1κ)} is computationally indistinguishable

from uniform over setM[κ].

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM) is a tuple of

efficient algorithms (kg, enc, dec), the first two randomized, the third usually deterministic,

where

• kg, on input security parameter κ, generates public key pair (sk , pk);

• enc, on input a public key pk , generates ciphertext e and session key k ;

• dec, on input a private key sk and a ciphertext e, outputs a session key k .

Note that in some of our protocols, e.g. Figure 6.3, we consider KEM’s where the key

generation algorithm kg picks sk ← {0, 1}κ and sets pk ← PK(sk) using a deterministic

6

algorithm PK. This separation between sk choice and pk computation fits many KEM

algorithms, including Kyber [40]. 1

KEM correctness requirement is that Pr[dec(sk , e) = k | (sk , pk)← kg(1κ), (e, k)← enc(pk)]

≥ 1− ϵ where ϵ is

Definition 2.3. KEM is IND-CPA secure if for every efficient algorithm A, quantity |p0−p1|

is a negligible function of κ, where for i = 0, 1 we set pi = Pr[1 ← A(pk , e, ki) | (sk , pk)

← kg(1κ), (e, k0)← enc(pk), k1 ← {0, 1}κ].

Definition 2.4. KEM is IND-CCA secure if for every efficient algorithm A, quantity |p0−p1|

is a negligible function of κ, where for i = 0, 1 we set pi = Pr[1← Adecsk,e(·)(pk , e, ki) | (sk , pk)

← kg(1κ), (e, k0) ← enc(pk), k1 ← {0, 1}κ], where oracle decsk ,e(ē) returns decsk(ē) if ē ̸= e

and ⊥ if ē = e.

Definition 2.5. KEM scheme has uniform public keys for domain PK, indexed by the

security parameter κ, if the distribution {pk | (sk , pk)← kg(1κ)} is computationally indistin-

guishable from uniform over set PK[κ].

Definition 2.6. KEM scheme is weak (key-)anonymous if distributions {(pk 0, pk 1, e0)}

and {(pk 0, pk 1, e1)} are computationally indistinguishable, where (sk b, pk b) ← kg(1κ) and

(eb, kb)← enc(pk b) for b = 0, 1.

Definition 2.7. KEM scheme is strong (key-)anonymous if distributions {(sk 0, pk 0, sk 1, pk 1,

e0)} and {(sk 0, pk 0, sk 1, pk 1, e1)} are computationally indistinguishable, where (sk b, pk b, eb)

for b = 0, 1 are chosen as in Definition 2.6.

Definition 2.8. KEM scheme is OW-PCA secure if for every efficient algorithm A, prob-

ability Pr[decsk(e) = k ′ | (sk , pk) ← kg(1κ), (e, k) ← enc(pk), k ′ ← APCOsk (·,·)(pk , e)] is a

negligible function of κ, where oracle PCOsk(ē, k̄) returns 1 if decsk(ē) = k̄ , and 0 otherwise.

1Every kg algorithm can be broken down into such steps if sk denotes kg randomness, but such repre-
sentation of sk might not be most efficient for algorithm dec, hence in Figure 6.8 we show a version of our
aPAKE protocol with black-box use of the key generation algorithm kg.

7

Authenticated Encryption. A (symmetric) authenticated encryption scheme (AE) is a

tuple of efficient algorithms (AEnc,ADec), where

• AEnc, on input key k ∈ {0, 1}κ and message m ∈ {0, 1}∗, outputs ciphertext c;

• ADec, on input key k ∈ {0, 1}κ and a ciphertext c, outputs m ∈ {0, 1}∗ ∪ {⊥}.

Correctness requires that ADec(k,AEnc(k,m)) = m for any k ∈ {0, 1}κ, m ∈ {0, 1}∗.

Definition 2.9. AE scheme is IND-CCA secure if for every efficient algorithm A, quantity

|p0−p1| is a negligible function of κ, where for i = 0, 1 we set pi = Pr[1← AADec(k ,·)(c) | (m0,

m1)← AADec(k ,·), c← AEnc(k ,mi), k ← {0, 1}κ], where oracle ADec(k , c̄) returns ADec(k , c̄)

if c̄ ̸= c and ⊥ if c̄ = c.

Definition 2.10. AE scheme is random-key robust if for any efficient algorithm A, proba-

bility Pr[ADec(k1, c) ̸= ⊥ ∧ ADec(k2, c) ̸= ⊥ | k1 ← {0, 1}κ, k2 ← {0, 1}κ, c ← A(k1, k2)] is

a negligible function of κ.

Definition 2.11. AE scheme is unforgeable if for any efficient algorithm A, probability

Pr[ADec(k , c∗) ̸= ⊥ ∧ c∗ ̸∈ cset | k ← {0, 1}κ, c∗ ← AAEnck (·)(1κ)] is a negligible function of

κ, where cset is the set of responses sent by oracle AEnck(·).

IND-CCA security and unforgeability properties of AE are achieved by standard AE con-

structions. The random-key robustness can be achieved using encrypt-then-MAC with a

MAC which is collision resistant with respect to the message and the key, which can be

instantiated with HMAC with full hash output. Alternatively, random-key robustness can

be achieved by adding hash H(k , c) to an AE’s ciphertext c if H is an RO hash.

Message Authentication Code. Message authentication code (MAC) is a tuple of efficient

algorithms (Mac,Vrfy), where

8

• Mac, on input key k ∈ {0, 1}κ and message m ∈ {0, 1}∗, outputs tag t;

• Vrfy, on input key k ∈ {0, 1}κ, message m, and tag t, outputs bit b ∈ {0, 1}.

Correctness is that Vrfy(k ,m,Mac(k ,m)) = 1 for any k ∈ {0, 1}κ, m ∈ {0, 1}∗.

Definition 2.12. MAC scheme is unforgeable if for any efficient algorithm A, probability

Pr[Vrfy(k ,m∗, t∗) = 1 ∧ m∗ ̸∈ mset | k ← {0, 1}κ, (m∗, t∗) ← AMac(k ,·)(1κ)] is a negligible

function of κ, where mset is the set of queries A sent to oracle Mack(·).

Definition 2.13. MAC scheme is tag-random if ∀m ∈ {0, 1}∗, distribution {t | k ←

{0, 1}κ, t← Mac(k ,m)} is computationally indistinguishable from uniform over set T [κ].

Note that the last property is satisfied if Mac is a PRF, and that many standard MAC

constructions, e.g. CBC-MAC and HMAC, are PRF’s.

2.3 Security Models and Frameworks

2.3.1 The Random Oracle Model and Ideal Cipher Model

We use Random Oracle Model (ROM) for proving the security claims in this study. In some

cases we also assume Ideal Cipher Model (IC).

2.3.2 Universally Composability Framework

In this dissertation we use the Universal Composability (UC) framework [46] to construct

security proofs. UC follows the simulation-based paradigm where the security of a protocol

is modeled by a machine called the ideal functionality F , which interacts with a set of

9

“dummy” parties and an ideal world adversary SIM, and does all computation in the ideal

world. We say that protocol π securely realizes F if for any PPT A, there is a simulator SIM

s.t. for all environments Z, the difference between the real-world view, i.e. an interaction of

Z and A with parties executing π, and the ideal-world view, i.e. an interaction of Z and A

with SIM and F , is negligible in κ.

Note that UC framework is widely used for proving the security of PAKE protocols, and the

reason is that, compared to game based security definition, UC framework supports choosing

arbitrary password from any distribution, and allows reuse of these passwords. This reflects

the real world application scenario.

2.3.3 Functionalities

Here we show the fundamental UC functionalities used in this work.

PAKE. Figure 2.1 shows the original version of UC symmetric PAKE functionality FpwKE

from [48]. Note that [72] revised symmetric PAKE functionality of [48], by extending PAKE

outputs with a transcript, whereas in the original PAKE functionality FpwKE of [48] the only

output of each party was a session key.

In Chapter 6 we provide a variant which further simplifies [72] by requiring that the ideal-

world adversary creates the session key and transcript outputs with a single command,

NewKey, instead of two separate queries. This is only a syntactic difference, because real-

world PAKE parties terminate with both outputs, a transcript and a session key, at the

same time. Moreover, in the version in [72] the transcript-generation command is non-

informational, i.e. the adversary doesn’t learn anything from it, hence each PAKE protocol

which is simulatable in the original GMR model must also be simulatable in ours.

aPAKE. Figure 2.4 shows the functionality FaPAKE for asymmetric PAKE with explicit

10

Notation: κ is the security parameter, P,P′ are arbitrary parties, A is the ideal-world
adversary

On query (NewSession, sid,P,P′, pw) from party P:

If this is the first NewSession query for this sid, or it is the second one and the pre-
vious one was (sid,P′,P, pw ′), then record (sid,P,P′, pw) marked fresh and forward
(NewSession, sid,P,P′) to A.

On query (TestPwd, sid,P, pw ∗) from adversary A:

If there is record (sid,P,P′, pw) marked fresh then:

• If pw ∗ = pw then mark this record compromised and reply ”correct” to S

• If pw ∗ ̸= pw then mark this record interrupted and reply ”incorrect” to S

On query (NewKey, sid, P,K ∗) from adversary A:

If there is record (sid,P,P′, pw) marked flag ̸= completed then:

• If flag = compromised then set K ← K ∗;

• If flag = fresh, there is a record (sid,P′,P, pw), and FpwKE sent (sid,K ′) to P′ when
record (sid,P′,P, pw) was fresh, then set K ← K ′;

• In any other case set K
r←− {0, 1}κ.

Mark record (sid,P,P′, pw) as completed and send (sid,K) to P.

Figure 2.1: FpwKE: UC symmetric PAKE functionality (original version from [48])

11

C-to-S authentication, which is used in KHAPE.

In OKAPE we include a UC aPAKE functionality FaPAKE which is different from KHAPE[74],

shown in Figure 2.3. This functionality is largely as it was originally defined by Gentry,

Mackenzie, and Ramzan [72], and it adopts few notational modifications introduced by

Figure 2.4. These include naming what amounts to user accounts explicitly as uid instead of

generic-sounding sid, using sid instead of ssid as a session-identifier for on-line authentication

attempts, and using only pairs (S, uid) to identify server password files and not (S,U, uid)

tuples as in [72].

Because we differentiate between unsalted and (publicly) salted aPAKE’s, an explicit support

for unsalted aPAKE’s is reflected in aPAKE functionality FaPAKE by introducing a slight

modification in the functionality of [74]. These modifications are highlighted in Figure 2.3,

and they all concern a client-side usage of the user account field uid. When the aPAKE

protocol is unsalted, to enforce the aPAKE contract defined by [72], which is that a single real-

world offline dictionary attack operation must correspond not only to a single password guess

but also to a unique user password file, identified by a unique pair (S, uid), the client must

get as environment’s inputs both the server identifier S and the user account identifier uid.

This is reflected in including uid in the inputs to CltSession command in Figure 2.3. However,

since the client now performs computation on a fixed uid, honest client and server sessions

will not agree on the same output key unless they run not only on the same password pw but

also on the same uid. Hence the NewKey processing now includes uid-equality enforcement.

Finally, for the same reason, an online password test TestPwd must specify the uid field in

addition to password guess pw ∗.

Functionality FaPAKE in Figure 2.3 currently allows both the server and the client sessions to

leak the account identifier uid input to the adversary. The server-side leakage of this informa-

tion was inherent (although not immediate to observe) in the original aPAKE functionality

of [72], and it was adopted by subsequent works, including e.g. [88, 74]. Now, however, we

12

Password Registration

• On (StorePwdFile, uid, pw) from S create record ⟨file,S, uid, pw⟩ marked fresh.

Stealing Password Data

• On (StealPwdFile,S, uid) fromA, if there is no record ⟨file,S, uid, pw⟩, return “no password
file”. Otherwise mark this record compromised, and if there is a record ⟨offline, S, uid, pw⟩
then send pw to A.

• On (OfflineTestPwd,S, uid, pw∗) from A, then do:

– If ∃ record ⟨file, S, uid, pw⟩ marked compromised, do the following:

If pw∗ = pw then return “correct guess” to A else return “wrong guess.”

– Else record ⟨offline,S, uid, pw∗⟩

Password Authentication

• On (CltSession, sid,S, pw) from C, if there is no record ⟨sid,C, ...⟩ then record
⟨sid,C,S, pw , 0⟩ marked fresh and send (CltSession, sid,C,S) to A.

• On (SvrSession, sid,C, uid) from S, if there is no record ⟨sid,S, ...⟩ then retrieve record
⟨file, S, uid, pw⟩, and if it exists then create record ⟨sid,S,C, pw , 1⟩ marked fresh and send
(SvrSession, sid,S,C, uid) to A.

Active Session Attacks

• On (TestPwd, sid,P, pw∗) from A, if there is a record ⟨sid,P,P′, pw , role⟩ marked fresh,
then do: If pw∗ = pw then mark it compromised and return “correct guess” to A; else
mark it interrupted and return “wrong guess.”

• On (Impersonate, sid,C,S, uid) from A, if there is a record ⟨sid,C, S, pw , 0⟩ marked
fresh, then do: If there is a record ⟨file,S, uid, pw⟩ marked compromised then mark
⟨sid,C,S, pw , 0⟩ compromised and return “correct guess” to A; else mark it interrupted
and return “wrong guess.”

Key Generation and Authentication

• On (NewKey, sid,P,K ∗) from A, if there is a record rec = ⟨sid,P,P′, pw , role⟩ not marked
completed, then do:

– If rec is marked compromised set K ← K ∗;

– Else if role = 0, rec is fresh, there is record ⟨sid,P′,P, pw , 1⟩ s.t. FaPAKE sent (sid,K ′)
to P′ while that record was marked fresh, set K ← K ′;

– Else if role = 1, rec is fresh, there is record ⟨sid,P′,P, pw , 0⟩ which is marked fresh,
pick K

r←− {0, 1}ℓ;
– Else set K ← ⊥.

Finally, mark rec as completed and send output (sid,K) to P.

Figure 2.2: FaPAKE: asymmetric PAKE with explicit C-to-S authentication used in KHAPE

13

Password Registration

• On (StorePwdFile, uid, pw) from S create record ⟨file,S, uid, pw⟩ marked fresh.

Stealing Password Data [these queries must be approved by the environment]

• On (StealPwdFile,S, uid) fromA, if there is no record ⟨file,S, uid, pw⟩, return “no password
file”. Otherwise mark this record compromised, and if there is a record ⟨offline, S, uid, pw⟩
then send pw to A.

• On (OfflineTestPwd,S, uid, pw∗) from A, then do:

– If ∃ record ⟨file, S, uid, pw⟩ marked compromised, do the following:

If pw∗ = pw then return “correct guess” to A else return “wrong guess.”

– Else record ⟨offline,S, uid, pw∗⟩

Password Authentication

• On (CltSession, sid,S, uid , pw) from C, if there is no record ⟨sid,C, ...⟩ then save

⟨sid,C,S, uid , pw , 1⟩ marked fresh, send (CltSession, sid,C,S, uid) to A.

• On (SvrSession, sid,C, uid) from S, if there is no record ⟨sid,S, ...⟩ then retrieve record
⟨file, S, uid, pw⟩, and if it exists then save ⟨sid, S,C, uid , pw , 2⟩ marked fresh and send
(SvrSession, sid,S,C, uid) to A.

Active Session Attacks

• On (TestPwd, sid,P, uid , pw∗) from A, if ∃ record ⟨sid,P,P′, uid , pw , role⟩ marked fresh,
then do: If pw∗ = pw then mark it compromised and return “correct guess” to A; else
mark it interrupted and return “wrong guess.”

• On (Impersonate, sid,C, S, uid) from A, if ∃ record rec = ⟨sid,C,S, uid , pw , 1⟩ marked
fresh, then do: If ∃ record ⟨file,S, uid, pw⟩marked compromised then mark rec compromised
and return “correct guess” to A; else mark it interrupted and return “wrong guess.”

Key Generation and Authentication

• On (NewKey, sid,P,K ∗) from A, if ∃ record rec = ⟨sid,P,P′, uid , pw , role⟩ not marked
completed, then do:

1. If rec is marked compromised set K ← K ∗;

2. Else if rec is fresh and there is record ⟨sid,P′,P, uid , pw , role′⟩ for role′ ̸= role and
FaPAKE sent (sid,K ′) to P′ when this record was fresh, set K ← K ′;

3. Else set K
r←− {0, 1}ℓ.

Finally, mark rec as completed and send output (sid,K) to P.
Note: Modifications from FaPAKE defined in [74] are marked like this . They consist of
assumping input uid in CltSession and TestPwd and enforcing uid-equality between client
and server sessions in NewKey processing.

Figure 2.3: FaPAKE: asymmetric PAKE functionality used in OKAPE

14

Queries StorePwdFile from S, StealPwdFile or OfflineTestPwd from A, CltSession from C,
SvrSession from S, and TestPwd or Impersonate from A, functionality FaPAKE acts as FaPAKE of
Figure 2.3, except it omits all parts marked uid (i.e. it does not require uid input for C and
does not enforce uid-equality for C and S).

Below we mark like this parts of NewKey processing which differ from FaPAKE.

Key Generation and Authentication

• On (NewKey, sid,P,K ∗) from A, if there is a record rec = ⟨sid,P,P′, pw , role⟩ not marked
completed, then do:

1. If rec is marked compromised set K ← K ∗;

2. Else if rec is fresh , role = 2, and there is record ⟨sid,P′,P, pw , 1 ⟩ s.t. FaPAKE sent
(sid,K ′) to P′ when this record was fresh, set K ← K ′;

3. Else if role = 1 set K
r←− {0, 1}ℓ , and if role = 2 set K ← ⊥ .

Finally, mark rec as completed and send output (sid,K) to P.

Figure 2.4: FaPAKE: asymmetric PAKE with explicit C-to-S authentication

also introduce client-side leakage of the same information. The uid has to be transmitted

from the client to the server before the protocol starts, but it is not clear that the crypto-

graphic protocol should leak it. We leave plugging this leakage and/or verifying whether it

is necessary in known aPAKEs, including ours, to future work.

Client-to-server entity authentication. Since protocol OKAPE includes client-to-server

authentication (it is not optional, and the protocol is insecure without it), it realizes an

aPAKE functionality amended by client-to-server entity authentication. We use FaPAKE

to denote the variant of aPAKE functionality with uni-directional client-to-server entity

authentication, and we include it in Figure 2.4. Since protocol OKAPE is a salted aPAKE,

it does not need the uid input on the client side, so the FaPAKE functionality in Figure 2.4

incorporates all the code of functionality FaPAKE but without the uid-related modifications.

To simplify NewKey processing functionality FaPAKE in Figure 2.4 assumes that the client

party terminates first, so if two honest parties are connected then the client party computes

its session key output first, and it is always the server party which can potentially get the

same key copied by the functionality. One could define it more generally but we expect that

15

in most aPAKE protocols with unilateral client-to-server explicit authentication the server

will indeed be the last party to terminate.

16

Chapter 3

KHAPE: Asymmetric PAKE from

Key-Hiding Key Exchange

3.1 Introduction

In this paper we investigate the question of how “minimal” an asymmetric PAKE can be. In

spite of the many subtleties surrounding the design and analysis of aPAKE protocols, there

are several efficient and practical realizations which meet a universally composable (UC)

notion of aPAKE [72]. For example, the overhead of the recently analyzed SPAKE2+ pro-

tocol [119] over the unauthenticated Diffie-Hellman (uDH) protocol is 1 or 2 exponentiations

per party. Similar overhead costs are also imposed by the generic results which compile any

PAKE to aPAKE [72, 84]. Known strong aPAKEs (see below), add similar or larger overhead

costs [88, 44].

The comparison to uDH is significant not only from a practical point of view, but also because

PAKE protocols imply unauthenticated key exchange in the sense of the Impagliazzo-Rudich

results [85, 77]. Thus, we can see uDH as the lowest possible expected performance of PAKE

17

protocols. But how close to the uDH cost can we get; can one improve on existing protocols?

In the symmetric PAKE case, where the two peers share the same password, there are almost

optimal answers to this question. The Bellovin-Merrit’s classical EKE protocol [28], shows

that all you need is to apply a symmetric-key encryption on top of the uDH transcript. It

requires a carefully chosen encryption scheme, e.g., one that is modeled after an ideal cipher,

but it only involves symmetric key techniques [26, 7, 43, 109].1

Can this low overhead relative to uDH be achieved also in the more involved setting of

asymmetric PAKEs, where security against offline attacks is to be provided even when the

server is broken into? We show an aPAKE protocol, KHAPE, that only requires symmetric

operations (in the ideal cipher model) over regular authenticated DH.

KHAPE (for Key-Hiding Asymmetric PakE) can be seen as a variant of the OPAQUE protocol

[88] that is being developed into an Internet standard [101] and intended for use within TLS

1.3 [120]. OPAQUE introduces the idea of password-encrypted credentials containing an

encrypted private key for the user and an authenticated public key for the server. The

user deposits the encrypted credentials at the server during password registration and it

retrieves them for login sessions, thus allowing user and server to run a regular authenticated

key exchange (AKE) protocol. However, encrypting and authenticating credentials with a

password opens the protocol to trivial offline dictionary attacks. Therefore, OPAQUE first

runs an Oblivious PRF (OPRF) on the user’s password in order to derive a strong encryption

key for the credential. This makes the protocol fully reliant on the strength of the OPRF.

If OPRF is ever broken (by cryptanalysis, quantum attacks or security compromise), the

user’s password is exposed to an offline dictionary attack.

Near-optimal aPAKE. KHAPE addresses this weakness by dispensing with the OPRF

1Several other symmetric PAKE protocols, e.g. SPAKE2 [10], SPEKE [86, 105, 79] and TBPEKE [113],
attain universally composable security without relying on an ideal cipher but incur additional exponentiations
over uDH costs [4].

18

(hence also improving performance). It uses a “paradoxical” mechanism that allows to

directly encrypt credentials with the password and still prevent dictionary attacks. Two

key ideas are: (i) dispense with authentication of the credentials2 and instead use a non-

committing encryption where decryption of a given ciphertext under different keys cannot

help identify which key from a candidate set was used to produce that ciphertext; and (ii)

using a key-hiding AKE. The latter refers to AKE protocols that require that no adversary,

not even active one, can identify the long-term keys used by the peers to an exchange even

if provided with a list of candidate keys (a notion reminiscent of key anonymity for public

key encryption [24]).

Fortunately, many established AKE protocols are key hiding, including implicitly authenti-

cated protocols such as 3DH [107] and HMQV [100], and KEM-based protocols with key-

hiding KEMs (e.g., SKEME [97]). The non-committing property of encryption models sym-

metric encryption as an ideal model (similarly to the case of EKE discussed above) and allows

for implementations based on random oracles with hash-to-curve operations to encode group

elements as strings. As a result, KHAPE with HMQV, uses only one fixed-base exponentia-

tion, one variable-base (multi)exponentiation for each party, and one hash-to-curve operation

for the client. In all, it achieves computational overhead relative to unauthenticated Diffie-

Hellman of less than the cost of one exponentiation, thus providing a close-to-optimal answer

to our motivating questions above. Such computational performance compares favorably to

that of other efficient aPAKE protocols such as SPAKE2+ and OPAQUE that incur over-

head of one and two (variable-base) exponentiations, respectively, for server and client. In

terms of number of messages, KHAPE uses 4 (3 if server initiates), compared to 3 messages

in SPAKE2+ and OPAQUE.

Refer to Section 6.2 for a detailed description and rationale of the generic KHAPE protocol

(compiling any key-hiding AKE into an aPAKE) and to Section 3.7 for the instantiation

2Dispensing with authentication of credentials in OPAQUE completely breaks the protocol, allowing for
trivial offline dictionary attacks.

19

using HMQV.

On Strong aPAKE and reliance on OPRF. In the comparisons above, it is important

to stress that OPAQUE achieves a stronger notion of aPAKE, the so called Strong aPAKE

(saPAKE) model from [88]. In this model, the attacker that compromises a server can only

start running an offline dictionary attack after breaking into the server. In contrast, in regular

aPAKE, an offline attack is still needed but a specialized dictionary can be prepared ahead

of time and used to find the password almost instantaneously when breaking into the server.

KHAPE, as discussed above, does not provide this stronger security. However, as shown

in [88], one can add a run of an OPRF to any aPAKE protocol to achieve Strong aPAKE

security. If one does that to KHAPE, one gets a Strong aPAKE protocol with performance

similar to that of OPAQUE (using HMQV or 3DH).

However, there is a significant difference in the reliance on the security of OPRF. While the

password security of OPAQUE breaks down with a compromise of the OPRF key (namely,

it allows for an offline dictionary attack on the password), in KHAPE the effect of compro-

mising the OPRF is only to fall back to the (non-strong) aPAKE setting. In particular, this

distinction is relevant in the context of quantum-safe cryptography as there are currently no

known efficient OPRFs considered to be quantum safe. This opens a path to quantum-safe

aPAKEs based on KHAPE with key hiding quantum-safe KEMs.

Closer comparison with OPAQUE. As stated above, KHAPE has an advantage over

OPAQUE in terms of security due to its weaker reliance on OPRF and its computational

advantage when the OPRF is not used. Also, KHAPE seems more conducive to post-quantum

security via post-quantum key-hiding KEMs.3 On the other hand, KHAPE requires one more

message and allows for a more restrictive family of AKEs relative to OPAQUE (e.g., it does

not allow for signature-based protocols as those based on SIGMA [98] and used in TLS 1.3

3We are currently investigating the use of NIST’s post-quantum KEM selections [112] in conjunction with
KHAPE.

20

and IKEv2). KHAPE also relies for its analysis on the ideal cipher model while OPAQUE

uses the random oracle model. An interesting advantage of KHAPE over OPAQUE is that

in OPAQUE, an online attacker testing a password learns whether the password was wrong

before the server does (in KHAPE the server learns first). This leads to a more complex

mechanism for counting password failures at a server running OPAQUE, especially in settings

with unreliable communication. Finally, we point out an advantage of using an OPRF with

KHAPE (in addition to providing Strong aPAKE security): It allows for multi-server security

via a threshold OPRF [87] where an attacker needs to break into multiple servers before it

can run an offline attack on a password.

UC model analysis of (key-hiding) AKE’s. All our protocols are framed and ana-

lyzed in the Universally Composable (UC) model [47]. This includes a formalization of the

key-hiding AKE functionality that underlies the design of KHAPE. In order to instantiate

KHAPE with specific AKE protocols, we prove that protocols 3DH [107] and HMQV [100]

realize the key-hiding AKE functionality (in the ROM and under the Gap CDH assump-

tion). We prove a similar result for SKEME [97] with appropriate KEM functions. We

see the security analysis of these AKE protocols in the UC model, with and without key

confirmation, as a contribution of independent interest. Moreover, the study of key-hiding

AKE has applicability in other settings, e.g., where a gateway or IP address hides behind it

other identities; say, a corporate site hosting employee identities or a web server aggregating

different websites.

3.2 The Key-Hiding AKE UC Functionality

Protocol KHAPE results from the composition of an encrypted credentials scheme and a

key-hiding AKE protocol. Fig. 3.1 defines the UC functionality FkhAKE that captures the

properties required from a key-hiding AKE protocol. The modeling choices target the fol-

21

lowing requirements: First, as shown in Section 6.2, the security and key-hiding properties

of this key-hiding AKE model suffice for our main application, a generic construction of UC

aPAKE from any protocol realizing FkhAKE. Second, adding a standard key confirmation

to any protocol that realizes FkhAKE results in a (standard) UC AKE with explicit entity

authentication. Lastly, this functionality is realized by several well-known and efficient AKE

protocols, including 3DH and HMQV, as shown in Sections 3.3 and 4.2.2, as well as by a

KEM-based AKE such as SKEME, if instantiated with a key-hiding KEM, see Section 3.5.

We provide more details and rationale for the FkhAKE next.

High-level requirements for key-hiding AKE. The most salient property we require

from AKE is key hiding. To illustrate this requirement consider an experiment where the

attacker A is provided with a transcript of a session between a party P and its counterparty

CP. Party P has two inputs in this AKE instance: a public key pkCP for CP and its own

private key KP which P uses to authenticate to CP who presumably knows P’s public key

pkP. In addition, A is given a pair of private keys: P’s private key KP and a second random

independent private key. A’s goal is to decide which of the two keys P used in that session.4

We are interested in AKE protocols where the attacker has no better chance to answer

correctly than guessing randomly even for sessions in which A is allowed to choose the

messages from CP.

The key hiding property will come up in the analysis of KHAPE as follows. The attacker

learns a ciphertext c that encrypts the user’s private key under the user’s password. By

decrypting this ciphertext under all passwords in a dictionary, the attacker obtains a set of

possible private keys for the user. The key hiding property ensures that the attacker cannot

identify the correct key (or the password) in the set. Fortunately, as we prove here, a large

class of AKE protocols satisfy the key-hiding property, including implicitly authenticated

protocols such as HMQV and 3DH, and some KEM-based protocols.

4This is reminiscent of key anonymity for PK encryption [24] where the attacker needs to distinguish
between public keys for a given ciphertext.

22

• PK stores all public keys created via Init;

• PK P stores the public keys created by P;

• CPK stores the compromised keys;

Keys: Initialization and Attacks

On Init from P:

Send (Init,P) to A, let A specify pk s.t. pk ̸∈ PK , add pk to PK and to PK P, and output
(Init, pk) to P. If P is corrupt then add pk to CPK .

On (Compromise,P, pk) from A:
If pk ∈ PK P then add pk to CPK .

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, pkP, pkCP) from P:

If pkP ∈ PK P and there is no prior session record ⟨sid,P, ·, ·, ·, ·⟩ then:
• create session record ⟨sid,P,CP, pkP, pkCP,⊥⟩ marked fresh;

• initialize random function Rsid
P : ({0, 1}∗)3 → {0, 1}κ;

• send (NewSession, sid,P,CP) to A.

On (Interfere, sid,P) from A:
If there is session ⟨sid,P, ·, ·, ·, ·,⊥⟩ marked fresh then change it to interfered.

Login Sessions: Key Establishment

On (NewKey, sid,P, α) from A:
If ∃ session record rec = ⟨sid,P,CP, pkP, pkCP,⊥⟩ then:
• if rec is marked fresh: If ∃ record ⟨sid,CP,P, pkCP, pkP, k

′⟩ marked fresh s.t. k ′ ̸= ⊥
then set k ← k ′, else pick k

r←− {0, 1}κ;

• if rec is marked interfered then set k ← Rsid
P (pkP, pkCP, α);

• update rec to ⟨sid,P,CP, pkP, pkCP, k⟩ and output (NewKey, sid, k) to P.

Session-Key Query

On (ComputeKey, sid,P, pk , pk ′, α) from A:
If ∃ record ⟨sid,P, ...⟩ and pk ′ ̸∈ (PK \ CPK) then send Rsid

P (pk , pk ′, α) to A.

Figure 3.1: FkhAKE: Functionality for Key-Hiding AKE

23

Additionally, FkhAKE strengthens the basic guarantees of AKE protocols in several ways.

It requires resilience to KCI (key-compromise impersonation) attacks, namely, upon the

compromise of the private key of party P, the attacker can impersonate P to others but it

cannot impersonate others to P. In the aPAKE setting, this ensures that an attacker that

compromises a server, cannot impersonate the client to the server without going through an

offline dictionary attack. In the context of key hiding AKE, we also need KCI resilience to

prevent the attacker from authenticating to the client when given a set of possible private

keys for that client.

Second, FkhAKE requires that keys exchanged by a honest P with a corrupted CP still maintain

a good amount of randomness, namely, the attacker can cause them to deviate from uniform

but not by much (a property sometimes referred to as “contributive” key exchange, and not

required in standard UC treatment). In the setting of protocol KHAPE, adversarial choice of

session keys (particularly the ability of the attacker to create equal keys in different sessions)

could lead to protocols where the attacker can test more than one password in a single

session.

Properties that we do not consider as part of the FkhAKE functionality, but will be provided

by our final aPAKE protocol, KHAPE, include key confirmation, explicit authentication and

full forward secrecy (FkhAKE itself implies forward secrecy only against passive attackers).

Identities and public keys. We consider a setting where each party P has multiple public

keys in the form of arbitrary handles pk . In the security model we assume that the public keys

are arbitrary bitstrings chosen without loss of generality by the attacker (ideal adversary) A,

with the limitation that honest parties are assigned non-repeating pk strings. Pairs (P, pk)

act as regular UC identities from the environment’s point of view, but the pk component is

concealed from A during key exchange sessions, even for sessions which are actively attacked

by A. This model can capture practical settings where P represents a gateway or IP address

24

behind which other identities reside, e.g., a corporate site hosting employee identities or a

web server aggregating different websites, and where one is interested to hide which party

behind the gateway is communicating in a given session. Our specific application setting

when using key-hiding AKE in the aPAKE construction of Section 6.2, is more abstract: The

party symbols P,CP represent parties like internet clients and servers, while the multiplicity

of public keys comes from decryptions of encrypted credentials under multiple password.

(Compromise,P, pk). This adversarial action hands the (long-term) private key of party

(P, pk) to the attacker A. Such private-key leakage does not provide A with control over

party P, and it does not even imply that the sessions which party P runs using the (leaked)

key pk are insecure. However, when combined with the ability to run active attacks, via

the Interfere action below, A can fully impersonate (P, pk) in sessions of A’s choice. The

leakage of the private key K corresponding to (P, pk) does not affect the security of a session

executed by party P even if it uses the compromised key pk . This captures the KCI property,

i.e. that leakage of the private key of party P does not allow to impersonate others to party

P. Also, any party P′ which runs AKE with a counterparty identity specified as (P, pk), will

also be secure as long as A does not actively interfere in that protocol. This captures the

requirement that passively-observed AKE instance are secure regardless of the compromise

of the long-term secrets used by either party. Note that A cannot compromise a party P but

rather an identity pair (P, pk) and such compromise does not affect other pairs (P, pk ′).

NewSession. A session is initiated by a party P that specifies its own identity pair (P, pk)

as well as the intended counterparty identity pair (CP, pkCP). Session identifiers sid are

assumed to be unique within an honest party. The role of the initialized session-specific

random function Rsid
P is described below. A record for a session is initialized as fresh and is

represented by a tuple ⟨sid,P,CP, pk , pkCP,⊥⟩ where the last position, set to ⊥, is reserved

for recording the session key. An essential element in NewSession is that A learns (sid,P,CP)

but it does not learn (pk , pkCP). In the real world this translates into the inability of the

25

attacker to identify public (or private) keys associated to a pair of parties (P,CP) engaging

in the Key-Hiding AKE protocol.

The functionality enforces that an honest P can start a session only on key pk which P

generated and for which it holds a private key. However, the functionality does not check

anything about the intended counterparty’s identity (CP, pkCP), so the private key corre-

sponding to pkCP could be held by party CP, or it could be held by a different party, or it

could be compromised by the adversary, or it could be that pkCP was not even generated

by the key generation interface of FkhAKE, and it is an adversarial public key, whose private

key the environment gave to the adversary. Our model thus includes honest parties who

are tricked to use a wrong public key for the counterparty (e.g., via a phishing attack) in

which case the attacker may know the corresponding private key. Note that regardless of

what key pkCP the session runs on, it is not given to the adversary, so if it is a key created

by the envriment (i.e. a higher-level application which uses the key-hiding AKE) it does not

necessarily follow that this key will be known to the adversary, and only in the case it is

known the adversary will be able to attack that session using interfaces Interfere, NewKey,

and ComputeKey below.

Function Rsid
P . When command NewSession creates a session for (sid,P) the functionality

initializes a random function Rsid
P specific to this session. Function Rsid

P is used to set the

value of the session key for sessions in which A actively interferes. It also allows A to have

limited control over the value of the key under strict circumstances, namely it must know

the pulic keys pk , pkCP used on that session, and it must compromise party (CP, pkCP). Even

then the only freedom A has is to evaluate function Rsid
P on any point α via a ComputeKey

query, see below, and then choose one such point in the NewKey caommand. This captures

the “contributive” property discussed above: If an honest party runs the AKE protocol even

with adversary as a counterparty, the adversary’s influence over the session key is limited to

pre-computing polynomially-many random key candidates and then choosing one of them

26

as a key on that session. The exact mechanics and functionality of Rsid
P are defined in the

NewKey and ComputeKey actions below.

(Interfere, sid,P). This action represents an active attack on session (P, sid) and makes the

session change its status from fresh to interfered. The adversary does not have to know either

P’s own key pk or the intended counterparty key pkCP which P uses on that session.5 Such

active atack will prevent session (P, sid) from establishing a secure key with any other honest

party session, e.g. (CP, sid). It will also allow A to learn and/or influence the value of the

session key this session outputs (using function Rsid
P), but only if in addition to being active

A compromises the counterparty key (CP, pkCP) used on session (P, sid).

NewKey. This action finalizes an AKE instance and makes (P, sid) output a session key.

If the session is fresh then it receives either a fresh random key or the same key that was

previously received by a matching session. If the session is interfered, the value of the session

key is determined by the function Rsid
P on input (pk , pkCP, α) where α is chosen arbitrarily by

A, allowing A to influence the value of the session key (but in a very limited way as explained

above). In the real-world, α represents transcript elements generated by the attacker, e.g.,

value Y an adversarial P2 sends to an honest party P1 in 3DH or HMQV.

ComputeKey. This action allows A to query the function Rsid
P associated to a session (sid,P),

potentially allowing A to learn and/or influence the session key for (sid,P). Note that

learning any values of function Rsid
P is useless unless the adversary actively attacks session

(sid,P), because otherwise Rsid
P is not used to determine the key output by session (sid,P).

Moreover, A needs to provide (pk , pkCP, α) as input to ComputeKey, and if those inputs

do not match P’s own key pk and the intended counterparty key pkCP which P uses on

session (sid,P), then this query reveals an irrelevant value, since Rsid
P is a random fuction.

5Currently functionality FkhAKE assumes the ideal-world adversary A knows, and indeed creates, all honest
parties’ public keys. A tighter model is possible, if FkhAKE samples public keys on behalf of honest players
using the prescribed key generation algorithm, instead of letting A pick them. This would allow modeling
use cases where the public keys are not public and are not freely available to the adversary.

27

Finally, FkhAKE releases value Rsid
P (pk , pkCP, α) to A only if key pkCP is either compromised

or adversarial. Summing up, the ability to learn (and/or control via the NewKey interface)

the session key output by session (sid,P) is restricted to the case where all of the following

hold: A actively interfered on that session, A guesses keys pk , pkCP which this session uses,

and A compromises counterparty’s key (CP, pkCP).

How FkhAKE ensures key hiding and session security. The description of FkhAKE is now

complete. We now explain how FkhAKE ensures the key hiding property by which A cannot

learn the value pk for an identity pair (P, pk) even if A knows P, has a list of all possible

values of (P, pk), and actively interacts with (P, pk) using a compromised party (CP, pkCP).

Let’s assume these conditions hold. Note that the only actions in which A can learn pk values

from FkhAKE are upon key generation and via the ComputeKey call. Key generation assumes

that A has a list of all possible values (P, pk). As we explain above, the only argument on

which the value of function Rsid
P is useful is a tuple (pk , pkCP, α) which the functionality uses

to derive a session key for an actively attacked session (sid,P).

Consequently, the only way FkhAKE can leak the session key output by (sid,P) is if A satisfies

the three conditions above, i.e. it interferes in that session, key pkCP used on that session is

either compromised or adversarial, and A queries ComputeKey on the proper keys pk , pkCP.

This is also the only way A can learn anything about keys pk , pkCP used by session (sid,P):

It has to attack the session, compromise pkCP, get a session key candidate k ∗ via query

ComputeKey on pk , pkCP, and then compare this key candidate against any information it

has about the key k output by session (sid,P). For example, if P’s higher-level application

uses key k to MAC or encrypt a message, the adversary can verify the result against a

candidate key k ∗ and thus learn whether k ∗ = k , and hence whether keys pk , pkCP which A

used to compute k ∗ were the same keys that were used by session (sid,P).

28

3.3 3DH as Key-Hiding AKE

We show that protocol 3DH, presented in Figure 3.2, realizes the UC notion of Key-Hiding

AKE, as defined by functionality FkhAKE in Section 4.2, under the Gap CDH assumption in

ROM. As a consequence, 3DH can be used to instantiate protocol KHAPE in a simple and

efficient way.

3DH [107] is a simple, implicitly authenticated key exchange used as the basis of the X3DH

protocol [108] that underlies the Signal protocol. It consists of a plain Diffie-Hellman ex-

change authenticated via the session-key derivation that combines the ephemeral and long-

term key of both peers. Specifically, if (a,A) and (b,B) are the long-term key pairs of two

parties P1 and P2, and (x,X) and (y, Y) are their ephemeral DH values, then 3DH combines

these key pairs to compute a (hash of) the triple of Diffie-Hellman values, σ = gxb∥gay∥gxy.

Security of 3DH is intuitively easy to see: It follows from the fact that to compute σ the

attacker must either (1) know (x, a) to attack party P2 who uses A as a public key for its

counterparty, or (2) know (y, b) to attack party P1 who uses B as a public key for its coun-

terparty. In other words, the attacker wins only if it is an active man-in-the-middle attacker

and it compromises the key used as counterparty’s public key by the attacked party. (Recall

that “compromising a public key” stands for learning the corresponding private key.) The

key-hiding property comes from the fact that the values X and Y exchanged in the protocol

do not depend on long-term keys, and the fact that the only information about the long-term

keys used by any party can be gleaned only from the session key they output and from H

oracle queries on a σ value computed using these keys. The formal proof of key-hiding in

the UC model captures this argument, and we present it below.

We note that 3DH is not the most efficient key-hiding AKE. 3DH costs one fixed-base and

three variable-base exponentiations per party, and in Section 4.2.2 we will show that HMQV,

which preserves the bandwidth and round complexity of 3DH but folds the three variable-

29

base exponentiations of 3DH into a single multi-exponentiation, realizes the key-hiding AKE

functionality under the same Gap CDH assumption (although with worse exact security

guarantees). However, HMQV can be seen as a modification of 3DH, and the security

analysis of 3DH we show below will form a blueprint for the analysis of HMQV in Section

4.2.2.

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

P1 on Init P2 on Init
a

r←− Zp , A← ga b
r←− Zp , B ← gb

store K = a tagged by pk = A store K = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve K = a tagged by pk = A retrieve K = b tagged by pk = B
x

r←− Zp , X ← gx y
r←− Zp , Y ← gy

-X � Y

σ1 ← Bx∥Y a∥Y x σ2 ← Xb∥Ay∥Xy

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Figure 3.2: Protocol 3DH: “Triple Diffie-Hellman” Key Exchange

Conventions.

(1) In Figure 3.2 we assume that each party runs 3DH using key pair (K , pk) previously

generated via procedure Init. In Figure 3.2 these are resp. (a,A) for P1 and (b,B) for P2.

Note that no such requirement is posed on the counterparty public key each party uses, resp.

public key B used by P1 and A used by P2.

(2)We implicitly assume that each party Pi uses its own identity as a protocol input, together

with the identity CPi of its assumed counterparty. These identities could be e.g. domain

names, user names, or any other identifiers. They have no other semantics except that the

two parties can establish the same session key only if they assume matching identifiers, i.e.

30

(P1,CP1) = (CP2,P2).

(3) Protocol 3DH is symmetric except for the ordering of group elements in tuple σ and the

ordering of elements in the inputs to hash H. Each protocol party P can locally determine

this order based on whether string P is lexicographically smaller than string CP. (In Figure

3.2 we assume that P1 <lex P2.) An equivalent way to see it is that each party P computes a

“role” bit role ∈ {1, 2} and follows the protocol of party Prole in Figure 3.2: Party P sets this

bit as role = 1, called the “client role”, if P <lex CP, and role = 2, called the “server role”,

otherwise.

(4) We assume that parties verify public keys and ephemeral DH values, resp. B, Y for P1

and A,X for P2, as group G elements. Optionally, instead of group membership testing one

can use cofactor exponentiation to compute σ.

Theorem 3.1. Protocol 3DH shown in Figure 3.2 realizes FkhAKE if the Gap CDH assumption

holds and H is a random oracle.

Proof Overview. We show that that for any efficient environment algorithm Z, its view of

the real-world security game, i.e. an interaction between the real-world adversary and honest

parties who follow protocol 3DH, is indistinguishable from its view of the ideal-world game,

i.e. an interaction between the ideal-world adversary, whose role is played by the simulator,

with the functionality FkhAKE. We show the simulator algorithm SIM in Figure 3.3. The

real-world game, Game 0, is shown in Figure 3.4, and the ideal-world game defined by a

composition of algorithm SIM and functionality FkhAKE, denoted Game 7, is shown in Figure

3.5.

As is standard, we assume that the real-world adversary A is a subroutine of the environment

Z, therefore the sole party that interacts with Games 0 or 7 is Z, issuing commands Init

and NewSession to honest parties P, adaptively compromising public keys, and using A to

31

Initialization: Initialize an empty list KLP for each P

On (Init,P) from F :
pick K

r←− Zp , set pk ← gK , add (K , pk) to KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :
if ∃ (K , pk) ∈ KLP send K to A and (Compromise,P, pk) to F

On (NewSession, sid,P,CP) from F :
if P <lex CP then set role← 1 else set role← 2
pick w

r←− Zp , store ⟨sid,P,CP, role, w⟩, send W = gw to A

On A’s message Z to session Psid (only first such message counts):

if ∃ record ⟨sid,P,CP, ·, w⟩:
if ∃ no record ⟨sid,CP,P, ·, z⟩ s.t. gz = Z then send (Interfere, sid,P) to F
send (NewKey, sid,P, Z) to F

On query (sid,C, S, X, Y, σ) to random oracle H:

if ∃ ⟨(sid,C, S, X, Y, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

if ∃ record ⟨sid,C, S, 1, x⟩ and (a,A) ∈ KLC s.t. (X, σ) = (gx, (Bx∥Y a∥Y x)) for some B ,
send (ComputeKey, sid,C,A,B , Y) to F , if F returns k ∗ reset k ← k ∗

if ∃ record ⟨sid, S,C, 2, y⟩ and (b,B) ∈ KLS s.t. (Y, σ) = (gy, (Xb∥Ay∥Xy)) for some A,
send (ComputeKey, sid, S,B ,A, X) to F , if F returns k ∗ reset k ← k ∗

add ⟨(sid,C, S, X, Y, σ), k⟩ to TH and output k

Figure 3.3: Simulator SIM showing that 3DH realizes FkhAKE (abbreviated “F”)

send protocol messages Z to honest party’s sesssions and making hash function H queries.

The proof follows a standard strategy of showing a sequence of games that bridge between

Game 0 and Game 7, where at each transition we argue that the change is indistinguishable.

We use Gi to denote the event that Z outputs 1 while interacting with Game i, and the

theorem follows if we show that |Pr[G0]−Pr[G7]| is negligible under the stated assumptions.

Notation. To make the real-world interaction in Figure 3.4 more concise, we adopt a

notation which stresses the symmetric nature of 3DH protocol: We use variable W = gw

to denote the message which party P sends out, and variable Z to denote the message it

receives, e.g. (W,Z) = (X, Y) if P plays the “client” role and (W,Z) = (Y,X) if P plays the

“server” role. If σ = σ1∥σ2∥σ3 then let {σ}flip = σ2∥σ1∥σ3. We will use {P,CP,W, Z, σ}ord

to denote string P,CP,W, Z, σ if P <lex CP or string CP,P, Z,W, {σ}flip if CP <lex P. With

32

Initialization: Initialize an empty list KLP for each P

On message Init to P:

pick K
r←− Zp , set pk ← gK , add (K , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP then output K

On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (K , pkP)∈KLP, pick w
r←− Zp , write ⟨sid,P,CP,K , pkCP, w⟩, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record ⟨sid,P,CP,KP, pkCP, w⟩, set σ ← ((pkCP)
w∥ZKP∥Zw),

k ← H(sid, {P,CP,W, Z, σ}ord), output (NewKey, sid, k)

On H query (sid,C, S, X, Y, σ):

if ∃ ⟨(sid,C, S, X, Y, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

add ⟨(sid,C, S, X, Y, σ), k⟩ to TH and output k

Figure 3.4: 3DH: Environment’s view of real-world interaction (Game 0)

this notation each party’s 3DH protocol code can be restated in the symmetric way, as in

Figure 3.4, because session key computation of party P can be denoted in a uniform way as

k ← H(sid, {P,CP,W, Z, σ}ord) for σ = (pkCP)
w∥ZKP∥Zw.

We use the same symmetric notation to describe simulator SIM in Figure 3.3 and the ideal-

world game implied by SIM and FkhAKE in Figure 3.5, except for the way SIM treats H

oracle queries, which we separate into two cases based on the roles played by the two parties

whose sessions are potentially involved in any H query. In H-handling code of SIM we denote

the identifiers of the two parties involved in a query as C and S, for the parties playing

respectively the client and server roles, and the code that follows uses role-specific notation

to handle attacks on the sessions executed respectively by C and S.

Throughout the proof we use Psid to denote a session of party P with identifier sid. We use

vsidP to denote a local variable v pertaining to session Psid or a message v which this session

receives, and whenever identifier sid is clear from the context we write vP instead of vsidP .

Note that session CPsid is uniquely defined for every session Psid by setting CP = CPsid
P , and

33

we will implicitly assume below that a counterparty’s session is defined in this way.

For a fixed environment Z, let qK and qses be (the upper-bounds on) the number of resp.

keys and sessions initialized by Z, let qH be the number of H oracle queries Z makes, and

let ϵZg-cdh be the maximum advantage in solving Gap CDH in G of an algorithm that makes

qH DDH oracle queries and uses the resources of Z plus O(qH + qses) exponentiations in G.

Define the following two functions for every session Psid:

3DHsid
P (pk , pk ′, Z) = cdhg(W, pk ′)∥cdhg(pk , Z)∥cdhg(W,Z) for W = W sid

P (3.1)

Rsid
P (pk , pk ′, Z) = H(sid, {P,CPsid

P ,W sid
P , Z, 3DHsid

P (pk , pk ′, Z)}ord) (3.2)

If session Psid runs on its own private key KP, counterparty’s public key pkCP, and receives

message Z, then its output session key is k = Rsid
P (pkP, pkCP, Z) for pkP = gKP . Note also

that an adversary can locally compute function Rsid
P for any pkP, any key pkCP which was

either generated by the adversary or it was generated by an honest party but it has been

compromised, and any Z which the adversary generates, because the adversary can then

compute functions cdhg(·, pkCP) and cdhg(·, Z) on any inputs.

Simulator. Simulator SIM, shown in Figure 3.3, picks all (K , pk) pairs on behalf of honest

players and surrenders the corresponding private key whenever an honestly-generated public

key is compromised. To simulate honest party P behavior the simulator sends W = gw for

random w. When Psid receives Z the simulator forks: If Z originated from honest session

CPsid which runs on matching identifiers (sid,CP,P), SIM treats this as a case of honest-but-

curious attack that connects two potentially matching sessions and sends NewKey to FkhAKE.

(Z included in this call is ignored by FkhAKE.) Otherwise SIM treats it as an active attack on

Psid and sends Interfere followed by (NewKey, ..., Z). Note that in response FkhAKE will treat

34

Psid as interfered and set its output key as k ← Rsid
P (pkP, pkCP, Z) where (pkP, pkCP) are the

(own,counterparty) pair of public keys which Psid uses, and which is unknown to SIM (except

if pkCP was generated by the adversary, in which case it was leaked to SIM at NewSession).

Finally, SIM services H oracle queries (sid,C, S, X, Y, σ) by identifying those that pertain

to viable session-key computations by either session Csid or Ssid. We describe it here only

for Csid-side H queries since Ssid-side queries are handled symmetrically. If H query involves

σ = 3DHsid
C (A,B , Y) for some A,B s.t. (1) A is one of the public keys generated by C, and (2)

B is either some compromised honestly generated public key or it is an adversarial key which

Csid uses for the counterparty (recall that if Csid runs on an adversary-generated counterparty

key pkCP then functionality FkhAKE leaks it to the adversary), then SIM treats that query as

a potential computation of a session key output by Csid, queries (ComputeKey, sid,C,A,B , Y)

to FkhAKE. If B is compromised or adverarial then FkhAKE responds with k ∗ ← Rsid
C (A,B , Y)

and SIM embeds k ∗ into H output. Note that if (A,B) matches the (own,counterparty) keys

used by Csid, and Csid receives Z = Y in the protocol, then k ∗ will match the session key

output by Csid. For all other triples (A,B , Y) the outputs of Rsid
C are irrelevant except that

(1) if the adversary learns the real session key output by Csid then these H outputs inform

the adversary that pair (A,B) is not the (own,counterparty) key pair used by Csid, and (2)

if the adversary bets on some (A,B) pair used by Csid then it can use H queries to find an

“optimal” protocol response Y to Csid for which the resulting (randomly sampled) session

key has some properties the adversary likes, e.g. its last 20 bits are all zeroes, etc.

Game Sequence from Game 0 to Game 7.

Game 0 (real world): This is the interaction of environment Z (and its subroutine, the

real-world adversary) with protocol 3DH, as shown in Fig. 3.4.

Game 1 (past H queries are irrelevent to new sessions): Game 1 adds an abort if NewSession

35

Initialization: Initialize empty lists: PK , CPK , and KLP for all P

On message Init to P:

set K
r←− Zp , pk ← gK , send (Init, pk) to P, add pk to PK and (K , pk) to KLP

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP add pk to CPK and output K

On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (K , pkP) ∈ KLP then:
initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ
if P <lex CP then set role← 1 else set role← 2
pick w

r←− Zp , write ⟨sid,P,CP, pkP, pkCP, role, w,⊥⟩ as fresh, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record rec = ⟨sid,P,CP, pkP, pkCP, role, w,⊥⟩:
if ∃ record rec′ = ⟨sid,CP,P, pk ′CP, pk ′P, role′, z, k ′⟩ s.t. gz = Z

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk
′
CP), and k ′ ̸= ⊥:

then k ← k ′

else k
r←− {0, 1}κ

else set k ← Rsid
P (pkP, pkCP, Z) and re-label rec as interfered

update rec to ⟨sid,P,CP, pkP, pkCP, role, w, k⟩, send (NewKey, sid, k) to P

On H query (sid,C, S, X, Y, σ):

if ∃ ⟨(sid,C, S, X, Y, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

1. if ∃ record ⟨sid,C, S, ·, ·, 1, x, ·⟩ s.t. (X, σ) = (gx, (Bx∥Y a∥Y x)) for some
(a,A) ∈ KLC and B s.t. B ∈ CPK or B ̸∈ PK then reset k ← Rsid

C (A,B , Y)

2. if ∃ record ⟨sid, S,C, ·, ·, 2, y, ·⟩ s.t. (Y, σ) = (gy, (Xb∥Ay∥Xy)) for some
(b,B) ∈ KLS and A s.t. A ∈ CPK or A ̸∈ PK then reset k ← Rsid

S (B ,A, X)

add ⟨(sid,C, S, X, Y, σ), k⟩ to TH and output k

Figure 3.5: 3DH: Environment’s view of ideal-world interaction (Game 7)

36

initializes session Psid with W = gw s.t. H has been queried on any tuple of the form

(sid, {P, ·,W, ·, ·}ord). Since each H query can pertain to at most two sessions, Psid and

CPsid, there at most qH such queries, and w
r←− Zp , we have:

|Pr[G1]− Pr[G0]| ≤ (2qH)/p

Game 2 (programming Rsid
P values into H outputs): Define sessions Csid, Ssid to be matching

if CPsid
C = S and CPsid

S = C. Note that for any matching sessions Csid, Ssid and any public keys

A,B correctness of 3DH implies that Rsid
C (A,B, YS) = Rsid

S (B,A,XC). While in equation (3.2)

we defined function Rsid
P in terms of hash H, in Game 2 we set H outputs using appropriately

chosen functions Rsid
P . For every pair of matching sessions Csid, Ssid consider a pair of random

functions Rsid
C , Rsid

S : (G)3 → {0, 1}κ s.t.

Rsid
C (A,B, Y sid

S) = Rsid
S (B,A,Xsid

C) for all A,B ∈ G (3.3)

More precisely, for any session Psid with no matching session Rsid
P is set as a random function,

and for Psid for which a prior matching session exists Rsid
P is set as a random function subject

to constraint (4.5). Let PK be the list of all public keys generated so far, and PK P be

the set of keys generated for P. Let PK+(Psid) stand for PK ∪ {pkCP} where pkCP is the

counterparty public key used by Psid. (If pkCP ∈ PK then PK+(Psid) = PK .) Consider an

oracle H which responds to each new query (sid,C, S, X, Y, σ) for C <lex S as follows:

1. If ∃ Csid s.t. (S, X) = (CPsid
C , Xsid

C), and ∃ A,B s.t. A ∈ PK C, B ∈ PK+(Csid), and

3DHsid
C (A,B, Y) = σ, then set k ← Rsid

C (A,B, Y)

2. If ∃ Ssid s.t. (C, Y) = (CPsid
S , Y sid

S), and ∃ B,A s.t. B ∈ PK S, A ∈ PK+(Ssid), and

3DHsid
S (B,A,X) = {σ}flip, then set k ← Rsid

S (B,A,X)

37

3. In any other case sample k
r←− {0, 1}κ

Since the game knows each key pair (KP, pkP) generated for each P, and the ephemeral state w

of each session Psid, it can decide for any Z, pk ′ if σ = 3DHsid
P (pkP, pk

′, Z) = (pk ′)w∥ZKP∥Zw.

Note that each value of Rsid
P is used to program H on at most one query. Also, if H

query (sid,C, S, X, Y, σ) satisfies both conditions then (X, Y) = (Xsid
C , Y sid

S) = (gx, gy) and ∃

A′, B′, a, b s.t.

3DHsid
C (ga, B′, Y) = (B′)x∥Y a∥Y x = Xb∥(A′)y∥Xy = {3DHsid

S (gb, A′, X)}flip

Since these equations imply that (A′, B′) = (ga, gb), and by equation (4.5), Rsid
C (A′, B′, Y sid

S) =

Rsid
S (B′, A′, Xsid

C), it follows that if both conditions are satisfied then both will program H

output to the same value. Thus we conclude:

Pr[G2] = Pr[G1]

Game 3 (direct programming of session keys using random functions Rsid
P): In Game 3

we make the following changes: We mark each initialized session Psid as fresh, and when A

sends Z to Psid then we re-label Psid as interfered if Z does not equal to the message sent by

the matching session CPsid, i.e. if Zsid
P ̸= W sid

CP. Secondly, if session Psid runs on its own key

pair (KP, pkP) and intended counterparty public key pkCP, we say that it runs “under keys

(pkP, pkCP)”. Using this book-keeping, Game 3 modifies session-key computation for session

Psid which runs under keys (pkP, pkCP) as follows:

1. If k sid
CP ̸= ⊥, sessions Psid,CPsid are fresh and matching, and CPsid runs under keys

(pkCP, pkP), then k sid
P ← k sid

CP

2. In any other case set k sid
P ← Rsid

P (pkP, pkCP, Z).

38

We argue that this change makes no difference to the environment. In Game 2 the session key

k sid
P is computed as H(sid, {P,CP,W, Z, σ}ord) for σ = 3DHsid

P (pkP, pkCP, Z). However, H on

such input is programmed in Game 2 to output Rsid
P (pkP, pkCP, Z) if σ = 3DHsid

P (pkP, pkCP, Z)

for any pkCP ∈ PK+(Psid). Since pkCP used by Psid must be in set PK+(Psid), setting k sid
P

directly as Rsid
P (pkP, pkCP, Z) only short-circuits this process. Moreover, since Rsid

C and Rsid
S

are correlated by equation (4.5), setting k sid
C as k sid

S or vice versa, in the case both are

fresh, i.e. Zsid
C = Y sid

S and Zsid
S = Xsid

C , and sessions Csid, Ssid run under matching keys, resp.

(pkP, pkCP) = (A,B) and (pkCP, pkP) = (B,A), also does not change the game. Thus we

conclude:

Pr[G3] = Pr[G2]

Game 4 (abort on session-key derivation H query for passive sessions): We add an abort

if oracle H triggers evaluation of Rsid
P (pk , pk ′, Z) for any pk , pk ′ and Z = W sid

CP where CPsid

is a matching session of Psid. Note that if Psid is passively observed, i.e. it remains fresh

then value W sid
CP either has been delivered to Psid, i.e. Zsid

P = W sid
CP, or P

sid is still waiting for

message Z. By the code of oracle H in Game 2 the call to Rsid
P (pk , pk ′,W sid

CP) is triggered only

if H query (sid, {P,CP,W, Z, σ}ord) satisfies the following for Z = W sid
CP and W = W sid

P :

σ = 3DHsid
P (pk , pk ′, Z) = cdhg(W, pk ′) ∥ cdhg(pk , Z) ∥ cdhg(W,Z)

Hardness of computing such tuple relies on the hardness of computing its last element, i.e.

cdhg(W,Z), because (W,Z) are Diffie-Hellman KE messages sent by honest sessions Psid and

CPsid. We show that solving Gap CDH can be reduced to causing event Bad, defined as the

event that adversary makes such H query. Reduction R takes a CDH challenge (X̄, Ȳ) and

embeds it in the messages of simulated parties: If role = 1 then R sends X = X̄s for s
r←− Zp

as the message from Csid, and if role = 2 then R sends Y = Ȳ t for t
r←− Zp as the message

39

from Ssid. Finally, R responds to Init by generating keys (KP, pkP) as in Game 0.

R does not know x = s · x̄ and y = t · ȳ corresponding to messages X, Y , where x̄ = dlogg(X̄)

and ȳ = dlogg(Ȳ), but it can use the DDH oracle to emulate the way Game 3 services

H queries: To test if H input (sid,C, S, X, Y, σ) for X = X̄s satisfies σ = (L∥M∥N) =

(pkx∥Y a∥Y x) for x = s · x̄ and any a, pk , reduction R checks if L = cdhg(X̄, pk s), M =

Y a, and N = cdhg(X̄, Y s). Symmetrically, R tests if (X, Y, σ) for Y = Ȳ t satisfies σ =

(M∥L∥N) = (Xb∥pk y∥Xy) by checking if L = cdhg(Ȳ , pk t), M = Xb, and N = cdhg(Ȳ , X t).

SinceR emulates Game 3 perfectly, event Bad occurs with the same probability as in Game 3.

If it does then R detects it by checking if the last element N in σ satisfies N = cdhg(W,Z)

for W = W sid
P and Z = W sid

CP. If P
sid and CPsid are matching then one of them plays the client

role and the other the server role, i.e. either (W,Z) or (Z,W) is equal to (X̄s, Ȳ t) for some

s, t known by R. In either case R can output N1/(st) as the answer cdhg(X̄, Ȳ) to its CDH

challenge. It follows that Pr[Bad] ≤ ϵZg-cdh, hence:

|Pr[G4]− Pr[G3]| ≤ ϵZg-cdh

Game 5 (random keys on passively observed sessions): We modify the game so that if ses-

sion Psid remains fresh whenA sends Z to Psid then instead of setting k sid
P ← Rsid

P (pkP, pkCP, Z)

as in Game 3, we now set k sid
P

r←− {0, 1}κ. Since session Psid can remain fresh only if Z it

receives was sent by its matching session, i.e. Z = W sid
CP, and by Game 4 oracle H never

queries Rsid
P (pkP, pkCP, Z) for such Z, it follows by randomness of Rsid

P that the modified

game remains externally identical, hence:

Pr[G5] = Pr[G4]

40

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): Let Game 6 be as Game 5, except that

functions Rsid
S , Rsid

S are chosen without the constraint imposed by equation (4.5). Since by

Game 5 neither function is queried on the points which create the correlation imposed by

equation (4.5), it follows that:

Pr[G6] = Pr[G5]

Game 7 (hash computation consistent only for compromised keys): Recall that in

Game 6, as in Game 2, H(sid, {P,CP,W sid
P , Z, σ}ord) is defined as Rsid

P (pk , pk ′, Z) if σ =

3DHsid
P (pk , pk ′, Z) for some pk ∈ PK P, and pk ′ ∈ PK+(Psid). In Game 7 we add a condition

that this programming of H can occur only if either (1) pk ′ is an honestly generated key of

some party, but it has been compromised or (2) pk ′ is the counterparty key which session

Psid runs under, and it is an adverarial key, i.e. it has not been generated by Init. Note that

these are the two cases in which the adversary can know the secret key corresponding to pk ′,

and we will show that this knowledge is indeed necessary for adversary to compute σ s.t.

σ = 3DHsid
P (pk , pk ′, Z).

Let CPK be the list of generated public keys who were compromised so far, and CPK+(Psid)

stand for CPK if the counterparty public key pkCP used by Psid is an honestly generated

key, and for CPK ∪ {pkCP} if pkCP is adversarially-generated. The modification of Game 7

is that H output is programmed to Rsid
P (pk , pk ′, Z) for pk ′ s.t. σ = 3DHsid

P (pk , pk ′, Z) only if

pk ′ ∈ CPK+(Psid), while in Game 6, as in Game 2, this programming was done whenever

pk ′ ∈ PK+(Psid). Therefore the two games diverge in the case of event Bad defined as H

query as above for pk ′ ∈ PK \ CPK , i.e. honestly generated and not compromised key. Let

Badn be Bad where Psid plays role = n. We show a reduction R that solves Gap CDH if Bad1

occurs. The argument for event Bad2 is symmetrical.

Note that Bad1 corresponds to H query on string (sid,C, S, X, Y, σ) for σ = (Bx∥Y a∥Y x)

41

where x = xsid
C , a is some private key of C, and B is a non-compromised public key in PK

(not necessarily owned by S). On input a CDH challenge (X̄, B̄), R sets each Xsid
C as X̄s

for random s, just like the reduction in Game 4, but it sets each Y sid
S as gy for random y. R

also picks all keys (KP, pkP) as in Game 0, except for a chosen index i ∈ [1, . . . , qK], where

R sets the key generated in the i-th call to Init (by any party P) as pk [i] ← B̄. Let Bad1[i]

denote event Bad1 occuring for B which is this i-th key, i.e. B = B̄.

As long as key pk [i] is not compromised, R can emulate Game 6 because it can respond to

a compromise of all other keys, and it can service H queries as follows: To test server-side

σ’s, i.e. if σ = (M∥L∥N) = (XK∥pk y∥Xy), reduction R tests it as Game 6 does except for

K that corresponds to the public key B̄, in which case it tests if M = cdhg(B̄,X), L = pk y,

and N = Xy. To test client-side σ’s, i.e. if σ = (L∥M∥N) = (pkx∥Y K∥Y x) for x = s · x̄

where x̄ = dlogg(X̄) and any pk , including pk = B̄, reduction R tests if L = cdhg(X̄, pk s),

M = Y K , and N = cdhg(X̄, Y s), except for the case that K is the private key corresponding

to the public key B̄, in which case R replaces test M = Y K with M = cdhg(B̄, Y).

Note that Bad1[i] can happen only before key pk [i] is compromised, so event Bad1[i] occurs

in the reduction with the same probability as in Game 6. (If A asks to compromise of pk [i]

then R aborts.) R can detect event Bad1[i] because it occurs if H query involves the public

key pk [i] = B̄ and σ satisfies the client-side equation for this key, in which case R can output

L1/s = cdhg(X̄, B̄). If R picks index i at random it follows that Pr[Bad1] ≤ qK · ϵZg-cdh. Since

a symmetric argument holds also for Pr[Bad2], we conclude:

|Pr[G7]− Pr[G6]| ≤ (2qK) · ϵZg-cdh

Observe that Game 7 is identical to the ideal-world game shown in Figure 3.4: By Game 6 all

functions Rsid
P are random, by Game 5 the game responds to Z messages to Psid as the game

in Figure 3.4, and after the modification in oracle H done in Game 7 this oracle also acts as in

42

Figure 3.4. This completes the argument that the real-world and the ideal-world interactions

are indistinguishable to the environment, and hence completes the proof of Theorem 3.1.

3.4 HMQV as Key-Hiding AKE

We show that protocol HMQV [100], presented in Figure 3.6, realizes the UC notion of

Key-Hiding AKE, as defined by functionality FkhAKE in Section 4.2, under the Gap CDH

assumption in ROM. It allows us to use HMQV with KHAPE, resulting in its most efficient

instantiation, and, to the best of our knowledge the most efficient aPAKE protocol pro-

posed. HMQV has been analyzed in [100] under the game-based AKE model of Canetti and

Krawczyk [49], but the analysis we present is the first, to the best of our knowledge, to be

done in the UC model.6

group G of prime order p with generator g
hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

P1 on Init P2 on Init
a

r←− Zp , A← ga b
r←− Zp , B ← gb

store K = a tagged by pk = A store K = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve K = a tagged by pk = A retrieve K = b tagged by pk = B
x

r←− Zp , X ← gx y
r←− Zp , Y ← gy

-X � Y

d1 ← H′(sid,P1,CP1, 1, X) d2 ← H′(sid,CP2,P2, 1, X)
e1 ← H′(sid,P1,CP1, 2, Y) e2 ← H′(sid,CP2,P2, 2, Y)

σ1 ← (Y · B e1)x+d1·a σ2 ← (X · Ad2)y+e2·b

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Figure 3.6: Protocol HMQV [100]

6However, we do not include adaptive session state compromise considered in [49, 100].

43

The logic of why HMQV is key hiding is similar to the case of 3DH. Namely, the only way to

attack the privacy of party P which runs HMQV on inputs (K , pk) = (a,B), is to compromise

the private key b corresponding to the public key B . (And symmetrically for the party that

runs on (K , pk) = (b,A).) The HMQV equation, just like the 3DH key equation, involves

both the ephemeral sessions secrets (x, y) and the long-term keys (a, b), combining them in

a DH-like formula σ = g(x+da)·(y+eb) where d, e are hashes of (session state identifiers and)

resp. X = gx and Y = gy. Following essentially the same arithmetics as in the proof due to

[100] shows that the only way to compute σ is to know either both x, a or both y, b, which

means that the attacker must be (1) active, to chose the ephemeral session state variable

resp. x or y, and (2) it must know the counterparty private key, resp. a or b.

Theorem 3.2. Protocol HMQV shown in Figure 3.6 realizes FkhAKE if the Gap CDH as-

sumption holds and H,H′ are random oracles.

The proof of theorem 3.2 follows the template of the proof for the corresponding theorem on

3DH security, i.e. theorem 3.1, and we show the proof below:

Proof. We describe how the security proof for 3DH should be adapted to the case of HMQV.

The two proofs follow the same template. In particular, the HMQV simulator algorithm SIM,

shown in Figure 3.7, acts very similarly to the 3DH simulator in Figure 3.3. The proof shows

the indistinguishability between the real-world game (Game 0) shown in Figure 3.8, which

captures an interaction with parties running the HMQV protocol, and the ideal-world game

(Game 7) shown in Figure 4.10, which is defined by a composition of SIM and functionality

FkhAKE. The sequence of games which shows this indistinguishability is exactly the same as

the sequence used in the proof of theorem 3.1, and below we sketch where the match is exact

and how we deal with the HMQV-specific differences when they occur. In particular, in the

discussions below we often re-use the notation introduced used in the proof of theorem 3.1.

As in the case of 3DH, for each AKE session Psid we define function Rsid
P (pk , pk ′, Z) which

44

Initialization: Initialize an empty list KLP for each P

On (Init,P) from F :
pick K

r←− Zp , set pk ← gK , add (K , pk) to KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :
if ∃ (K , pk) ∈ KLP send K to A and (Compromise,P, pk) to F

On (NewSession, sid,P,CP) from F :
if P <lex CP then set role← 1 else set role← 2
pick w

r←− Zp , store ⟨sid,P,CP, role, w⟩, send W = gw to A

On A’s message Z to session Psid (only first such message counts):

if ∃ record ⟨sid,P,CP, ·, w⟩:
if ∃ no record ⟨sid,CP,P, ·, z⟩ s.t. gz = Z then send (Interfere, sid,P) to F
send (NewKey, sid,P, Z) to F

On query (st, σ) to random oracle H, for st = (sid,C, S, X, Y):

if ∃ ⟨(st, σ), k⟩ in TH then output k , otherwise pick k
r←− {0, 1}κ and:

if ∃ record ⟨sid,C, S, 1, x⟩, (a,A) ∈ KLC, and tuples ⟨(sid,C, S, 1, X), d⟩,
⟨(sid,C, S, 2, Y), e⟩ in TH′ s.t. (X, σ) = (gx, (Y · B e)x+da) for some B :

send (ComputeKey, sid,C,A,B , Y) to F , if F returns k ∗ reset k ← k ∗

if ∃ record ⟨sid, S,C, 2, y⟩, (b,B) ∈ KLS, and tuples ⟨(sid,C, S, 1, X), d⟩,
⟨(sid,C, S, 2, Y), e⟩ in TH′ s.t. (Y, σ) = (gy, (X · Ad)y+eb) for some A:

send (ComputeKey, sid, S,B ,A, X) to F , if F returns k ∗ reset k ← k ∗

add ⟨(st, σ), k⟩ to TH and output k

On query (sid,C, S, n, Z) to random oracle H′:

if ∃ ⟨(sid,C, S, n, Z), r⟩ in TH′ then output r
else pick r

r←− Zp , add ⟨(sid,C, S, n, Z), r⟩ to TH′ , and output r

Figure 3.7: Simulator SIM showing that HMQV realizes FkhAKE (abbreviated “F”)

is used by session Psid to compute its session key given counterparty’s message Z. The

definition of Rsid
P is exactly the same as in the case of 3DH, i.e. equation (3.2), except the

last argument, σ, is now defined using the HMQV function, σ = HMQVsid
P (pk , pk ′, Z). Below

we define function HMQVsid
P for session Psid running on inputs (sid,CP, pk , pk ′), i.e. pk is its

own public key and pk ′ is the public key of the intended counterparty. Function HMQVsid
P

can be defined separately for cases for Psid playing the client-role, denoted P = C, and Psid

45

Initialization: Initialize an empty list KLP for each P

On message Init to P:

pick K
r←− Zp , set pk ← gK , add (K , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP then output K

On message (NewSession, sid,CP, pkP, pkCP) to P:

if P <lex CP then set role← 1 else set role← 2; if ∃ (KP, pkP)∈KLP, pick w
r←− Zp , write

⟨sid,P,CP, role,KP, pkCP, w⟩, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record ⟨sid,P,CP, role,KP, pkCP, w⟩:
if role = 1:

set d← H′(sid, {P,CP}ord, 1, gw) and e← H′(sid, {P,CP}ord, 2, Z)
set σ ← (Z · pk e

CP)
w+d·KP

if role = 2:
set d← H′(sid, {P,CP}ord, 1, Z) and e← H′(sid, {P,CP}ord, 2, gw)
set σ ← (Z · pkd

CP)
w+e·KP

set k ← H(sid, {P,CP,W, Z, σ}ord) and output (NewKey, sid, k)

On H query (sid,C, S, X, Y, σ):

if ∃ ⟨(sid,C, S, X, Y, σ), k⟩ in TH then output k
else pick k

r←− {0, 1}κ, add ⟨(sid,C, S, X, Y, σ), k⟩ to TH, and output k

On H′ query (sid,C, S, n, Z):

if ∃ ⟨(sid,C, S, n, Z), r⟩ in TH′ then output r
else pick r

r←− Zp , add ⟨(sid,C, S, n, Z), r⟩ to TH′ , and output r

Figure 3.8: HMQV: Environment’s view of real-world interaction (Game 0)

playing the server-role, denoted P = S, as follows:

HMQVsid
C (pk , pk ′, Y) = cdhg(X, Y) · cdhg(pk ′, X)e · cdhg(Y, pk)d · cdhg(pk , pk ′)ed

for X = Xsid
C and d = H′(st, 1, X), e = H′(st, 2, Y), st = sid|C|S

HMQVsid
S (pk , pk ′, X) = cdhg(X, Y) · cdhg(pk , X)e · cdhg(Y, pk ′)d · cdhg(pk , pk ′)ed

for Y = Y sid
S and d = H′(st, 1, X), e = H′(st, 2, Y), st = sid|C|S

46

Game 0 (real world): The real-world game is shown in Figure 3.8.

Game 1 (past H queries are irrelevent to new sessions): We add an abort if session

Psid starts with W which appeared in some prior inputs to H. As in the case of 3DH,

|Pr[G1]− Pr[G0]| ≤ (2qH)/p.

Game 2 (programming Rsid
P values into H outputs): We make the same change of using

random but pair-wise correlated functions Rsid
P , i.e. correlated as in equation (4.5), and

programming Rsid
P (pk , pk ′, Z) values into outputs of H(sid, {C, S,W, Z}ord, σ) if W matches

the value sent by Psid and σ = HMQVsid
P (pk , pk ′, Z). As in the case of 3DH we need to argue

that if the same hash query (sid,C, S, X, Y, σ), for (X, Y) = (Xsid
C , Y sid

S), matches both the

client-side equation and the server-side equation, i.e. if

σ = HMQVsid
C (A,B′, Y) = HMQVsid

S (B,A′, X)

where A ∈ PK C, B
′ ∈ PK+(Csid), B ∈ PK S, A

′ ∈ PK+(Ssid), as defined in the 3DH proof,

then either condition programs the same value into H output.

In the case of 3DH the corresponding equation implied that both parties must use correct

counterparty keys, i.e. that (A′,B ′) = (A,B), in which case constraint (4.5) on Rsid
C and Rsid

S

implies that either condition programs H to the same value.

In the case of HMQV the above equation can hold even if (A′,B ′) ̸= (A,B), but it can occur

with only negligible probability. The constraint above implies:

(Y ·B′e)x+da
= (X · A′d)

y+eb
(3.4)

where d = H′(st, 1, X) and e = H′(st, 2, Y) and (X, Y) = (gx, gy). Note that equation (4.6)

holds if and only if (y+eb′)(x+da) = (x+a′d)(y+eb), where a′, b′ are the discrete logarithms

47

Initialization: Initialize empty lists: PK , CPK , and KLP for all P

On message Init to P:

set K
r←− Zp , pk ← gK , send (Init, pk) to P, add pk to PK and (K , pk) to KLP

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP add pk to CPK and output K

On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (K , pkP) ∈ KLP then:
initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ
if P <lex CP then set role← 1 else set role← 2
pick w

r←− Zp , write ⟨sid,P,CP, pkP, pkCP, role, w,⊥⟩ as fresh, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record rec = ⟨sid,P,CP, pkP, pkCP, role, w,⊥⟩:
if ∃ record rec′ = ⟨sid,CP,P, pk ′CP, pk ′P, role′, z, k ′⟩ s.t. gz = Z

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk
′
CP), and k ′ ̸= ⊥:

then k ← k ′

else k
r←− {0, 1}κ

else set k ← Rsid
P (pkP, pkCP, Z) and re-label rec as interfered

update rec to ⟨sid,P,CP, pkP, pkCP, role, w, k⟩, output (NewKey, sid, k)

On H query (sid,C, S, X, Y, σ):

if ∃ ⟨(sid,C, S, X, Y, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

1. if ∃ record ⟨sid,C, S, ·, ·, 1, x, ·⟩, ⟨(sid,C, S, 1, X), d⟩ and ⟨(sid,C, S, 2, Y), e⟩ in TH′

s.t. (X, σ) = (gx, (Y ·Be)x+d·a) for some (a,A) ∈ KLC and B s.t. B ∈ CPK or
B ̸∈ PK , then reset k ← Rsid

C (A,B , Y)

2. if ∃ record ⟨sid, S,C, ·, ·, 2, y, ·⟩, ⟨(sid,C, S, 1, X), d⟩ and ⟨(sid,C, S, 2, Y), e⟩ in TH′

s.t. (Y, σ) = (gy, (X · Ad)y+e·b) for some (b,B) ∈ KLS and A s.t. A ∈ CPK or
A ̸∈ PK , then reset k ← Rsid

S (B ,A, X)

add ⟨(sid,C, S, X, Y, σ), k⟩ to TH and output k

On H′ query (sid,C, S, n, Z):

if ∃ ⟨(sid,C, S, n, Z), r⟩ in TH′ then output r
else pick r

r←− Zp , add ⟨(sid,C, S, n, Z), r⟩ to TH′ , and output r

Figure 3.9: HMQV: Environment’s view of ideal-world interaction (Game 7)

48

of resp. A,B. This can hold even if (a′, b′) ̸= (a, b), hence in the case of HMQV we will add

an abort in the case equation (4.6) holds and (A′, B′) ̸= (A,B). Note that the adversary

must choose the counterparty key pk ′ = B′ for session Csid before Csid starts and picks x.

Likewise pk ′ = A′ for session Ssid must be chosen before Ssid picks y. Therefore the last value

to be chosen is either x or y, i.e. either x or y are randomly sampled after (a, b, a′, b′) are

all fixed. If x is chosen after (a, b, a′, b′, y) then its choice determines d = H′(st, 1, gx), but

since H′ is a random oracle, the probability that d satisfies equation (4.6) is 1/p. Since a

symmetric argument holds in the case y (and e) are chosen last, it follows that:

|Pr[G2]− Pr[G1]| ≤ qses/p

Game 3 (direct programming of session keys using random functions Rsid
P): This step is

identical as in the case of 3DH, and Pr[G3] = Pr[G2]

Game 4 (abort on H queries for passive sessions): As in the case of the proof for 3DH

we add an abort whenever oracle H triggers evaluate of Rsid
P (pk , pk ′, Z) for any pk , pk ′ and

Z = W sid
CP where CPsid is a matching session of Psid, and likewise define as Bad the event that

such query is made. W.l.o.g. we can consider these sessions using arbitrary pk ′s, e.g. B′ for

Csid and A′ for Ssid, which might or might not equal to the correct public key of the intended

counterparty on the respective session.

As in the case of 3DH we show that solving Gap CDH can be reduced to causing event Bad

in this game, but the full reduction R′ that exihbits that uses rewinding over two executions

of a subsidiary reduction R, which works as follows. We argue reduction R assuming that

event Bad occurs for a client-side function Rsid
C , because the case for a server-side function

Rsid
S is symmetric.

Reduction R takes a CDH challenge (X̄, Ȳ) and embeds it in a randomized way in the

49

messages of all simulated parties, i.e. it sends X = X̄s and Y = Ȳ t for random s and t shifts

on behalf of resp. Csid and Ssid sections, just like in the 3DH case. Otherwise it emulates the

security game, in particular it knows all the key pairs (a,A) and (b, B). Although R does

not know x = s · x̄ and y = t · ȳ corresponding to these messages, where x̄ = dlogg(X̄) and

ȳ = dlogg(Ȳ), reduction R can use the DDH oracle to emulate H queries, i.e. to test if

σ = HMQVsid
C (A,B′, Y) = (Y (B′)e)x+da = cdhg(X, Y (B′)e) · (Y (B′)e)ad

for any key B′, any key A = ga of Csid, and (X, Y) = (X̄s, Ȳ t) sent by resp. Csid and Ssid.

Symmetrically R can test if σ = HMQVsid
S (B,A′, X).

SinceR emulates Game 3 perfectly, event Bad occurs with the same probability as in Game 3,

in which case R can compute v = cdhg(X, Y (B′)e), assuming Bad occurs for a client-side

equation. Denote this (e, v) pair as (e1, v1), i.e. v1 = cdhg(X, Y (B′)e1). By the rewinding

argument, as in [100], if the probability of the (client-side) Bad is ϵ, the second-layer re-

duction R′ can run R against the adversary/environment twice, providing a fresh random

output e2 on hash query H′(sid,C, S, 2, Y). If event Bad occurs in that second execution for

the same Y then R would extract v2 = cdhg(X, Y (B′)e2), in which case R′ can compute

cdhg(X, Y) = (ve21 /ve12)1/(e2−e1), and consequently solve for cdhg(X̄, Ȳ) = (cdhg(X, Y))1/(st).

By the standard rewinding argument, the probability R′ succeeds is at least (1/crwnd)ϵ2/qH

for a small constant crwnd, which implies

|Pr[G4]− Pr[G3]| ≤ (crwnd · qH · ϵZg-cdh)1/2

Game 5 (random keys on passively observed sessions): This game change is the same as in

the case of 3DH, and Pr[G5] = Pr[G3]

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): This game change is the same as in the

50

case of 3DH, and Pr[G6] = Pr[G5]

Game 7 (hash computation consistent only for compromised keys): As in the proof for

3DH, we restrict handling H queries to only those that correspond to counterparty key pk ′

being either compromised or adversarial. Consequently, as in the case of 3DH, Game 7

diverges from Game 6 if event Bad occurs, defined as H query on (sid, {P,CP,W sid
P , Z}ord, σ)

for σ = HMQVsid
P (pk , pk ′, Z) where pk ∈ PK P and pk ′ ∈ PK \ CPK . Let Badn be Bad

where Psid plays role = n. As in the case of the 3DH proof we will argue only for n = 1

because the other case is symmetric. Also, we will focus on sub-event Bad1[i] which denotes

Bad1 occuring where Psid uses the i-th key as pk ′, i.e. pk ′ was a non-compromised public

key in PK created in the i-th key initialization query. Note that Bad1[i] corresponds to

σ = (Y · (pk ′)e)x+d·a where a is some private key of C and x is used on session Csid, pk ′ equals

to the honestly-generated and non-compromised public key corresponding to the i-th key

record, and an arbitrary Y which adversary specifies in the hash inputs.

As in the 3DH proof we show a reduction R that solves a Gap Square DH if Bad1[i] occurs.

Square DH is a variant of CDH where the challenge is a single value X̄ and the goal is to

compute cdhg(X̄, X̄). It is well-known that Square DH is equivalent to CDH. As in the

reduction to Gap CDH used in Game 4 above, here too we will use a subsidiary reduction

R which computes CDH on a problem related to the Square DH challenge, and a top-level

reduction R′ which solves the Square DH challenge using rewinding over two executions of

R. We show the bound on the probability that R succeeds in terms of the probability ϵ of

event Bad[i], and then we show the overall bound using a union bound and a symmetry of

client-side and server-side equations.

Reduction R takes a Square DH challenge X̄ and embeds it as pk ′ ← X̄ where pk ′ is the

public key in the i-th key record, and also embeds X̄ into messages X = X̄s sent on behalf

of all client-role sessions, for random s. As in the case of 3DH R picks all other long-term

51

key pairs (K , pk) as in the original security game, and it also picks ephemeral state y of all

server-side sessions. As long as pk ′ is not compromised, R can emulate Game 6 because it

can respond to a compromise of all other keys, and it can service H queries as follows: To

test client-side σ’s, i.e. if σ = (Y · (pk ′)e)x+d·KC where pk ′ is an arbitrary public key, Y is

an arbitrary value input into the hash, x = s · x̄ is an ephemeral state of Csid unknown to

R, and KC w.l.o.g. can correspond to the i-th public key X̄, hence also unknown to R (the

case of any other key, where R knows the corresponding key KC is strictly easier), reduction

R uses the DDH oracle to test if σ = cdhg(Y · (pk ′)e, X̄s+d). To test server-side σ’s, i.e. if

σ = (X · (pk ′)d)y+e·KS , for arbitrary X, pk ′, a known ephemeral state y, and KS which again

w.l.o.g. can correspond to the i-th public key X̄, reduction R uses the DDH orace to test if

σ = (X · (pk ′)d)y · cdhg(X · (pk ′)d, X̄e).

As in the case of 3DH proof this emulation is perfect, so Bad1[i] occurs with the same

probability as in Game 6, and if does then the client-side equation for σ involves pk ′ = X̄,

which means that R computes σ1 = cdhg(Y ·X̄e1 , X̄s+d), where as in the rewinding reduction

in the case of Game 4 above we use e1 to denote H′(sid,C, S, 2, Y) in the first execution of

R. Let w = cdhg(Y, X̄) and z = cdhg(X̄, X̄), and note that σ1 = ws+d · ze1(s+d). If the

second run of R hits the event for the same Y and embeds fresh e2 into H′(sid,C, S, 2, Y)

then it computes σ2 = ws′+d′ · ze2(s′+d′). Since R′ knows all the coefficients, it can solve these

relations for w, z and output z = cdhg(X̄, X̄).

If i is randomly chosen and w.l.o.g. Bad1 is at least as likely as Bad2 then the probability of

Bad[i] is at least ϵ/(2qK). Therefore, by the standard rewinding argument, R succeeds with

probability at least (1/crwnd)(ϵ/2qK)
2/qH, which implies

|Pr[G7]− Pr[G6]| ≤ (2qK) · (crwnd · qH · ϵZg-cdh)1/2

which concludes the proof.

52

3.5 SKEME as Key-Hiding AKE

We present a KEM-based instantiation of the SKEME protocol [97] in Figure 3.10. For

compliance with the UC notion of AKE modeled by functionality FkhAKE, we derive the

session key via a hash involving several additional elements, including a session identifier

sid, party identities C and S, public keys A and B , and the transcript X, c, Y, d. We will

also use {P,CP,A,B , X, c, Y, d, σ}ord to denote (P,CP, A,B, gw, c, Z, d, (K,L, Zw)) if P plays

role = 1, and string (CP,P, A,B, Z, c, gw, d, (K,L, Zw)) if role = 2. Using this notation each

party P can derive its session key as k ← H(sid, {P,CP,A,B , X, c, Y, d, σ}ord).

The security of the protocol relies on two properties of the underlying KEM. First, we as-

sume KEM to be One-Way under Plaintext-Checking-Attack, abbreviated as OW-PCA[81],

where the attacker is given access to a Plaintext-Checking Oracle that on input a key K

and ciphertext c, it tells if c decapsulates to K under a given KEM key. See Definition 2.8.

Second, we require the KEM to be strong key-anonymous, namely, given two pairs of private-

public keys and a key encapsulation under one of them, one cannot distinguish (information-

theoretically) which pair generated that ciphertext. Note the correspondence to the notion

of key-hiding PKE [24]. The details of strong key-anonymous property is shown in Defini-

tion 2.7. However, here to make security reduction easy we use an even stronger version,

which we call perfect key-anonymous, i.e. the adversarial advantage of winning strong key-

anonymous game is exact 0. The definition is shown below.

Definition 3.1. [perfect (key-)anonymous] Let KEM = (Gen,Enc1,Enc2,Dec) be a key-

encapsulation mechanism. Let b ∈ {0, 1}. Let A be the adversary. Now we consider the

following experiment:

Experiment Expperfect−anony−b
KEM,A

(pk 0,K0)← KEM.Gen; (pk 1,K1)← KEM.Gen

c, r ← KEM.Enc1(κ), K ← KEM.Enc2(pk b, r)

53

b′ ← A(K0, pk 0,K1, pk 1, c)

Return b′

We also assume KEM we use suffices the security property of One-Wayness under Plaintext-

Checking-Attack(OW-PCA)[81], see Definition 2.8. Fortunately many KEMs suffice above

two requirements, including plain El Gamal KEM, where the encryption generates c = gr

and K = pk r. And this El Gamal encryption scheme is OW-PCA secure based on GapDH

problem, since given a public key pk = gK and (c,K) = (gr, pk r) a PCO simply checks

whether (pk = gK , c = gr, K = pk r) is a DH-triple, which is exactly a DDH Oracle. It’s also

perfect (key-)anonymous based on its definition.

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ
KEM scheme KEM = (Gen,Enc,Dec)

P1 on Init P2 on Init
(a,A)← KEM.Gen (b, B)← KEM.Gen
store K = a tagged by pk = A store K = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve K = a tagged by pk = A retrieve K = b tagged by pk = B
x

r←− Zp , X ← gx y
r←− Zp , Y ← gy

c,K ← KEM.Enc(B) d, L← KEM.Enc(A)

-X, c � Y, d

L← KEM.Dec(a, d) K ← KEM.Dec(b, c)
σ ← (K,L, Y x) σ ← (K,L,Xy)
k1 ← H(sid,P1,CP1, A,B,X, c, Y, d, σ) k2 ← H(st,CP2,P2, A,B,X, c, Y, d, σ)
output k1 output k2

Figure 3.10: Protocol SKEME: KEM-authenticated Key Exchange

Theorem 3.3. Protocol SKEME shown in Figure 3.10 realizes FkhAKE if the Gap CDH

assumption holds, KEM is a OW-PCA secure and perfect (key-)anonymous KEM, and H is

a random oracle.

54

Because of inherent similarities of SKEME and 3DH, the proof of the above theorem follows

a similar pattern as the proof of Theorem 3.1, which we show below.

Initialization: Initialize empty global list KL and empty lists KLP for each P

On (Init,P) from F :
set (K , pk)← KEM.Gen, add (K , pk) to KL and KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :
if ∃ (K , pk) ∈ KLP send K to A and (Compromise,P, pk) to F

On (NewSession, sid,P,CP) from F :
if P <lex CP then set role← 1 else set role← 2
pick w

r←− Zp , set (e, r)← KEM.Enc1(κ)
store ⟨sid,P,CP, role, w, e, r⟩ and send (W = gw, e) to A

On A’s message (Z, f) to session Psid (only first such message counts):

if ∃ record ⟨sid,P,CP, ·, w, e, ·⟩:
if there is no record ⟨sid,CP,P, ·, z, f ′, ·⟩ s.t. gz = Z and f = f ′ then:

send (Interfere, sid,P) to F
send (NewKey, sid,P, (Z, f)) to F

On query (st,A,B , X, c, Y, d, σ) to random oracle H, for st = (sid,C, S):

if ∃ ⟨(st,A,B , X, c, Y, d, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

if ∃ record ⟨sid,C, S, 1, x, c, r⟩ and (a,A) ∈ KLC s.t.
(X, σ) = (gx, (KEM.Enc2(B , r),KEM.Dec(a, d), Y x)):

send (ComputeKey, sid,C,A,B , (Y, d)) to F , if F returns k ∗ reset k ← k ∗

if ∃ record ⟨sid, S,C, 2, y, d, r⟩ and (b,B) ∈ KLS s.t.
(Y, σ) = (gy, (KEM.Dec(b, c),KEM.Enc2(A, r), X

y)):
send (ComputeKey, sid, S,B ,A, (X, c)) to F , if F returns k ∗ reset k ← k ∗

add ⟨(st,A,B , X, c, Y, d, σ), k⟩ to TH and output k

Figure 3.11: Simulator SIM showing that SKEME realizes FkhAKE (abbreviated “F”)

Proof. We use the following definitions for any Psid, for P ∈ {C, S}, which always uses

intended counterparty public key, i.e. ∃ pkCP s.t. Psid runs on (sid,CP, pkP, pkCP):

Suppose that e, rsidP ← KEM.Enc1(κ),M ← KEM.Enc2(pkCP, r
sid
P) and f, rsidCP ← KEM.Enc1(κ),

N ← KEM.Enc2(pkP, r
sid
CP) are generated by Psid and CPsid correspondingly. We use rsidP ,esidP

and M sid
P to represent r, e,M locally generated by Psid under some (pkP, pkCP).

Let KL be the list of all key pairs generated so far, and KLP be the set of key pairs generated

55

for P, KL+(Psid) stands for KL ∪ {(KCP, pkCP)} where pkCP is the counterparty public key

used by Psid and KCP is corresponding K which doesn’t necessarilly need to be known or

verified. (If (KCP, pkCP) ∈ KL then KL+(Psid) = KL). Using these notions, we define

following functions for every Psid:

SKEMEsid
C (pk , pk ′, Y, d) = (KEM.Enc2(pk

′, r),KEM.Dec(K , d), Y x) for

r = rsidC , x = xsid
C , (K , pk) ∈ KLC, (·, pk ′) ∈ KL+(Csid)

SKEMEsid
S (pk , pk ′, X, c) = (KEM.Dec(K , c),KEM.Enc2(pk

′, r), Xy) for

r = rsidS , y = ysidS , (K , pk) ∈ KLS, (·, pk ′) ∈ KL+(Ssid)

Rsid
C (pk , pk ′, (Y, d)) = H(sid,C, S, pk , pk ′, Xsid

C , csidC , Y, d, SKEMEsid
C (pk , pk ′, Y, d))

Rsid
S (pk , pk ′, (X, c)) = H(sid,C, S, pk , pk ′, X, c, Y sid

S , dsidS , SKEMEsid
S (pk , pk ′, X, c))

Game 0 (real world): This is the real-world interaction of environment Z (and its subroutine

A) with the SKEME protocol, shown in Fig. 3.12.

Game 1 (past H queries are irrelevent to new sessions): We add an abort if session

Psid starts with W which appeared in some prior inputs to H. As in the case of 3DH,

|Pr[G1]− Pr[G0]| ≤ (2qH)/p.

Game 2 (programming Rsid
P values into H outputs): Define sessions Csid, Ssid to be matching

if CPsid
C = S and CPsid

S = C. By correctness of SKEME for any matching sessions and any

public keys A,B it holds that Rsid
C (A,B , (YS, dS)) = Rsid

S (B ,A, (XC, cC)). In Game 2 we set

H outputs using functions Rsid
P . For every pair of matching sessions (Csid, Ssid) we consider a

56

Initialization: Initialize an empty list KLP for each P

On message Init to P:
pick (K , pk)← KEM.Gen, add (K , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP then output K

On message (NewSession, sid,CP, pkP, pkCP) to P:

if P <lex CP then set role← 1 else set role← 2
if ∃ (KP, pkP)∈KLP:

pick w
r←− Zp , set (e, r)← KEM.Enc1(κ) and M ← KEM.Enc2(pkCP, r)

write ⟨sid,P,CP,KP, pkP, pkCP, role, w, e,M⟩ and output (W = gw, e)

On message (Z, f) to session Psid (only first such message is processed):

if ∃ record ⟨sid,P,CP,KP, pkP, pkCP, role, w, e,M⟩:
set N ← KEM.Dec(KP, f) and σ ← (M,N,Zw)
set k ← H(sid, {P,CP, pkP, pkCP, g

w, e, Z, f, σ}ord) and output (sid,P, k)

On H query (st,A,B , X, c, Y, d, σ) for st = (sid,C, S):

if ∃ ⟨(st,A,B , X, c, Y, d, σ), k⟩ in TH then output k
else pick k

r←− {0, 1}κ, add ⟨(st,A,B , X, c, Y, d, σ), k⟩ to TH, and output k

Figure 3.12: SKEME: Environment’s view of real-world interaction (Game 0)

pair of random functions Rsid
C , Rsid

S : ({0, 1}∗)3 → {0, 1}κ s.t. for all A,B

Rsid
C (A,B , (Y sid

S , dsidS)) = Rsid
S (B ,A, (Xsid

C , csidC)) (3.5)

Since they’re matching sessions, above equation satisfy csidS = csidC , dsidC = dsidS .

More precisely, for any session Psid with no matching session Rsid
P is set as a random function,

and for Psid for which a matching session exists Rsid
P is set as a random function subject to con-

straint (3.5). Consider an oracle H which responds to each new query (sid,C, S,A,B , X, c, Y, d, σ)

as follows:

1. If ∃Csid s.t. (S, X) = (CPsid
C , Xsid

C), and ∃ A,B s.t. (·, A) ∈ KLC, (·, B) ∈ KL+(Csid) and

σ = SKEMEsid
C (A,B, Y, d): Set k ← Rsid

C (A,B, (Y, d))

2. If ∃Ssid s.t. (C, Y) = (CPsid
S , Y sid

S), and ∃ B,A s.t. (·, B) ∈ KLS, (·, A) ∈ KL+(Ssid) and

57

Initialization: Initialize empty lists: PK , CPK , KL and KLP for all P
On message Init to P:

set (K , pk)← KEM.Gen, send (Init, pk) to P, add pk to PK and (K , pk) to KL and KLP

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP add pk to CPK and output K
On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (K , pkP) ∈ KLP then:
initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ
if P <lex CP then set role← 1 else set role← 2
pick w

r←− Zp , set (e, r)← KEM.Enc1(κ)
write ⟨sid,P,CP, pkP, pkCP, role, w, e, r,⊥⟩ as fresh, output (W = gw, e)

On message (Z, f) to session Psid (only first such message is processed):

if ∃ record rec = ⟨sid,P,CP, pkP, pkCP, role, w, e, r,⊥⟩:
if ∃ record rec′ = ⟨sid,CP,P, pk ′CP, pk ′P, ·, z, f ′, ·, k ′⟩ s.t. gz = Z and f = f ′

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk
′
CP) and k ′ ̸= ⊥:

then k ← k ′

else k
r←− {0, 1}κ

else set k ← Rsid
P (pkP, pkCP, (Z, f)) and re-label rec as interfered

update rec to ⟨sid,P,CP, pkP, pkCP, role, w, e, r, k⟩ and output (NewKey, sid, k)
On H query (st,A,B , X, c, Y, d, σ) for st = (sid,C, S):

if ∃ ⟨(st,A,B , X, c, Y, d, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

1. if ∃ record ⟨sid,C, S, ·, ·, 1, x, c, r, ·⟩ s.t.
(X, σ) = (gx, (KEM.Enc2(B , r),KEM.Dec(a, d), Y x)) for some (a,A) ∈ KLC and B
s.t. B ∈ CPK or B /∈ PK : reset k ← Rsid

C (A,B , (Y, d))

2. if ∃ record ⟨sid, S,C, ·, ·, 2, y, d, r, ·⟩ s.t.
(Y, σ) = (gy, (KEM.Dec(b, c),KEM.Enc2(A, r), X

y)) for some (b,B) ∈ KLS and A
s.t. A ∈ CPK or A /∈ PK : reset k ← Rsid

S (B ,A, (X, c))

add ⟨(st,A,B , X, c, Y, d, σ), k⟩ to TH and output k

Figure 3.13: SKEME: Environment’s view of ideal-world interaction (Game 7)

σ = SKEMEsid
S (B,A,X, c): Set k ← Rsid

S (B,A, (X, c))

3. In any other case pick k
r←− {0, 1}κ

Since the game knows each key pair (KP, pkP) generated for each P, randomness r used in

KEM.Enc, and the ephemeral state w of each session Psid, it can decide for any Z, f, pk ′

whether σ = SKEMEsid
P (pkP, pk

′, Z, f) if pk ′ is honestly generated, i.e. (K ′, pk ′) ∈ KL.

Moreover, even if pk ′ is adversarially generated, i.e. (K ′, pk ′) ∈ KL+(Psid) \ KL, the game

can still decide, since it records r and can generate M via KEM.Enc2(pk
′, r), it can instead

58

check whether the corersponding part of σ equals to M . Note that each value of Rsid
P is used

to program H on at most one query. Also, if H query (sid,C, S,A,B , X, c, Y, d, σ) satisfies

both conditions then (X, Y) = (gx, gy) and (c, d) = (csidC , dsidS), and ∃ A′, B′, a, b s.t.

SKEMEsid
C (ga, B′, Y, d) = (KEM.Enc2(B

′, rsidC),KEM.Dec(a, d), Y x)

= (KEM.Dec(b, c),KEM.Enc2(A
′, rsidS), Xy) = SKEMEsid

S (gb, A′, X, c)

Since by security of KEM.Enc2 the above equations imply that (A′, B′) = (A,B)(e.g.KEM.

Dec(b, c) = KEM.Enc2(B, rsidC) = KEM.Enc2(B
′, rsidC)), and by (3.5) we already know that

Rsid
C (A,B, (Y sid

S , dsidS)) = Rsid
S (B,A, (Xsid

C , csidC)), it follows that if both conditions are satisfied

then both program H output to the same value. Thus we conclude:

Pr[G2] = Pr[G1]

Game 3 (direct programming of session keys using random functions Rsid
P): As in 3DH,

in Game 3 we make the following changes: We mark each initialized session Psid as fresh,

and when A sends (Z, f) to Psid then it re-labels Psid as interfered unless (Z, f) equals to the

message sent by the intended counterparty of P. In other words, Csid is re-labeled interfered if

Zsid
C ̸= Y sid

S or f sid
C ̸= dsidS and Ssid is re-labeled interfered if Zsid

S ̸= Xsid
C or f sid

S ̸= csidC . Secondly,

we say session Psid runs “under keys (pkP, pkCP)” if it runs on its own key pair (KP, pkP)

and intended counterparty public key pkCP. Using this notation Game 3 computes k sid
P as

follows:

1. If Psid and CPsid arematching, both are fresh, CPsid runs under (pkCP, pkP), and k sid
CP ̸= ⊥,

then k sid
P ← k sid

CP

2. In all other cases set k sid
P ← Rsid

P (pkP, pkCP, (Z, f))

59

We argue that this change makes no difference to the environment. In Game 2 value k sid
P is de-

rived from H(sid, {P,CP, pkP, pkCP,W, esidP , Z, f}ord, σ), where σ = SKEMEsid
P (pkP, pkCP, Z, f).

However, H is programmed in Game 2 to output Rsid
P (pkP, pkCP, (Z, f)) if ∃ (Z, f) s.t.

σ = SKEMEsid
P (pkP, pkCP, Z, f) for any (·, pkCP) ∈ KL+(Psid). Since pkCP used by Psid must

be in set KL+(Psid), setting k sid
P directly as Rsid

P (pkP, pkCP, (Z, f)) only short-circuits this

process. Moreover, since Rsid
C and Rsid

S are correlated by equation (3.5), setting k sid
C as k sid

S or

vice versa, in the case both are fresh, does not change the game. Thus we conclude:

Pr[G3] = Pr[G2]

Game 4 (abort on H queries for passive sessions): We add an abort if oracle H triggers

evaluation of Rsid
P (pk , pk ′, (Z, f)) for any pk , pk ′ and (Z, f) = (W sid

CP, e
sid
CP) where CPsid is a

matching session of Psid. Note that if Psid is passively observed, then value (W sid
CP, e

sid
CP) either

has been delivered to Psid, i.e. (Zsid
P , f sid

P) = (W sid
CP, e

sid
CP), or Psid is still waiting for message

Z. By the code of oracle H in Game 2 the call to Rsid
P (pk , pk ′, (W sid

CP, e
sid
CP)) is triggered only

if H query (sid, {P,CP, pkP, pkCP,W, e, Z, f, σ}ord) satisfies the following for Z = W sid
CP and

f = esidCP:

σ = SKEMEsid
P (pk , pk ′, Z, f)

As in proof of 3DH, the hardness of computing σ relies on hardness of computing cdhg(W,Z),

which is the last element in σ. We show that solving Gap CDH can be reduced to causing

event Bad, defined as event that such query happens. The reduction R takes a CDH chal-

lenge (X̄, Ȳ) and embeds it in a message of all simulated parties in a randomized way: on

NewSession to P, if role = 1 then R sends X = X̄s as the message from Csid for s← Zp , and

if role = 2 then R sends Y = Ȳ t as the message from Ssid for t← Zp . Otherwise it emulates

the security game, in particular it knows all of the key pairs (a,A) and (b,B). Let KL be

60

the list of all key pairs generated so far, and KLP be the set of key pairs generated for P.

Although R doesn’t know x = s · x̄ and y = t · ȳ, where x̄ = dlogg(X̄) and ȳ = dlogg(Ȳ),

R can use DDH oracle to emulate the way Game 3 services H queries: To test if H in-

put (sid,C, S, A,B,X, c, Y, d, σ) for X = X̄s satisfies σ = SKEMEsid
C (A,B , Y, d), because R

knows all (K , pk) ∈ KL and records locally generated r, it can check first two part of

σ = (K,L, V).Then to test if V = Y x, reduction R checks if V = cdhg(X̄, Y s). Symmet-

rically on server side, to test if H input (sid,C, S, A,B,X, c, Y, d, σ) for Y = Ȳ t satisfies

V = Xy, reduction R checks if V = cdhg(X
t, Ȳ). Since R emulates Game 3 perfectly, event

Bad occurs with the same probability as in Game 3, and if it does R detects it because

it occurs if both above conditions hold, in which case R outputs V 1/(st) as cdhg(X̄, Ȳ). It

follows that Pr[Bad] ≤ ϵZg-cdh, thus we conclude:

|Pr[G4]− Pr[G3]| ≤ ϵZg-cdh

Game 5 (random keys on passively observed sessions): Same as in 3DH, if session Ssid

remains fresh whenA sends (Z, f) to Psid then instead of setting k sid
P ← Rsid

P (pkP, pkCP, (Z, f))

as in Game 3, we now set k sid
P ← {0, 1}κ. Since by Game 4 oracle H never queries Rsid

P (pkP,

pkCP, (Z, f)) on (Z, f) sent from Psid’s counterparty, which is a condition for Psid to remain

fresh, it follows by randomness of Rsid
P that the modified game remains externally identical,

hence:

Pr[G5] = Pr[G4]

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): This game is same as in 3DH, and

Pr[G6] = Pr[G5]

61

Game 7 (hash computation consistent only for compromised keys): Recall that in Game 6,

as in Game 2, H(sid, {P,CP, pkP, pkCP, ·, ·,W sid
P , Z, σ}ord) is defined as Rsid

P (pkP, pkCP, (Z, f))

if σ = SKEMEsid
P (pkP, pkCP, Z, f) for some (KP, pkP) ∈ KLP,(KCP, pkCP) ∈ KL+(Psid). In

Game 7 we add a condition that this programming of H can occur only if (1)(KCP, pkCP) is

honestly generated and compromised or (2)(KCP, pkCP) is adversarially generated and pkCP

is the counterparty key Psid runs under. In both cases adversary can know KCP.

Let CPKL be the list of generated key pairs that were compromised so far, Game 7

diverges from Game 6 if bad event occurs where H is queried on inputs as above for

σ = SKEMEsid
P (pkP, pkCP, Z, f) and (KCP, pkCP) ∈ KL \ CPKL, i.e. honestly generated

but compromised key pairs, while in Game 6, as in Game 2, this programming was done

whenever (KCP, pkCP) ∈ KL+(Psid). As in the case of 3DH proof we only argue for client side

since the other case is symmetric. We define event Bad, where in client side’s H query value

σ = (KEM.Enc2(B , r),KEM.Dec(a, d), Y x) for some (a,A) ∈ KLC and (b,B) ∈ KL \ CPKL

which is fresh.

We show a reduction R that breaks OWPCA security if Bad occurs. On input a OWPCA

challenge (B̄, c∗), R has access to PCOK (., .) whose inner K corresponds to B̄, andR doesn’t

know randomness r used to generate c∗. R sets each Xsid
C as gx for random x and each Y sid

S

as gy for random y. R also picks all key pairs except that in the i-th session, for a chosen

index j ∈ [1, . . . , qK], where R set the j-th public key pkCP as B̄, and sets c as c∗. Let Badi,j

denote Bad occurring for this j-th public key in the i-th session, i.e. pkCP = B̄.

As long as the corresponding KCP is not compromised, R can emulate Game 6 because

it can respond to compromise of all other keys, and serve H queries as follows: To test

server side H query input (sid,P,CP, A,B,X, c, Y, d, σ), i.e. if σ = (K,L, V), R tests as

in Game 6 except for b that corrsponds to the public key B̄, in which case R tests if

K = KEM.Enc2(pk , r) = KEM.Dec(K , c) via checking if PCOK (K, c) returns 1. To test

client side, i.e. if σ = (K,L, V) for any pk including pk = B̄, R also tests as in Game 6,

except for the case that K is the private key corresponding to the public key B̄, in which

62

case R replaces testing K = KEM.Enc2(pk , r) with checking if PCOK (K, c) returns 1.

Badi,j can happen only before (KCP, pkCP) used in that session is compromised, so it occurs

in reduction with same probability as in Game 6. R can detect event Badi,j because it occurs

if H query involves the j-th credential and on client side, given c and B̄, it can output correct

K that satisfies K = KEM.Enc2(B̄, r) = KEM.Dec(b, c), without knowing the value of r and

b, in which case it outputs correct K corresponding to c∗ and breaks OWPCA security. If

R picks index i and j at random it follows that Pr[Bad] ≤ qK · qses ·Advow−pca
KEM,A .

Since a symmetric argument holds also for server side, we conclude:

|Pr[G7]− Pr[G6]| ≤ (2qK) · qses ·Advow−pca
KEM,A

Observe that Game 7 is identical to the ideal-world game shown in Figure 3.12: By Game 6

all functions Rsid
P are random, by Game 5 the game responds to (Z, f) messages to Psid as

the game in Figure 3.12, and after the modification in oracle H done in Game 7 this oracle

also acts as in Figure 3.12. This completes the argument that the real-world and the ideal-

world interactions are indistinguishable to the environment, and hence completes the proof

of Theorem 3.3.

3.6 Compiler from key-hiding AKE to aPAKE

We show that any UC Key-Hiding AKE protocol can be converted to a UC asymmetric

PAKE (aPAKE) with a very small computational overhead. We call this AKE-to-aPAKE

compiler construction KHAPE, which stands for Key-Hiding Asymmetric PakE, shown in

Figure 3.14. The compiler views each party’s AKE inputs, namely its own private key

63

and its counterparty public key, as a single object, an AKE “credential”. The two parties

participating in aPAKE, the server and the user, a.k.a. the client, each will have such a

credential: The server’s credential contains the server’s private key and the client’s public

key, and the client’s credential contains the client’s private key and the server’s public key.

Running AKE on such matching pair of inputs would establish a secure shared key, but while

the server can store its credential, the client’s only input is her password and it is not clear

how one can derive an AKE credential from a password. Protocol KHAPE enables precisely

this derivation: In addition to server’s credential, the server will also store a ciphertext

which encrypts, via an ideal cipher, the client’s credential under the user’s password, and the

aPAKE protocol consists of server sending that ciphertext to the client, the client decrypting

it using the user’s password to obtain its certificate, and using that certificate to run an AKE

instance with the server.

• cipher (IC∗.E, IC∗.D) on space of private and public AKE keys (See Def. 3.2)
• pseudorandom function kdf

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S generates two AKE key pairs (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B)), stores
file[uid, S]← (e, (b,A)), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

(a,B)← IC∗.D(pw , e) �
e

(e, (b,A))← file[uid, S]

-(sid,C, S, a,B) � (sid, S,C, b,A)

Key-Hiding AKE
� k1 -k2

τ ← kdf(k1, 1) -
τ

γ ← ⊥ if τ ̸= kdf(k2, 1)
else γ ← kdf(k2, 2)

�
γ

K1 ← ⊥ if γ ̸= kdf(k1, 2) K2 ← ⊥ if τ ̸= kdf(k2, 1)
else K1 ← kdf(k1, 0) else K2 ← kdf(k2, 0)
output K1 output K2

Figure 3.14: Protocol KHAPE: Compiler from Key-Hiding AKE to aPAKE

64

Reduced-bandwidth variant. In the aPAKE construction in Figure 3.14, ciphertext

e password-encrypts a pair of the client’s secret key KC and the server’s public key pkS.

Without loss of generality every AKE key pair (K , pk) is generated by the key generation

algorithm from uniformly sampled randomness r. The aPAKE construction can be modified

so that envelope e password-encrypts only the server’s public key pkS, while the client derives

its private key KC using the key generation algorithm on randomness r ← H(pw) via RO

hash H. Note that if key-hiding AKE is either 3DH or HMQV then this amounts to the

client setting it’s secret exponent a ← H(pw) where H maps onto range Zq.
7 This change

does not simplify the construction of the ideal cipher by much because typically the public

key is a group element and the private key is a random modular residue, but it reduces the

size of ciphertext e. We believe that the security proof for the aPAKE protocol in Figure

3.14 can be adjusted to show security of this reduced-bandwidth implementation.

Why we need key-hiding AKE. Note that anyone who observes the credential-encrypting

ciphertext e can decrypt it under any password. Each password guess will decrypt e into

some credential cred = (KC, pkS), where KC is a client’s private key and pkS is a server’s

public key. Let cred(pw) denote the credential obtained by decrypting e using password

pw . For any password guess pw ∗ the attacker can use credential cred(pw ∗) as input to an

AKE protocol with the server, but that is equivalent to an on-line password authentication

attempt using pw ∗ as a password guess (see below). Note that the attacker can also either

watch or interfere with AKE instances executed by the honest user on credential cred(pw)

that corresponds to the correct password pw . Moreover, the attacker w.l.o.g. holds a list

of credential candidates cred(pw 1), ..., cred(pwn) corresponding to offline password guesses.

However, the key-hiding property of AKE implies that even if cred(pw) is on the attacker’s

list, interfering or watching client’s AKE instances cannot help the attacker decide which

credential is the one that the client uses. The only way to learn anything from client AKE

7If AKE is implemented as SKEME of Section 3.5 then the client must also derive the public key pkC,
since it is used in the key-derivation hash, see Figure 3.10.

65

instances on input cred(pw) would be to engage them using a matching credential, i.e.

(KS, pkC). This is possible if the adversary compromises the server who holds exactly these

keys, but otherwise doing so is equivalent to breaking AKE security.

Why we need mutual key confirmation. To handle the server-side attack we needed the

key-hiding property of AKE to imply that the only way to decide which keys (KS, pkC) the

server uses is to engage in an AKE instance using the matching counterparty keys (KC, pkS).

The key-hiding property provided by 3DH and HMQV, as modeled by functionality FkhAKE,

actually does not suffice for this by itself. Let the attacker hold a list of n possible decrypted

client credentials cred i = cred(pw i) = (ai,Bi) for i = 1, ..., n, and let S hold credential

credS = (b,A) which matches cred i, i.e. A = gai and Bi = gb , which is the case if password

guess pw i matches the correct password pw . If an active attacker chooses x and sendsX = gx

to S then it can locally complete the 3DH or HMQV equation using any key pair (ai,Bi)

it holds, thus computing n candidate session keys ki. By 3DH or HMQV correctness, since

the i-th client credential matches the server’s credential, key ki equals to the session key k

computed by S. Therefore, if S used key k straight away then the attacker could observe

that ki = k and hence that pw i = pw .

However, the fix is simple: To make the server’s session key output safe to use, the client

must first send a key confirmation message to the server, implemented in Figure 3.14 by

client’s final message τ . This stops the attack because the attacker sending τ uniquely

determines one of the keys ki on its candidate list, and since this succeeds only if ki = k , this

attack reduces to an on-line test of a single password guess pw i, which is unavoidable in a

(a)PAKE protocol. A natural question is if there is no equivalent attack on the client-side,

which would be abetted by the client sending a key confirmation message τ . This is not the

case because of the following asymmetry: Off-line password guesses give the attacker a list

of possible client-side credentials, which by AKE rules can be tested against server sessions.

However, by the the key-hiding property of AKE such credentials are useless in deciding

66

which of them, if any, is used by the honest user. Moreover, since the ciphertext e encrypts

only the client-side keys, by the KCI property of the AKE the knowledge of client-side keys

is not helpful in breaking the security of AKE instances executed by the honest client on

such keys.

Server-to-client key confirmation is needed too, in this case to ensure forward secrecy. With-

out it, an attacker could choose Y = gy (in the HMQV or 3DH instantiations) and later,

after the session is complete, compromise the server to learn the private key b with which it

can compute the session key. The client-to-server key confirmation addresses this issue on

the client side.

In addition to ensuring security, key confirmation serves as (explicit) entity authentication

in this aPAKE construction.

Why we need credential encryption to be an ideal cipher. Note that the attacker can

attack the client too, by sending an arbitrary ciphertext to the client, but the ideal cipher

property is that the ciphertext commits the attacker to only one choice of key for which the

attacker can decide a plaintext: for all other keys the decrypted plaintext will be random.

For the above to work the encryption used to password-encrypt the client credential needs to

be an ideal cipher over the space of (private,public) key pairs used in AKE. In all key-hiding

AKE protocols examples we discuss in this paper, i.e. 3DH, HMQV, as well as SKEME

instantiated with Diffie-Hellman KEM, this message space is Zp ×G where G is a group of

order p. We refer to Section 3.8 for several methods of instantiate an ideal cipher on this

space. Here we will assume the implementation of the following form, which is realized by

the Elligator2 or Elligator-squared encodings (see Section 3.8).

Definition 3.2. [(IC∗.E, IC∗.D) instantiation.] Let X be the Cartesian product of the space

of private keys and the space of public keys in AKE, let IC.E, IC.D be an ideal cipher on n-bit

strings, and let map be a (randomized) invertible quasi-bijective map from X to X ′ = {0, 1}n.

67

A randomized 1-1 function map : X → X ′ is quasi-bijective if there is a negligible statistical

difference between a uniform distribution over X ′ and x′
r←− map(x) for random x in X.

Instead of a direct ideal cipher on message space X protocol KHAPE in Fig. 3.14 uses a

randomized cipher (IC∗.E, IC∗.D) on X ′ where IC∗.E(x) outputs IC.E(x′) where x′ ← map(x; r)

for random r used by map, and IC∗.D(y) outputs x = map−1(x′) where x′ = IC.D(y).

Comparison with Encrypted Key Exchange of Bellovin-Merritt. It is instructive to

compare the KHAPE design to that of the “Encrypted Key Exchange” (EKE) construction

of Bellovin-Meritt [28]. The EKE compiler starts from unauthenticated KE, uses an Ideal

Cipher to encrypt each KE protocol message under the password, and this results in UC

PAKE in the IC model (see e.g. [109]). By contrast, our compiler starts from Authenticated

KE, and uses IC to password-encrypt only the client’s inputs to the AKE protocol, while

the protocol messages themselves are exchanged without any change. Just like EKE, our

compiler adds only symmetric-key overhead to the underlying KE, but it results in an aPAKE

instead of just PAKE. However, just like EKE, it imposes additional requirements on the

underlying key exchange protocol: Whereas EKE needs the key exchange to have a “random

transcript” property, i.e. KE protocol messages must be random in some message space, in

the case of KHAPE the underlying AKE needs to have the key-hiding property we define in

Section 4.2. Either condition also relies on an Ideal Cipher (IC) modeling for a non-standard

plaintext space: For EKE the IC plaintext space is the space of KE protocol messages, while

for KHAPE the IC plaintext space is the Cartesian product of the space of private keys and

the space of public keys which form AKE protocol inputs.

UC aPAKE security model. We refer to Section 2.3.3 for the functionality FaPAKE we

use to model UC aPAKE. This model is very similar to the one defined by Gentry et al.

[72] with some modifications that we discuss in Section 2.3.3. The main notational change

is that we use a user account identifier uid, instead of generic session identifier sid, to index

password files held by a given server. Functionality FaPAKE also includes uni-directional

68

(client-to-server) entity authentication as part of the security definition. We refer to Section

2.3.3 also for a discussion of several subtle issues involved in UC modeling of tight bounds

on adversary’s local computation during an offline dictionary attack.

Theorem 3.4. Protocol KHAPE realizes the UC aPAKE functionality FaPAKE if the AKE

protocol realizes the Key-Hiding AKE functionality FkhAKE, assuming that kdf is a secure

PRF and (Enc,Dec) is an ideal cipher over message space of private,public key pairs in

AKE.

Initialization
Initialize simulator SIMAKE, an empty table TIC, empty lists CPK ,PKC,PK S

Notation: Tpw
IC .X ′ = {x′∥ ∃y (pw , x′, y) ∈ TIC}, Tpw

IC .Y = {y | ∃x′ (pw , x′, y) ∈ TIC}
Convention: First call to SvrSession or StealPwdFile for (S, uid) sets euidS

r←− Y

Ideal Cipher IC queries

• On query (pw , x′) to IC.E, send back y if (pw , x′, y) ∈ TIC, otherwise pick y
r←− Y \Tpw

IC .Y ,
add (pw , x′, y) to TIC, and send back y

• On query (pw , y) to IC.D, send back x′ if (pw , x′, y) ∈ TIC, otherwise do:

1. If y ̸= euidS for any (S, uid) then pick x′
r←− X ′ \ Tpw

IC .X ′

2. If y = euidS for some (S, uid) send (OfflineTestPwd, S, uid, pw) to FaPAKE and:

(a) If FaPAKE sends “correct guess” then set (A,B)← (Auid
S ,Buid

S)

(b) Otherwise initialize keys A and B via two Init calls to SIMAKE, add A to PKC

and B to PK S

Set pkuidS (pw) ← (A,B), send query (Compromise, A) to SIMAKE, define a as
SIMAKE’s response, add A to CPK , set x′

r←− map(a,B)

In either case add (pw , x′, y) to TIC and send back x′

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE. If FaPAKE sends “no password
file,” pass it to A, otherwise declare (S, uid) compromised and:

1. If FaPAKE returns no value then initialize keys A and B via two Init calls to SIMAKE, add
A to PKC and B to PK S

2. If FaPAKE returns pw then set (A,B)← pkuidS (pw)

Send (Compromise, B) to SIMAKE, define b as SIMAKE’s response, add B to CPK , set
(Auid

S ,Buid
S)← (A,B), return file[uid, S]← (euidS , b, A) to A.

Figure 3.15: Simulator SIM showing that protocol KHAPE realizes FaPAKE: Part 1

69

Starting AKE sessions

On (SvrSession, sid, S,C, uid) from FaPAKE, initialize random function Rsid
S : ({0, 1}∗)3 → {0, 1}κ,

set flag(Ssid)← hbc, send euidS to A as message from Ssid and (NewSession, sid,S,C,⊥) to SIMAKE.

On (CltSession, sid,C,S) from FaPAKE and message e ′ sent by A to Csid, initialize random func-
tion Rsid

C : ({0, 1}∗)3 → {0, 1}κ, and:
1. If e ′ = euidS set flag(Csid)← hbcuidS , send (NewSession, sid,C, S,⊥) to SIMAKE

2. If e ′ ̸= euidS check if e ′ was output by IC.E on some (pw , x′), and:

(a) If there is no such IC.E query then send (TestPwd, sid,C,⊥) to FaPAKE, set
flag(Csid)← rnd, and send (NewSession, sid,C, S,⊥) to SIMAKE

(b) Otherwise define (pw , x′) as the first query to IC.E which outputted e ′, send
(TestPwd, sid,C, pw) to FaPAKE, and:
i. If FaPAKE returns “wrong guess” then set flag(Csid)← rnd and send

(NewSession, sid,C, S,⊥) to SIMAKE
ii. If FaPAKE returns “correct guess”: set (a,B) ← map−1(x′) and run the AKE

protocol on behalf of Csid on inputs (sid,C,S, a, B); When Csid terminates with
key k then send τ ← kdf(k , 1) to A and (NewKey, sid,C, kdf(k , 0)) to FaPAKE

Responding to AKE messages
SIM forwards AKE protocol messages between A and SIMAKE, and reacts as follows to SIMAKE’s
queries to FkhAKE, whose role is played by SIM. (SIM ignores SIMAKE’s queries pertaining to
any Psid that was not started by a NewSession message.)

If SIMAKE outputs (Interfere, sid,S) set flag(Ssid)← act

If SIMAKE outputs (Interfere, sid,C) and flag(Csid)= hbcuidS then set flag(Csid)← actuidS

If SIMAKE outputs (NewKey, sid,C, α):

1. If flag(Csid) = actuidS then send (Impersonate, sid, C,S, uid) to FaPAKE;

If FaPAKE sends “correct guess” output τ ← kdf(k , 1) for k = Rsid
C (Auid

S ,Buid
S , α)

2. In any other case (including “wrong guess” above), output τ
r←− {0, 1}κ

If SIMAKE outputs (NewKey, sid,S, α) and A sends τ ′ to Ssid:

1. If flag(Ssid) = hbc and τ ′ was generated by SIM for Csid s.t. flag(Csid) = hbcuidS , then send
(NewKey, sid,S,⊥) to FaPAKE and output γ

r←− {0, 1}κ
2. If flag(Ssid) = act and τ ′= kdf(k ,1) for k = Rsid

S (B,A, α) and (A,B) = pkuidS (pw), send
(TestPwd, sid,S, pw), (NewKey, sid,S, kdf(k , 0)) to FaPAKE, output γ ← kdf(k , 2)

3. Else (TestPwd, sid,S,⊥), (NewKey, sid,S,⊥) to FaPAKE, output γ
r←− {0, 1}κ

If SIMAKE sends γ′ to Csid:

1. If flag(Csid) = hbcuidS and γ′ was generated by SIM for Ssid s.t. flag(Ssid) = hbc, send
(NewKey, sid,C,⊥) to FaPAKE

2. If flag(Csid) = actuidS , FaPAKE sent “correct guess” for Csid, and γ′ = kdf(k , 2) for k
computed for Csid above, send (NewKey, sid,C, kdf(k , 0)) to FaPAKE

3. Else send (TestPwd, sid,C,⊥), (NewKey, sid,C,⊥) to FaPAKE

If SIMAKE outputs (ComputeKey, sid,P, pk , pk ′, α):
If pk ∈ PKP and pk ′ ∈ CPK send Rsid

P (pk , pk ′, α) to A

Figure 3.16: Simulator SIM showing that protocol KHAPE realizes FaPAKE: Part 2

70

We show that the environment’s view of the real-world security game, denoted Game 0, i.e. an

interaction between the real-world adversary and honest parties who follow protocol KHAPE,

is indistinguishable from the environment’s view of the ideal-world game, denoted Game 8,

i.e. an interaction between simulator SIM of Figures 5.20 and 4.19 and functionality FaPAKE.

As before, we use Gi to denote the event that Z outputs 1 while interacting with Game i, and

the theorem follows if |Pr[G0]−Pr[G8]| is negligible. For a fixed environment Z, let qpw, qIC,

and qses be the upper-bounds on the number of resp. password files, IC queries, and online S or

C aPAKE sessions. Let ϵZkdf(SIMAKE) and ϵZake(SIMAKE) be the advantages of an environment

who uses the resources of Z plus O(qIC+qses+qpw) exponentiations in G in resp. breaking the

PRF security of kdf, and in distinguishing between the real-world AKE protocol and its ideal-

world emulation of SIMAKE interacting with FkhAKE. Let X ′ = Y = {0, 1}n be the domain

and range of the ideal cipher IC used within IC∗, let X be the domain of (private,public)

keys in AKE (e.g. for both 3DH and HMQV we have X = Zp × G where G is a group of

order p), and let map : X → {0, 1}n be ϵmap-quasi-bijective.

Simulator construction. We split the description of simulator SIM into two phases: Fig-

ure 5.20 shows how SIM deals with creation and compromise of a password file and with

adversary’s ideal cipher queries, while Figure 4.19 shows how SIM deals with on-line ses-

sions, i.e. how it executes AKE sessions and translates adversary’s responses into on-line

attacks on the aPAKE.

Simulator SIM uses as a sub-procedure the AKE-protocol simulator SIMAKE, which exists by

the assumption that the AKE protocol realizes functionality FkhAKE. Namely, SIM hands

over to SIMAKE the simulation of all C-side and S-side AKE instances where parties run on

honestly generated AKE keys. SIM employs SIMAKE to generate such keys, in password file

initialization and in IC decryption queries, see Figure 5.20, and then it hands off to SIMAKE

the handling of all AKE instances that run on such keys, see Figure 4.19. SIM cannot handle

all AKE executions via SIMAKE, because the adversary can guess client C’s password pw

71

and form an envelope e ′ as IC encryption of arbitrary keys (a∗, B∗) under pw , in which

case C executes AKE on adversarial keys (a∗, B∗). The ideal model of key-hiding AKE,

i.e. functionality FkhAKE of Figure 3.1, allows the environment to invoke AKE sessions on

adversarially chosen counterparty public key, i.e. B∗, but it assumes that an honest party

can use only its own previously generated key as its private key a. Since functionality FkhAKE

makes no claims for parties who run on inputs that violate this assumption, simulator SIM

in this case simply executes the AKE protocol on behalf of C on such adversarially-chosen

inputs (a∗, B∗). However, since this case implies a succesful on-line password guessing attack

against client C, the simulation can give up on security on such sessions, hence w.l.o.g. this

AKE execution could reveal inputs a∗, B∗ to the adversary.

Game 0 (real world): This is the interaction, shown in Figure 6.6, of environment Z with

the real-world protocol KHAPE, except that the symmetric encryption scheme is idealized

as an ideal cipher oracle. (Technically, this is a hybrid world where each party has access to

the ideal cipher functionality IC.)

Initialize empty table TIC; (Notation Tpw
IC .X ′ and Tpw

IC .Y as in Fig. 5.20)

• On (StorePwdFile, uid, pwuid
S) to S: Generate keys (a,A), (b, B), set euidS ←

IC.E(pwuid
S ,map(a,B)), and file[uid,S]← (euidS , b, A)

• On new (pw , x′) to IC.E: Output y
r←− Y \ Tpw

IC .Y , add (pw , x′, y) to TIC

• On new (pw , y) to IC.D: Output x′
r←− X ′ \ Tpw

IC .X ′, add (pw , x′, y) to TIC

• On (StealPwdFile, S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: Set (euidS , (b, A)) ← file[uid, S], send euidS and start AKE
session Ssid on (sid,S,C, b, A), set k2 to Ssid output;

If Z sends τ ′ = kdf(k2, 1) to Ssid, set K2, γ as kdf(k2, 0), kdf(k2, 2), else as ⊥,⊥

• On (CltSession, sid, S, pw) and message e ′ to C: Set (a,B) ← map−1(IC.D(pw , e ′)), and
start AKE session Csid on (sid,C, S, a, B), set k1 to Csid output, send τ = kdf(k1, 1) to Z;
If Z sends γ′ = kdf(k1, 2) to Csid, set K1 = kdf(k1, 0) else K1 = ⊥

Figure 3.17: Game 0: Z’s interaction with real-world protocol KHAPE

72

Game 1 (embedding random keys in IC.D outputs): We modify processing of Z’s query

(pw , y) to IC.D for any y ̸∈ Tpw
IC .Y , i.e. y for which IC.D(pw , y) has not been yet defined.

On such query Game 1 generates fresh key pairs (a,A) and (b, B), sets x′
r←− map(a,B), and

if x′ ̸∈ Tpw
IC .X ′ then it sets IC.D(pw , y) ← x′. If x′ ∈ Tpw

IC .X ′, i.e. x′ is already mapped by

IC.E(pw , ·) to some value, Game 1 aborts. If y = euidS for some (S, uid) then the game also

sets pkuid
S (pw)← (A,B).

The divergence this game introduces is due to the probability (qIC)
2/2n of ever encountering

an abort, and the statistical distance qICϵmap between random IC domain elements and images

of map on random X elements, which leads to |Pr[G1]− Pr[G0]| ≤ qICϵmap + (qIC)
2/2n.

Game 2 (random euidS in the password file): We change StorePwdFile processing by picking

ciphertext euidS as a random element in {0, 1}n instead of via query to IC.E, then we pick

two key pairs (a,A), (b, B), define (Auid
S ,Buid

S) ← (A,B), and sample x′
r←− map(a,B). If

euidS ∈ Tpw
IC .Y for any pw , not necessarily pwuid

S , the game aborts. The game also aborts if x′ ∈

Tpw
IC .X ′ for pw = pwuid

S . Otherwise the game sets IC.D(pwuid
S , euidS) ← x′ and pkuid

S (pwuid
S) ←

(A,B). The divergence this game introduces is due to the probability of abort occuring in

either case, which leads to |Pr[G2]− Pr[G1]| ≤ qpwϵmap + 2qpwqIC/2
n.

Game 3 (abort on ambiguous ciphertexts): In the ideal-world game simulator SIM identifies

ciphertext e ′ which was output by the ideal cipher for some query (pw , x′) to IC.E, as an

encryption of the first (pw , x′) pair which satisfies this. To eliminate the possibility of

ambiguous ciphertexts we introduce an abort if IC.E oracle picks the same ciphertext for

any two queries (pw 1, x
′
1) and (pw 2, x

′
2). Since IC.E samples random outputs in Y we get

|Pr[G3]− Pr[G2]| ≤ (qIC)
2/2n.

Taking stock of the game. Let us review how Game 3 operates: The initialization

of password file file[uid, S] on password pwuid
S picks fresh keys (a,A), (b, B), picks euidS as

a random string, keeps the client and server public keys as pkuid
S (pwuid

S) = (Auid
S ,Buid

S) =

73

(A,B), and programs IC.D(pwuid
S , euidS) to map(a,B). Oracle IC.D on inputs (pw ′, y) for which

decryption is undefined, picks fresh key pairs (a′, A′) and (b′, B′) and programs IC.D(pw ′, y) to

map(a′, B′). In addition, if y = euidS then it assigns pkuid
S (pw ′)← (a′, B′). Finally, encryption

is now unambiguous, i.e. every ciphertext e can be output by IC.E on only one pair (pw , x′).

This is already very close to how simulator SIM operates as well. The crucial difference be-

tween the ideal-world interaction and Game 3, is that in Game 3 keys Auid
S ,Buid

S are generated

at the time of password file initialization, and IC.D(pwuid
S , euidS) is set to map(auid

S ,Buid
S) at the

same time. In the ideal-world game these keys are undefined until password compromise,

and IC.D(pwuid
S , euidS) is set only after offline dictionary attack succeeds in finding pwuid

S . This

delayed generation of the keys in file[uid, S] is possible because AKE sessions which S and

C run on these keys can be simulated without knowledge of these keys, an key-hiding AKE

functionality allows precisely for such simulation, as we show next.

Game 4 (Using SIMAKE for AKE’s on honestly-generated keys): In Game 4 we modify

Game 3 by replacing all honest parties that run AKE instances on keys A,B generated either

in password file initialization or by oracle IC.D, with a simulation of these AKE instances

via simulator SIMAKE. Game 4 is shown in Figure 4.22. For notational brevity in Figure 4.22

we say that query (pw , x′) to IC.E or (pw , y) to IC.D are new(!) as a shortcut for saying that

table TIC includes no prior tuple corresponding to these inputs, resp. (pw , x′, ·) and (pw , ·, y).

If such tuple exists then IC.E and IC.D oracles use the retrieved (key,input,output) tuple to

answer the according query. We also omit the possibilities of the game aborts, because

such aborts happen only with negligible probability. These aborts occur in three places, all

marked (∗): (1) When euidS is chosen in StorePwdFile the game aborts if euidS ∈ Tpw
IC .Y for any

pw (not necessarily pw = pwuid
S); (2) When x′ is then sampled as x′

r←− map(a,B), the game

aborts if x′ ∈ Tpw
IC .X ′ for pw = pwuid

S ; (3) When x′
r←− map(a,B) is sampled in IC.D query

(pw , y) the game aborts also if x′ ∈ Tpw
IC .X ′.

74

Initialize simulator SIMAKE, empty table TIC, and lists CPK ,PKC,PK S.

• On (StorePwdFile, uid, pwuid
S) to S: Initialize A and B via two Init calls to SIMAKE, send

(Compromise, A) and (Compromise, B) to SIMAKE, define a and b as SIMAKE’s responses,
add A to PKC, B to PK S, and both to CPK , pick(∗) euidS

r←− Y , set(∗) x′
r←− map(a,B),

add (pwuid
S , x′, euidS) to TIC, set file[uid,S]← (euidS , b, A) and (Auid

S ,Buid
S)← (A,B)

• On new(!) (pw , x′) to IC.E: Output y
r←− Y \ Tpw

IC .Y , add (pw , x′, y) to TIC

• On new(!) (pw , y) to IC.D: Initialize A and B via two Init calls to SIMAKE, send
(Compromise, A) to SIMAKE, define a as SIMAKE’s response, add A to CPK and PKC,
add B to PK S, set

(∗) x′
r←− map(a,B) add (pw , x′, y) to TIC, output x

′

• On (StealPwdFile, S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: Initialize function Rsid
S , set flag(Ssid) ← hbc, output euidS

and send (NewSession, sid, S,C,⊥) to SIMAKE

• On (CltSession, sid,S, pw) and e ′ to C: Initialize function Rsid
C and:

1. If e ′ = euidS , set x′ ← IC.D(pw , euidS), (a,B) ← map−1(x′), flag(Csid) ← hbc(ga, B),
send (NewSession, sid,C, S,⊥) to SIMAKE

2. If e ′ ̸= euidS , check if e ′ was output by IC.E on (pw , x′) for some x′ and:
(a) If not, set x′ ← IC.D(pw , e ′), (a,B)← map−1(x′), flag(Csid)← hbc(ga, B), send

(NewSession, sid,C, S,⊥) to SIMAKE

(b) If so, set (a,B)← map−1(x′), run Csid of AKE on (sid, S, a, B); If Csid terminates
with k , output τ ← kdf(k , 1) and K1 ← kdf(k , 0)

Responding to AKE messages:

• On (Interfere, sid, S): set flag(Ssid)← act

• On (Interfere, sid,C): if flag(Csid) = hbc(A,B) then change it to act(A,B)

• On (NewKey, sid,C, α):

1. If flag(Csid) = act(A,B) set k1 ← Rsid
C (A,B, α)

2. If flag(Csid) = hbc(A,B): If (A,B) = (Auid
S ,Buid

S) and Ssid outputted key k2 then
copy this k2 to k1, otherwise pick k1

r←− {0, 1}κ

Output τ ← kdf(k1, 1)

• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = act, set k2 ← Rsid
S (Buid

S ,Auid
S , α)

2. If flag(Ssid) = hbc: If flag(Csid) = hbc(Auid
S ,Buid

S) and Csid outputted key k1 then
copy this k1 to k2, otherwise pick k2

r←− {0, 1}κ

If τ ′ = kdf(k2, 1) output (K2, γ)← (kdf(k2, 0), kdf(k2, 2)), else (K2, γ)← (⊥,⊥)

• On γ′ to Csid: If γ′ = kdf(k1, 2) output K1 ← kdf(k1, 0) else K1 ← ⊥
• On (ComputeKey, sid,P, pk , pk ′, α): send Rsid

P (pk , pk ′, α) if pk∈PKP, pk
′∈CPK

Figure 3.18: Proof of KHAPE security: Game 4

75

Game 4 operates like Game 3, except that it outsources AKE key generation in StorePwdFile

and IC.D to SIMAKE, and whenever Ssid or Csid runs AKE on such keys these executions

are outsourced to SIMAKE, while the game emulates what FkhAKE would do in response to

SIMAKE’s actions. In particular, Game 4 initializes random function Rsid
P for every AKE

session Psid invoked by emulated FkhAKE. Whenever C and S run an AKE instance under keys

generated by AKE key generation the game, playing FkhAKE, triggers SIMAKE with messages

resp. (NewSession, sid,C, S,⊥) and (NewSession, sid, S,C,⊥). When SIMAKE translates the

real-world adversary’s behavior into Interfere actions on these sessions, the game emulates

FkhAKE by marking these sessions as actively attacked. If SIMAKE sends (NewKey, sid,P, α)

on activey attacked session, its output key k is set to Rsid
P (pkP, pkCP, α) where (pkP, pkCP)

are the keys this session runs under, which are (Buid
S ,Auid

S) for S, and keys (A,B) defined

by IC.D(pw , e ′) for C. The game must also emulate ComputeKey interface of FkhAKE and

let SIMAKE evaluate Rsid
P (pk , pk ′, α) for any pk ∈ PK P and any pk ′ ∈ CPK . (Note that all

sessions emulated by SIMAKE run on public keys pk ′ which are created by the Init interface.)

Set PK S contains only one key, Buid
S , while set PK C contains Auid

S and all keys A′ created by

IC.D queries. Set CPK consists of Auid
S ,Buid

S , because these were compromised in file[uid, S]

initialization, which used the corresponding private keys, and all client-side keys A′ generated

in IC.D queries, because each IC.D query creates and immediately compromises key A′, since

it needs to embed the corresponding private key a′ into IC.D output. Finally, if SIMAKE sends

NewKey on non-attacked session, the game emulates FkhAKE by issuing random keys to such

sessions except if Csid runs under key pair (A′, B′) = (Auid
S ,Buid

S), which matches the key pair

used by Ssid, in which case the game copies the key output by the session which terminates

first into the key output by the session which terminates second. The rest of the code is as

in Game 3: C uses its key k1 to compute authenticator τ = kdf(k1, 1) and its local output

K1 = kdf(k1, 0), while S uses its key k2 to verify the incoming authenticator τ ′ and outputs

K2 = kdf(k2, 0) if τ
′ = kdf(k2, 1) and K2 = ⊥ otherwise.

The one case where a party might not run AKE on keys generated via a call to SIMAKE

76

is client session C which receives e ′ which was output by IC.E(pw , x′) for some x′ and pw

matching the password input to Csid. In this case Csid runs AKE on (a,B) = map−1(x′), and

since wlog these keys are chosen by the adversary and not by SIMAKE, we cannot outsource

that execution to SIMAKE. As we said above, functionality FkhAKE does not admit honest

parties running AKE on arbitrary private keys a, hence SIMAKE does not have an interface

to simulate such executions. In Game 4 such AKE instances are executed as in Game 3:

This is the case in step (2b) in Figure 4.22.

Since Game 4 and Game 3 are identical except for replacing real-world AKE executions with

the game emulating functionality FkhAKE interacting with SIMAKE, it follows that |Pr[G4]−

Pr[G3]| ≤ ϵZake(SIMAKE)

Game 5 (delay Auid
S ,Buid

S generation until password compromise): In Game 4 keys Auid
S ,Buid

S

are initialized and compromised in StorePwdFile, in Game 5 we postpone these steps until

password compromise. This change can be done in several steps.

Denote first step as Game 5(a), we remove compromising Buid
S , adding it to CPK and set-

ting file[uid, S] in StorePwdFile, and delay them to StealPwdFile. Z cannot notice this change

because in Game 4, only StealPwdFile will need file[uid, S], and compromising Buid
S to get buidS

is not needed anywhere else except when generating file[uid, S].

In Game 5(b) we make a change in IC.D, that if y ̸= euidS then set x′
r←− X ′ \Tpw

IC .X ′, while in

Game 4 we set x′
r←− map(a,B) for randomly initialized (a,B), with restriction that this x′

hasn’t been mapped before. The divergence this change introduces is due to the statistical

distance qICϵmap between random IC domain elements and images of map on random X ele-

ments.

Then in Game 5(c) we remove compromising Auid
S , adding it to CPK , setting x′ and adding

(pwuid
S , x′, euidS) to TIC in StorePwdFile, and delay them to new(!) (pw , y) to IC.D. After this

change, in StorePwdFile we now only initialize (Auid
S ,Buid

S), add them to PK and pick euidS .

Since (pwuid
S , x′, euidS) is no longer added to TIC in StorePwdFile, query (pwuid

S , euidS) is now

77

Initialize simulator SIMAKE, empty table TIC, and lists CPK ,PKC,PK S.
• On (StorePwdFile, uid, pwuid

S) to S: Pick euidS
r←− Y , mark pwuid

S as fresh

• On new(!) (pw , x′) to IC.E: Output y
r←− Y \ Tpw

IC .Y , add (pw , x′, y) to TIC

• On new(!) (pw , y) to IC.D:

1. If y ̸= euidS for any (S, uid) then pick x′
r←− X ′ \ Tpw

IC .X ′

2. If y = euidS for some (S, uid) then:
(a) If pwuid

S is fresh or pw ̸= pwuid
S then record ⟨offline, S, uid, pw⟩, initialize A and

B via Init calls to SIMAKE, add A to PKC and B to PK S
(b) If pwuid

S is compromised and pw = pwuid
S set (A,B)← (Auid

S ,Buid
S)

In both cases (a) and (b), set pkuidS (pw)← (A,B), define a as SIMAKE’s response to
(Compromise, A), add A to CPK , and set x′

r←− map(a,B)

Add (pw , x′, y) to TIC and send back x′

• On (StealPwdFile,S, uid): mark pwuid
S compromised and: If ∃ record ⟨offline,S, uid, pwuid

S ⟩
then set (A,B) ← pkuidS (pwuid

S); Else initialize A and B via Init calls to SIMAKE, add A
to PKC and B to PK S; In either case, set (Auid

S ,Buid
S) ← (A,B), define b as SIMAKE’s

response to (Compromise, B), add B to CPK , output file[uid,S]← (euidS , b, A)

• On (SvrSession, sid,C, uid) to S: Initialize function Rsid
S , set flag(Ssid) ← hbc, output euidS

and send (NewSession, sid, S,C,⊥) to SIMAKE

• On (CltSession, sid,S, pw) and e ′ to C: Initialize function Rsid
C and:

1. If e ′ = euidS then: (1) set flag(Csid)← hbcuidS if pw = pwuid
S , otherwise set flag(Csid)←

rnd; (2) send (NewSession, sid,C,S,⊥) to SIMAKE
2. If e ′ ̸= euidS then:

(a) If e ′ was not output by IC.E or it was output on (pw ′, x′) for pw ′ ̸= pw , then
set flag(Csid)← rnd and send (NewSession, sid,C,S,⊥) to SIMAKE

(b) If e ′ was output by IC.E on (pw , x′) then set (a,B) ← map−1(x′), run Csid

of AKE on (sid, S, a, B); If Csid terminates with k , output τ ← kdf(k , 1) and
K1 ← kdf(k , 0)

Responding to AKE messages:

• On (Interfere, sid, S): set flag(Ssid)← act

• On (Interfere, sid,C): if flag(Csid) = hbcuidS then flag(Csid)← actuidS if pwuid
S is compromised,

otherwise flag(Csid)← rnd

• On (NewKey, sid,C, α):

1. If flag(Csid) = actuidS set k1 ← Rsid
C (Auid

S ,Buid
S , α), output τ ← kdf(k1, 1)

2. Otherwise output τ
r←− {0, 1}κ

• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = act and τ ′ = kdf(k2, 1) for k2 = Rsid
S (B,A, α) where (A,B) =

pkuidS (pwuid
S), then output (K2, γ)← (kdf(k2, 0), kdf(k2, 2))

2. If flag(Ssid) = hbc and τ ′ was generated by Csid where flag(Csid) = hbcuidS , then
output K2

r←− {0, 1}κ and γ
r←− {0, 1}κ

3. In all other cases output (K2, γ)← (⊥,⊥)
• On γ′ to Csid:

1. If flag(Csid) = actuidS and γ′ = kdf(k1, 2), output K1 ← kdf(k1, 0))
2. If flag(Csid) = hbcuidS and γ′ was generated by Ssid for Ssid s.t. flag(Ssid) = hbc, output

K1 equal to the key K2 output by Ssid

3. In all other cases output K1 ← ⊥
• On (ComputeKey, sid,P, pk , pk ′, α): send Rsid

P (pk , pk ′, α) if pk∈PKP, pk
′∈CPK

Figure 3.19: KHAPE: Z’s view of ideal-world interaction (Game 8)

78

new(!) to IC.D, and we add that in this case IC.D responds by retrieving (Auid
S ,Buid

S), com-

promising Auid
S , setting corresponding x′ and adding (pwuid

S , x′, euidS) to TIC. For any other

queries, IC.D reacts same as in Game 5(b). Game 5(c) and Game 5(b) is identical since we

only postpone executing those steps removed from StorePwdFile.

In Game 5(d) we further remove usage of (Auid
S ,Buid

S) when responding to AKE messages,

except for input to Rsid
P in actively attacked sessions. We change hbc(A,B) in Game 5(c) to

hbcuidS if (A,B) = (Auid
S ,Buid

S), and rnd otherwise. Similarly we change act(A,B) in Game 5(c)

to actuidS if (A,B) = (Auid
S ,Buid

S), which corresponds to active attack, otherwise set to rnd and

derive corresponding k1 from random element of {0, 1}κ instead of Rsid
C (A,B , α), from ran-

domness of Rsid
C this change makes indistinguishable difference to Z. Since these are only

notational changes and Z cannot notice them, Game 5(d) and Game 5(c) are identical to Z.

Finally, in Game 5(e) we remove steps of initializing (Auid
S ,Buid

S) via SIMAKE in StorePwdFile

and delay them to StealPwdFile or IC.D(pwuid
S , euidS), depending on which happens first. In

order to set IC.D(pwuid
S , euidS) only after A finds pwuid

S via successful offline dictionary at-

tack, we first mark pwuid
S fresh in StorePwdFile, and mark it compromised anytime A runs

(StealPwdFile, S, uid).

If A first runs (StealPwdFile, S, uid), we initialize (Auid
S ,Buid

S) via Init calls to SIMAKE, add

Auid
S to PK C and Buid

S to PK S, and later upon query IC.D(pwuid
S , euidS), if pwuid

S is already

marked compromised, we simply retrieve (Auid
S ,Buid

S), then compromise Auid
S and set x′ as in

Game 5(d). In the other case, if IC.D(pwuid
S , euidS) runs first, which means at this moment pwuid

S

must be fresh, we treat it same way as before, and just like any other pw ̸= pwuid
S , where we

init (Auid
S ,Buid

S) via SIMAKE, add them to PK and save (Auid
S ,Buid

S) into pkuid
S (pwuid

S) for future

retrival. We also record ⟨offline, S, uid, pwuid
S ⟩, and later if A runs StealPwdFile and there ex-

ists record ⟨offline, S, uid, pwuid
S ⟩, then just directly retrieve (Auid

S ,Buid
S) from pkuid

S (pwuid
S) and

skip initialization. In addition we also record ⟨offline, S, uid, pw⟩ upon query IC.D(pw , euidS)

even if pw ̸= pwuid
S . Game 5(e) is identical to Game 5(d) since we only postpone (Auid

S ,Buid
S)

initialization. Thus we conclude: |Pr[G5]− Pr[G4]| ≤ qICϵmap

79

Game 6 (replace kdf output with random string in passive sessions): In Game 5, in passive

sessions, i.e. any sessions except actively attacked sessions, τ, γ are all derived from kdf of k1

or k2. In Game 6 in these sessions we remove usage of kdf and directly assign random elements

of {0, 1}κ to these values. Also we replace verifying τ ′, γ′ via checking τ ′ = kdf(k2, 1), γ
′ =

kdf(k1, 2) with checking whether they’re generated by corresponding hbc parties, since these

two checking methods are actually equal. In addition, we further remove usage of k1 and k2

in passive sessions, and instead set K2 ← {0, 1}κ, and in matching sessions we copy K2 to

K1, as Game 5 copy k1 to k2 or vice versa in such sessions. Since there’re at most qses such

sessions, and from security of kdf, the difference between Game 5 and Game 6 is negligible

to Z, i.e. |Pr[G6]− Pr[G5]| ≤ qsesϵ
Z
kdf(SIMAKE)

Game 7 (Ideal-world game): This is the ideal-world interaction, i.e. an interaction of

environment Z with simulator SIM and functionality FaPAKE, shown in Figure 6.11.

Observe that Game 6 is identical to the ideal-world Game 8. This completes the argument

that the real-world and the ideal-world interactions are indistinguishable to the environment,

and hence completes the proof of Theorem 4.4.

3.7 Concrete aPAKE Instantiation: KHAPE-HMQV

We include a concrete aPAKE protocol we call KHAPE-HMQV, which results from instanti-

ating protocol KHAPE shown in Section 6.2 with HMQV as the key-hiding AKE (as proved

in Section 4.2.2). The resulting protocol is shown in Figure 3.20. It uses only 1 fixed-base

exponentiation plus 1 variable-base (multi)exponentiation for each party, and 1 ideal cipher

decryption for the client. It has 3 flows if the server initiates and 4 if the client initiates. The

communication costs include one group element and a κ-bit key authenticator for both sides

plus an ideal cipher encryption of a field element a and another group element B from server

80

• global hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

• group G of prime order p with generator g
• cipher (IC∗.E, IC∗.D) on space Zp ×G (see also page 67)

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks two fresh AKE keys (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B))
S stores file[uid, S]← (e, b,A) and discards all other ephemeral values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

x
r←− Zp , X ← gx y

r←− Zp , Y ← gy

(a,B)← IC∗.D(pw , e) � e, Y
(e, b,A)← file[uid, S]

dC ← H′(sid,C, S, 1, X)
eC ← H′(sid,C, S, 2, Y)

σC ← (Y · B eC)x+dC·a

k1 ← H(sid,C, S, X, Y, σC)
τ ← kdf(k1, 1) -τ , X

dS ← H′(sid,C, S, 1, X)
eS ← H′(sid,C, S, 2, Y)

σS ← (X · AdS)y+eS·b

k2 ← H(sid,C, S, X, Y, σS)

γ ← ⊥ if τ ̸= kdf(k2, 1)
�

γ
else γ ← kdf(k2, 2)

K1 ← ⊥ if γ ̸= kdf(k1, 2) K2 ← ⊥ if τ ̸= kdf(k2, 1)
else K1 ← kdf(k1, 0) else K2 ← kdf(k2, 0)
output K1 output K2

Figure 3.20: KHAPE with HMQV: Concrete aPAKE protocol KHAPE-HMQV

to client. Implementations of an ideal cipher over field elements may expand the ciphertext

by Ω(κ) bits and require a hash-to-curve operation, see Sec. 3.8.

While we are showing the protocol with the encryption of credentials done on the server side

during password registration (initialization), this can be done interactively by the server

sending its public key and the user encrypting it together with its private key under the

password (or it can all be done on the client side if the client chooses the server’s public

key). It is important to highlight that the server needs a random independent pair of private-

public keys per user. One optimization is to omit the encryption of the user’s private key,

81

and instead derive this key from the password. Our analysis can be adapted to this case.

We note that KHAPE can be made into a Strong aPAKE (saPAKE), secure against pre-

computation attacks, using the technique of [88]. Namely, running an OPRF protocol on

pw between client and server and deriving the credential encryption key from the output of

the OPRF. In addition to providing saPAKE security, the OPRF strengthens the protocol

against online client-side attacks (the attacker cannot have a pre-computed list of passwords

to try) and it allows for distributing the server through a threshold OPRF. As discussed in

the introduction, the break of the OPRF in the context of KHAPE voids the above benefits

but does not endanger the password (a major advantage of KHAPE over OPAQUE).

3.8 Curve Encodings and Ideal Cipher

3.8.1 Quasi bijections

Protocol KHAPE encrypts group elements (server’s public key pkS) using an encryption

function modeled as an ideal cipher which works over a space {0, 1}n for some n. Thus,

prior to encryption, group elements need to be encoded as bitstrings of length n to which

the ideal cipher will be applied. We require such encoding, denoted map, from G to {0, 1}n

to be a bijection (or close to it) so that if e is an encryption of g ∈ G under password pw ,

its decryption under a different pw ′ returns a random element in G. The following definition

considers randomized encodings.

Definition 3.3. A randomized ε-quasi bijection map with domain A, randomness space

R = {0, 1}ρ and range B consists of two algorithms map and map−1, map : A×R→ B and

map−1 : B → A with the following properties:

1. map−1 is deterministic and for all a ∈ A, r ∈ R,map−1(map(a, r)) = a;

82

2. map maps the uniform distribution on A× R to a distribution on B that is ε-close to

uniform.

The term ε-close refers to a statistical distance of at most ε between the two distributions.

It can also be used in the sense of computational indistinguishability, e.g., if implementing

randomness using a PRG. To accommodate bijections whose randomized map from A to B

may exceed a given time bound in some inputs, one can consider the range of map to include

an additional element ⊥ to which such inputs are mapped. A simpler way is to define that

such inputs are mapped to a fixed element in B. The probability of inputs mapped to that

value is already accounted for in the statistical distance bound ε. We use quasi bijection

without specifying ε when we assume this value to be negligible.

Quasi bijections from field elements to bitstrings. We are interested in quasi-bijective

encoding into the set {0, 1}n over which the IC encryption works. Most mappings presented

below have a field Zq as the range, in which case a further transformation (preserving quasi-

bijectiveness) may be needed. Note that when representing elements of Zq as n-bit numbers

for n = ⌈log q⌉, the uniform distribution on Zq is ε-close to the uniform distribution over

{0, 1}n for ε = (2n mod q)/q. So when q is very close to 2n, one can use the bit representation

of field elements directly, and this is the case for many of the standardized elliptic curves.

When this is not the case, one maps u ∈ Zq to a (n + k)-bit integer selected as u + tq for

t randomly chosen as a non-negative integer < (2n+k − u)/q. The resulting distribution is

2−k-close to the uniform distribution over {0, 1}n+k.

3.8.2 Implementing quasi-bijective encodings

We focus on the case where G is an elliptic curve. There is a large variety of well-studied

quasi-bijective encodings in the literature (cf. [117, 45, 66, 32, 121]). We survey some repre-

sentative examples for elliptic curve groups EC(q) over fields of large prime-order q.

83

Note that we use both directions of these encodings in KHAPE: From pkS to a bitstring when

encrypting pkS at the time of password registration, and from a bitstring to a curve point

when the client decrypts pkS. This means that the performance of the latter operation is

more significant for the efficiency of the protocol. Fortunately this is always the more efficient

direction, even though the other direction is quite efficient too for the maps discussed below.

Elligator-squared [121, 96]. This method applies to most elliptic curves and accommo-

dates ε-quasi bijections for the whole set of curve points with negligible values of ε.

Curve points are encoded as a pair of field elements (u, v) ∈ Z2
q. There is a deterministic

function f from Zq to EC such that P ∈ EC is represented by (u, v) if and only if P =

f(u)+f(v). Given a point P there is a randomized procedure Rf that returns such encoding

(u, v).

In [121] (Theorem 1), it is proven that for suitable choices of f , Rf is an ε-quasi bijection

into (Zq)
2, with ε = O(q−1/2) (see Definition 3.3). Since u, v are field elements, a further

bijection into bitstrings may be needed as specified in Section 3.8.1.

In [96], the above construction is improved by allowing both u and v to be represented

directly as bit strings: u as a string of ⌊q⌋ bits and v can be be shortened even further (the

amount of shortening increases the statistical distance for the quasi bijection from EC to the

distribution of bitstrings (u, v)). This encoding uses two functions f, g where a point P is

recovered from (u, v) as P = f(u)+g(v) (in this case, function g can be simply g(v) = v ·P).

The performance of Elligator-squared depends on the functions f, g whose cost with typical

instantiations (e.g., Elligator, SWU) is dominated by a single base-field exponentiation at

the cost of a fraction (≈10-15%) of a scalar multiplication. Implementing g(v) = v ·P is also

a low-cost option (also allowing to shorten v [96]). The cost of the inverse map, from a curve

point to its bitstring encoding, for the curves analyzed in [121] is 3 base-field exponentiations.

84

Elligator2. This mapping from [32] is of more restricted applicability than Elligator-squared

as it applies to a smaller set of curves (e.g., it requires an element of order 2). Yet, this class

includes some of the common curves used in practice, particularly Curve25519. Eligator2

defines an injective mapping between the integers {0, . . . , (q − 1)/2} and (about) half of

the elements in the curve. To be used in our setting, it means that when generating a pair

(skS, pkS=g
KS) for the server during password registration, the key generation procedure will

choose a random KS and will test if the resultant pkS has a valid encoding under Elligator2.

If so, it will keep this pair, otherwise it will choose another random pair and repeat until a

representable point is found. The expected number of trials is 2 and the testing procedure

is very efficient (and only used during registration, not for login).

The advantages of Ellligator2 include the use of a single field element as a point representation

(which requires further expansion into a bit string only if q is not close to 2n) and the map is

injective, hence quasi-bijective with ε = 0 over the subset of encodable curve elements. Both

directions of the map are very efficient, costing about a single base-field exponentiation (a

fraction of the cost of a scalar multiplication).

Detailed implementation information for the components of the above transforms is found

in [64, 32, 122]. See [18] for some comparison between Elligator2 and Elligator-squared.

3.8.3 Ideal Cipher Constructions

Protocol KHAPE uses an ideal cipher to encrypt group elements, specifically a pair (KC, pkS)

where both elements are encoded as bitstrings to fit the ideal cipher interface as described

in previous subsections.

Thus, we consider the input to the encryption simply as a bitstring of a given fixed length,

and require implementations of ideal ciphers of sufficiently long block length. For example,

85

the combined input length for curves of 256 bits ranges between 512 and 1024 bits. Con-

structions of encryption schemes that are indifferentiable from an ideal cipher have been

investigated extensively in the literature. Techniques include domain extension mechanisms

(e.g., to expand the block size for block ciphers, including AES) [50], Feistel networks and

constructions from random oracles [55, 82, 52], dedicated constructions such as those based

on iterated Even-Mansour and key alternating ciphers [54, 17, 61, 61], and basic components

such as wide-input (public) random permutations [35, 34, 53]. A recent technique by Mc-

Quoid et al. [109], builds a dedicated transform that can replace the ideal cipher in cases

where encryption is “one-time”, namely, keys (or cipher instances) are used to encrypt a

single message (as in our protocols). They build a very efficient transform using a random

oracle with just two Feistel rounds.

In Chapter 5 we show a new efficient Ideal Cipher construction which we called Half-Ideal

Cipher, and we show a dedicated analysis for the use of this technique in our context.

86

Chapter 4

OKAPE:Asymmetric PAKE with low

computation and communication

4.1 Introduction

The work of KHAPE [74] considered minimal-cost aPAKE’s, and showed an aPAKE protocol

which nearly matches the computational cost of unauthenticated key exchange (KE), namely

Diffie-Hellman (uDH), which is 1fb+1vb exp per party (i.e., 1 fixed-base and 1 variable-base

exponentiation). The KE cost is a lower-bound for both PAKE and aPAKE because aPAKE

⇒ PAKE ⇒ KE. However, the minimal-cost aPAKE protocol of [74] is not close to KE in

round complexity. Indeed, the aPAKE of [74] takes 3 rounds assuming the server initiates the

protocol, while uDH takes a single simultaneous flow, where each party sends a single protocol

message without waiting for the counterparty. Note that this minimal round complexity is

achieved by minimal-cost universally composable (UC) PAKE’s, including EKE [28, 26, 109],

SPAKE2 [10, 4], and TBPEKE [113, 4].1

1Abdalla et al. [4] show that SPAKE2 [10] and TBPEKE [113] realize a relaxed version of the UC PAKE
functionality of Canetti et al. [48].

87

Our Contributions. We show that cost-optimal aPAKE does not have to come at the ex-

pense of round complexity. We do so with a new aPAKE construction, called OKAPE which

is a generic compiler that construct aPAKE’s from any key-hiding one-time-key Authenti-

cated Key Exchange (otkAKE). The construction uses the Random Oracle Model (ROM)

and an Ideal Cipher (IC) on message spaces formed by otkAKE public keys. We define the

notion of key-hiding otkAKE as a relaxation of the UC key-hiding AKE of [74], and we

show that it is realized by “one-pass” variants of 3DH and HMQV which were shown as UC

key-hiding AKEs in [74].

The compiler instantiated with one-pass HMQV produce a concrete aPAKE schemes which

we call OKAPE-HMQV. It has close to optimal computational cost of 1fb+1vb exp for the

client and 1fb+1mvb exp for the server, where mvb stands for multi-exponentiation with

two bases.

Protocol OKAPE requires 2 communication rounds if the server initiates the protocol, and

3 if the client does. OKAPE supports (publicly) salted password hashes, which have several

security and operational benefits over unsalted ones (see Note 1 below). Note that every

aPAKE can be generically transformed to support a publicly salted hash if the server first

sends the salt to the client and the two parties run aPAKE on the password appended by the

salt. However, among prior UC aPAKE’s that use unsalted password hashes [72, 92, 84, 119],

only the aPAKE of Jutla and Roy [92] and Hwang et al. [84] match the round complexity

of OKAPE-HMQV after this transformation, but they do not match its computational cost:

The PAKE-to-aPAKE compiler of [84] instantiatied with a minimal-cost PAKE has a total

computational cost of 3fb+3vb exps, i.e. 50% more than uDH, while the aPAKE of [92] is

significantly more expensive, in particular because it uses bilinear maps.

The only prior UC aPAKE’s that natively support salted hashes with 3 or fewer communi-

cation rounds is the 3-round protocol OPAQUE of Jarecki et al. [88, 89] and the 2-round

CKEM-based protocol of Bradley et al. [44]. Both of these protocols have at least 2 times

88

scheme client(1) server(1) rounds(2) salting EA(3) assump. model

Jutla-Roy[92] O(1) O(1) 1 none none XDH RO

KC-SPAKE2+[119] 2f+2v 2f+2v 3(C) none C+S CDH RO

OKAPE-HMQV [∗] 1f+1.2v 1f+1.2v 2(S) public S gapDH RO/IC

Hwang[84] +EKE[28] 2f+1v 1f+2.2v 2(S) public S CDH RO/IC

KHAPE-HMQV[74] 1f+1.2v 1f+1.2v 3(S) public C+S gapDH RO/IC

CKEM-saPAKE[44] 10f+1v 2f+2v 2(C) private C sDH,DDH RO

OPAQUE-HMQV[89] 2f+2.2v 1f+2.2v 3(C) private C+S OM-DH RO

Table 4.1: Comparison of UC aPAKE schemes, with our schemes marked [∗]: (1) f,v denote
resp. fixed-base and variable-base exponentiation (expo), two-base multi-expo is counted as
1.2v, O(1) stands for significantly larger costs including bilinear maps; (2) x(C) and x(S)
denote x rounds if respectively client starts or server starts, while ”1” denotes a single-flow
protocol; (3) EA column lists the parties that explicitly authenticate their counterparty
at protocol termination. OPAQUE-HMQV appeared in [88], but above we give optimized
performances characteristics due to [89].

higher computational costs than uDH. However, both [88] and [44] provide strong aPAKEs

(saPAKE), where the salt in the password hash is private, whereas OKAPE supports publicly

salted hash, see Note 1 below. In table 5.6 we compare efficiency and security properties

of prior UC aPAKE’s and the concrete protocols we propose. Note that all schemes which

achieve explicit authentication for only one party can also achieve it for the other using one

additional key confirmation flow. Note also that any single-flow aPAKE can be transformed

so it achieves explicit authentication for both parties in 3 flows, regardless of which party

starts. In the table we do not include aPAKE schemes which were not proven in UC models

so far, including VPAKE [31] or PAK-X [41], but both schemes are slightly costlier than e.g.

KC-SPAKE2+ [119], see e.g. [44] for exact cost comparisons.

Main Idea: Encrypted Key Exchange paradigm for aPAKE. Our protocols are

compilers which build aPAKE’s from any key-hiding otkAKE, i.e. an AKE where one party

uses a one-time key. In both protocols server S picks a one-time public key pair (b,B)

and sends the public key B encrypted under a password hash h to client C, who decrypts

89

it under a hash of its password pw . C also has a long-term private key a derived as a

password hash as well, i.e. (h, a) = H(pw), and S holds the corresponding public key A

together with h in the password file for this client. The two parties then run a key-hiding

otkAKE on respective inputs (a,B) and (b,A), but here the two compilers diverge: In

OKAPE the otkAKE subprotocol is executed in a black-box way, and it is followed by explicit

key confirmation message from C to S. The protocol is shown secure if password-encryption

is implemented with an Ideal Cipher on the appropriate message domain, which consists of

one-time public keys and/or protocol messages of the underlying otkAKE.

Note that S and C start on resp. inputs A and a and run the following subprotocol: (1) S

picks a one-time key pair (b,B) and sends B to C, and (2) the two run otkAKE on resp.

(a,B) and (b,A). This subprotocol forms an Authenticated Key Exchange with unilateral

authentication (ua-KE), where C is authenticated to S but not vice versa.

C(pw) S(pw)

h← H(pw) h← H(pw)

�IC.Eh(g
b)

-gx, PRF(k , 1)

k = gxb

(a) EKE.v2: sequential, with initiator S

C(pw) S(h,A)

(h, a)← H(pw) [A = ga]

�IC.Eh(g
b)

-gx, PRF(k , 1)

k = g(x+d·a)b for d = H′(transcript)

(b) OKAPE-HMQV

Figure 4.1: Symmetric PAKE: EKE (a) vs. our asymmetric PAKE’s (b)

These parallels are easy to see in Figure 4.1.2 Since both EKE and our protocols are com-

pilers, resp. from KE and ua-KE, we highlight the underlying uDH instantiation of KE and

the one-pass HMQV instantiation of ua-KE in these figures in blue. The choice of variable

names gx and gb in the Diffie-Hellman key agreement comes from one-pass HMQV, where

ga and gb are resp. the permanent public key of C and the one-time public key of S, while

gx is the Diffie-Hellman contribution of C. Intuitively, a corresponding gy contribution of S

is not needed because the ephemeral key gb already plays this role.

2Actual protocols diverge from Fig. 4.1 in some technicalities, e.g. session key derivation uses a hash of
k , but crucially H inputs include a salt in OKAPE-HMQV: We come back to this last point below.

90

The security of our aPAKEs holds for essentially the same reasons as the security of EKE:

(1) security against passive attackers holds regardless of pw by the passive security of the

underlying (ua-)KE; (2) if encryption is an ideal cipher then any ciphertext sent by an

attacker to C decrypts to a random group element B ′ = gb
′
on all passwords except the one

used by an attacker in encryption, so an attack on such sessions would be an attack on a

passively observed otkAKE instance; (3) the attacker can encrypt a chosen gb value under

a single password, but in the IC model the simulator can observe this and extract a unique

password guess which the attacker tests in such protocol instance; (4) in OKAPE the client’s

key confirmation message commits the attacker to a session key, which implies a single input

pair (a,B) for which this session key is correct, which in turn commits to a single password

from which (a,B) are derived.

Although our protocols can be seen as applications of EKE compiler to ua-KE, we analyze

them as compilers from otkAKE for several reasons: First, otkAKE is a simpler notion which

can be realized with a single protocol flow; Second, otkAKE yields ua-KE (see above) while

the converse is not clear; Third, setting the boundary around otkAKE lets us treat it as

a black box in OKAPE compiler, because S’s one time key gb , which is the only part that

OKAPE wraps using IC encryption is an input to otkAKE, and not its protocol message.

Similarities to OPAQUE and KHAPE.Our protocols are also closely related to saPAKE

protocol OPAQUE [88] and aPAKE protocol KHAPE [74]. Both of these protocols were

compilers from AKE (the OPAQUE protocol in addition uses an Oblivious PRF), where

passwords are used to encrypt the client’s private key a and the server’s public key B , the

corresponding keys A and b are held in a password file held by S for this client C, and the

key establishment comes from AKE run on these inputs. Protocol KHAPE can be seen

as a variant of OPAQUE without the Oblivious PRF. In that case security degrades from

saPAKE to aPAKE, but the resulting aPAKE can have minimal cost (i.e. ≈ KE) if C’s AKE

inputs (a,B) are delivered from S to C in an envelope, IC-encrypted under the password,

91

and if the AKE protocol is key-hiding, i.e. even an active attacker cannot tell what keys

(KP, pkCP) an attacked party P assumes except if the attacker knows the corresponding pair

(pkP,KCP). The reason the KHAPE compiler needs the key-hiding property of AKE is to

avoid off-line attacks, because if each password decrypts the envelope sent to the client into

some pair (a ′,B ′), there must be no way to test which pair corresponds to either the client

or the server keys unless via an active attack which tests at most one of these choices.

Our compilers OKAPE is a refinements of the KHAPE compiler: First, instead of permanent

envelope in the password file that encrypts (and authenticates) a permanent server public

key gb , we ask the server to create one-time key per each execution, and IC-encrypt it under

a password hash stored in the password file. Replacing key-hiding AKE with key-hiding

one-time-key AKE reduces complexity because it can be instantiated with a single C-to-

S message. In addition, the IC encryption with subsequent otkAKE together implement

implicit S-to-C authentication: If the attacker does not encrypt B = gb under C’s password

then C will decrypt it into a random key B ′ = gb
′
, for which the attacker cannot compute

the corresponding session key because it does not know b ′. This lets us eliminate the S-to-C

key confirmation message in KHAPE and leads to OKAPE.

Note 1: Salted and unsalted password hashes vs. round complexity. The UC

aPAKE model of Gentry et al. [72] does not enforce salting of password hashes, which allows

their precomputation and an immediate look-up once the server storage is breached. By con-

trast, Jarecki et al. [88] proposed a UC strong aPAKE model (saPAKE), where each password

file includes a random and private salt value s , and the password hash involves this salt and

cannot be precomputed without it. Our protocols OKAPE is just aPAKE, not saPAKE, but

they can support public salting of the password hash, which has security advantages over un-

salted hash. Looking more closely, the aPAKE model of [72] enforces that a single real-world

offline dictionary attack test corresponds not only to a single password guess pw ∗ but also

a single tuple (S, uid) where S is an identifier of a server S and uid is a userID with which

92

S associates a password file. (This can be seen in command (OfflineTestPwd, S, uid, pw ∗) to

the aPAKE functionality of [72], included in Fig. 2.3 in Section 2.3.3.) This means that a

password hash in UC aPAKE, at least as defined by [72], cannot be implemented e.g. simply

as h = H(pw) but in the very least as h = H(S, uid, pw), so that a single H computation

corresponds to a single password guess pw and a single account (S, uid). However, such

implementation has some negative implications, stemming from the fact that C has to know

values (S, uid) in the protocol. Tying such application-layer values in a cryptographic pro-

tocol can be problematic. For example, in some applications it might be fine to equate S

with e.g. the server’s domain name, but it would be then impossible to modify it, since all

users would have to reinitialize and recompute their password hashes. An alternative generic

implementation is to use (semi) public salts as follows: S can associate each uid account with

a random salt s , set the password hash as h = H(pw |s), attach s in the first S-to-C aPAKE

message, and the two parties can then run an unsalted aPAKE on a modified password

pw ′ = pw |s . Since each s is associated with a unique (S, uid) pair, each H computation still

corresponds to a unique (S, uid, pw) tuple, but C does not need values (S, uid) within the

aPAKE protocol, and password hashes do not have to change with changes to identifiers S

or uid. Moreover, if the aPAKE protocol runs over a TLS connection then an adversary can

find s only via an online interaction with S, and it needs to know the user ID string uid for

S to retrieve the uid-indexed password file and send s out. Even better, if clients update

the (s , h) values at each login, then value s the adversary compromises for some user will be

obsolete after that user authenticates to S.

However, this implementation requires interaction. Since S sends the first message in OKAPE,

attaching s to S’s message does not influence the round complexity of OKAPE, and this is

indeed how we implement password hashes in that protocol, see Section 6.2. Every unsalted

aPAKE can be transformed to publicly salted in this way, but for many aPAKEs, this would

imply additional communication rounds.

93

Note 2: Implicit and explicit authentication vs. round complexity. explicit entity

authentication requires each party computes a key and the security implies that only a party

with proper credentials can compute that key as well, but they do not get a confirmation

that their counterparty can compute the same key and thus is indeed the party they meant

to establish a connection with. Key confirmation can be added to any KE protocol, but it

adds a round of communication. Our three-round (if C initializes) aPAKE protocol OKAPE

has only C-to-S entity authentication, and adding S-to-C entity authentication would make

it a four-round protocol. Therefore the round-reduction advantage of OKAPE over protocol

KHAPE of [74] will benefit only those applications where C can use the session key without

waiting for S’s key confirmation message.

Note 3: Current costs of ideal cipher on groups. Just like EKE [28, 26], our protocols

rely on an ideal cipher on group elemnets. Implementing an ideal cipher on elliptic curve

groups, which are of most interest for current aPAKE proposals, is non-trivial and current

techniques for implementing them incur non-negligible costs in computation and sometimes

in bandwidth expansion as well. We discuss several implementation options for group IC in

Section 3.8, but to give an example, using the Elligator2 method [32] each IC operation can

cost ≈10-15% of 1vb exp and it requires resampling of the encrypted random group element

with probability 1/2. Thus we can estimate the total computational cost of OKAPE-HMQV

with this IC implementation as (expected) 2fb+1.15vb for S and 1fb+1.15vb for C. However,

the overhead of IC might be significantly smaller in the case of other settings of interest, like

lattice cryptosystems.

4.2 Key-hiding one-time-key AKE

We define key-hiding one-time-key Authenticated Key Exchange (otkAKE), as an asym-

metric variant of the universally composable key-hiding AKE defined in [74]. We denote

94

the otkAKE functionality FotkAKE and we include it in Figure 4.2. An AKE functionality

allows parties to generate public key pairs (this is modeled by environment query Init to the

functionality). These keys can be compromised, modeled by adversarial query Compromise.

However, this is the key difference between our (key-hiding) otkAKE functionality and the

(key-hiding) AKE functionality of [74], here we distinguish two types of keys, the long-term

keys which can be compromised by the adversary, and the ephemeral keys which cannot.

We arbitrarily call the first type “client keys” and the second “server keys” because this is

how we will use an otkAKE protocol in the context of our otkAKE-to-aPAKE compiler in

Section 6.2, i.e. clients will use long-term keys and servers will use ephemeral keys in both

of these applications of otkAKE.

As in [74], any party P holding a key pair indexed by the public key pkP , whether a long-term

one or an ephemeral one, can start a session using such key, and using also some key pkCP

as the public key of the counterparty that P expends on this session. This is modeled by the

environment’s command (NewSession, sid,CP, role, pkP, pkCP) to P, where sid is the unique

session identifier, CP is the supposed identifier of the counterparty, and role is either 1 or 2,

defining if P is supposed to run the long-term-key party or the ephemeral-key party. (As we

can see below, the protocols realizing this functionality can be asymmetric, so parties act

differently based on that role bit.) As in [74], the functionality marks this session as initially

fresh, creates an appropriate session record and picks a random function Rsid
P (whose meaning

we will explain shortly). Crucially the functionality only sends (NewSession, sid,P,CP, role)

to the adversary, i.e. the adversary only learns which party P wants to authenticate, which

party CP they intend to communicate with, what session identifier sid they use, and whether

they play the client and the server role, but the adversary does not learn the keys this party

uses, neither their own key pkP nor the key pkCP this party expects of its counterparty. This,

exactly as in [74], models the key-hiding property of the AKE’s which are required in our

AKE-to-aPAKE compiler constructions.

95

PK stores all public keys created in Init; CPK stores all compromised keys;
PK 1

P stores P’s permanent public keys; PK 2
P stores P’s ephemeral public keys;

Keys: Initialization and Attacks

On (Init, role) from P:

If role ∈ {1, 2} send (Init,P, role) to A, let A specify pk s.t. pk ̸∈ PK , add pk to PK and
PK role

P , and output (Init, pk) to P. If P is corrupt then add pk to CPK .

On (Compromise,P, pk) from A: [this query must be approved by the environment]

If pk ∈ PK 1
P then add pk to CPK .

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, role, pkP, pkCP) from P:

If pkP ∈ PK role
P and there is no prior session record ⟨sid,P, ·, ·, ·, ·, ·⟩ then:

• create session record ⟨sid,P,CP, pkP, pkCP, role,⊥⟩ marked fresh;

• if role = 1 and pkCP ̸∈ PK 2
CP then re-label this record as interfered;

• initialize random function Rsid
P : {0, 1}3 → {0, 1}κ;

• send (NewSession, sid,P,CP, role) to A.

On (Interfere, sid,P) from A:
If there is session ⟨sid,P, ·, ·, ·, ·,⊥⟩ marked fresh then change it to interfered.

Login Sessions: Key Establishment

On (NewKey, sid,P, α) from A:
If ∃ session record rec = ⟨sid,P,CP, pkP, pkCP, role,⊥⟩ then:
• if rec is marked fresh: If ∃ record ⟨sid,CP,P, pkCP, pkP, role

′, k ′⟩ marked fresh s.t.
role′ ̸= role and k ′ ̸= ⊥ then set k ← k ′, else pick k

r←− {0, 1}κ;

• if rec is marked interfered then set k ← Rsid
P (pkP, pkCP, α);

• update rec to ⟨sid,P,CP, pkP, pkCP, role, k⟩ and output (NewKey, sid, k) to P.

Session-Key Query

On (ComputeKey, sid,P, pk , pk ′, α) from A:
If ∃ record ⟨sid,P, ·, ·, ·, ·, ·⟩ and pk ′ ̸∈ (PK \ CPK) then send Rsid

P (pk , pk ′, α) to A.

Figure 4.2: FotkAKE: Functionality for key-hiding one-time key AKE

96

Next, if an adversary actively attacks session Psid, as opposed to passively observing its

interaction with some other session CPsid, this is modeled by the adversarial query Interfere,

and its effect is that session Psid is marked as interfered. The consequence of this marking

comes in when the session terminates (i.e. if the adversary delivers all messages this party

expects) and outputs a key, which is modeled by adversarial query NewKey. Namely, if a

session is fresh, i.e. it was not actively attacked, then the functionality picks its output session

key k as a random string. In other words, this key is secure because there is no interface

which allows the adversary to get any information about it. If the adversary passively

connects two sessions, e.g. Psid and CPsid, by honestly exchanging their messages, then FotkAKE

will notice at the NewKey processing that there are two sessions (P, sid,CP, pkP, pkCP, role)

(CP, sid,P, pk ′P, pk
′
CP, role

′) that run on matching keys, i.e. pkCP = pk ′P and pk ′CP = pkP, and

complementary roles, i.e. role ̸= role′, then FotkAKE sets the key of the session that terminates

last as a copy of the one that terminated first. This is indeed as it should be: If two parties

run AKE on matching inputs and keys and their messages are delivered without interference

they should output the same key.

However, if session Psid has been actively attacked, hence it is marked interfered, the session

key k output by Psid is determined by the random function Rsid
P . Specifically, the key will

be assigned as the value of Rsid
P on a tuple of three inputs: (1) P’s own key pkP, (2) the

counterparty’s key pkCP which P assumes, and (3) the protocol transcript α which w.l.o.g.

is determined by the adversary on this session. This is a non-standard way of modeling

KE functionalities, but it suffices for our applications and it allows for inexpensive and

communication-minimal implementations as we exhibit with protocols 2DH and one-pass

HMQV below. The intuition is that this assures that for any protocol transcript the adversary

chooses, each key pair (pkP, pkCP) which P can use corresponds to an independent session key

output of P. Some of these keys can be computed by the adversary via interface ComputeKey:

The adversary can use it to compute the key P would output on a given transcript α and a

given pair (pkP, pkCP) = (pk , pk ′) but only if pk ′ is either compromised or it is an adversarial

97

key, hence w.l.o.g. we assume the adversary knows the corresponding secret key.

Here is also where our key-hiding one-time-key AKE diverges from the key-hiding AKE

notion of [74]: If session Psid runs with a client-role then its session key output is guaranteed

secure if their assumed counterparty’s key pkCP is indeed an ephemeral key of the intended

counterparty. Since such keys cannot be compromised, a ComputeKey query with pk ′ = pkCP

will fail the criterion that pk ′ is compromised or adversarial, hence the adversary has no

interface to learn P’s output session key. However, if the environment (i.e. the higher-level

application, like either of our compilers, which utilizes the otkAKE subprotocol) asks Psid to

run on pkCP which is not an ephemeral key of the intended counterparty then FotkAKE treats

such session as automatically attacked, and marks it interfered. Such session’s output key

will be computed as k ← Rsid
P (pkP, pkCP, α), and whether or not the adversary can recompute

this key via the ComputeKey interface depends on whether this (potentially non-ephemeral)

key pkCP is compromised or adversarial.

The security of our otkAKE protocols, 2DH and one-pass HMQV, are based on hardness of

Gap CDH problem. Recall that Gap CDH is defined as follows: Let g generates a cyclic

group G of prime order p. The Computational Diffie-Hellman (CDH) assumption on G

states that given (X, Y) = (gx, gy) for (x, y)
r←− (Zp)

2 it’s hard to find cdhg(X, Y) = gxy. The

Gap CDH assumption states that CDH is hard even if adversary has access to a Decisional

Diffie-Hellman oracle ddhg, which on input (A,B,C) returns 1 if C = cdhg(A,B) and 0

otherwise.

4.2.1 2DH as key-hiding one-time-key AKE

We show that key-hiding one-time-key AKE can be instantiated with a “one-pass” variant of

the 3DH AKE protocol. 3DH is an implicitly authenticated key exchange used as the basis

of the X3DH protocol [108] that underlies the Signal encrypted communication application.

98

3DH consists of a plain Diffie-Hellman exchange which is authenticated by combining the

ephemeral and long-term key of both peers. Specifically, if (a,A) and (b,B) are the long-term

key pairs of two communicating parties C and S, and (x,X) and (y, Y) are their ephemeral

DH values, then 3DH computes the session key as a hash of the triple of Diffie-Hellman

values, (gxb , gay, gxy).

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

P1 on (Init, 1) P2 on (Init, 2)

a
r←− Zp , A← ga b

r←− Zp , B ← gb

store K = a tagged by pk = A store K = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1, 1,A,B) P2 on (NewSession, sid,CP2, 2,B ,A)

retrieve K = a tagged by pk = A retrieve K = b tagged by pk = B
x

r←− Zp , X ← gx (abort if key B is not ephemeral)
-X

σ1 ← Bx∥Ba σ2 ← Xb∥Ab

k1 ← H(sid,P1,CP1, X, σ1) k2 ← H(sid,CP2,P2, X, σ2)
output k1 output k2

Figure 4.3: otkAKE protocol 2DH

This protocol was shown to realize the key-hiding AKE functionality in [74], and here we

show that a one-pass version of this protocol, which we call 2DH, realizes the key-hiding

one-time-key AKE functionality FotkAKE defined above. In this modified setting key (b,B)

is a one-time key of party S, and hence it can play a double-role as S authenticator and

its ephemeral DH contribution. Therefore the only additional ephemeral key needed is the

(x,X) value provided by C, and 2DH will compute the session key as a (hash of) the pair

of DH values, (gxb , gab). See Figure 4.3 were we describe the 2DH protocol in more detail.

In that figure we assume that both C’s key (a,A) and S’s key (b,B) were created prior to

protocol execution, but we note that S’s key must be a one-time, i.e. ephemeral, key, so in

practice it should be created just before the protocol starts and erased once the protocol

executes.

99

We capture the security property of 2DH in the following theorem:

Theorem 4.1. Protocol 2DH shown in Figure 4.3 realizes functionality FotkAKE, assuming

that the Gap CDH assumption holds on group G and H is a random oracle.

The proof of the above theorem is a close variant of the proof given in [74] that 3DH realizes

the key-hiding AKE functionality (where both parties use permanent keys).

Below we show the full proof for theorem 4.1. Standardly we assume that real-world adver-

sary A is a subroutine of the environment Z, therefore the sole party that interacts with

Games 0 or 7 is Z, who issue commands Init and NewSession to honest parties P, adaptively

compromise public keys, and use A to send protocol messages Z to honest server sessions

and make hash function H queries. The proof follows a standard strategy by showing a se-

quence of games that bridge between Game 0 and Game 7, where at each transition we argue

that the change is indistinguishable to Z. We use Gi to denote the event that Z outputs 1

while interacting with Game i, and the theorem follows if we show that |Pr[G0]− Pr[G7]| is

negligible under the stated assumptions.

Notion. To make the real-world interaction in Figure 4.4 more concise, we adopt a notation

where we use variable W = gw to denote the message which party C sends out, and variable

Z to denote the message S receives.

Throughout the proof we use Psid to denote a session of party P with identifier sid. We use

vsidP to denote a local variable v pertaining to session Psid or a message v which this session

receives, and whenever identifier sid is clear from the context we write vP instead of vsidP .

Note that session CPsid is uniquely defined for every session Psid by setting CP = CPsid
P , and

we will implicitly assume in the proof that a counterparty’s session is defined in this way.

For a fixed environment Z, let qK and qses be (the upper-bounds on) the number of resp.

keys and sessions initialized by Z, let qH be the number of H oracle queries Z makes, and

100

let ϵZg-cdh be the maximum advantage in solving Gap CDH in G of an algorithm that makes

qH DDH oracle queries and uses the resources of Z plus O(qH + qses) exponentiations in G.

Initialization: Initialize empty lists PK 1
P,PK

2
P,KLP for each P

On message (Init, role) to P:

If role ∈ {1, 2} then pick K
r←− Zp , set pk ← gK , add pk to PK role

P and (K , pk) to KLP,
and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP and pk ∈ PK 1
P then output K

On message (NewSession, sid,CP, role, pkP, pkCP) to P:
if ∃ (K , pkP)∈KLP:

if role = 1 and pkP ∈ PK 1
P, pick w

r←− Zp , write ⟨sid,P,CP,K , pkCP, w⟩, output
W = gw, set σ ← (pkCP

w∥pkCP
K), k ← H(sid,P,CP,W, σ), output (NewKey, sid, k)

else if role = 2 and pkP ∈ PK 2
P, write ⟨sid,P,CP,K , pkCP,⊥⟩

On message Z to session Ssid (only first such message is processed):

if ∃ record ⟨sid, S,C, b,A,⊥⟩, set σ ← (Zb∥Ab), k ← H(sid,C, S, Z, σ), output
(NewKey, sid, k)

On H query (sid,C, S, X, σ):

if ∃ ⟨(sid,C, S, X, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

add ⟨(sid,C, S, X, σ), k⟩ to TH and output k

Figure 4.4: 2DH: Environment’s view of real-world interaction (Game 0)

Proof. The 2DH proof below shows the indistinguishability between the real-world game

(Game 0) shown in Figure 4.4, which captures an interaction with parties running the 2DH

protocol, and the ideal-world game (Game 7) shown in Figure 4.6, which is defined by a

composition of SIM and functionality FotkAKE. For each AKE session we define function

Rsid
C (pk , pk ′,⊥) which is used by session Csid(resp. Rsid

S (pk , pk ′, Z) used by Ssid, Z is message

S receives) to compute its session key. Below we define function 2DHsid
P (pk , pk ′, α) for session

Psid running on inputs (sid,CP, pk , pk ′, α), i.e. pk is its own public key, pk ′ is the public key

of its intended counterparty, and since it’s asymmetric, α can be either ⊥ if P = C or Z if

P = S:

101

Initialization: Initialize an empty list KLP for each P

On (Init,P, role) from F :
pick K

r←− Zp , set pk ← gK , add (K , pk) to KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :
if ∃ (K , pk) ∈ KLP send (Compromise,P, pk) to F and send K to A

On (NewSession, sid,P,CP, role) from F :
if role = 1: pick w

r←− Zp , store ⟨sid,P,CP, role, w⟩, send W = gw to A
send (NewKey, sid,P,⊥) to F

else store ⟨sid,P,CP, role,⊥⟩

On A’s message Z to session Ssid (only first such message counts):

if ∃ record ⟨sid, S,C, 2,⊥⟩:
if ∃ no record ⟨sid,C, S, 1, z⟩ s.t. gz = Z then send (Interfere, sid, S) to F
send (NewKey, sid, S, Z) to F

On query (sid,C, S, X, σ) to random oracle H:

if ∃ ⟨(sid,C, S, X, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

if ∃ record ⟨sid,C, S, 1, x⟩ and (a,A) ∈ KLC s.t. (X, σ) = (gx, (Bx∥Ba)) for some B ,
send (ComputeKey, sid,C,A,B ,⊥) to F , if F returns k ∗ reset k ← k ∗

if ∃ record ⟨sid, S,C, 2,⊥⟩ and (b,B) ∈ KLS s.t. σ = (Xb∥Ab) for some A, send
(ComputeKey, sid, S,B ,A, X) to F , if F returns k ∗ reset k ← k ∗

add ⟨(sid,C, S, X, σ), k⟩ to TH and output k

Figure 4.5: Simulator SIM showing that 2DH realizes FotkAKE (abbreviated “F”)

2DHsid
C (pk , pk ′,⊥) = cdhg(W

sid
C , pk ′)∥cdhg(pk , pk ′) (4.1)

2DHsid
S (pk , pk ′, Z) = cdhg(Z, pk)∥cdhg(pk , pk ′) (4.2)

Rsid
C (pk , pk ′,⊥) = H(sid,C, S,W sid

C , 2DHsid
C (pk , pk ′,⊥)) (4.3)

Rsid
S (pk , pk ′, Z) = H(sid,C, S, Z, 2DHsid

S (pk , pk ′, Z)) (4.4)

Game 0 (real world): The real-world game is the real world view of executing protocol 4.3.

102

Game 1 (past H queries are irrelevant to new sessions): Game 1 adds an abort if NewSession

initializes session Csid with W = gw s.t. H has been queried on any tuple of the form

(sid,C, S,W, ·). Since each H query can only pertain to Csid, there are at most qH such

queries, and w
r←− Zp , we have:

|Pr[G1]− Pr[G0]| ≤ qH/p

Game 2 (programming Rsid
P values into H outputs): Define sessions Csid, Ssid to be matching

if CPsid
C = S and CPsid

S = C. Note that for any matching sessions Csid, Ssid and any public keys

A,B, correctness of 2DH implies that Rsid
C (A,B,⊥) = Rsid

S (B,A,XC). While in equation

(4.3)(4.4) we defined function Rsid
P in terms of hash H, in Game 2 we set H outputs using

appropriately chosen functions Rsid
P . For every pair of matching sessions Csid, Ssid of role 1, 2

consider a pair of random functions Rsid
C , Rsid

S : (G)3 → {0, 1}κ s.t.

Rsid
C (A,B,⊥) = Rsid

S (B,A,Xsid
C) for all A,B ∈ G (4.5)

More precisely, for any session Psid with no matching session, Rsid
P is set as a random function,

and for Psid for which a prior matching session exists Rsid
P is set as a random function subjects

to constraint (4.5). Let PK be the list of all public keys generated so far, and PK P be the set

of keys generated for P. Let PK+(Psid) stand for PK ∪{pkCP} where pkCP is the counterparty

public key used by Psid. (If pkCP ∈ PK then PK+(Psid) = PK .) Consider an oracle H which

responds to each new query (sid,C, S, X, σ) as follows:

1. If ∃ Csid s.t. (S, X) = (CPsid
C , Xsid

C), and ∃ A,B s.t. A ∈ PK C, B ∈ PK+(Csid), and

2DHsid
C (A,B,⊥) = σ, then set k ← Rsid

C (A,B,⊥)

2. If ∃ Ssid s.t. C = CPsid
S , and ∃ B,A s.t. B ∈ PK S, A ∈ PK+(Ssid), and X satisfies

2DHsid
S (B,A,X) = σ, then set k ← Rsid

S (B,A,X)

103

Initialization: Initialize empty lists: PK , PK 1
P, PK

2
P, CPK , and KLP for all P

On message (Init, role) to P:

set K
r←− Zp , pk ← gK , send (Init, pk) to P, add pk to PK and PK role

P and (K , pk) to
KLP

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP and pk ∈ PK 1
P then add pk to CPK and output K

On message (NewSession, sid,CP, role, pkP, pkCP) to P:

if ∃ (K , pkP) ∈ KLP then:
initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ
if role = 1, pick w

r←− Zp , k
r←− {0, 1}κ,

write rec ⟨sid,P,CP, pkP, pkCP, role, w, k⟩ as fresh, output W = gw,
if pkCP ̸∈ PK 2

CP then mark rec interfered and set k ← Rsid
P (pkP, pkCP,⊥)

send (NewKey, sid, k) to P

else write ⟨sid,P,CP, pkP, pkCP, role,⊥,⊥⟩ as fresh

On message Z to session Ssid (only first such message is processed):

if ∃ record rec = ⟨sid, S,C,B ,A, 2,⊥,⊥⟩:
if ∃ record rec′ = ⟨sid,C, S,A′,B ′, 1, z, k ′⟩ s.t. gz = Z

then if rec′ is fresh, (B ,A) = (B ′,A′), and k ′ ̸= ⊥:
then k ← k ′

else k
r←− {0, 1}κ

else set k ← Rsid
S (B ,A, Z) and re-label rec as interfered

update rec to ⟨sid, S,C,B ,A, 2,⊥, k⟩, send (NewKey, sid, k) to S

On H query (sid,C, S, X, σ):

if ∃ ⟨(sid,C, S, X, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

1. if ∃ record ⟨sid,C, S, ·, ·, 1, x, ·⟩ s.t. (X, σ) = (gx, (Bx∥Ba)) for some (a,A) ∈ KLC

and B s.t. B ∈ CPK or B ̸∈ PK then reset k ← Rsid
C (A,B ,⊥)

2. if ∃ record ⟨sid, S,C, ·, ·, 2,⊥, ·⟩ s.t. σ = (Xb∥Ab) for some (b,B) ∈ KLS and A s.t.
A ∈ CPK or A ̸∈ PK then reset k ← Rsid

S (B ,A, X)

add ⟨(sid,C, S, X, σ), k⟩ to TH and output k

Figure 4.6: 2DH: Environment’s view of ideal-world interaction

104

3. In any other case sample k
r←− {0, 1}κ

Since the game knows each key pair (KP, pkP) generated for each P, and the ephemeral state

w of each session Csid, it can decide for any Z, pk ′ if σ = 2DHsid
C (A, pk ′,⊥) = (pk ′)w∥pk ′a and

if σ = 2DHsid
S (B , pk ′, Z) = Zb∥pk ′b . Note that each value of Rsid

P is used to program H on

at most one query. Also if the same hash query (sid,C, S, X, σ) matches both the client-side

equation and the server-side equation, i.e. if

σ = 2DHsid
C (A,B′,⊥) = gb

′x∥gb′a = gbx∥gba′ = 2DHsid
S (B,A′, X)

where A ∈ PK C, B
′ ∈ PK+(Csid), B ∈ PK S, A

′ ∈ PK+(Ssid), then it implies that both

parties must use correct counterparty keys, i.e. that (A′,B ′) = (A,B), which guarantees Rsid
C

and Rsid
S programs H to the same value in matching sessions. Thus it follows that:

|Pr[G2] = Pr[G1]|

Game 3 (direct programming of session keys using random functions Rsid
P): In Game 3 we

make the following changes: (1) We mark each initialized client session Csid with intended

honestly generated ephemeral (resp. adversarially generated or permanent) key as fresh

(resp. interfered). We mark each Ssid similarly, and also re-label it as interfered if the message

Z this server session receives does not equal to the message sent by the matching session

Csid, i.e. if Zsid
S ̸= W sid

C . (2) if session Psid runs on its own key pair (KP, pkP) and intended

counterparty public key pkCP, we say that it runs “under keys (pkP, pkCP)”. Using this

book-keeping, Game 3 modifies session-key computation for session Psid which runs under

keys (pkP, pkCP) as follows:

1. If k sid
CP ̸= ⊥, sessions Psid,CPsid are fresh and matching, and CPsid runs under keys

(pkCP, pkP), then k sid
P ← k sid

CP

105

2. In any other case, set ksid
P ← Rsid

C (A,B ,⊥) if Psid is playing the role of a client, otherwise

set ksid
P ← Rsid

S (B ,A, Z).

We argue that this change makes no difference to the environment. Take server side as exam-

ple, in Game 2 the session key k sid
S is computed as H(sid,C, S, Z, σ) for σ = 2DHsid

S (B ,A, Z).

However, H on such input is programmed in Game 2 to output Rsid
S (B ,A, Z) if σ = 2DHsid

S (B ,

A, Z) for any A ∈ PK+(Ssid). Since A used by Ssid is by definition in set PK+(Ssid), setting

k sid
S directly as Rsid

S (B ,A, Z) only short-circuits this process. The client side is symmetric.

Finally, since Rsid
C and Rsid

S are correlated, setting k sid
C as k sid

S or vice versa, in the case both

are fresh and matching, also does not change the game. Thus we conclude:

|Pr[G3] = Pr[G2]|

Game 4 (abort on H queries for passive sessions): Define a passive session as a session

that is fresh. Equivalently, these are the client sessions that receive honestly generated

ephemeral counterparty public keys and the server sessions that run on permanent client

keys and receive an unmodified client message. We add an abort on adversarial H queries

that trigger key computations for passive sessions, i.e. if the environment queries H triggering

evaluation of (1) Rsid
C (pk , pk ′,⊥) or (2) Rsid

S (pk ′, pk , Z) for any pk ∈ PK 1
C, any pk ′ ∈ PK 2

S

and Z = W sid
C where Csid is the matching session of Ssid. Our goal is to avoid allowing the

adversary to query output keys to passive sessions. By the code of oracle H in Game 2

the call to Rsid
C (pk , pk ′,⊥) is triggered only if client side H query (sid,C, S,W, σ) satisfies

σ = cdhg(W, pk ′)∥ cdhg(pk , pk
′), and symmetrically Rsid

S (pk , pk ′, Z) is triggered only if H

query (sid,C, S, Z, σ) satisfies σ = cdhg(Z, pk)∥ cdhg(pk , pk ′).

We define Bad as the event where such an H query happens and we show that if it does then

we can solve Gap CDH. On input a CDH challenge (X̄, B̄), the reduction R sets each Xsid
C

as X̄s for random s. R also picks all keys (a,A) as in Game 0, and sets each server public

106

key pk = B = B̄t for random t. Since keys pk are one-time and uncompromisable, R can

answer any compromise key request made by the adversary by returning the corresponding

a. Also, although R doesn’t know x = s · x̄ and b = t · b̄ corresponding to message X and

public keys B, where x̄ = dlogg(X̄) and b̄ = dlogg(B̄), it can use the DDH oracle to emulate

the way Game 3 services every H queries (not only those for passive sessions): to test if

client side H input (sid,C, S, X, σ) for X = X̄s satisfies σ = (L∥M) = (Bx∥Ba) for x = s · x̄,

any private key a, and some B ∈ PK+(Csid), R checks if L = cdhg(X,B) and M = Ba.

Symmetrically, R tests if server side H input (sid,C, S, X, σ) satisfies σ = (L∥M) = (Xb∥Ab)

for A ∈ PK+(Ssid) and server private key b by checking if L = cdhg(X,B) for a public server

key B = B̄t and M = cdhg(A,B). Since R emulates Game 3 perfectly, event Bad occurs

with the same probability as in Game 3. By the above, R can detect event Bad and then

output L1/st = cdhg(X̄, B̄) as the answer cdhg(X̄, B̄) to its CDH challenge. It follows that

the reduction solves the Gap-CDH problem with probability at least as big as Pr[Bad], hence:

|Pr[G4]− Pr[G3]| ≤ ϵZg-cdh

Game 5 (random keys on passively observed sessions): We modify the game so that if

session Csid is initialized as fresh, i.e. if the counterparty key is not adversarial, then it sets

k sid
C ← {0, 1}κ. Additionally, if the above happens and Ssid remains fresh by the time A sends

Z to Ssid, then instead of setting k sid
S ← Rsid

S (B ,A, Z) as in Game 3, we now set k sid
S ← k sid

C .

Since session Ssid can remain fresh only if Z it receives was sent by its matching session,

i.e. Z = W sid
CP, and by Game 4 oracle H never queries Rsid

S (B ,A, Z) for such Z, it follows by

randomness of Rsid
S that the modified game remains externally identical.

Pr[G5] = Pr[G4]

107

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): Let Game 6 be as Game 5, except that

functions Rsid
S , Rsid

S are chosen without the constraint imposed by equation (4.5). Since by

Game 5 neither function is queried on the points which create the correlation imposed by

equation (4.5), it follows that:

Pr[G6] = Pr[G5]

Game 7 (hash computation consistent only for compromised keys): Recall that in

Game 6, as in Game 2, server side H(sid,C, S, Z, σ) is defined as Rsid
S (pk , pk ′, Z) if σ =

2DHsid
S (pk , pk ′, Z) for some pk ∈ PK S and pk ′ ∈ PK+(Csid). In Game 7 we add a condition

that this programming of H can occur only if (1) pk ′ is an adversarial key, i.e., it has not

been generated by (Init, 1) or (2) pk ′ is an honestly generated permanent key, but it has

been compromised. These are the two cases in which the adversary can know the secret key

corresponding to pk ′, and we show that these are the only cases when the adversary can

compute σ s.t. σ = 2DHsid
S (pk , pk ′, Z), and hence trigger the programming of H.

Let CPK be the list of generated public keys who were compromised so far, and let CPK+

(Psid) stand for CPK if the counterparty public key pkCP used by Psid is an honestly gen-

erated key, and for CPK ∪ {pkCP} if pkCP is adversarially-generated. The modification

of Game 7 is that on server side H output is programmed to Rsid
S (pk , pk ′, Z) for pk ′ s.t.

σ = 2DHsid
S (pk , pk ′, Z), only if pk ′ ∈ CPK+(Ssid). In Game 6, as in Game 2, this program-

ming was done whenever pk ′ ∈ PK+(Ssid). Therefore the two games diverge in the case

of event Bad2 defined as server side H query as above for pk ′ ∈ PK \ CPK , i.e. honestly

generated and not compromised key. We show a reduction R that solves Gap CDH if Bad2

occurs. (The corresponding event for the client side was already handled in Game 4 since it

corresponds to a passively-observed client session running on an honest one-time server key.)

Bad2 corresponds to H query on string (sid,C, S, X, σ) for σ = cdhg(X,B)∥cdhg(A,B) where

108

X is arbitrary, A is some (non compromised) client public key, and B is a one-time and

uncompromisable server public key. On input a CDH challenge (Ā, B̄), R picks each protocol

message X = gx for random x of its choice, and sets each B ← B̄ t for random t. R also

picks all client keys (a,A) as in Game 0, except for the i-th C key pk [i], for a random index

i ∈ [1, . . . , qK], where R sets the key generated in the i-th call to (Init, 1) as pk [i]← Ā. Let

Bad2[i] denote event Bad2 occuring for A which is this i-th key, i.e. A = Ā.

As long as key pk [i] is not compromised, R can emulate Game 6 because it can respond to a

compromise of all other keys (remember that only client keys are compromisable), and it can

service H queries as follows: to test client-side σ’s, i.e. if σ = (L∥M) = (Bx∥Ba), reduction

R tests as in Game 6, except for a that corresponds to public key Ā, in which case it tests

if M = cdhg(B , Ā). To test server-side σ’s, i.e. if σ = (L∥M) = (Xb∥pk b) for b = t · b̄ where

b̄ = dlogg(B̄) and pk ∈ PK+(Ssid), including the case when pk = Ā or pk is an adversarial

key, reduction R tests if L = cdhg(X,B) and M = cdhg(pk , B).

Note that Bad2[i] can happen only before key pk [i] is compromised, so event Bad2[i] occurs

in the reduction with the same probability as in Game 6. (If A asks to compromise pk [i]

then R aborts.) R can detect event Bad2[i] because it occurs if H query involves the public

key pk [i] = Ā and σ satisfies the server-side equation for this key, in which case R can

output M1/t = cdhg(Ā, B̄) thus solving Gap-CDH. If R picks index i at random it follows

that Pr[Bad2] ≤ qK · ϵZg-cdh. Thus we conclude:

|Pr[G7]− Pr[G6]| ≤ qK · ϵZg-cdh

Observe that Game 7 is identical to the ideal-world game shown in Figure 4.4: By Game 6 all

functions Rsid
P are random, by Game 5 the game responds to Z messages to Psid as the game

in Figure 4.6, and after the modification in oracle H done in Game 7 this oracle also acts as in

Figure 4.6. This completes the argument that the real-world and the ideal-world interactions

109

are indistinguishable to the environment, and hence completes the proof of Theorem 4.1.

4.2.2 One-Pass HMQV as key-hiding one-time-key AKE

Similiarly to the case of 3DH, we show that a one-pass version of the HMQV protocol [100, 78]

realizes functionality FotkAKE under the same Gap CDH assumption in ROM. HMQV is a

significantly more efficient AKE protocol compared to 3DH because it replaces 3 variable-base

exponentiations with 1 multi-exponentiation with two bases. Just like 3DH, HMQV involves

both the ephemeral sessions secrets (x, y) and the long-term keys (a, b), and computes session

key using a DH-like formula g(x+da)·(y+eb) where d and e are derived via an RO hash of the

ephemeral DH contributions, resp. X = gx and Y = gy.

group G of prime order p with generator g
hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

P1 on Init, 1 P2 on Init, 2

a
r←− Zp , A← ga b

r←− Zp , B ← gb

store K = a tagged by pk = A store K = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1, 1,A,B) P2 on (NewSession, sid,CP2, 2,B ,A)

retrieve K = a tagged by pk = A retrieve K = b tagged by pk = B
x

r←− Zp , X ← gx (abort if key B is not ephemeral)
-X

d1 ← H′(sid,P1,CP1, X) d2 ← H′(sid,CP2,P2, X)
σ1 ← Bx+d1·a σ2 ← (X · Ad2)b

k1 ← H(sid,P1,CP1, X, σ1) k2 ← H(sid,CP2,P2, X, σ2)
output k1 output k2

Figure 4.7: otkAKE protocol One-Pass HMQV

Gu et al. [74] showed that HMQV realizes the same key-hiding AKE functionality as 3DH,

and here we show that a one-pass HMQV realizes the key-hiding one-time-key AKE func-

tionality FotkAKE. Just like in 2DH, in one-pass HMQV pair (b,B) is a one-time key of

party S, which effectively plays the role of both server’s public key and its ephemeral DH

110

contribution. Hence just as 2DH, the only ephemeral DH contribution needed is pair (x,X)

provided by C, and the session key can be derived as g(x+a)·b . The full protocol is shown in

Figure 4.7. As in 2DH we assume that the client and server keys are created before protocol

execution, but that the server’s key must be a one-time key which is used once and erased

afterwards.

We capture the security of one-pass HMQV in the following theorem:

Theorem 4.2. Protocol One-Pass HMQV shown in Fig 4.7 realizes FotkAKE if the Gap CDH

assumption holds on group G and H is a random oracle.

The proof of theorem 4.2 follows the template of the proof for the corresponding theorem

on 2DH security, i.e. Theorem 4.1. It is also a variant of the similar proof shown in [74]

which showed that the full HMQV realizes the permanent-key variant of the key-hiding

functionality FotkAKE defined therein.

Below we show the proof for theorem 4.2. As in the case of 2DH, for each AKE session

Csid(resp. Ssid) we define function Rsid
C (pk , pk ′,⊥)(resp. Rsid

S (pk , pk ′, Z)) which is used to

compute its session key given message Z. The definition of Rsid
P is exactly the same as in

the case of 2DH, i.e. equation (4.3)(4.4), except the last argument, σ, is now defined using

the One-Pass HMQV function, HMQVsid
P (pk , pk ′, α). Below we define function HMQVsid

P for

session Psid running on inputs (sid,CP, pk , pk ′), i.e. pk is its own public key and pk ′ is the

public key of the intended counterparty. Function HMQVsid
P can be defined separately for

cases for Psid playing the client-role, denoted P = C, and Psid playing the server-role, denoted

P = S. Let st = sid|C|S, the definition is as follows:

HMQVsid
C (pk , pk ′,⊥) = cdhg(pk

′, X) · cdhg(pk , pk ′)d for X = Xsid
C , d = H′(st, X)

HMQVsid
S (pk , pk ′, Z) = cdhg(pk , Z) · cdhg(pk , pk ′)d for d = H′(st, Z)

111

Initialization: Initialize empty lists PK 1
P,PK

2
P,KLP for each P

On message (Init, role) to P:

pick K
r←− Zp , set pk ← gK , add pk to PK role

P and (K , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP and pk ∈ PK 1
P then output K

On message (NewSession, sid,CP, role, pkP, pkCP) to P:
if ∃ (K , pkP)∈KLP:

if role = 1, pick w
r←− Zp , write ⟨sid,P,CP,K , pkCP, w⟩, output W = gw, set

σ ← (pkCP
w∥pkCP

K), k ← H(sid,P,CP,W, σ), output (NewKey, sid, k)
else if pkP ∈ PK 2

P, write ⟨sid,P,CP,K , pkCP,⊥⟩

On message Z to session Ssid (only first such message is processed):

if ∃ record ⟨sid, S,C, b,A,⊥⟩:
set d← H′(sid, S,C, Z), σ ← (Z · Ad)b , k ← H(sid, S,C, Z, σ)
output (NewKey, sid, k)

On H query (sid,C, S, X, σ):

if ∃ ⟨(sid,C, S, X, σ), k⟩ in TH then output k
else pick k

r←− {0, 1}κ, add ⟨(sid,C, S, X, σ), k⟩ to TH, and output k

On H′ query (sid,C, S, Z):

if ∃ ⟨(sid,C, S, Z), r⟩ in TH′ then output r
else pick r

r←− Zp , add ⟨(sid,C, S, Z), r⟩ to TH′ , and output r

Figure 4.8: One-Pass HMQV: Environment’s view of real-world interaction (Game 0)

Proof. We then give the security proof of One-Pass HMQV which is adjusted from 2DH

but simplified. Below we sketch where the match is exact and where the One-Pass-HMQV-

specific differences occur and how to deal with them.

Game 0 (real world): The real-world game is the real world view of executing protocol 4.7.

Game 1 (past H queries are irrelevant to new sessions): We add an abort if session

Csid starts with W which appeared in some prior inputs to H. As in the case of 2DH,

|Pr[G1]− Pr[G0]| ≤ qH/p.

Game 2 (programming Rsid
P values into H outputs): We make the same change of using ran-

112

Initialization: Initialize an empty list KLP for each P

On (Init,P, role) from F :
pick K

r←− Zp , set pk ← gK , add (K , pk) to KLP, and send pk to F
On Z’s permission to send (Compromise,P, pk) to F :
if ∃ (K , pk) ∈ KLP send (Compromise,P, pk) to F , if F returns “yes” send K to A
On (NewSession, sid,P,CP) from F :
if role = 1: pick w

r←− Zp , store ⟨sid,P,CP, role, w⟩, send W = gw to A
send (NewKey, sid,P,⊥) to F

else store ⟨sid,P,CP, role,⊥⟩
On A’s message Z to session Ssid (only first such message counts):

if ∃ record ⟨sid, S,C, 2,⊥⟩:
if ∃ no record ⟨sid,C, S, 1, z⟩ s.t. gz = Z then send (Interfere, sid, S) to F
send (NewKey, sid, S, Z) to F

On query (st, σ) to random oracle H, for st = (sid,C, S, X):

if ∃ ⟨(st, σ), k⟩ in TH then output k , otherwise pick k
r←− {0, 1}κ and:

if ∃ record ⟨sid,C, S, 1, x⟩, (a,A) ∈ KLC, and tuples ⟨(sid,C, S, X), d⟩,
in TH′ s.t. (X, σ) = (gx,Bx+da) for some B :

send (ComputeKey, sid,C,A,B ,⊥) to F , if F returns k ∗ reset k ← k ∗

if ∃ record ⟨sid, S,C, 2,⊥⟩, (b,B) ∈ KLS, and tuples ⟨(sid,C, S, X), d⟩,
in TH′ s.t. σ = (X · Ad)b) for some A:

send (ComputeKey, sid, S,B ,A, X) to F , if F returns k ∗ reset k ← k ∗

add ⟨(st, σ), k⟩ to TH and output k

On query (sid,C, S, Z) to random oracle H′:

if ∃ ⟨(sid,C, S, Z), r⟩ in TH′ then output r
else pick r

r←− Zp , add ⟨(sid,C, S, Z), r⟩ to TH′ , and output r

Figure 4.9: Simulator SIM showing that protocol One-Pass HMQV realizes FotkAKE

dom but pair-wise correlated functions Rsid
P , i.e. correlated as in equation (4.5), and program-

ming Rsid
C (pk , pk ′,⊥)(resp. Rsid

S (pk , pk ′, Z)) values into outputs of H(sid,C, S,W, σ)(resp.

H(sid,C, S, Z, σ)) if Z matches the value sent by Csid and σ = HMQVsid
C (pk , pk ′,⊥)(resp.

σ = HMQVsid
S (pk , pk ′, Z)). As in the case of 2DH we need to argue that if the same hash

query (sid,C, S, X, σ), forX = Xsid
C , matches both the client-side equation and the server-side

equation, i.e. if

σ = HMQVsid
C (A,B′,⊥) = HMQVsid

S (B,A′, X)

113

where A ∈ PK C, B
′ ∈ PK+(Csid), B ∈ PK S, A

′ ∈ PK+(Ssid), as defined in the 2DH proof,

then either condition programs the same value into H output.

In the case of 2DH the corresponding equation implied that both parties must use correct

counterparty keys, i.e. that (A′,B ′) = (A,B), in which case constraint (4.5) on Rsid
C and Rsid

S

implies that either condition programs H to the same value.

In the case of One-Pass HMQV the above equation can hold even if (A′,B ′) ̸= (A,B), but

it can occur with only negligible probability. The constraint above implies:

B′
x+da

= (X · A′d)
b

(4.6)

where d = H′(sid,C, S, X) and X = gx. Note that equation (4.6) holds if and only if

b′(1 + a) = b(1 + a′), where a′, b′ are the discrete logarithms of resp. A′, B′. This can hold

even if (a′, b′) ̸= (a, b), hence in the case of One-Pass HMQV we will add an abort in the

case equation (4.6) holds and (A′, B′) ̸= (A,B). Note that the adversary must choose the

counterparty key pk ′ = B′ for session Csid before Csid starts and picks x. Likewise pk ′ = A′

for session Ssid must be chosen before Ssid starts and picks b, since S needs to pick b randomly

everytime it starts a new session. Therefor the last value to be picked is either x or b, i.e.

either x or b is randomly sampled after (a, b′, a′) are all fixed. If x is chosen after (a, b, a′, b′)

then its choice determines d = H′(st, 1, gx), but since H′ is a random oracle, the probability

that d satisfies equation (4.6) is 1/p. If b is chosen after (a, a′, b′, x) the probability that b

satisfies equation (4.6) is 1/2κ. It follows that:

|Pr[G2]− Pr[G1]| ≤ qses/p + qses/2
κ

Game 3 (direct programming of session keys using random functions Rsid
P): This step is

identical as in the case of 2DH, and Pr[G3] = Pr[G2]

114

Game 4 (abort on H queries for passive sessions): As in the case of the proof for 2DH we

add an abort whenever adversarial H queries trigger evaluation in passive sessions(as defined

in 2DH proof), which evaluate (1) Rsid
C (pk , pk ′,⊥) or (2)Rsid

S (pk ′, pk , Z) for any pk ∈ PK 1
S,

any pk ′ ∈ PK 2
S and Z = W sid

C where Csid is the matching session of Ssid, and likewise define

as Bad the event that such query is made.

As in the case of 2DH we show that solving Gap CDH can be reduced to causing event

Bad in this game. We argue reduction R assuming that event Bad occurs for a client-side

function Rsid
C , and the case for a server-side function Rsid

S is symmetric.

Reduction R takes a CDH challenge (X̄, B̄) and sets X = X̄s for random s and sends X

as message on behalf of Csid sections. R also responds to (Init, 1) by picking all honestly

generated key pairs (a,A) and sets each server public key pk = B = B̄t for random t just

like in the 2DH case. Although R does not know x = s · x̄ and b = t · b̄ corresponding to X,B,

where x̄ = dlogg(X̄) and b̄ = dlogg(B̄), reduction R can use the DDH oracle to emulate H

queries, i.e. to test if

σ = HMQVsid
C (A,B,⊥) = Bx+da = cdhg(X,B) ·Bad

for any key A = ga of Csid, and X = X̄s sent by Csid. Symmetrically R can test if σ =

HMQVsid
S (B,A,X) = cdhg(X · Ad, B).

SinceR emulates Game 3 perfectly, event Bad occurs with the same probability as in Game 3,

in which case R can compute cdhg(X,B), assuming Bad occurs for a client-side equation.

Then R can consequently solve cdhg(X̄, B̄) = (cdhg(X,B))1/(st). It follows that Pr[Bad] ≤

ϵZg-cdh, hence:

|Pr[G4]− Pr[G3]| ≤ ϵZg-cdh

115

Game 5 (random keys on passively observed sessions): This game change is the same as in

the case of 2DH, and Pr[G5] = Pr[G3]

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): This game change is the same as in the

case of 2DH, and Pr[G6] = Pr[G5]

Game 7 (hash computation consistent only for compromised keys): As in the proof for

2DH, we restrict handling H queries to only those that correspond to counterparty key pk ′

being either compromised or adversarial. Consequently, as in the case of 2DH, Game 7

diverges from Game 6 if event Bad2 occurs, defined as H query on server side (sid, S,C, Z, σ)

for σ = HMQVsid
S (pk , pk ′, Z), where pk ∈ PK S and pk ′ ∈ PK \ CPK .

As in the case of the 2DH proof we will focus on sub-event Bad2[i] which denotes Bad2

occurring where Ssid uses the i-th key as pk ′, i.e. pk ′ was a non-compromised public key

in PK created in the i-th key initialization query. Note that Bad2[i] corresponds to σ =

cdhg(X · pk ′d,B) where X is arbitrary, B is one-time and uncompromisable public key of

session Ssid and pk ′ equals to the honestly-generated and non-compromised client public key

corresponding to the i-th key record.

As in the 2DH proof we show a reduction that solves a Gap Square DH if Bad2[i] occurs.

Square DH is a variant of CDH where the challenge is a single value X̄ and the goal is to

compute cdhg(X̄, X̄). It’s also well-known that Square DH is equivalent to CDH. Here we

will use a subsidiary reduction R which computes CDH on a problem related to the Square

DH challenge, and then use a top-level reduction R′ which solves the Square DH challenge

using rewinding over two executions of R. We show the bound on the probability that R

succeeds in terms of the probability ϵ of event Bad2[i], and then the overall bound using a

union bound.

R takes a Square DH challenge B̄, and embeds B̄ into each server public key B ← B̄t for

116

Initialization: Initialize empty lists: PK , PK 1
P, PK

2
P, CPK , and KLP for all P

On message (Init, role) to P:

set K
r←− Zp , pk ← gK , send (Init, role, pk) to P, add pk to PK and PK role

P and (K , pk)
to KLP

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP and pk ∈ PK 1
P then add pk to CPK and output K

On message (NewSession, sid,CP, role, pkP, pkCP) to P:

if ∃ (K , pkP) ∈ KLP then:
initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ
if role = 1, pick w

r←− Zp , k
r←− {0, 1}κ,

write rec ⟨sid,P,CP, pkP, pkCP, role, w, k⟩ as fresh, output W = gw,
if pkCP ̸∈ PK 2

CP then mark rec interfered and set k ← Rsid
P (pkP, pkCP,⊥)

send (NewKey, sid, k) to P

else write ⟨sid,P,CP, pkP, pkCP, role,⊥,⊥⟩ as fresh

On message Z to session Ssid (only first such message is processed):

if ∃ record rec = ⟨sid, S,C,B ,A, role, w,⊥⟩:
if ∃ record rec′ = ⟨sid,C, S,A′,B ′, role′, z, k ′⟩ s.t. gz = Z

then if rec′ is fresh, (B ,A) = (B ′,A′), and k ′ ̸= ⊥:
then k ← k ′

else k
r←− {0, 1}κ

else set k ← Rsid
S (B ,A, Z) and re-label rec as interfered

update rec to ⟨sid, S,C,B ,A, role, w, k⟩, output (NewKey, sid, k)

On H query (sid,C, S, X, σ):

if ∃ ⟨(sid,C, S, X, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

1. if ∃ record ⟨sid,C, S, ·, ·, 1, x, ·⟩, ⟨(sid,C, S, X), d⟩ in TH′ s.t. (X, σ) = (gx, (B)x+d·a)
for some (a,A) ∈ KLC and B s.t. B ∈ CPK or B ̸∈ PK , then reset
k ← Rsid

C (A,B ,⊥)

2. if ∃ record ⟨sid, S,C, ·, ·, 2,⊥, ·⟩, ⟨(sid,C, S, X), d⟩ in TH′ s.t. σ = (X ·Ad)b for some
(b,B) ∈ KLS and A s.t. A ∈ CPK or A ̸∈ PK , then reset k ← Rsid

S (B ,A, X)

add ⟨(sid,C, S, X, σ), k⟩ to TH and output k

On H′ query (sid,C, S, Z):

if ∃ ⟨(sid,C, S, Z), r⟩ in TH′ then output r
else pick r

r←− Zp , add ⟨(sid,C, S, Z), r⟩ to TH′ , and output r

Figure 4.10: One-Pass HMQV: Environment’s view of ideal-world interaction (Game 7)

117

random t. R picks each protocol message X = gx for random x of its choice. R also picks

all keys (a,A) as in G0., except for a chosen index i ∈ [1, . . . , qK], where R sets the key

generated in the i-th call to (Init, 1) as pk [i] ← B̄. Let Bad2[i] denote event Bad2 occurring

for A which is this i-th key, i.e. A = B̄.

As long as key pk [i] is not compromised, R can emulate Game 6 because it can respond to a

compromise of all other keys, and it can service H queries as follows: To test client-side σ’s,

i.e. if σ = Ba·d ·Bx, reduction R tests it as Game 6 does except for a that corresponds to the

ith public key A = B̄, in which case it tests if σ = cdhg(A,B)d · Bx using DDH oracle. To

test server-side σ’s, i.e. if σ = (X · Ad)b for b = t · b̄ where b̄ = dlogg(B̄) and A ∈ PK+(Ssid),

including pk [i] = B̄, reduction R tests if σ = cdhg(X,B) · Ba·d using DDH oracle except for

the case that a is the private key corresponding to the i-th public key pk = B̄, or A is an

adversarial key, in which case R tests if σ = cdhg(X · Ad,B).

Note that Bad2[i] can happen only before key pk [i] is compromised, so event Bad2[i] occurs in

the reduction with the same probability as in Game 6. (If A asks to compromise pk [i] then

R aborts.) R can detect event Bad2[i] because it occurs if H query involves the public key

pk [i] = B̄ and σ satisfies the server-side equation for this key, in which case R computes σ1 =

cdhg(X · B̄d1 , B̄t) = cdhg(B̄, B̄)t·d1 ·cdhg(X, B̄)t), where we use d1 to denote H′(sid,C, S, X) in

the first execution of R. In the second run of R hits the event for the same X and embeds

fresh d2 into H
′(sid,C, S, X) then it computes σ2 = cdhg(B̄, B̄)t·d2 ·cdhg(X, B̄)t. SinceR knows

t, d1, d2, it can output cdhg(B̄, B̄) = (σ1/σ2)
(1/(t(d1−d2)). If R picks index i at random, by

the standard rewinding argument, R succeeds with probability at least (1/crwnd)(ϵ/qK)
2/qH.

Thus we conclude:

|Pr[G7]− Pr[G6]| ≤ qK · (crwnd · qH · ϵZg-cdh)1/2

which concludes the proof.

118

4.2.3 1/2-SKEME as one-time-key AKE

In this section we introduce protocol 1/2-SKEME, which is a one-pass version of SKEME [97],

where one side of parties uses one-time and uncompromisable keys. The message they ex-

change with each other comes from key encapsulation of counterparty’s public key. We define

OW-PCA security and strong (key-)anonymous of KEM, see definitions 2.7 and 2.8. The se-

curity property of 1/2-SKEME is captured in the following theorem, using the “restricted”

key-hiding otkAKE functionality defined below:

“Restricted” Key-hiding one-time-key AKE. We define a “restricted” version of key-

hiding one-time-key Authenticated Key Exchange (otkAKE), where we add restriction that

key secrecy is only protected when the keys are generated by honest party, i.e. if party P

runs NewSession on pkCP which is not on the list of pk ’s created by the Init query to FrotkAKE,

then FrotkAKE reveals keys pkCP to the ideal-world adversary (namely the simulator). The

corresponding functionality is denoted as FrotkAKE and included it in Figure 4.11. We claim

that Theorem 4.4 stands if we replace FotkAKE with FrotkAKE.

Theorem 4.3. Protocol 1/2-SKEME shown in Figure 4.12 realizes FrotkAKE, assuming that

KEM is OW-PCA secure and strong (key-)anonymous, and H is a random oracle.

See definitions of OW-PCA security and strong (key-)anonymous at Definition 2.8 2.7.

Below we show the security proof of Theorem 4.3. As in the case of 2DH and One-Pass

HMQV, here we define function HSKEMEsid
P for session Psid running on input (sid,CP, pk , pk ′),

i.e. pk is its own public key and pk ′ is the public key of the intended counterparty. For each

AKE session Psid we also define function Rsid
P (pk , pk ′, f) which is used to compute its session

key given message f it received, where f = d on client side and f = c on server side.

Function HSKEMEsid
P and Rsid

P can be defined separately for cases for Psid playing the client-

role, denoted P = C, and Psid playing the server-role, denoted P = S. We use esidP and M sid
P

119

PK stores all public keys created in Init; CPK stores all compromised keys;
PK 1

P stores P’s permanent public keys; PK 2
P stores P’s ephemeral public keys;

Keys: Initialization and Attacks

On (Init, role) from P:

If role ∈ {1, 2} send (Init,P, role) to A, let A specify pk s.t. pk ̸∈ PK , add pk to PK and
PK role

P , and output (Init, pk) to P. If P is corrupt then add pk to CPK .

On (Compromise,P, pk) from A: [this query must be approved by the environment]

If pk ∈ PK 1
P then add pk to CPK .

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, role, pkP, pkCP) from P:

If pkP ∈ PK role
P and there is no prior session record ⟨sid,P, ·, ·, ·, ·, ·⟩ then:

• create session record ⟨sid,P,CP, pkP, pkCP, role,⊥⟩ marked fresh;

• if role = 1 and pkCP ̸∈ PK 2
CP then re-label this record as interfered;

• initialize random function Rsid
P : {0, 1}3 → {0, 1}κ;

• send (NewSession, sid,P,CP, role,⊥) to A if pkCP ∈ PK , else send
(NewSession, sid,P,CP, role, pkCP).

On (Interfere, sid,P) from A:
If there is session ⟨sid,P, ·, ·, ·, ·,⊥⟩ marked fresh then change it to interfered.

Login Sessions: Key Establishment

On (NewKey, sid,P, α) from A:
If ∃ session record rec = ⟨sid,P,CP, pkP, pkCP, role,⊥⟩ then:
• if rec is marked fresh: If ∃ record ⟨sid,CP,P, pkCP, pkP, role

′, k ′⟩ marked fresh s.t.
role′ ̸= role and k ′ ̸= ⊥ then set k ← k ′, else pick k

r←− {0, 1}κ;

• if rec is marked interfered then set k ← Rsid
P (pkP, pkCP, α);

• update rec to ⟨sid,P,CP, pkP, pkCP, role, k⟩ and output (NewKey, sid, k) to P.

Session-Key Query

On (ComputeKey, sid,P, pk , pk ′, α) from A:
If ∃ record ⟨sid,P, ·, ·, ·, ·, ·⟩ and pk ′ ̸∈ (PK \ CPK) then send Rsid

P (pk , pk ′, α) to A.

Figure 4.11: FrotkAKE: Functionality for “restricted” key-hiding one-time key AKE

120

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ
KEM scheme KEM = (Gen,Enc,Dec)

P1 on (Init, 1) P2 on (Init, 2)

(a,A)← KEM.Gen (b, B)← KEM.Gen
store K = a tagged by pk = A store K = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1, 1,A,B) P2 on (NewSession, sid,CP2, 2,B ,A)

retrieve K = a tagged by pk = A retrieve K = b tagged by pk = B
(abort if key B is not ephemeral)

(c,K)← KEM.Enc(B) (d, L)← KEM.Enc(A)

-
c

� d

L← KEM.Dec(a, d) K ← KEM.Dec(b, c)
σ1 ← (K,L) σ2 ← (K,L)
k1 ← H(sid,P1,CP1,A,B , c, d, σ1) k2 ← H(sid,CP2,P2,A,B , c, d, σ2)
output k1 output k2

Figure 4.12: otkAKE protocol 1/2-SKEME

to represent (e,M) locally generated via KEM encryption by Psid under some (pkP, pkCP).

Let st = (sid,C, S), the detailed definitions are as follows3:

HSKEMEsid
C (pk , pk ′, d) = (KEM.Dec(K ′, csidC),KEM.Dec(K , d)) for (K , pk) ∈ KLC

if ∃(K ′, pk ′) ∈ KL, else (Ksid
C ,KEM.Dec(K , d)) for (·, pk ′) ∈ KL+(Csid) \KL (4.7)

HSKEMEsid
S (pk , pk ′, c) = (KEM.Dec(K , c),KEM.Dec(K ′, dsidS)) for (K , pk) ∈ KLS

if ∃(K ′, pk ′) ∈ KL, else (KEM.Dec(K , c), Lsid
S) for (·, pk ′) ∈ KL+(Ssid) \KL (4.8)

Rsid
C (pk , pk ′, d) = H(st, pk , pk ′, c, d,HSKEMEsid

C (pk , pk ′, d)) for c = csidC (4.9)

Rsid
S (pk , pk ′, c) = H(st, pk ′, pk , c, d,HSKEMEsid

S (pk , pk ′, c)) for d = dsidS (4.10)

3Recall that as defined in [74], KL is the list of all key pairs generated so far, and KLP is defined as the
set of key pairs generated for P, KL+(Psid) stands for KL ∪ {(KCP, pkCP)} where pkCP is the counterparty
public key used by Psid and KCP is corresponding K which doesn’t necessarilly need to be known or verified.
(K ′, pk ′) used here are in KL+(Psid). Note that if (KCP, pkCP) ∈ KL then KL+(Psid) = KL.

121

Initialization: Initialize an empty list KLP for each P

On (Init,P, role) from F :
set (K , pk)← KEM.Gen, add (K , pk) to KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :
if ∃ (K , pk) ∈ KLP send (Compromise,P, pk) to F and send K to A

On (NewSession, sid,P,CP, role, pk) from F :
if pk ̸= ⊥ then set pk ∗ ← pk else pick pk ∗

r←− PK
set (e,M)← KEM.Enc(pk ∗), store ⟨sid,P,CP, pk , role, e,M⟩, send e to A

On A’s message f to session Psid (only first such message counts):

if ∃ record ⟨sid,P,CP, ·, ·, ·, ·⟩:
if ∃ no record ⟨sid,CP,P, ·, ·, f ′, ·⟩ s.t. f = f ′ then send (Interfere, sid,P) to F
send (NewKey, sid,P, f) to F

On query (sid,C, S,A,B , c, d, σ) to random oracle H:

if ∃ ⟨(sid,C, S,A,B , c, d, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

if ∃ record ⟨sid,C, S, pk , 1, c,K⟩ and (a,A) ∈ KLC s.t. (1)pk = ⊥&σ1 = KEM.Dec(b, c)
for (b,B) ∈ KLS, or σ1 = K for pk = B and (2)σ2 = KEM.Dec(a, d), send
(ComputeKey, sid,C,A,B , d) to F , if F returns k ∗ reset k ← k ∗

if ∃ record ⟨sid, S,C, pk , 2, d, L⟩ and (b,B) ∈ KLS s.t. (1)σ1 = KEM.Dec(b, c) and
(2)pk = ⊥&σ2 = KEM.Dec(a, d) for (a,A) ∈ KLC, or σ2 = L for pk = A, send
(ComputeKey, sid, S,B ,A, c) to F , if F returns k ∗ reset k ← k ∗

add ⟨(sid,C, S,A,B , c, d, σ), k⟩ to TH and output k

Figure 4.13: Simulator SIM showing that 1/2-SKEME realizes FrotkAKE (abbreviated “F”)

Note that HSKEMEsid
P is defined separately depending on whether pk ′ is honestly-generated(i.e.

on the keylist honest parties generate) or adversarial. Ksid
C and Lsid

S is the plaintext key

honestly-generated by running KEM.Enc on counterparty public key pk ′ off the list, which

are recorded in corresponding session.

We also use σ1 and σ2 in the following proof, which supposed to be KEM plaintext key

generated by client and server, respectively.

Proof. We now give a security proof of 1/2-SKEME, adjusted from 2DH but simplified, and

sketch below where the match is and where the 1/2-SKEME-specific differences occur and

how to deal with them.

122

Initialization: Initialize empty lists PK 1
P,PK

2
P,KLP for each P

On message (Init, role) to P:

If role ∈ {1, 2} then set (K , pk)← KEM.Gen, add pk to PK role
P and (K , pk) to KLP, and

output (Init, pk)

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP and pk ∈ PK 1
P then output K

On message (NewSession, sid,CP, role, pkP, pkCP) to P:

if ∃ (KP, pkP)∈KLP, and if pkP ∈ PK role
P , then set (e,M)← KEM.Enc(pkCP),

else write ⟨sid,P,CP,KP, pkP, pkCP, role, e,M⟩, and output e

On message f to session Psid (only first such message is processed):

if ∃ record ⟨sid,P,CP,KP, pkP, pkCP, role, e,M⟩:
set N ← KEM.Dec(KP, f) and σ ← (M,N)
set k ← H(sid, {P,CP, pkP, pkCP, e, f, σ}ord) and output (sid,P, k)

On H query (st,A,B , c, d, σ)(st← (sid,C, S)):

if ∃ ⟨(st,A,B , c, d, σ), k⟩ in TH then output k
else pick k

r←− {0, 1}κ, add ⟨(st,A,B , c, d, σ), k⟩ to TH, and output k

Figure 4.14: 1/2-SKEME: Environment’s view of real-world interaction (Game 0)

Game 0 (real world): The real-world game is the real world view of executing protocol

4.12.

Game 1 (programming Rsid
P values into H outputs): We make the same change of using

random but pair-wise correlated functions Rsid
P , i.e. correlated as in equation (4.9)(4.10), and

programming Rsid
P (pk , pk ′, f) values into outputs of H(sid,C, S, {pk , pk ′, e, f, σ}ord) if σ =

HSKEMEsid
P (pk , pk ′, f), i.e. upon each new query H will respond to hash input in the format

of (sid,C, S,A,B , c, d, σ) as follows:

1. If ∃ Csid s.t. S = CPsid
C , and (a,A) ∈ KLC, (·,B) ∈ KL+(Csid), and d satisfies HSKEMEsid

C (

A,B , d) = σ, i.e. (1)σ = (KEM.Dec(b, csidC),KEM.Dec(a, d)) if ∃(b,B) ∈ KL or (2)

σ = (Ksid
C ,KEM.Dec(a, d)) for (·,B) ∈ KL+(Csid) \KL, then set k ← Rsid

C (A,B, d)

2. If ∃ Ssid s.t. C = CPsid
S , and (b,B) ∈ KLS, (·,A) ∈ KL+(Ssid), and c satisfies HSKEMEsid

S (

B ,A, c) = σ, i.e. (1)σ = (KEM.Dec(b, c),KEM.Dec(a, dsidS)) if ∃(a,A) ∈ KL or (2)

123

σ = (KEM.Dec(b, c), Lsid
S) for (·,A) ∈ KL+(Ssid) \KL, then set k ← Rsid

S (B ,A, c)

3. In any other case sample k
r←− {0, 1}κ

As in the case of 2DH we argue that if the same hash query (sid,C, S,A,B , c, d, σ), for c = csidC

and d = dsidS , matches both the client-side equation and the server-side equation, i.e. if

σ = HSKEMEsid
C (A,B′, d) = HSKEMEsid

S (B,A′, c) (4.11)

where A ∈ PK C, B
′ ∈ PK+(Csid), B ∈ PK S, A

′ ∈ PK+(Ssid), as defined in the 2DH proof,

then both conditions program the same value into H output. Denote a, b, a′, b′ as correspond-

ing secret keys of A,B,A′, B′, equation (4.11) equals to (KEM.Dec(b′, c),KEM.Dec(a, d)) =

(KEM.Dec(b, c),KEM.Dec(a′, d)), which implies that both parties must use correct and hon-

estly generated counterparty keys, i.e. that (A′,B ′) = (A,B), followed by KEM decapsulation

security, in which case constraint (4.9)(4.10) on Rsid
C and Rsid

S implies that both conditions

program H to the same value. Thus we have:

|Pr[G1] = Pr[G0]|

Game 2 (direct programming of session keys using random functions Rsid
P): This step is

same as in the case of 2DH, and Pr[G2] = Pr[G1]

Game 3 (abort on H queries for passive sessions): Recall that in the 2DH proof we say a

session is passive iff (1)it’s a client session that receives honestly-generated ephemeral server

public keys and an unmodified server message or (2) it’s a server session that runs on honestly-

generated client keys and an unmodified client message. Here we add an abort whenever

adversarial H queries trigger evaluation in passive sesions, which evaluate (1) Rsid
C (pk , pk ′, d)

or (2)Rsid
S (pk ′, pk , c) for any (·, pk) ∈ KLC, any (·, pk ′) ∈ KLS, c = csidC and d = dsidC , where

124

Csid is the matching session of Ssid, and likewise define as Bad the event that such query is

made. As defined in Game 1, here in passive sessions Rsid
C (pk , pk ′, d) is triggered only if client

side H query (sid,C, S, pk , pk ′, c, d, σ) satisfies σ = (KEM.Dec(K ′, c),KEM.Dec(K , d)). The

server side is symmetric.

We show a reduction R that breaks OW-PCA security if Bad occurs. On input a OW-PCA

challenge (B̄, c∗), reduction R has access to PCOK (·, ·) where the inner K corresponds to

the private key of B̄. R also picks all key pairs as in Game 0 except for a chosen index

j ∈ [1, . . . , qK], where R sets the j-th server public key B as B̄, and sets c as c∗ in the

i-th client session using this server public key. Let Badi,j denote Bad occurring for this j-th

server public key in the i-th session, i.e. B = B̄. Note that all server keys including B are

one-time and uncompromisable, and R can answer any compromise request on client public

key A made by adversary by returning corresponding private key a. R can emulate the

way Game 2 services every H queries: to test if a server side H query (sid,C, S,A,B , c, d, σ)

satisfies σ = (K,L), R tests as in Game 1 except for b that corresponds to the public key B̄,

in which case R tests K via checking if PCOK (K, c) returns 1. To test client side queries,

i.e. if σ = (K,L) for any server public key including B = B̄, R also tests as in Game 1,

except for b that corresponds to the public key B̄, where R checks if query PCOK (K, c)

returns 1, including c = c∗.

Since R emulates Game 2 perfectly, event Badi,j occurs with the same probability as in

Game 2. R can detect event Badi,j because it occurs if H query involves the j-th credential

in the session embedded c∗ and outputs correctK that satisfiesK = KEM.Dec(b̄, c∗), without

knowing the value of b̄, in which case it outputs correct K corresponding to c∗ and B̄ , and

breaks OWPCA security. If R picks index i and j at random it follows that Pr[Bad] ≤

qK · qses ·Advow−pca
KEM,A , hence:

|Pr[G3]− Pr[G2]| ≤ qK · qses ·Advow−pca
KEM,A

125

Initialization: Initialize empty lists: PK , PK 1
P, PK

2
P, CPK , KL and KLP for all P

On message (Init, role) to P:

set (K , pk)← KEM.Gen, send (Init, pk) to P, add pk to PK and PK role
P and (K , pk) to

KLP

On message (Compromise,P, pk):

If ∃ (K , pk) ∈ KLP and pk ∈ PK 1
P then add pk to CPK and output K

On message (NewSession, sid,CP, role, pkP, pkCP) to P:

if ∃ (K , pkP) ∈ KLP and pkP ∈ PK role
P then:

initialize random function Rsid
P : ({0, 1}∗)3 → {0, 1}κ

if pkCP /∈ PK then set pk ∗ ← pkCP, else pick pk ∗
r←− PK ;

set (e,M)← KEM.Enc(pk ∗)
write record ⟨sid,P,CP, pkP, pkCP, role, e,M,⊥⟩ as fresh, output e
if role = 1 and pkCP /∈ PK 2

CP then mark record interfered

On message f to session Psid (only first such message is processed):

if ∃ record rec = ⟨sid,P,CP, pkP, pkCP, role, e,M,⊥⟩:
if ∃ record rec′ = ⟨sid,CP,P, pk ′CP, pk ′P, role′, f ′, N, k ′⟩ s.t. f = f ′

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk
′
CP) and k ′ ̸= ⊥:

then k ← k ′

else k
r←− {0, 1}κ

else set k ← Rsid
P (pkP, pkCP, f) and re-label rec as interfered

update rec to ⟨sid,P,CP, pkP, pkCP, role, e,M, k⟩ and output (sid,P, k)

On H query (st, A,B, c, d, σ)(st← (sid,C, S)):

if ∃ ⟨(st, A,B, c, d, σ), k⟩ in TH then output k , else pick k
r←− {0, 1}κ and:

1. if ∃ record ⟨sid,C, S, ·, pk , 1, c,K, ·⟩, (a,A) ∈ KLC s.t.
pk = B , σ = (K,KEM.Dec(a, d)): reset k ← Rsid

C (A,B , d)

2. if ∃ record ⟨sid, S,C, ·, pk , 2, d, L, ·⟩, (b,B) ∈ KLS s.t.
(1)pk = ⊥&σ = (KEM.Dec(b, c),KEM.Dec(a, d)) for (a,A) ∈ KL s.t. A ∈ CPK or
(2)pk = A, σ = (KEM.Dec(b, c), L): reset k ← Rsid

S (B ,A, c)

add ⟨(st, A,B, c, d, σ), k⟩ to TH and output k

Figure 4.15: 1/2-SKEME: Environment’s view of ideal-world interaction (Game 7)

Game 4 (random keys on passively observed sessions): This game change is same as in the

case of 2DH, and Pr[G4] = Pr[G3]

Game 5 (decorrelating function pairs Rsid
C , Rsid

S): This game change is the same as in the

126

case of 2DH, and Pr[G5] = Pr[G4]

Game 6 (hash computation consistent only for compromised keys): Recall that in Game 5,

hash query H(sid, {P,CP, pk ′, pk , e, f, σ}ord) is defined as Rsid
P (pk , pk ′, f) if σ = HSKEMEsid

P (

pk , pk ′, f) for some (·, pk) ∈ KLP and (·, pk ′) ∈ KL+(Psid). In Game 6 we add a condition

that this programming of H can occur only if (1) pk ′ is an adversarial key, i.e. it has not

been generated by Init or (2) pk ′ is an honestly generated permanent key but compromised.

These are the two cases the adversary can know K ′, and we show that they are the only

cases where adversary can compute σ s.t. σ = HSKEMEsid
P (pk , pk ′, f), and hence trigger the

programming of H.

Let CPKL be the list of generated public keys who were compromised so far. Game 6

diverges from Game 5 in the case of event Bad defined as H queried on inputs as above

for σ = HSKEMEsid
P (pkP, pkCP, f) and (·, pkCP) ∈ KL \ CPKL, i.e. honestly generated and

uncompromised keys, while in Game 5, as in Game 1, this programming was done whenever

(·, pkCP) ∈ KL+(Psid).

We show a reduction R that breaks OWPCA security if Bad happens on the client side,

denoted as Bad1, and the server side is symmetric. On input a OWPCA challenge (B̄, c∗), R

has access to PCOK (., .) whose inner K corresponds to B̄. R also picks all key pairs except

that for a chosen index j ∈ [1, . . . , qK], where R set the j-th server public key pkCP as B̄,

and sets c as c∗ in the i-th session using this key, while in other sessions, either use or not

use this pkCP, c is generated as previous game. Let Bad1i,j denote Bad1 occurring for this

j-th server public key in the i-th session, i.e. pkCP = B̄. As long as the corresponding KCP is

not compromised, R can emulate Game 5 because it can respond to compromise of all other

keys, and serve H queries as follows: To test server side H query input (sid,C, S,A,B , c, d, σ),

i.e. if σ = (K,L), R tests as in Game 5 except for b that corresponds to the public key B̄, in

which case R tests K via querying PCOK (K, c) and see if it returns 1, including c = c∗. To

127

test client side hash query, i.e. if σ = (K,L) for any pk including pk = B̄, R also tests as in

Game 5, except for b that corrsponds to the public key B̄, where R checks if PCOK (K, c)

returns 1 including c = c∗.

Bad1i,j can happen only before pkCP used in that session is compromised, so it occurs in

reduction with same probability as in Game 5. R can detect event Bad1i,j because it occurs

if H query involves the j-th credential and in the i-th client session using this credential it can

pass σ check by outputting correct K that satisfies K = KEM.Dec(b̄, c∗), without knowing

the value of b̄, which is the secret key corresponding to B̄ , and thus breaks OWPCA security.

If R picks index i and j at random it follows that Pr[Bad1] ≤ qK · qses ·Advow−pca
KEM,A , and since

server side is symmetric, we have:

|Pr[G6]− Pr[G5]| ≤ 2qK · qses ·Advow−pca
KEM,A

Game 7 (replace honestly-generated pkCP with randomly-chosen pk∗ as KEM.Enc’s input):

The only change we make in this game, is that for all sessions where counterparty public

key pkCP is honestly generated via Init, i.e. pkCP ∈ PK , in G6 in these sessions (e,M) ←

KEM.Enc(pkCP), in G7 they are changed to be generated via KEM.Enc(pk ∗), where pk ∗ is

randomly chosen from public key space in each such sessions. We argue that this change

makes negligible difference to the environment.

Note that for all sessions using some honestly-generated pkCP, the session key k output by

P(if not abort) will always be independent from the ciphertext e it generated. In passive

sessions, by G4, if party P sets its session key as a random string first, its counterparty will

be assigned the same key, or vice versa, no matter ciphertext e is generated by KEM.Enc(pk ∗)

or KEM.Enc(pkCP). Also in sessions where A interferes with party P then in both games P

will be assigned a key k ← Rsid
P (pkP, pkCP, f), and by G6 result of adversarial hash query

could be consistent with k iff A has compromised pkCP.

128

We show a reduction R that breaks strong (key-)anonymous property of KEM[2.7] if the

environment can efficiently distinguish this replacement of pkCP in computation of ciphertext

e, and we only argue for server side where counterparty client key can be compromised by

A, since it’s obvious that by prohibiting compromise of server key environment has less

advantage in distinguishing this change on client side.

ReductionR picks all server key pairs and a list of client public keys [pk 1, pk 2, ..., pk j, ..., pk qK
]

and their corresponding list of K . We first define G6(j,i), where j represents the j-th client

public key among the list of public keys R chooses, and i represents the i-th server session

initiated using this j-th client public key. G6(j,i) acts like G6 but: on all server sessions

using client keys [pk 1, pk 2, ..., pk j−1], it generates d from KEM.Enc(pk ∗) (2)on first i server

sessions where pkCP = pk j, we generate d from KEM.Enc(pk ∗). Note that pk ∗ is randomly

chosen in every session mentioned above. It’s obvious that G6(1,0)=G6, where on server side

for each pk in this list in all sessions R initiates using pk , d is generated via KEM.Enc(pk),

and G6(qK,qses)=G7, where qses is maximum number of sessions initiated using any single pk .

And below we show that for every j ∈ {1, ..., qK}, G6(j,0) is negligibly different from G6(j,qses),

which indicates Z cannot notice the difference between G6 and G7. We show this by arguing

that for any j set as above, and any i ∈ {1, ..., qses} the change between G6(j,i) and G6(j,i−1)

is negligible, and if environment can notice this change, R can break key privacy of KEM.

Given a strong (key-anonymous) challenge (K , pk ,K ∗, pk ∗, d̄), R emulates G6(j,i) like G6(j,i−1)

by embedding pk into pk j as the j-th client public key and uses K as Kj, and generating

ciphertext d via a random key in first i − 1 sessions using this key, the only difference is

that in the i-th session which uses pk j as pkCP, R embeds d̄ into the ciphertext which

this session sends out, while in G6(j,i−1), the ciphertext is generated via KEM.Enc(pk j) in

this session. R can emulate G6(j,i−1) because it can respond to hash queries in the exact

same way: upon A’s server side hash query H(sid,C, S,A,B , c, d, σ) where σ = (K,L), and

d including d̄, R tests as in previous game A will receive k = Rsid
S (B ,A, c) iff (K,L) =

129

(KEM.Dec(b, c),KEM.Dec(a, d)), where k equals to server side’s session key output, and a

equals to secret key Kj corresponding to pk j. In all other cases A will receive a random key

which is independent of the session key.

Then A outputs a guess bit and R will use this bit to solve the challenge. Thus we have

following equations:

Pr[1← A|G6(j,i−1)] = Pr[1← R|d̄← KEM.Enc(pk)]

Pr[1← A|G6(j,i)] = Pr[1← R|d̄← KEM.Enc(pk ∗)]

By definition of strong (key-)anonymous of KEM the probability that A successfully distin-

guish G6(j,i−1) and G6(j,i) is bounded by Advanonym
KEM,A , which is the adversarial advantage of

winning the strong (key-)anonymity game. Since on server side there are totally qK coun-

terparty public keys, and for each public key it can initiate at most qses sessions, and it’s

symmetric on client side, we conclude:

|Pr[G7]− Pr[G6]| ≤ 2qK · qses ·Advanonym
KEM,A

which concludes the proof.

4.3 Protocol OKAPE: asymmetric PAKE construction

In this section we show how any UC key-hiding one-time-key AKE protocol can be converted

into a UC aPAKE, with very small communication and computational overhead. We call

this otkAKE-to-aPAKE compiler OKAPE, which stands for One-time-Key Asymmetric PakE,

and we present it in Figure 4.16. As we discussed in the introduction, protocol OKAPE is

similar to protocol KHAPE of [74] which is a compiler that creates an aPAKE from any UC

130

key-hiding AKE where both parties use permanent keys. As in KHAPE, the password file

which the server S stores and the password which the client C enters into the protocol, allow

them to derive AKE inputs (a,B) for C and (b,A) for S, where (a,A) is effectively a client’s

password-authenticated public key pair and (b,B) is a server’s password-authenticated public

key pair, and the authenticated key agreement then consists of executing a key-hiding AKE

on the above inputs. (The AKE must be key-hiding or otherwise an attacker could link the

keys used by either party to a password they used to derive them.)

Building blocks: (1) one-time-key Authenticated Key Exchange otkAKE; (2) ideal
cipher (IC∗.E, IC∗.D) on space PK of otkAKE public keys; (3) RO hash function
H : {0, 1}∗ → {0, 1}κ × {0, 1}κ; (4) pseudorandom function kdf.

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks s
r←− {0, 1}κ, sets (h, a) ← H(pw , s), S generates otkAKE public key A corre-

sponding to a, stores file[uid, S]← (A, h, s), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

(A, h, s)← file[uid, S]
(h, a)← H(pw , s) �e = IC∗.E(h,B), s

(b,B)← Key.Gen
B ← IC∗.D(h, e)

-(sid, S, 1, a,B) � (sid,C, 2, b,A)

otkAKE
� k1 -k2

τ ← kdf(k1, 1) -
τ

K2 ← ⊥ if τ ̸= kdf(k2, 1)
K1 ← kdf(k1, 0) else K2 ← kdf(k2, 0)
output K1 output K2

Figure 4.16: Protocol OKAPE: Compiler from key-hiding otkAKE to aPAKE

Protocol otkAKE follows the same general strategy but it differs from KHAPE in (1) how

these keys are derived from the client’s password and the server’s password file, (2) in the

type of key-hiding AKE it requires, and (3) whether or not the AKE must be followed by key

confirmation messages sent be both parties. In KHAPE the server-side AKE inputs (b,A)

were part of the server’s password file, and the client-side AKE inputs (a,B) were password-

encrypted using an ideal cipher in an envelope e = IC.Epw(a,B) stored in the password file

131

and sent from S to C in each protocol instance. Finally, since both public keys were long-term

keys, the protocol required each party to send a key-confirmation message and C needed to

send its confirmation before S did or otherwise the protocol would be subject to an offline

dictionary attack. The first modification made by OKAPE is that the client’s private key

a is derived directly as a password hash, and does not need to be encrypted in envelope e.

Secondly, there is no permanent server’s key (b,B). Instead S generates a one-time key pair

(b,B) at each protocol instance, and authenticates-and-encrypts its public key B under a

password by sending to C an envelope e = IC.Eh(B) where h is a password hash stored in

the password file. Since B is now a one-time key, we can replace key-hiding AKE used in

KHAPE with a key-hiding one-time-key AKE, which as we saw in Section 4.2 can be realized

with cheaper subprotocols.

More importantly, the IC-encryption of the one-time key B followed by computing the

otkAKE session key output by C given input B , implies implicit password-authentication

under a unique password: By the properties of the ideal cipher a ciphertext e commits the

sender to a single choice of key h (and hence password pw from which h is derived) used

to create this ciphertext on a plaintext B chosen by the sender. Hence there can be at

most one key h (and thus at most one password pw) s.t. envelope e decrypts to a key B for

which the sender knows the corresponding secret key b, and thus can complete the otkAKE

protocol ran by C on the key B it decrypts from e. Whereas the protocol still requires a key

confirmation by C (otherwise a malicious C could stage an offline dictionary attack once it

learned S’s session key), the fact that the envelope already implicitly authenticates S implies

that it no longer needs a subsequent key confirmation by S.

The main appeal of OKAPE compared to the KHAPE construction in [74] comes from the last

implication, i.e. from the fact that we achieve security without the explicit key confirmation

from S. If the OKAPE subprotocol is instantiated with either of the two key-hiding otkAKE

protocols of Section 4.2, the result is a 2-round aPAKE protocol if S is an initiator and a

132

3-round protocol if C is an initiator (such concrete instantiation is shown in Figure 3.20 in

Section 3.7). Lastly, because S starts the protocol, protocol OKAPE can use (publicly) salted

password hash at no extra cost to such instantiations: A random salt value s can be part

of the password file, the password hash can be defined as H(pw , s), and s can be delivered

from S to C in S’s first protocol message, together with envelope e.

This round-complexity improvement is “purchased” at the cost of two trade-offs. First, in

OKAPE server S is only implicitly authenticated to C, and if C requires an explicit authenti-

cation of S before C uses its session key then the round reduction no longer applies. Secondly,

OKAPE can be slightly more computationally expensive than KHAPE because S needs to

generate envelope e on-line, which adds an ideal cipher encryption operation to the protocol

cost, and current ideal cipher implementations for e.g. elliptic curve group elements have

small but non-negligible costs (see Section 3.8).

One additional caveat in protocol OKAPE is that because we want C to derive its AKE

private key a from a password hash, we must assume that OKAPE generates private keys

from uniformly random bitstrings. This is true about any public key generator if that

bitstring is treated as the randomness of the key generator algorithm. For some public key

cryptosystems, e.g. RSA, this would be a rather impractical representation of the private

key, but in the cryptosystems based on Diffie-Hellman in prime-order groups this randomness

can be simply equated with the private key.

Theorem 4.4. Protocol OKAPE realizes the UC aPAKE functionality FaPAKE if the AKE

protocol realizes functionality FotkAKE, assuming that kdf is a secure PRF and IC∗ is an ideal

cipher over the space of otkAKE ephemeral public keys.

Functionality FaPAKE is a standard UC aPAKE functionality extended by client-to-server

entity authentication. The functionality FaPAKE we use is a modification of the UC aPAKE

functionality given by [72], but with some refinements we adopt from [74]. This functionality

133

Z C/S

A OKAPE

IC,H

oo //
OO

��
oo (e,s)

otkAKE
//

OO

��

66

vv

Z C̄/S̄

FaPAKE

A SIM pt.2

SIM pt.1 SIMAKE

oo //
OO

��

OO

��

OO

��
oo (e,s) //

OO

FotkAKE

��

ii

otkAKE

))

OO

IC,H
��

Figure 4.17: real-world (left) vs. simulation (right) for protocol OKAPE

is shown in Fig 2.3.

To prove the theorem, we show that the environment’s view of the real-world security game,

denoted Game 0, i.e. an interaction between the real-world adversary and honest parties who

follow protocol OKAPE, is indistinguishable from the environment’s view of the ideal-world

game, denoted Game 10, i.e. an interaction between simulator SIM of Figures 5.20 and 4.19

and functionality FaPAKE.

Simulator construction. We show an overview of our simulation strategy in Fig 4.17,

which gives the top-level view of the real world execution compared to the ideal world

execution which involves the simulator SIM shown in Figures 5.20-4.19 as well as the simulator

SIMAKE for the otkAKE subprotocol. The description of simulator SIM is split into two parts

as follows: Figure 5.20 contains the SIM pt.1 part of the diagram in Fig 4.17, i.e. it deals with

adversary’s ideal cipher and hash queries, and in addition with the compromise of password

files. Figure 4.19 contains the SIM pt.2 part of the diagram in Fig 4.17 dealing with on-line

aPAKE sessions. We rely on the fact that protocol otkAKE realizes functionality FotkAKE,

so we can assume that there exists a simulator SIMAKE which exhibits this UC-security of

otkAKE. Our simulator SIM uses simulator SIMAKE as a sub-procedure. Namely, SIM hands

over to SIMAKE the simulation of all C-side and S-side AKE instances where parties run on

134

either honestly generated or adversarial AKE keys. SIM employs SIMAKE to generate such

keys - in H queries, password file compromise and in IC decryption queries - see Figure 5.20,

and then it hands off to SIMAKE the handling of all AKE instances that run on such keys,

see Figure 4.19.

Initialization
Initialize simulator SIMAKE, empty tables TIC and TH, empty lists PK ,CPK
Notation: Th

IC.X
′ = {x′ | ∃y (h, x′, y) ∈ TIC}, Th

IC.Y = {y | ∃x′ (h, x′, y) ∈ TIC}.
Convention: First call to SvrSession or StealPwdFile for (S, uid) sets suidS

r←− {0, 1}κ.

On query (pw , s) to random oracle H
send back (h, a) if ∃ ⟨(pw , s), (h, a)⟩ ∈ TH, otherwise do:

1. If s ̸= suidS for all (S, uid) then h
r←− {0, 1}κ, init. key A via (Init, clts, 1) call to SIMAKE,

send (Compromise, A) to SIMAKE, define a as SIMAKE’s response, add A to CPK

2. If s = suidS for some (S, uid) send (OfflineTestPwd,S, uid, pw) to FaPAKE and:

(a) if FaPAKE sends “correct guess” then set A← pkuidS and h← huid
S

(b) else inititalize key A via call (Init, clts, 1) to SIMAKE, add A to PK , pick h← {0, 1}κ

In either case send (Compromise, A) to SIMAKE, define a as SIMAKE’s response, add A to
CPK , set infouidS (pw)← (A, h)

In all cases add ⟨(pw , s), (h, a)⟩ to TH and send back (h, a)

Ideal Cipher IC queries

• On query (h, x′) to IC.E, send back y if (h, x′, y) ∈ TIC, otherwise pick y
r←− Y \ Th

IC.Y ,
add (h, x′, y) to TIC, and send back y

• On query (h, y) to IC.D, send back x′ if (h, x′, y) ∈ TIC. Otherwise if there exists (S, uid)
and (A, pw) such that y = euidS and infouidS (pw) = (A, h) then set id = S, else set id = null.
Initialize key B via call (Init, id, 2) to SIMAKE and add B to PK . Set x′

r←− map(B), add
(h, x′, y) to TIC and send back x′

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE. If FaPAKE sends “no password
file,” pass it to A, otherwise do the following:

1. if FaPAKE returns pw , set (A, h)← infouidS (pw)

2. else init. A via call (Init, clts, 1) to SIMAKE, add A to PK , pick h← {0, 1}κ

Set (pkuidS , huid
S)← (A, h), return file[uid,S]← (pkuidS , huid

S , suidS) to A.

Figure 4.18: Simulator SIM showing that protocol OKAPE realizes FaPAKE: Part 1

Notation. We use Gi to denote the event that Z outputs 1 while interacting with Game i.

Hence the theorem follows if |Pr[G0]−Pr[G10]| is negligible. For a fixed environment Z, let

135

Starting AKE sessions

On (SvrSession, sid, S,C, uid) from FaPAKE, initialize random function Rsid
S : ({0, 1}∗)3 → {0, 1}κ,

pick euidS
r←− Y , set flag(Ssid)← hbc, send (euidS , suidS) to A as a message from Ssid, and send

(NewSession, sid, S,C, 2) to SIMAKE

On (CltSession, sid,C,S) from FaPAKE and message (e ′, s ′) sent by A to Csid, initialize random
function Rsid

C : ({0, 1}∗)3 → {0, 1}κ, and:
1. If ∃ uid s.t. (e ′, s ′) = (euidS , suidS), set flag(Csid)← hbcuidS , go to 5.

2. If ∃ x′, uid s.t. s ′ = suidS and e ′ was output by IC.E on (huid
S , x′), send (Impersonate, sid,

C,S, uid) to FaPAKE and in either case below, go to 5:

(a) If FaPAKE returns “correct guess”, flag(Csid)←(actuidS ,Auid
S ,map−1(x′))

(b) If it returns “wrong guess”, set flag(Csid)← rnd.

3. If ∃ (x′, h, a, pw) s.t. e ′ was output by IC.E on (h, x′) and ⟨(pw , s ′), (h, a)⟩ ∈ TH (SIM
aborts if tuple duplicated), send (TestPwd, sid,C, pw) to FaPAKE, go to 5 in either case:

(a) If FaPAKE returns “correct guess”, flag(Csid)←(actuidS , A,map−1(x′)) where A is the
public key generated from a.

(b) If it returns “wrong guess”, set flag(Csid)← rnd.

4. In all other cases set flag(Csid)← rnd, go to 5.

5. Send (NewSession, sid,C, S, 1) to SIMAKE

Responding to SIMAKE messages to FotkAKE emulated by SIM
SIM passes otkAKE protocol messages between SIMAKE andA, but when SIMAKE outputs queries
to (what SIMAKE thinks is) FotkAKE, SIM reacts as follows:

If SIMAKE outputs (Interfere, sid,S) set flag(Ssid)← act

If SIMAKE outputs (Interfere, sid,C) and flag(Csid)= hbcuidS then set flag(Csid)← rnd

If SIMAKE outputs (NewKey, sid,C, α):

1. If flag(Csid) = (actuidS , A,B) then k ← Rsid
C (A,B, α), output τ ← kdf(k , 1) and send

(NewKey, sid,C, kdf(k , 0)) to FaPAKE

2. Else output τ
r←− {0, 1}κ and send (NewKey, sid,C,⊥) to FaPAKE

If SIMAKE outputs (NewKey, sid,S, α) and A sends τ ′ to Ssid:

1. If flag(Ssid) = hbc and τ ′ was generated by SIM for Csid s.t. flag(Csid) = hbcuidS , then send
(NewKey, sid,S,⊥) to FaPAKE

2. If flag(Ssid) = act and ∃ (pw , B) s.t. τ ′= kdf(k ,1) for k = Rsid
S (B,A, α) where

(A, h) = infouidS (pw) and (h,map(B), euidS) ∈ TIC (SIM aborts if tuple not unique), send
(TestPwd, sid,S, pw) and (NewKey, sid,S, kdf(k , 0)) to FaPAKE

3. In any other case send (TestPwd, sid, S,⊥) and (NewKey, sid, S,⊥) to FaPAKE

If SIMAKE outputs (ComputeKey, sid,P, pk , pk ′, α):
If pk ′ ̸∈ (PK \ CPK) send Rsid

P (pk , pk ′, α) to A

Figure 4.19: Simulator SIM showing that protocol OKAPE realizes FaPAKE: Part 2

136

qpw, qIC, qH and qses be the upper-bounds on the number of resp. password files, IC queries, H

queries and online S or C aPAKE sessions. Let ϵZkdf and ϵZake(SIMAKE) be the advantages of an

environment who uses the resources of Z plus O(qIC+qses+qpw) exponentiations in G in resp.

breaking the PRF security of kdf, and in distinguishing between the real-world AKE protocol

and its ideal-world emulation where SIMAKE interacts with FotkAKE. Let X
′ = Y = {0, 1}n be

the domain and range of the ideal cipher IC used within IC∗, let X be the domain of public

keys in AKE (e.g. for both 2DH and One-Pass HMQV we have X = G where G is a group

of order p), and let map : X → {0, 1}n be ϵmap-quasi-bijective.

Game 0 (real world): This is the interaction, shown in Figure 6.6, of environment Z with

the real-world protocol OKAPE, except that the symmetric encryption scheme is idealized

as an ideal cipher oracle and the hash function is idealized as a random oracle. (Technically,

this is a hybrid world where each party has access to the ideal cipher functionality IC and to

the random oracle H.)

Game 1 (embedding private keys in H and bookkeeping for honest salts): We modify the

processing of Z’s query (pw , s) to H for new queries using salts utilized by the protocol,

namely when s = suidS for some (S, uid). We make two changes: (a) instead of picking a

randomly, we generate a key-pair (a,A) - note that this is just semantics since we always

initialize a private key uniformly - and (b) keep a record infouidS (pw)← (A, h) of this query.

Clearly Pr[G1] = Pr[G0].

Game 2 (honest salt suidS is never pre-queried): We add an abort when a StorePwdFile

generates salt suidS for which there is already some pw and (a, h) s.t. ⟨(pw , suidS), (h, a)⟩ ∈ TH.

Since StorePwdFile generates an uniform salt suidS , we have |Pr[G2]− Pr[G1]| ≤ qpwqH/2
κ.

In the ideal-world game (see Figure 6.11), simulator SIM detects whether the adversary

constructed (e′, s′) honestly - namely by hashing and encrypting his own choice of keys -

137

Initialize empty table TIC and TH; (Notation Th
IC.X

′ and Th
IC.Y as in Fig. 5.20)

• On (StorePwdFile, uid, pwuid
S) to S: Set suidS

r←− {0, 1}κ, (huid
S , a)← H(pwuid

S , suidS), generate
public key Auid

S from a, and set file[uid,S]← (Auid
S , huid

S , suidS)

• On new (pw , s) to H: Pick (h, a)
r←− ({0, 1}κ)2, add ⟨(pw , s), (h, a)⟩ to TH

• On new (h, x′) to IC.E: Output y
r←− Y \ Th

IC.Y , add (h, x′, y) to TIC

• On new (h, y) to IC.D: Output x′
r←− X ′ \ Th

IC.X
′, add (h, x′, y) to TIC

• On (StealPwdFile, S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: Retrieve (A, h, suidS) ← file[uid,S], generate AKE key-
pair (b, B), set e ← IC.E(h,map(B)), output (e, suidS), start AKE session Ssid on input
(sid,C, 2, b, A), set k2 as Ssid output;

If Z sends τ ′ = kdf(k2, 1) to Ssid, set K2 ← kdf(k2, 0), else set K2 ← ⊥

• On (CltSession, sid, S, pw) and message (e ′, s ′) to C: Set (h, a) ← H(pw , s ′), set B ←
map−1(IC.D(h, e ′)), start AKE session Csid on input (sid, S, 1, a, B), set k1 as Csid output,
set K1 = kdf(k1, 0) and send τ = kdf(k1, 1) to Z;

Figure 4.20: Game 0: Z’s interaction with real-world protocol OKAPE

and extracts the password that the adversary used. We need this password to be unique so

we can test it against the actual client password. Therefore we add two aborts so that this

detection is unambiguous:

Game 3 (abort on ambiguous envelopes): We add an abort on IC collisions, i.e., if IC.Enc(h1,

x1) = IC.Enc(h2, x2) for two distinct (hi, xi). It follows that |Pr[G3]− Pr[G2]| ≤ q2IC/2
n+1.

Game 4 (abort on partial H collision): We also abort if H has a partial collision in the

first component of the output, i.e., there exists h and distinct (pw i, si, ai)i∈{0,1} such that

H(pw i, si) = (h, ai). It follows that |Pr[G4]− Pr[G3]| ≤ q2H/2
κ+1.

Game 5 (randomizing the envelope on SvrSession initialization): We randomize the envelope

e created during SvrSession queries: instead of invoking IC.Enc, we pick e
r←− {0, 1}n, then

generate AKE key-pair (b, B), set x′
r←− map(B) and add (h, x′, e) to TIC. We abort if e

138

was already in TIC, i.e., there exists a h′ such that e ∈ Th′

IC.Y , or if (h, x′) had already been

queried, i.e., if x′ ∈ Th
IC.X

′. But this happens with negligible probability:

|Pr[G5]− Pr[G4]| ≤ qSvrSession

[
ϵmap + 2

qIC
2n

]

Initialize empty table TIC and TH; (Notation Th
IC.X

′ and Th
IC.Y as in Fig. 5.20)

• On (StorePwdFile, uid, pwuid
S) to S: Set(!) suidS

r←− {0, 1}κ, (huid
S , a)← H(pwuid

S , suidS), gener-
ate public key Auid

S from a. Store file[uid, S]← (Auid
S , huid

S , suidS)

• On new(!) (pw , s) to H: Pick h
r←− {0, 1}κ and generate AKE key pair (a,A). If there

exists (S, uid) such that s = suidS then record infouidS (pw) ← (A, h). Either way, add
⟨(pw , s), (h, a)⟩ to TH and output (h, a).

• On new(!) (h, x′) to IC.E: Output y
r←− Y \ Th

IC.Y , add (h, x′, y) to TIC

• On new(!) (h, y) to IC.D: Output x′
r←− X ′ \ Th

IC.X
′, add (h, x′, y) to TIC

• On (StealPwdFile, S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: Retrieve (A, h, s) ← file[uid,S], generate AKE key-pair
(b, B), set(∗) e

r←− {0, 1}n, set x′
r←− map(B) and add(∗) (h, x′, e) to TIC. Output (e, s),

start AKE session Ssid on input (sid,C, 2, b, A), set k2 as Ssid output;

If Z sends τ ′ = kdf(k2, 1) to Ssid, set K2 ← kdf(k2, 0), else set K2 ← ⊥

• On (CltSession, sid, S, pw) and message (e ′, s ′) to C: Set (h, a) ← H(pw , s ′), set B ←
map−1(IC.D(h, e ′)), start AKE session Csid on input (sid, S, 1, a, B), set k1 as Csid output,
set K1 = kdf(k1, 0) and send τ = kdf(k1, 1) to Z;

Figure 4.21: OKAPE Game 5: changes before replacement of protocol with the functionality

Remarks. The current game is shown in Figure 4.21. For notational brevity, we say queries

to oracles H, IC.E, and IC.D are new(!) as a shortcut for saying that the respective table

includes no prior tuple corresponding to the query’s input. If such tuple exists then the

oracle just retrieves the answer from its table. We also omit the possibilities of the game

aborting, because such aborts happen only with negligible probability: the places where they

could happen are marked(∗) , and correspond to the aborts that we described in the previous

games.

139

Game 6 (replacing the otkAKE protocol by functionality FotkAKE): In this step we replace

our protocol by interactions between FotkAKE and a simulator SIMAKE for the protocol, as is

usually done in the UC framework. In particular, we replace all AKE key generations to calls

to the simulator SIMAKE, shown in Figure 4.22, and the game emulates how FotkAKE would

respond to SIMAKE’s actions. Note that key-generation is completely delegated to SIMAKE
4

, and private keys are, w.l.o.g, always chosen uniformly random as in the previous game.

When generating a key for the client, we use a special flag clts to denote the fact that this

key is not tied to a user, and in fact can be obtained by anyone if they query H with the

correct (pw , s) input. This is needed because of deficiencies in the way we handle keys in

the UC framework, so that, technically, we have an intermediary game where we replace the

runs of the real otkAKE protocol with run with the same identity clts for every client.

Besides delegating key-generation to SIMAKE, we need to correctly simulate the functionality

FotkAKE to it, so that the simulator can behave correctly. The precise steps of this game

change are described next: they amount to replacing the protocol with the functionality as

is usually done in the UC framework.

We initialize a random function Rsid
P for every AKE session Psid invoked by emulated FotkAKE,

and sends NewSession messages to SIMAKE whenever C or S starts a session under such gen-

erated keys. When the environment behaves adversarially, we simulate FotkAKE by marking

sessions as actively attacked. In fact, on client side an attack can happen as soon as the

client receives its initial input (e, s). If (e, s) is not decrypted to a key created by SIMAKE for

S - namely created during a (SvrSession, sid,C, uid) query - the functionality FotkAKE would

mark this session as interfered. Note that a client session Csid that receives an honest server

generated envelope (esid
′

S,uid, s
uid
S) aimed at a session sid′ ̸= sid will not be interfered, since client

4This is a major difference between the KHAPE compiler [74] and the current one: there an adversary
could make a client run on arbitrarily chosen private key a, and in that case we can’t rely on the security
of the khAKE protocol since FkhAKE does not handle this situation, but here the adversary can only make
C run on an honestly (meaning by SIMAKE) generated key a, which is initialized during the corresponding H
query. Even though this private key may be eventually compromised and may have nothing to do with the
key that the honest S intended for C to use, FotkAKE still handles these cases securely.

140

Initialize simulator SIMAKE, empty tables TIC,TH, and lists CPK ,PK .

• On new(!) (pw , s) to H: Pick h
r←− {0, 1}κ. Then init. key A via (Init, clts, 1) call to

SIMAKE, send (Compromise, A) to SIMAKE, define a as SIMAKE’s response, add A to CPK .
If s = suidS for some (S, uid) then record infouidS (pw)← (A, h). Add ⟨(pw , s), (h, a)⟩ to TH

and output (h, a).

• On (SvrSession, sid,C, uid) to S: Retrieve (A, h, s) ← file[uid, S]. Initialize Bsid
S via an

(Init, S, 2) call to SIMAKE, let euidS
r←− {0, 1}n , add Bsid

S to PK , let x′
r←− map(Bsid

S) and
add (huid

S , x′, euidS) to TIC. Output (euidS , s), initialize function Rsid
S , set flag(Ssid) ← hbc

and send (NewSession, sid, S,C, 2) to SIMAKE

• On (CltSession, sid,S, pw) and (e, s) to C: Set (h, a)← H(pw , s), generate A correspond-
ing to a, set B ← map−1(IC.D(h, e)), initialize function Rsid

C and then

1. if ∃ (uid, sid′) such that (e, s) = (esid
′

S,uid, s
uid
S) and pw = pwuid

S : set flag(Csid) ←
hbc(sid′, A,B)

2. else set flag(Csid)← act(A,B)

In either case send (NewSession, sid, id,S, 1) to SIMAKE

Responding to AKE messages:

• On (Interfere, sid, S): set flag(Ssid)← act

• On (Interfere, sid,C): if flag(Csid) = hbc(sid′, A,B) then change it to act(A,B)

• On (NewKey, sid,C, α):

1. If flag(Csid) = act(A,B) set k1 ← Rsid
C (A,B, α)

2. If flag(Csid) = hbc(sid′, A,B): if sid = sid′, flag(Ssid) = hbc, and S outputted k2,
then pick k1 ← k2, otherwise k1

r←− {0, 1}κ

Output K1 ← kdf(k1, 0) and τ ← kdf(k1, 1)

• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = act, set k2 ← Rsid
S (Bsid

S ,Auid
S , α)

2. If flag(Ssid) = hbc: If flag(Csid) = hbc(sid, A,B) and Csid outputted key k1 then copy
this k1 to k2, otherwise pick k2

r←− {0, 1}κ

If τ ′ = kdf(k2, 1) output K2 ← kdf(k2, 0), else output ⊥

• On (ComputeKey, sid,P, pk , pk ′, α): output Rsid
P (pk , pk ′, α) if pk ′ ̸∈ (PK \ CPK)

Figure 4.22: OKAPE Game 6: replacing the protocol with the functionality FotkAKE

141

will decrypt e to a server generated key (albeit not the one Ssid uses). In this mismatching

sid case, FotkAKE would decouple the client key from the server key and consequently the

resulting keys won’t match. We solve this problem by keeping track of sid′.

If SIMAKE sends (NewKey, sid,P, α) to an actively attacked session, the output key k is set

to Rsid
P (pkP, pkCP, α) where (pkP, pkCP) are the keys this session runs under, i.e. (Buid

S ,Auid
S)

for S, and keys (A,B) derived from H(pw , s) and IC.D(h, e) for C. The game initializes PK

which contains all public keys generated by SIMAKE, and CPK which contains the subset

of permanent keys (equivalently, those that are compromised and need to be stored in the

hash function’s table). Then the game emulates the ComputeKey interface of FotkAKE and

lets SIMAKE evaluate Rsid
P (pk , pk ′, α) for any pk ′ ̸∈ (PK \CPK). When SIMAKE sends NewKey

to a non-attacked session, the game emulates FotkAKE by issuing uniform keys and we make

sure they match between counterparties in the same session iff they run on agreeing keys

(equivalently, if sid = sid′ as we explained above). Finally, we still need to consider the

correctness of the confirmation message τ and our server sessions output ⊥ if they are

incorrect.

Since we are assuming our protocol is UC secure we conclude that this game is indistinguish-

able from the previous one: |Pr[G6]− Pr[G5]| ≤ ϵZake(SIMAKE).

Game 7 (delay usage of password files and ephemeral keys Buid
S):

In Game 6, key Auid
S , hash huid

S and salt suidS are all generated during StorePwdFile queries,

while in our ideal-world they only play an important role after password compromise. In

fact, we cannot generate them at the start since the simulator has no knowledge of the

password pwuid
S before the compromise happens. Similarly, in the previous game we generate

Buid
S before it is needed (they are only ever used during actively attacked server sessions) and

our goal is to eventually drop its usage just as it happens in our ideal-world Figure 6.11. In

Game 5 we begin the process above, and this change will be done in several steps.

142

The first step is denoted Game 5 (a): we remove the generation of key Buid
S in SvrSession

query, and instead we delay it to a decryption x′ ← IC.Dec(huid
S , euidS) in the actively attacked

server sessions - note that this is the only place where Buid
S is used in Game 6, except that

SIMAKE expects to be called in a key owned by S during an honest CltSession. To make this

step indistinguishable, we embed keys in IC.Dec calls to (huid
S , euidS). Because of the properties

of map this change is indistinguishable except with probability qIC
[
ϵmap +

qIC
2n

]
since we need

to abort on collisions (see Figure 4.23). Moreover, Z cannot notice this change as long as

the delayed decryption actually generates a key (namely euidS does not come from a new(!)

encryption query IC.Enc), and this happens except with negligible probability qSvrSessionqIC/2
n.

In this step we also set suidS
r←− {0, 1}κ at the beginning of SvrSession if it’s not set yet. Note

this is only a syntactic change since a SvrSession only happens after StorePwdFile and the

latter generates suidS in the current game.

In Game 5 (b) we start marking pwuid
S as fresh when a StorePwdFile query is made, and instead

of using the answer from the H query to obtain (Auid
S , huid

S) for the file[uid, S] generation, we

use the infouidS (pwuid
S) created by this query.

Finally, in Game 5 (c) we delay file[uid, S] generation until password compromise. We change

both StealPwdFile and H simultaneously. We begin by changing H with the description

in our ideal-world Figure 6.11 where if pwuid
S is fresh then we record the offline query at-

tempt. If pwuid
S is correctly guessed and compromised then we retrieve (Auid

S , huid
S) generated

by StealPwdFile in the change we describe next. Note that so far pwuid
S is never marked

compromised, so this is only a notational change. We then modify StealPwdFile, again copy-

ing over the definition from our ideal world figure, where we mark pwuid
S compromised and

generate (Auid
S , huid

S) if there’s no previous offline query attempt on pwuid
S , else we retrieve

it from the record infouidS (pwuid
S) that was created during an H query. It is easy to see that

this last change is undetectable too, no matter the order of queries to H and StealPwdFile

due to both generating (Auid
S , huid

S) by the same method. As in the previous game, we add

143

• On (StorePwdFile, uid, pwuid
S) to S: mark pwuid

S as fresh, pick(∗) suidS
r←− {0, 1}κ, query

H(pwuid
S , suidS) and set (Auid

S , huid
S)← infouidS (pwuid

S).

• On new(!) (pw , s) to H:

1. If s ̸= suidS for all (S, uid) then h
r←− {0, 1}κ, init. key A via (Init, clts, 1) call to

SIMAKE, send (Compromise, A) to SIMAKE, define a as SIMAKE’s response, add A to
CPK

2. If s = suidS for some (S, uid) then:

(a) If pwuid
S is compromised and pw = pwuid

S set (A, h)← (Auid
S , huid

S)

(b) Else then record ⟨offline,S, uid, pw⟩, initialize A via (Init, clts, 1) call to SIMAKE,
add A to PK , pick h

r←− {0, 1}κ

In both cases (a) and (b), set infouidS (pw)← (A, h), send (Compromise, A) to SIMAKE

and define a as its response, add A to CPK

Add ⟨(pw , s), (h, a)⟩ to TH and send back (h, a)

• On new(!) (h, y) to IC.D: If (h, y) = (huid
S , euidS) for some (S, uid) then we Initialize B via

(Init, S, 2) call to SIMAKE, add B to PK , set x′
r←− map(B). Otherwise set x′

r←− X ′\Th
IC.X

′.
Either way, add (h, x′, y) to TIC, output x

′

• On (StealPwdFile, S, uid): if suidS is not set, pick suidS
r←− {0, 1}κ. If there is a fresh

pwuid
S , mark it compromised and continue, otherwise abort. Then (a) If ∃ record

⟨offline,S, uid, pwuid
S ⟩ then set (A, h) ← infouidS (pw); (b) else initialize A via (Init, clts, 1)

call to SIMAKE, add A to PK , pick h
r←− {0, 1}κ.

In either case, set (Auid
S , huid

S)← (A, h), output file[uid,S]← (Auid
S , huid

S , suidS)

• On (SvrSession, sid,C, uid) to S: if suidS is not set, pick suidS
r←− {0, 1}κ. Initialize

function Rsid
S , set flag(Ssid) ← hbc, let euidS

r←− {0, 1}n, output (euidS , suidS) and send
(NewSession, sid, S,C, 2) to SIMAKE

Responding to AKE messages:

• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = hbc: If flag(Csid) = hbc(sid, A,B) and Csid outputted key k1 then copy
this k1 to k2, otherwise pick k2

r←− {0, 1}κ

2. If flag(Ssid) = act, set k2 ← Rsid
S (map−1(IC.Dec(huid

S , euidS)),Auid
S , α)

If τ ′ = kdf(k2, 1) output K2 ← kdf(k2, 0), else output ⊥

Figure 4.23: OKAPE Game 5: delaying password file creation

144

a superfluous generation of suidS so that the next game changes are clearer - note it is still

always generated during StorePwdFile. We have |Pr[G5]−Pr[G6]| ≤ qIC
[
ϵmap +

qIC
2n

+ qses/2
n
]
.

Game 8 (replace kdf outputs with random strings in passive sessions): In this game we

modify how keys are generated. For active flagged sessions we do as in Game 5, but for hbc

sessions we want to drop kdf usage. We stress that client sessions currently tagged hbc are not

completely honest: an adversary may try a replay attack utilizing the envelope from another

session sid′ that the server ran, while using the same (uid, suidS) as Ssid. For the current game

we interpret the hbc client flag as meaning that the adversary used a (non-compromisable)

honest server key and thus shouldn’t be able to predict the key that will be output by the

client.

When responding to NewKey commands for hbc sessions, it is immediate in Game 5 that we

can always assume that a client session picks its otkAKE key k1
r←− {0, 1}κ first, instead of

the apparent symmetry between server and client in Game 5. This follows since our aPAKE

server session always waits for the confirmation message τ ′ from the client before (deciding

on) outputting its own key K2. In fact, we can delay the sid test to the server key generation.

Consequently, client session always generates k1 uniformly. But more importantly, by the

randomness property of the kdf, instead of hbc client inputting uniform k1 to kdf, we directly

assign random elements to (K1, τ). Given that k1 is generated uniformly, and that this change

is distinguishable only if adversary happens to query kdf(k1, x) for x ∈ {0, 1}, we can drop

kdf usage on each single NewKey except with negligible probability qkdf/2
κ. Note that we

have finally arrived in how our ideal-world handles NewKey client queries, see Figure 4.24.

Switching to server-side hbc key generation, we see that in Game 5 we output ⊥ except when

τ ′ matches τS := kdf(k2, 1). If k2 is not equal to k1, then k2 is uniformly random and no

information about it is leaked to the adversary, thus he can’t predict the correct τS except

with probability 1/2κ - and if the environment fails in correctly guessing τS we output ⊥. We

145

conclude that, except with probability qNewKey/2
κ, the only way some hbc Ssid outputs a key

K2 ̸= ⊥ (and in fact this is the same key K1 that the client outputted) is when k2 = k1 and

the environment simply forwarded the honest τ from the client to the server. In particular,

the client ran on the correct public key for its session, meaning it was flagged hbc(sid′, A,B)

for sid′ = sid. See Figure 4.24.

Responding to AKE messages:

• On (NewKey, sid,C, α):

1. If flag(Csid) = act(A,B): set k1 ← Rsid
C (A,B, α) and output kdf(k1, 0), kdf(k1, 1)

2. In all other cases output (K1, τ)
r←− {0, 1}κ × {0, 1}κ.

• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = hbc: If τ ′ was generated for Csid and the client’s key K1 was set when
flag(Csid) = hbc(sid, A,B) then output K2 ← K1

2. If flag(Ssid) = act: set k2 ← Rsid
S (map−1(IC.Dec(huid

S , euidS)),Auid
S , α) then if τ ′ =

kdf(k2, 1) output K2 ← kdf(k2, 0)

3. In all other cases output K2 ← ⊥.

Figure 4.24: OKAPE Game 8: Removing the kdf

The difference between Game 8 and Game 5 is negligible to Z: |Pr[G8] − Pr[G5]| ≤

qses
[
qkdf+1
2κ

]
+ ϵZkdf .

Game 9 (separating random keys from the rest of the game and dropping password usage):

Our main goal in Game 9 is to make explicit that certain client output keys are uniform and

independent of the rest of the game. By doing so, we are able to drop password usage except

those that can be deferred to the functionality FaPAKE. This is needed since our simulator

doesn’t have access to pwuid
S until successful password compromise. We again split this game

change in several steps. Game 9(a): we start embedding freshly initialized keys (through

calls to SIMAKE) into every IC.Dec query. As is done in FotkAKE, each Init call contains the

owner of the key. For decryption inputs possibly used by Ssid, i.e. (h, y) with y = euidS and

h such that ∃(A, pw) with (A, h) = infouidS (pw), we still use the identifier S as the owner;

146

otherwise we use the null identity to denote keys that are not used by honest parties. The

latter id is needed so that we prohibit SIMAKE computing ComputeKey on such keys: since

the public-key B (which is generated uniformly in this context) does not leak the private

key b, no adversary should be able to compute the client output key. This is needed for our

second part (b) below. Note that now IC.Dec agrees with the definition in our ideal-world

simulation. This change is indistinguishable except with probability qIC
[
ϵmap +

qIC
2n

]
.

In the second step, Game 9(b) introduces the rnd flag for client sessions. These will be the

client sessions for which the output key is uniform and independent of the rest of the game.

In particular, it shouldn’t match the key output by a server or correspond to a valid query

to ComputeKey. For instance, in a client session marked hbc(sid′, A,B) in Game 8, B is an

honestly generated key for S and thus, by definition, ComputeKey does not allow adversary

to learn this key from it - the only way this key is not independent from the rest of the game

is if the server outputs the same key (i.e. S is marked hbc and sid′ = sid). Note that as

in Game 8, the client key generation for a session now marked rnd will output an uniform

(K1, τ) independent of any server-side computation. We modify the CltSession computation

of Game 8 by splitting its description into the same cases as in the ideal-world Figure 6.11.

1. If (e′, s′) = (euidS , suidS): then5 either pw = pwuid
S , in which case we still flag this session

as hbc, or pw ̸= pwuid
S and the hash h generated by the client yields a new(!) decryption

of e′, making this key rnd since we know the server key will not agree because of

the mismatch between passwords. Note that by our change in (a) any new(!) IC.Dec

query makes it impossible for the adversary to learn the key through ComputeKey and

since IC has no collisions (by a previous game) euidS couldn’t come from two distinct

new(!) IC.Enc queries.

5Note that in Game 8 we also mark (esid
′

S,uid, s
uid
S) as hbc, but in fact if sid′ ̸= sid then this session is rnd.

If we follow the ’switch’ 1, 2, 3 and 4 we see that this case will correctly only match case 4 except with
negligible probability.

147

• On new(!) (h, y) to IC.D: if there exists (S, uid) and (A, pw) such that y = euidS and
infouidS (pw) = (A, h) then set id = S, else set id = null. Initialize key B via call (Init, id, 2)
to SIMAKE and add B to PK . Set x′

r←− map(B), add (h, x′, y) to TIC and send back x′

• On (CltSession, sid,S, pw) and (e ′, s ′) to C: Initialize function Rsid
C and then

1. If (e′, s′) = (euidS , suidS) then if pw = pwuid
S , set flag(Csid)← hbcsid, else go to 4.

2. If ∃ x′, uid s.t. s ′ = suidS and e ′ was output by new(!) IC.E on (huid
S , x′) then

(a) if record pwuid
S is compromised and pw = pwuid

S then set
flag(Csid)←act(Auid

S ,map−1(x′)), jump to 5

(b) else jump to 4

3. If ∃ (x′, h, a, pw ′) s.t. e ′ was output by new(!) IC.E on (h, x′) and ⟨(pw ′, s ′), (h, a)⟩ ∈
TH then generate A from a and:

(a) if pw ′ = pw : flag(Csid)←act(A,map−1(x′)) and jump to 5

(b) else jump to 4

4. In all other cases set flag(Csid)← rnd, go to 5.

5. Send (NewSession, sid, clts,S, 1) to SIMAKE

Responding to AKE messages:

• On (Interfere, sid,C): if flag(Csid) = hbcsid then change it to rnd

• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = hbc, τ ′ was generated for Csid and the client’s key K1 was set when
flag(Csid) = hbcuidS then output K2 ← K1

2. If flag(Ssid) = act and ∃ (pw , B) s.t. τ ′= kdf(k ,1) for k = Rsid
S (B,A, α) where

(A, h) = infouidS (pw) and (h,map(B), euidS) ∈ TIC, then (a) if pw = pwuid
S then output

K2 ← kdf(k , 0); (b) otherwise go to 3

3. In all other cases output K2 ← ⊥

Figure 4.25: OKAPE Game 9: rnd sessions and removing password usage

148

2. 6 If ∃ x′, uid s.t. s ′ = suidS and e ′ was output by a new(!) IC.E on (huid
S , x′): as the

adversary runs IC.Enc on huid
S we may assume the latter was leaked, i.e. pwuid

S has

been compromised. The decryption done by the client (using pw) will not be new(!) iff

pw = pwuid
S , and in this case we still mark this session as actively attacked, otherwise

the adversary can’t obtain the key through a ComputeKey query and once again we

can flag it as rnd.

3. If ∃ (x′, h, a, pw ′) s.t. e ′ was output by new(!) IC.E on (h, x′) and ⟨(pw ′, s ′), (h, a)⟩ ∈ TH:

then if pw = pw ′ we will decrypt B from a non new(!) , and the adversary could learn

this key from a ComputeKey query because B ̸∈ PK , so this session is still marked

actively attacked. On the other hand, if the passwords are distinct then, as we are

assuming IC has no collisions, we have a rnd client session.

4. If none of the cases above are true, then we mark the session as rnd.

The result of the above changes is in the CltSession section of Figure 4.25.

Our third substep is Game 9 (c): we note that every Interfere on an hbc client session makes

it rnd because now the only sessions being marked as honest use honestly generated server

side public key B. Finally, in Game 9(d) we replace the handling of server-side NewKey

queries by the description in the ideal-world (see Figure 6.11). It is clear this is just a

semantical change. We also remove the public keys (A,B) from hbc client tags since they

are not used. This in turn lets us drop the decryption that obtains B in CltSession and to

reuse the notation from our ideal-world game for the client public key A. Lastly, we can

drop the hash query (a, h) ← H(pw , s ′) since they are not used anymore for the processing

of CltSession. We get |Pr[G9]− Pr[G8]| ≤ qIC
[
ϵmap +

qIC
2n

]
.

Game 10 (ideal-world: cleaning up StorePwdFile): This is the ideal-world game where

6From here on out these sessions are marked active by Game 8, except the sid ̸= sid′ case we described
above, thus client session keys will have no impact in server key generations. Equivalently, we can change
the flag of sessions to rnd iff k1 can’t be obtained from ComputeKey.

149

the interaction between the OKAPE compiler and the adversary is completely replaced by

FotkAKE and our simulator SIMAKE. The only difference between Game 9 and Game 10 is in

StorePwdFile: we need to drop picking suidS
r←− {0, 1}κ and setting (Auid

S , huid
S) during these

queries. Looking at Figure 6.11, we see that this change is negligible to Z because (a)

(Auid
S , huid

S) is only needed after password compromise, and in this case Game 5 has already

generated the (Auid
S , huid

S) pair through StealPwdFile and (b) suidS will be generated through

either a SvrSession or StealPwdFile and it is not used before except with negligible probability.

In fact, we have Pr[G10]− Pr[G9] ≤ (qH + qses)/2
κ.

We conclude that |Pr[G10]−Pr[G0]| is a negligible quantity and thus Theorem 4.4 is proved.

150

Initialize simulator SIMAKE, empty tables TIC,TH, and lists CPK ,PK .

• On (StorePwdFile, uid, pwuid
S) to S: mark pwuid

S as fresh

• On new(!) (pw , s) to H:

1. If s ̸= suidS for all (S, uid) then h
r←− {0, 1}κ, init. A via (Init, clts, 1) call to SIMAKE,

send (Compromise, A) to SIMAKE, define a as SIMAKE’s response, add A to CPK
2. If s = suidS for some (S, uid) then:

(a) If pwuid
S is compromised and pw = pwuid

S set (A, h)← (Auid
S , huid

S)
(b) Else then record ⟨offline, S, uid, pw⟩, initialize A via (Init, cltsuidS , 1) call to

SIMAKE, add A to PK , pick h
r←− {0, 1}κ

In both cases (a) and (b), set infouidS (pw)← (A, h), send (Compromise, A) to SIMAKE

and define a as its response, add A to CPK
Add ⟨(pw , s), (h, a)⟩ to TH and send back (h, a)

• On new(!) (h, x′) to IC.E: Output y
r←− Y \ Th

IC.Y , add (h, x′, y) to TIC

• On new(!) (h, y) to IC.D: if there exists (S, uid) and (A, pw) such that y = euidS and
infouidS (pw) = (A, h) then set id = S, else set id = null. Initialize key B via call (Init, id, 2)
to SIMAKE and add B to PK . Set x′

r←− map(B), add (h, x′, y) to TIC and send back x′

• On (StealPwdFile, S, uid): if suidS is not set, pick suidS
r←− {0, 1}κ. If there is a fresh

pwuid
S , mark it compromised and continue, otherwise abort. Then (a) If ∃ record

⟨offline,S, uid, pwuid
S ⟩ then set (A, h)← infouidS (pwuid

S); (b) else initialize A via (Init, clts, 1)
call to SIMAKE, add A to PK , pick h

r←− {0, 1}κ.
In either case, set (Auid

S , huid
S)← (A, h), output file[uid,S]← (Auid

S , huid
S , suidS)

• On (SvrSession, sid,C, uid) to S: if suidS is not set, pick suidS
r←− {0, 1}κ. Initial-

ize function Rsid
S , set flag(Ssid) ← hbc, set euidS

r←− Y , output (euidS , suidS) and send
(NewSession, sid, S, clts, 2) to SIMAKE

• On (CltSession, sid,S, pw) and (e ′, s ′) to C: Initialize function Rsid
C and:

1. If ∃ uid s.t. (e ′, s ′) = (euidS , suidS):if pw = pwuid
S , set flag(Csid)← hbcuidS , else go to 4.

2. If ∃ x′, uid s.t. s ′ = suidS and e ′ was output by new(!) IC.E on (huid
S , x′) then

(a) if record pwuid
S is compromised and pw = pwuid

S then set
flag(Csid)←(actuidS ,Auid

S ,map−1(x′)), jump to 5.
(b) else jump to 4.

3. If ∃ (x′, h, a, pw ′) s.t. e ′ was output by new(!) IC.E on (h, x′) and ⟨(pw ′, s ′), (h, a)⟩ ∈
TH (SIM aborts if tuple not unique) then generate public key A from a and:
(a) if pw ′ = pw : flag(Csid)←(actuidS , A,map−1(x′)) and jump to 5.
(b) else jump to 4.

4. In all other cases set flag(Csid)← rnd, go to 5.
5. Send (NewSession, sid, clts, S, 1) to SIMAKE

Responding to AKE messages from SIMAKE:

• On (Interfere, sid, S): set flag(Ssid)← act

• On (Interfere, sid,C): if flag(Csid) = hbcuidS then flag(Csid)← rnd

• On (NewKey, sid,C, α):

1. If flag(Csid) = (actuidS , A,B) then set k1 ← Rsid
C (A,B, α) and output (K1, τ) ←

(kdf(k1, 0), kdf(k1, 1))
2. In all other cases output (K1, τ)

r←− {0, 1}κ × {0, 1}κ.
• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = hbc, τ ′ was generated for Csid and the client’s key K1 was set when
flag(Csid) = hbcuidS then output K2 ← K1

2. If flag(Ssid) = act and ∃ (pw , B) s.t. τ ′= kdf(k ,1) for k = Rsid
S (B,A, α) where

(A, h) = infouidS (pw) and (h,map(B), euidS) ∈ TIC, then (a) if pw = pwuid
S then output

K2 ← kdf(k , 0); (b) otherwise go to 3
3. In all other cases output K2 ← ⊥

• On (ComputeKey, sid,P, pk , pk ′, α): output Rsid
P (pk , pk ′, α) if pk ′ ̸∈ (PK \ CPK)

Figure 4.26: OKAPE Game 10: Z’s view of ideal-world interaction

151

Chapter 5

Randomized Half-Ideal Cipher on

Groups with application to UC

(a)PAKE

5.1 Introduction

The Ideal Cipher Model (ICM) dates back to the work of Shannon [118], and it models a block

cipher as an Ideal Cipher (IC) oracle, where every key, even chosen by the attacker, defines

an independent random permutation. Formally, an efficient adversary who evaluates a block

cipher on any key k of its choice cannot distinguish computing the cipher on that key in the

forward and backward direction from an interaction with oracles Ek(·) and E−1k (·), where

{Ei} is a family of random permutations on the cipher domain. The Ideal Cipher Model has

seen a variety of applications in cryptographic analysis, e.g. [123, 111, 63, 115, 95, 57, 39, 90],

e.g. the analysis of the Davies-Meyer construction of a collision-resistant hash [115, 39], of

the Even-Mansour construction of a cipher from a public pseudorandom permutation [63],

152

or of the DESX method for key-length extension for block ciphers [95]. A series of works

[60, 51, 82, 52, 55] shows that ICM is equivalent to the Random Oracle Model (ROM) [27].

Specifically, these papers show that n-round Feistel, where each round function is a Random

Oracle (RO), implements IC for some n, and the result of Dai and Steinberger [55] shows

that n = 8 is both sufficient and necessary. Other IC constructions include iterated Even-

Mansour and key alternating ciphers [54, 17, 61], wide-input (public) random permutations

[35, 33, 53], and domain extension mechanisms, e.g. [50, 75].

Ideal Ciphers on Groups: Applications. All the IC applications above consider IC on

a domain of fixed-length bitstrings. However, there are also attractive applications of IC

whose domain is a group. A prominent example is a Password Authenticated Key Exchange

(PAKE) protocol called Encrypted Key Exchange (EKE), due to Bellovin and Meritt [28].

EKE is a compiler from plain key exchange (KE) whose messages are pseudorandom in some

domain D, and it implements a secure PAKE if parties use an IC on domain D to password-

encrypt KE messages.1 The EKE solution to PAKE is attractive because it realizes UC

PAKE given any key-private (a.k.a. anonymous) KEM [25], or KE with a mild “random

message” property, at a cost which is the same as the underlying KE(M) if the cost of IC

on KE(M) message domain(s) is negligible compared to the cost of KE(M) itself. However,

instantiating EKE with e.g. Diffie-Hellman KE (DH-KE) [58] requires an IC on a group

because DH-KE messages are random group elements.

Recently Gu et al. [74] and Freitas et al. [68] extended the EKE paradigm to cost-minimal

compilers which create UC asymmetric PAKE (aPAKE), i.e. PAKE for the client-server

setting where one party holds a one-way hash of the password instead of a password itself,

from any key-hiding Authenticated Key Exchange (AKE). The AKE-to-aPAKE compilers

of [74, 68] are similar to the “EKE” KE-to-PAKE compiler of [28] in that they also require

1Bellare et al. [26] showed that EKE+IC is a game-based secure PAKE, then Abdalla et al. [8] showed that
EKE variant with explicit key confirmation realizes UC PAKE, and recently McQuoid et al. [109] showed
that a round-minimal EKE variant realizes UC PAKE as well (however, see more on their analysis below).

153

IC-encryption of KE-related values, but they use IC to password-encrypt a KEM public key

rather than KE protocol messages. The key-hiding AKE’s exemplified in [74, 68], namely

HMQV [99] and 3DH [108], are variants and generalizations of DH-KE where public keys

are group elements, hence the AKE-to-aPAKE compilers of [74, 68] instantiated this way

also require IC on a group.

Ideal Ciphers on Groups: Existing Constructions. The above motivates searching for

efficient constructions of IC on a domain of an arbitrary group. Note first that a standard

block cipher on a bitstring domain does not work. The elements of any group G can be

encoded as bitstrings of some fixed length n, but unless these encodings cover almost all n-

bit strings, i.e. unless (1−|G|/2n) is negligible, encrypting G elements under a password using

IC on n-bit strings exposes a scheme to an offline dictionary attack, because the adversary

can decrypt a ciphertext under any password candidate and test if the decrypted plaintext

encodes a G element.

Black and Rogaway [38] showed an elegant black-box solution for an IC on G given an IC

on n-bit strings provided that c = (2n/|G|) is a constant: To encrypt element x ∈ G under

key k, use the underlying n-bit IC in a loop, i.e. set x0 to the n-bit encoding of x, and

xi+1 = IC.Enck(xi) for each i≥ 0, and output as the ciphertext the first xi for i≥ 1 s.t. xi

encodes an element of group G. (Decryption works the same way but using IC.Dec.) This

procedure takes expected c uses of IC.Enc, but timing measurement of either encryption or

decryption leaks roughly log c bits of information on key k per each usage, because given the

ciphertext one can eliminate all keys which form decryption cycles whose length does not

match the length implied by the timing data.

To the best of our knowledge there are only two other types of constructions of IC on a

group. First, the work of [60, 51, 82, 52, 55] shows that n-round Feistel network implements

an IC for n ≥ 8. Although not stated explicitly, these results imply a (randomized) IC

154

on a group, where one Feistel wire holds group elements, the xor gates on that wire are

replaced by group operations, and hashes onto that wire are implemented as RO hashes

onto the group. However, since n = 8 rounds is minimal [55], this construction incurs

four RO hashes onto a group per cipher operation. Whereas there is progress regarding RO-

indifferentiable hashing on Elliptic Curve (EC) groups, see e.g. [65], current implementations

report an RO hash costs in the ballpark of 25% of scalar multiplication. Hence, far from

being negligible, the cost of IC on group implemented in this way would roughly equal the

DH-KE cost in the EKE compiler. The second construction of (randomized) IC combines

any (randomized) quasi-bijective encoding of group elements as bitstrings with an IC on the

resulting bitstrings [74]. However, we know of only two quasi-bijective encodings for Elliptic

Curve groups, Elligator2 of Bernstein et al. [32] and Elligator2 of Tibouchi et al. [121, 96],

and both have some practical disadvantages. Elligator2 works for only some elliptic curves,

and it can encode only half the group elements, which means that any application has to

re-generate group elements until it finds one in the domain of Elligator2. Elligator2 works

for a larger class of curves, but its encoding procedure is non-constant time and it appears

to be significantly more expensive than one RO hash onto a curve. Elligator2 also encodes

each EC element as a pair of underlying field elements, effectively doubling the size of the

EC element representation.

IC Alternative: Programmable-Once Public Function. An alternative path was

recently charted by McQuoid et al. [109], who showed that a 2-round Feistel, with one wire

holding group elements, implements a randomized cipher on a group which has some IC-like

properties, which [109] captured in a notion of Programmable Once Public Function (POPF).

Moreover, they argue that POPF can replace IC in several applications, exemplifying it with

an argument that EKE realizes UC PAKE if password encryption is implemented with a

POPF in place of IC. This would be very attractive because if 2-round Feistel can indeed

function as an IC replacement in applications like the PAKE of [28] or the aPAKE’s of

155

[74, 68], this would form the most efficient and flexible implementation option for these

protocols, because it works for any group which admits RO-indifferentiable hash, and it uses

just one such hash-onto-group per cipher operation.

However, it seems difficult to use the POPF abstraction of [109] as a replacement for IC in the

above applications because the POPF notion captures 2-round Feistel properties with game-

based properties which appear not to address non-malleability. For that reason we doubt that

it can be proven that UC PAKE is realized by EKE with IC replaced by POPF as defined in

[109]. (See below for more details.) The fact that the POPF abstraction appears insufficient

does not preclude that UC PAKE can be realized by EKE with encryption implemented as

2-round Feistel, but such argument would not be modular. Moreover, each application which

uses 2-round Feistel in place of IC would require a separate non-modular proof. Alternatively,

one could search for a “POPF+” abstraction, realized by a 2-round Feistel, which captures

sufficient non-malleability properties to be useful as an IC replacement in PAKE applications,

but in this work we chose a different route.

Our Results: Modified 2-Feistel as (Randomized) Half-Ideal Cipher. Instead of

trying to work with 2-Feistel itself, we show that adding a block cipher BC to one wire in

2-Feistel makes this transformation non-malleable, and we capture the properties of this

construction in the form of a UC notion we call a (Randomized) Half-Ideal Cipher (HIC).

In Figure 5.1 we show a simple pictorial comparison of 2-Feistel, denoted 2F, and our modi-

fication, denoted m2F. The modified 2-Feistel has the same efficiency and versatility as the

2-Feistel used by McQuoid et al. [109]: It works for any group with an RO-indifferentiable

hash onto a group, it runs in fixed time, and it requires only one RO hash onto a group per

cipher operation.

One drawback of m2F is that the ciphertext is longer than the plaintext by 2κ bits, where κ

is a security parameter. However, that is less than any IC implementation above (including

156

POPF, which does not realize IC) except for Elligator2: IC results from n-round Feistel have

loose security bounds, hence they need significantly longer randomness to achieve the same

provable security; Elligator2 adds κ bits for general moduli, due to encoding of field elements

as random bitstrings; Elligator2 uses an additional field element, which adds at least 2κ bits,

plus another κ bits for the field-onto-bits encoding; Finally, 2-Feistel requires at least 3κ bits

of randomness when used in EKE [109].

Hpw ·

+ H′pw

r ∈ {0, 1}n M ∈ G

s ∈ {0, 1}n T ∈ G

Hpw ·

BC H′pw

r ∈ {0, 1}n M ∈ G

k ∈ {0, 1}µ

s ∈ {0, 1}n T ∈ G

Figure 5.1: Left: two-round Feistel (2F) used in McQuoid et al. [109]; Right: our circuit
m2F. The change from 2F to m2F is small: If k = H ′(pw , T), then 2F sets s = k⊕r, whereas
m2F sets s = BC.Enc(k, r), where BC is a block cipher.

The UC HIC notion is a relaxation of an Ideal Cipher notion, but it does not prevent

applicability in protocols like [28, 74, 68], which we exemplify by showing that the following

protocols remain secure with (any realization of) IC replaced by (any realization of) HIC:

(I) UC PAKE is realized by an EKE variant with IC replaced by HIC, using round-minimal

KE with a random-message property;

(II) UC PAKE is realized by an EKE variant with IC replaced by HIC, using anonymous

KEM with a uniform public keys property;

(III) UC aPAKE is realized by KHAPE [74] with IC replaced by HIC, using key-hiding

AKE.

157

Regarding the first two proofs, we are not aware of full proofs exhibited for the corresponding

statements where these EKE variants use IC instead of HIC, but the third proof follows the

blueprint of the proof given in [74] for the KHAPE protocol using IC, and it exemplifies how

little such proof changes if IC is replaced by HIC.

Half-Ideal Cipher. The first difference between IC on group G and HIC on group G

is that the latter is a cipher on an extended domain D = R × G where R = {0, 1}n is

the randomness space, for n ≥ 2κ where κ is the security parameter. In the decryption

direction, HIC acts exactly like IC on domain D, i.e. unless ciphertext c ∈ D is already

associated with some plaintext in the permutation table defined by key k, an adversarial

decryption of c under key k returns a random plaintext m, chosen by the HIC functionality

with uniform distribution over those elements in domain D which are not yet assigned to any

ciphertext in the permutation table for key k. However, in the encryption direction HIC is

only half-ideal in the following sense: If plaintext m is not yet associated with any ciphertext

in the permutation table for key k then encryption of m under key k returns a ciphertext

c = (s, T) ∈ D = R × G s.t. the T ∈ G part of c can be freely specified by the adversary,

and the s ∈ R part of c is then chosen by the HIC functionality at random with uniform

distribution over s’s s.t. c = (s, T) is not yet assigned to any plaintext in the permutation

table for key k. In short, HIC decryption on any (k, c) returns a random plaintext m (subject

to the constraint that RIC(k, ·) is a permutation on D), but HIC encryption on any (k,m)

returns c = (s, T) s.t. T can be correlated with other values in an arbitrary way, which is

modeled by allowing the adversary to choose it, but s is random (subject to the constraint

that RIC(k, ·) is a permutation).2

Intuitively, the reason the adversarial ability to manipulate part of IC ciphertext does not

affect typical IC applications is that these applications typically rely on the following prop-

2This describes only the adversarial interface to the HIC functionality. Honest parties’ interface is as in
IC in both directions, except that it hides encryption randomness, i.e. encryption takes only input M ∈ G
and decryption outputs only the M ∈ G part of the “extended” HIC plaintext m ∈ D.

158

erties of IC: (1) that decryption of a ciphertext on any other key from the one used in

encryption outputs a random plaintext, (2) that any change to a ciphertext implies that

the corresponding plaintext is random and hence uncorrelated to the plaintext in the origi-

nal ciphertext, and (3) that no two encryption operations can output the same ciphertext,

regardless of the keys used, and moreover that the simulator can straight-line extract the

unique key used in a ciphertext formed in the forward direction. Only properties (2) and (3)

could be affected by the adversarial ability to choose the T part of a ciphertext in encryp-

tion, but the fact that the s part is still random, and that |s| ≥ 2κ, means that just like in

IC, except for negligible probability each encryption outputs a ciphertext which is different

from all previously used ones. Consequently, just like in IC, a HIC ciphertext commits the

adversary to (at most) a single key used to create that ciphertext in a forward direction, the

simulator can straight-line extract that key, and the decryption of this ciphertext under any

other key samples random elements in the domain.

Further Applications: IC domain extension, LWE-based UC PAKE. The modi-

fied 2-Feistel construction can also be used as a domain extender for (randomized) IC on

bitstrings. Given an RO hash onto {0, 1}t and an IC on {0, 1}2κ, the m2F construction

creates a HIC on {0, 1}t, for any t = poly(κ). The modified 2-Feistelis simpler than other

IC domain extenders, e.g. [50, 75], and it has better exact security bounds, hence it is an

attractive alternative in applications where HIC can securely substitute for IC on a large

bitstring domain. For example, by our result (II) above, m2F on long bitstrings can be used

to implement UC PAKE from any lattice-based IND-secure and anonymous KEM. This in-

cludes several post-quantum LWE-based KEM proposals in the NIST competition, including

Saber [56], Kyber [40], McEliece [13], NTRU [80], Frodo [16], and possibly others.3 Such

UC PAKE construction would add only 3κ bits in bandwidth to the underlying KEM, and

its computational overhead over the underlying KEM operations would be negligible, i.e.

3Two recent papers [106, 124] investigate anonymity of several CCA-secure LWE-based KEMs achieved
via variants of the Fujisaki-Okamoto transform [69] applied to the IND-secure versions of these KEM’s.
However, the underlying IND-secure KEM’s are all anonymous, see e.g. [106, 124] and the references therein.

159

the LWE-based UC PAKE would have essentially exactly the same cost as the LWE-based

unauthenticated Key Exchange, i.e. an IND-secure KEM. We show a concrete construction

of UC PAKE from Saber KEM in Section 5.6.

Half-Ideal Cipher versus POPF. Our modified 2-Feistel construction and the UC HIC

abstraction we use to capture its properties can be thought of as a “non-malleability upgrade”

to the 2-Feistel, and to the game-based POPF abstraction used by McQuoid et al. [109] to

capture its properties. One reason why the UC HIC notion is an improvement over the

POPF notion is that a UC tool is easier to use in protocol applications than a game-based

abstraction. More specifically, the danger of game-based properties is that they often fail to

adequately capture non-malleability properties needed in protocol applications, e.g. in the

EKE protocol, where the man-in-the-middle attacker can modify the ciphertexts exchanged

between Alice and Bob.4 Indeed, POPF properties seem not to capture ciphertext non-

malleability. As defined in [109], POPF has two security properties, honest simulation and

uncontrollable outputs. The first one says that if ciphertext c is output by a simulator on

behalf of an honest party, then decrypting it under any key results in a random element in

group G, except for the (key,plaintext) pair, denoted (x∗, y∗) in [109], which was programmed

into this ciphertext by the simulator. The second property says that any ciphertext c∗ output

by an adversary decrypts to random elements in group G for all keys except for key k∗,

denoted x∗ in [109], which was used by the adversary to create c∗ in the forward direction,

and which can be straight-line extracted by the simulator.5 However, these properties do

not say that the (key,plaintext) pairs behind the adversary’s ciphertext c∗ cannot bear any

relation to the (key,plaintext) pairs behind the simulator’s ciphertext c.

Note that non-malleability is necessary in a protocol application like EKE, and for that

4A potential benefit of a game-based notion over a UC notion is that the former could be easier to state
and use, but this does not seem to be the case for the POPF properties of [109], because they are quite
involved and subtle.

5Technically [109] state this property as pseudorandomness of outputs of any weak-PRF on the decryptions
of c∗ for any k ̸= k∗, and not the pseudorandomness of the decrypted plaintexts themselves.

160

reason we think that it is unlikely that EKE can provably realize UC PAKE based on the

POPF properties alone. Consider a cipher Enc on a multiplicative group s.t. there is an

efficient algorithm A s.t. if c = Enc(k,M) and c∗ = A(c) then M∗ = Dec(k, c∗) satisfies

relation M∗ = M2 if lsb(k) = 0, and m∗ = m3 if lsb(k) = 1. If this cipher is used in EKE

for password-encryption of DH-KE messages then the attacker would learn lsb of password

pw used by Alice and Bob: If the attacker passes Alice’s message cA = Enc(pw , gx) to Bob,

but replaces Bob’s message cB = Enc(pw , gy) by sending a modified message c∗B = A(cB)

to Alice, then c∗B = Enc(pw , gy·(2+b)) where b = lsb(pw), hence an attacker who sees Alice’s

output kA = gxy·(2+b) and Bob’s output kB = gxy, can learn bit b by testing if kA = (kB)
(2+b).

More generally, any attack A which transforms ciphertext c = Enc(k,M) to ciphertext

c∗ = Enc(k∗,M∗) s.t. (k,M, k∗,M∗) are in some non-trivial relation, is a potential danger

for EKE. We do not believe that 2-Feistel is subject to such attacks, but POPF properties

defined in [109] do not seem to forbid them.

If one uses 2-Feistel directly rather than the POPF abstraction then it might still be possible

to prove that EKE with 2-Feistel realizes UC PAKE. We note that 2-Feistel is subject to the

following restricted form of “key-dependent malleability”, which appears not to have been

observed in [109] and which would have to be accounted for in such proof. Namely, consider

an adversary who given ciphertext c = (s, T) outputs ciphertext c∗ = (s∗, T ∗) for any T ∗

and s∗ s.t. s∗ ⊕ H′(pw ∗, T ∗) = s ⊕ H′(pw ∗, T). Note that this adversary is not performing

a decryption of c under pw ∗, because it is not querying H(pw ∗, r) for r = s ⊕ H′(pw ∗, T),

but plaintexts M∗ = Dec(pw , c∗) and M = Dec(pw , c) satisfy a non-trivial relation M∗/M =

T ∗/T if pw = pw ∗ and not otherwise. On the other hand, since this adversarial behavior

seems to implement just a different form of an online attack using a unique password guess

pw ∗, it is still possible that EKE realizes UC PAKE even when password encryption is

implemented as 2-Feistel. However, rather than considering such non-modular direct proofs

for each application of IC on a group, in this paper we show that a small change in the

2-Feistel circuit implies realizing a HIC relaxation of the IC model, and this HIC relaxation

161

is as easy to use as IC in the security proofs for protocols like EKE [28] or aPAKE’s of Gu

et al. [74, 68].

Finally, we note that an extension of the above attack shows that 2-Feistel itself, without our

modification, cannot realize the HIC abstraction. Observe that if the adversary computes t

hashes Zi = H(pw , ri) for some pw and r1, ..., rt and then t hashes kj = H′(pw , Tj) for some

T1, ..., Tt, then it can combine them to form t2 valid (plaintext, ciphertext) pairs (Mij, cij)

under key pw whereMij = Zi·Tj and cij = (ri⊕kj, Tj). Note that the t
2 plaintexts are formed

using just 2t group elements (Z1, T1), ..., (Zt, Tt), so they are correlated. For example, the

value of quotient Mij/Mi′j is the same for every j. Creating such correlations on plaintexts

is impossible in the UC HIC, hence 2-Feistel by itself, without our modification, does not

realize it.

5.2 Universally Composable Randomized Ideal Cipher

We define a new functionality FRIC in the UC framework ([47]), called a Randomized (Half-

)Ideal Cipher (HIC), where the ‘half’ in the name refers to the fact that only half of the

ciphertext is random to the adversary during encryption, as we explain below.

UC HIC is a weakening of the UC Ideal Cipher notion. Intuitively, we allow adversaries to

predict or control part of the output of the cipher while the remainder is indistinguishable

from random just as in the case of IC. Formally, we can interpret this as allowing the

adversary to embed some tuples in the table that the functionality uses - but in a very

controlled manner. We define the UC notion of Randomized Ideal Cipher via functionality

FRIC in Figure 5.2.

Notes on FRIC interfaces. A randomized ideal cipherfunctionality FRIC is parametrized

by domain D = R × G, where the first component is the randomness and the second is

162

Notation: Functionality FRIC is parametrized by domain D = R × G, and it is indexed
by a session identifier sid which is a global constant, hence we omit it from notation. We
denote HIC keys as passwords pw to conform to the usage of FRIC in PAKE and aPAKE
applications, but keys pw are arbitrary bitstrings.

Initialization: For all pw ∈ {0, 1}∗, initialize TRICpw as an empty table.

Interfaces for Honest Parties P:

on query (Enc, pw ,M) from party P, for M ∈ G:

sample r
r←− R

if ∃c s.t. ((r,M), c) ∈ TRICpw then return c to P, else do:
c

r←− {ĉ ∈ D : ∄m s.t. (m, ĉ) ∈ TRICpw}
add ((r,M), c) to TRICpw and return c to P

on query (Dec, pw , c) from party P, for c ∈ D:
query (r,M)← FRIC.AdvDec(pw , c) and return M to P

Interfaces for Adversary A (or corrupt parties):

on query (AdvEnc, pw , (r,M), T) from adversary A, for (r,M) ∈ D and T ∈ G:
if ∃c s.t. ((r,M), c) ∈ TRICpw then return c to A, else do:

if ∀ŝ ∈ R ∃m̂ s.t. (m̂, (ŝ, T)) ∈ TRICpw} then output ⊥, else do:
s

r←− {ŝ ∈ R : ∄m̂ s.t. (m̂, (ŝ, T)) ∈ TRICpw}
set c← (s, T), add ((r,M), c) to TRICpw , and return c to A

on query (AdvDec, pw , c) from adversary A, for c ∈ D:
if ∃m s.t. (m, c) ∈ TRICpw then return m to A, else do:

m
r←− {m̂ ∈ D : ∄ĉ s.t. (m̂, ĉ) ∈ TRICpw}

add (m, c) to TRICpw and return m to A

Figure 5.2: Ideal functionality FRIC for (Randomized) Half-Ideal Cipher on D = R× G

the plaintext. Figure 5.2 separates between FRIC interfaces Enc and Dec which are used by

honest parties, and the adversarial interfaces AdvEnc and AdvDec. Interfaces Enc and Dec

model honest-party’s usage of HIC, and they reflect our target realization of these procedures

via a randomized cipher, i.e. a family of functions Πpw s.t. for each pw ∈ {0, 1}∗, Πpw is a

permutation on D, and both Πpw and Π−1pw are efficiently evaluable given pw . Given such

cipher, algorithms Enc,Dec can be implemented as follows: Enc(pw ,M) picks r
r←− R and

outputs c← Πpw(m) for m = (r,M), and Dec(pw , c) computes m← Π−1pw(c) and outputs M

for (r,M) = m.

163

Functionality walk-through. Functionality FRIC reflects honest user’s interfaces to ran-

domized encryption: When an honest party P encrypts a message it specifies only M ∈ G

and delegates the choice of randomness r
r←− R to the functionality. Similarly, when an

honest party decrypts a ciphertext, the functionality discards the randomness r and reveals

only M to the application. This implies that honest parties must use fresh randomness at

each encryption and must discard it (or at least not use it) at decryption. By contrast, an

adversary A has stronger interfaces than honest parties (for notational simplicity we assume

corrupt parties interact to FRIC via A), namely: (1) When A encrypts it can choose ran-

domness r at will; (2) When A decrypts it learns the randomness r and does not have to

discard it; (3) A can manipulate the (plaintext, ciphertext) table of each permutation Πpw

in the following way: If we denote ciphertexts as c = (s, T) ∈ R × G, the adversary has no

control of the s component of the ciphertext at encryption, i.e. it is random in R (up to the

fact that the map has to remain a permutation), but the adversary can freely choose the T

component. Items (1) and (2) are consequences of the fact that HIC is a randomized cipher,

but item (3) is what makes this cipher Half-Ideal, because the adversary can control part of

the value c = Enc(pw ,m) during encryption, namely its G component.

The above relaxations of Ideal Cipher (IC) properties are imposed by the modified 2-Feistel

construction, which in Section 5.3 we show realizes this model. However, this relaxation

is harmless for many IC applications for the following reason: In a typical IC application

the benefit of ciphertext randomness is that it hides the plaintext, and that it prevents the

adversary from creating the same ciphertext as an encryption of two different plaintexts

under two different keys. For both purposes randomness in the s ∈ R component of the

ciphertext suffices as long as R is large enough to prevent ever encountering collisions.

The adversarial interfaces AdvEnc and AdvDec of FRIC reflect the above, and give more powers

than the honest party’s interfaces Enc and Dec. In encryption query AdvEnc, the adversary

is allowed to pick its own randomness r and the T ∈ G part of the resulting ciphertext,

164

while its s part is chosen at random in R (subject to the constraint that the map remains

a permutation). In decryption AdvDec, the adversary can decrypt any ciphertext c = (s, T)

and it learns the full plaintext m = (r,M), but FRIC chooses the whole plaintext m at

random. (This is another motivation for the monicker ‘half-ideal’: FRIC lets the adversary

have some control over the ciphertext in encryption, but it does not let the adversary have

any control over plaintexts in decryption.)

Our goal when designing FRIC was to keep all IC properties which are useful in applications

while allowing for efficient concrete instantiation of FRIC for a group domain G. Most im-

portantly, if |R| is super-polynomial then ciphertext collisions in encryption can occur only

with negligible probability, which is crucial in our HIC applications, because an adversarial

ciphertext c still commits the adversary to a single key pw on which the adversary could have

computed c as an encryption of some message of its choice. Secondly, just as in the case of

an ideal cipher, the adversary cannot learn any information on encrypted plaintexts except

via decryption with a correct decryption key. Indeed, even for an adversarially generated

ciphertext c, a decryption of that ciphertext using any key pw ′ ̸= pw , where pw is a unique

key used in an encryption which outputted c, samples a random element from the plaintext

domain.

5.3 Randomized Ideal Cipher Construction: Modified

2-Feistel

We show that Randomized (Half-)Ideal Cipher(RIC) on an arbitrary group is realized by a

modifcation of the two-round Feistel, which was analyzed as a Programmable Once Public

Functions (POPF) by McQuoid et al. [109], where the xor operation in the second Feistel

round is replaced by an ideal block cipher BC on bitstrings. We call this construction a

165

modified 2-Feistel, denoted m2F. For any group G, construction m2F creates a HIC over

domain D = R×G for R = {0, 1}n, using the following building blocks:

1. an ideal cipher BC on bitstring domain {0, 1}n and key space {0, 1}µ,

2. a random oracle hash H′ with range {0, 1}µ,

3. a random oracle hash H whose range is group G

In essence, m2F creates a randomized ideal cipheron group G using a random oracle hash

onto group G and an ideal cipher with n-bit blocks and µ-bit keys. The exact security

analysis shows that it suffices if n and µ are both set to 2κ.

For each key pw , function m2Fpw is pictorially shown in Figure 5.1. Here we define it by

the algorithms which compute m2Fpw and m2F−1pw . (Throughout the paper we denote group

G operation as a multiplication, but this is purely a notational choice, and the construction

applies to additive groups as well.)

m2Fpw : {0, 1}n ×G → {0, 1}n ×G (5.1)

where:

m2Fpw(r,M):

1. T ←M/H(pw , r)

2. k ← H′(pw , T)

3. s← BC.Enc(k, r)

4. Output (s, T)

m2F−1pw(s, T):

1. k ← H′(pw , T)

2. r ← BC.Dec(k, s)

3. M ← H(pw , r) · T

4. Output (r,M)

166

The following theorem captures the security of the m2F construction:

Theorem 5.1. Construction m2F realizes functionality FRIC in the domain R×G for R =

{0, 1}n if H : {0, 1}∗ × {0, 1}n → G, H′ : {0, 1}∗ × G → {0, 1}µ are random oracles, BC :

{0, 1}µ×{0, 1}n → {0, 1}n is an ideal cipher, and µ and n are both Ω(κ) where κ is a security

parameter.

Proof. The proof for Theorem 5.1 must exhibit a simulator algorithm SIM, which plays a role

of an ideal-world adversary interacting with functionality FRIC, and show that no efficient

environment Z can distinguish, except for negligible probability, between (1) a real-world

game, i.e. an interaction with (1a) honest parties who execute Z’s encryption and decryption

queries using Enc and Dec implemented with circuit m2F, and (1b) RO/IC oracles H, H′,

BC, BC−1, and (2) an ideal-world game, i.e. an interaction with (2a) parties P who execute

Z’s encryption and decryption queries using interfaces Enc,Dec of FRIC, and (2b) simulator

SIM, who services Z’s calls to H, H′, BC, BC−1 using interfaces AdvEnc and AdvDec of FRIC.

We start by describing the simulator algorithm SIM, shown in Figure 5.3. Note that SIM

interacts with an adversarial environment algorithm Z by servicing Z’s queries to the RO

and IC oracles H,H′,BC,BC−1. Intuitively, SIM populates input, output tables for these

functions, TH,TH′ and TBC, in the same way as these idealized oracles would, except when

SIM detects a possible encryption or decryption computation of the modified 2-Feistelcircuit.

In case SIM decides that these queries form either computation of m2F or m2F−1 on new

input, SIM detects that input, invokes the adversarial interfaces AdvEnc or AdvDec of FRIC

to find the corresponding output, and it embeds proper values into these tables to emulate

the circuit leading to the computation of this output. The detection of m2F and m2F−1

evaluation is relatively straightforward: First, SIM treats every BC.Dec query (k, s) as a

possible m2F−1 evaluation on key pw and ciphertext c = (s, T) for T s.t. k = H′(pw , T). If

it is, SIM queries FRIC.AdvDec on (pw , c) to get m = (r,M). Since this is a random sample

from the HIC domain, with overwhelming probability H was not queried on r so SIM can set

167

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

on adversary’s query H(pw , r)

if ∄h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on adversary’s query H′(pw , T)

if ∄k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

abort if ∃(p̂w , T̂) s.t. (p̂w , T̂ , k) ∈ TH′

(kcol.abort)
abort if ∃(r̂, ŝ) s.t. (k, r̂, ŝ) ∈ TBC

(bckey.abort)
add (pw , T, k) to TH′

return k

on adversary’s query BC.Enc(k, r)

if ∄s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T)a:

M ← H(pw , r) · T
(s, T̂)← FRIC.AdvEnc(pw , (r,M), T)

abort if T̂ ̸= T or AdvEnc outputs ⊥
(advenc.abort)

else:
s

r←− {s ∈ {0, 1}n : ∄r̂ s.t. (k, r̂, s) ∈ TBC}
add (k, r, s) to TBC

return s

aIf it exists, we denote by TH′(pw , T) the (unique) k s.t.
(pw , T, k) ∈ TH′

on adversary’s query BC.Dec(k, s)

if ∄r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

(r,M)← FRIC.AdvDec(pw , (s, T))
abort if ∃ŝ s.t. (k, r, ŝ) ∈ TBC

(advdec.abort)
abort if ∃h s.t. (pw , r, h) ∈ TH

(rcol.abort)
add (pw , r,M · T−1) to TH

else:
r

r←− {r ∈ {0, 1}n : ∄ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

return r

Figure 5.3: Simulator SIM for the proof of Theorem 5.1

H(pw , r) to M/T . Second, SIM treats every BC.Enc query (k, r) as possible m2F evaluation

on (r,M) s.t.M = H(pw , r)·T for T s.t. k = H′(pw , T). However, here is where the difference

between IC and HIC shows up: The FRIC.AdvEnc query fixes the encryption of m = (r,M)

to c = (s, T), and whereas s can be random (and SIM can set BC.Enc(k, r) := s for any

c = (s, T) returned by FRIC.AdvEnc as encryption of m under key pw), value T was fixed

by H′ output k (except for the negligible probability of finding collisions in H′). This is why

our FRIC model allows the simulator, i.e. the ideal-world adversary, to fix the T part of the

ciphertext in the adversarial encryption query AdvEnc.

Proof Overview. The proof must show that for any environment Z, its view of the real-

world game defined by algorithms Enc,Dec which use the randomized cipher m2F, and the

168

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

For each pw ∈ {0, 1}∗, initialize empty sets TRICpw and usedRpw .

define FRIC.AdvEnc(pw , (r,M), T):

if ∄ c s.t. ((r,M), c) ∈ TRICpw :

s
r←− {ŝ ∈ {0, 1}n : (∗, (ŝ, T)) ̸∈ TRICpw}

c← (s, T)
add ((r,M), c) to TRICpw

return c

define FRIC.AdvDec(pw , (s, T)):

if ∄ (r,M) s.t. ((r,M), (s, T)) ∈ TRICpw :

(r,M)
r←− D

abort if ∃ ĉ s.t. ((r,M), ĉ) ∈ TRICpw

abort if r ∈ usedRpw else add r with tag m2F

add ((r,M), (s, T)) to TRICpw

return M

on query Enc(pw ,M):

r
r←− {0, 1}n

abort if r ∈ usedRpw , else add r with tag m2F

if ∄ c s.t. ((r,M), c) ∈ TRICpw :

c
r←− {ĉ : ∄ m̂ s.t. (m̂, ĉ) ∈ TRICpw}

add ((r,M), c) to TRICpw

return c

on query Dec(pw , c):

(r,M)← FRIC.AdvDec(pw , c)
return M

on query H(pw , r)

abort if r ∈ usedRpw tagged m2F, else add r

if ∄ h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on query H′(pw , T)

if ∄ k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

abort if ∃ (p̂w , T̂) s.t. (p̂w , T̂ , k) ∈ TH′

abort if ∃ (r̂, ŝ) s.t. (k, r̂, ŝ) ∈ TBC
add (pw , T, k) to TH′

return k

on query BC.Enc(k, r)

if k = TH′(pw , T):

abort if r ∈ usedRpw is tagged m2F

else add r to usedRpw

if ∄ s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

M ← H(pw , r) · T
(s, T̂)← FRIC.AdvEnc(pw , (r,M), T)

abort if T̂ ̸= T
else:

s
r←− {s ∈ {0, 1}n : ∄ r̂ s.t. (k, r̂, s) ∈ TBC}

add (k, r, s) to TBC
return s

on query BC.Dec(k, s)

if ∄ r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

(r,M)← FRIC.AdvDec(pw , (s, T))
abort if ∃ ŝ s.t. (k, r, ŝ) ∈ TBC
abort if ∃ h s.t. (pw , r, h) ∈ TH
add (pw , r,M · T−1) to TH

else:
r

r←− {r ∈ {0, 1}n : ∄ ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

if k = TH′(pw , T):

remove tag m2F from record r ∈ usedRpw

return r

Figure 5.4: The ideal-world Game 00, and its modification Game 11 (text in gray)

169

Game 2: replacing decryption by circuit

on query m2F.Dec(pw , (s, T)):

k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
if m2F.Dec query was fresh, add tag m2F to r ∈ usedRpw

return M

Game 3: Enc calls AdvDec

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it with tag m2F
if ∄c s.t. ((r,M), c) ∈ TRICpw :

T
r←− G

c← FRIC.AdvEnc(pw , (r,M), T)
return c

Game 4: replacing encryption by circuit

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

if r ∈ usedRpw abort
T ←M/H(pw , r)
k ← H′(pw , T)
s← BC.Enc(k, r)
assign tag m2F to r in the set usedRpw

return (s, T)

Game 5: H is a random oracle

FRIC.AdvDec not used anymore

on query BC.Dec(k, s):

if ∄ r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
h← H(pw , r)
M ← h · T
if ∃ĉ s.t. ((r,M), ĉ) ∈ TRICpw then abort
add ((r,M), (s, T)) to TRICpw

else:
r

r←− {r ∈ {0, 1}n : ∄ŝ s.t. (k, r, ŝ) ∈ TBC
add (k, r, s) to TBC

remove tagm2F from record r ∈ usedRpw if k = TH′(pw , T)
return r

Game 6: simplifying parameters

define FRIC.AdvEnc(pw , r, T):

if ∄s s.t. (r, (s, T)) ∈ TRICpw :

s
r←− {ŝ ∈ {0, 1}n : ∄r̂ s.t. (r̂, (ŝ, T)) ∈ TRICpw}

add (r, (s, T)) to TRICpw

return s

on query BC.Dec(k, s):

if ∄r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
query H(pw , r) and discard the output
if ∃ĉ s.t. (r, ĉ) ∈ TRICpw then abort
add (r, (s, T)) to TRICpw

else:
r

r←− {r ∈ {0, 1}n : ∄ŝ s.t. (k, r, ŝ) ∈ TBC
add (k, r, s) to TBC

remove tag m2F from r ∈ usedRpw if k = TH′(pw , T)
return r

on query BC.Enc(k, r):

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F then abort

else add r to usedRpw

if ∄s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

query H(pw , r) and discard the output
s← FRIC.AdvEnc(pw , r, T)

else:
s

r←− {s ∈ {0, 1}n : ∄r̂ s.t. (k, r̂, s) ∈ TBC}
add (k, r, s) to TBC

return s

Game 7: using k

Initialization: ∀ k initialize empty TRICk

define FRIC.AdvEnc(k, r):

if ∄s s.t. (r, s) ∈ TRICk:

s
r←− {ŝ ∈ {0, 1}n : ∄r̂ s.t. (r̂, ŝ) ∈ TRICk}

add (r, s) to TRICk

return s

on query BC.Dec(k, s):

if ∄r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
if ∃ŝ s.t. (r, ŝ) ∈ TRICk then abort
add (r, s) to TRICk

else:
r

r←− {r ∈ {0, 1}n : ∄ŝ s.t. (k, r, ŝ) ∈ TBC
add (k, r, s) to TBC

remove tag m2F from r ∈ usedRpw if k = TH′(pw , T)
return r

on query BC.Enc(k, r):

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F then abort

else add r to usedRpw

if ∄s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

s← FRIC.AdvEnc(k, r)
else:

s
r←− {s ∈ {0, 1}n : ∄r̂ s.t. (k, r̂, s) ∈ TBC}

add (k, r, s) to TBC
return s

Figure 5.5: Game-changes (part 1) in the proof of Theorem 5.1

170

Game 8: TRIC is redundant

Initialization: Drop TRIC usage.

FRIC.AdvEnc not used anymore

on query BC.Enc(k, r):

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F then abort

else add r to usedRpw

if ∄s s.t. (k, r, s) ∈ TBC:

s
r←− {s ∈ {0, 1}n : ∄r̂ s.t. (k, r̂, s) ∈ TBC}

add (k, r, s) to TBC
return s

on query BC.Dec(k, s):

if ∄r s.t. (k, r, s) ∈ TBC:
if ∃(pw , T) s.t. (pw , T, k) ∈ TH′:

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
else:

r
r←− {r ∈ {0, 1}n : ∄ŝ s.t. (k, r, ŝ) ∈ TBC}

add (k, r, s) to TBC
remove tag m2F from r ∈ usedRpw if k = TH′(pw , T)
return r

Figure 5.6: Game-changes (part 2) in the proof of Theorem 5.1

ideal-world game defined by functionality FRIC and simulator SIM of Figure 5.3. The proof

starts from the ideal-world view, which we denote as Game 00, and via a sequence of games,

each of which we show is indistinguishable from the next, it reaches the real-world view,

which we denote as Game 99.

We include the details of all the game changes and reductions in later paragraphs. To

give a glance at our proof strategy here we provide the code of all successive games in Fig-

ures 5.4, 5.5, and 5.6. Figure 5.4 describes the ideal-world Game 00 and its mild modification

Game 11. All these games, starting from Game 00 in Figure 5.4, interact with an adversarial

environment Z, and each game provides two types of interfaces corresponding two types of

Z’s queries: (a) the honest party’s interfaces Enc,Dec, which Z can query via any honest

party, and (b) RO/IC oracles H,H′,BC,BC−1, which Z can query via its “real-world adver-

sary” interface. Figure 5.4 defines two sub-procedures, FRIC.AdvEnc and FRIC.AdvDec, whose

code matches exactly the corresponding interfaces of FRIC. These subprocedures are used

internally by Game 00: They are invoked by the code that services Z’s queries BC.Enc and

BC.Dec, because Game 00 follows SIM’s code on these queries, and AdvDec is also invoked

by Dec, because this is how FRIC implements Dec.

Figures 5.5 and 5.6 describe the modifications created by all subsequent games, except for

the last one, the real-world game denoted Game 99, which is very similar to Game 88, which

is the last game shown in Figure 5.6. Let qm2F, qBC, qH be the number of environment queries

171

to resp. honest parties’ oracles Enc,Dec, block cipher BC,BC−1 oracles (denoted BC.Enc and

BC.Dec in Figs. 5.4-5.6), and random oracles H/H′, and let q = (qm2F + qBC + qH).

Below we present the game changes used in our proof of Theorem 5.1. We refer the reader to

Section 5.3 for the notation, and to Figures 5.4 and 5.5 for the specification of all successive

games.

Let Pi be the probability that the environment Z outputs 1 when interacting with the i-th

game. We will show that |Pi − Pi+1| is negligible for every i.

Game 0 (ideal world): This is the ideal-world game played between Z and SIM. We describe

it formally in Figure 5.4, except that Game 0 omits the gray boxes and AdvDec is answered

just as in our FRIC construction: (r,M)
r←− {m ∈ {0, 1}n ×G : ̸ ∃ĉ s.t. (m̂, ĉ) ∈ TRICpw}.

Game 1 (adding usedR and randomizing AdvDec): In this first game change we start by

randomizing AdvDec and then adding aborts for certain accesses to the randomness r used

by m2F, see Figure 5.4. We randomize AdvDec(pw , (s, T)) by picking (r,M)
r←− D and then

aborting if this pair ((r,M), (s, T)) happens to be in the table TRICpw . This is clearly a

negligible change, in fact, as long as this negligible abort (which happens with probability

at most |TRICpw |/(2n · |G|)) does not happen then the games are the same.

Moreover, we want to avoid distinct (fresh)6 calls to Enc and Dec reusing the same r (or

them being called after TH(pw , r) has been set). This is motivated by the fact that the

Feistel circuit would impose, for a plaintext-ciphertext pair ((r,M), (s, T)) ∈ TRICpw , the

relation M/T = H(pw , r). If the same (pw , r) pair were used for multiple calls, then we

can’t expect M/T to be the same except with negligible probability, and thus we wouldn’t

be able to embed the correct value (since there are multiple) into TH. Similarly, if the r used

by m2F is already at TH, the adversary could notice the discrepancy to the relation in the

6In this paragraph, and henceforth, a call usually, but not always, implicitly means a fresh call, i.e., this
call is not a simple table lookup.

172

Feistel circuit. In fact, in the current game a direct call to m2F by the environment has no

relationship to the other oracle tables, and in particular we need to disallow the adversary

to query TH(pw , r) right after such a m2F invocation. This is a valid game change (i.e. the

adversary can’t force such an abort except with negligible probability) since the r used is not

leaked, neither for a Dec nor an Enc call. The exception is when Z does run the decryption

circuit (hence learning r through the BC.Dec call that is part of it) after the m2F call. To

avoid this we introduce a flag denoted m2F for such calls before the decryption circuit is

attempted.

Now it is clear that the size
∑

r |usedRpw | of the set of used r is bound by qm2F + qBC. Hence

no usedR abort happens except with (negligible) probability (qm2F+qBC)·(qm2F+qBC+qH)/2
n.

Therefore this game change is indistinguishable except with probability

|P0 − P1| ≤
(qm2F + qBC)

2

2n · |G|
+

(qm2F + qBC) · (qm2F + qBC + qH)

2n
≤ 2 · q

2

2n
(5.2)

Game 2 (replacing decryption m2F.Dec by circuit): We replace queries to m2F.Dec by the

circuit of our construction. First we argue that this is a valid change for a fresh m2F.Dec

query, see Fig. 5.7.

In this simplified case the BC.Dec call is also fresh, in either the current game or the previous.

This implies that it calls a fresh AdvDec itself, fixing the H table so that the output M is

the same as in Game 1, namely it comes from an AdvDec query. Suppose instead that

(k, r, s) ∈ TBC for some r. Then this triple was added to the table by either a BC.Enc or

BC.Dec query. The latter cannot happen since such a query would have inputs (k, s) and

therefore its AdvDec(pw , (s, T)) call would have populated TRICpw - note that we are using

the fact that bckey.col abort was not reached. Similarly, a BC.Enc(k, r) that returns s would

173

have run (s, T) ← FRIC.AdvEnc(pw , (r,M), T) so that the m2F.Dec query couldn’t be fresh

either. We conclude that the newly introduced BC.Dec calls are fresh, and that these queries

make fresh calls to FRIC.AdvDec.

But then the internal AdvDec call is generating (r,M) uniformly, so r is uniform. There are

only two side effect of this game change in the environment’s view: 1) h ← TH(pw , r) now

satisfies h = M/T , while in the previous game this is not true right after the m2F.Dec query

(an H(pw , r) query would return an independent, uniform value) and 2) (k, r, s) is added to

TBC where k = H′(pw , T). But we added r to usedR with flag m2F and our usedR aborts in

Game 1 guarantee that there is no call H(pw , r) or TBC(k, r) before the adversary itself runs

the decryption circuit, i.e. BC.Dec(k, s). But this call would embed the same relationship

in the TH and TBC table since bckey.abort does not happen, so this change is not visible to

the adversary.

We do need to take into consideration the new aborts that are possible by this game change.

The H′ query that is now implicitly called by m2F.Dec can only abort if it is fresh and

there is a collision with the H′ table or TBC table (see definition of H′ queries in Figure

5.3). This happens with probability at most (|TH′| + |TBC|)/2µ for each added H′ call.

The BC.Dec procedure, which if fresh is executing its innermost if, will only abort if either

AdvDec aborts, advdec.abort is reached or rcol.abort happens. As we argued in the previous

paragraph, r is uniform hence we obtain the negligible probability bound |TRICpw |/(2n ×

|G|) + |usedRpw |/2n + |TBCk|/2n + |THpw |/2n ≤ 4 · q/2n.

Finally, looking at our argument above, we see that even if BC.Dec(k, s) was not a fresh

query during a (necessarily non fresh) m2F.Dec call, the r paired with (k, s) in the table

TBC satisfies (r,TH(pw , r) · T) = FRIC.AdvDec(pw , (s, T)) where k = TH′(pw , T) . As we

saw above this follows from how both BC.Enc and BC.Dec are defined. We conclude that the

174

change to the circuit is valid even for non fresh AdvDec queries and we get

|P2 − P1| ≤ q2 ·
{

2

2µ
+

4

2n

}
(5.3)

on query m2F.Dec(pw , (s, T)):

if ̸ ∃(r,M) s.t.
((r,M), (s, T)) ∈ TRICpw :

k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
add tag m2F to r ∈ usedRpw

return M

Figure 5.7: Fresh queries to m2F.Dec are replaced by the circuit

Game 3 (using AdvEnc to answer Enc queries): We replace m2F.Enc(pw ,M) by a call to

FRIC.AdvEnc(pw , (r,M), T) using uniform T . The goal is to link the AdvEnc queries done in

BC.Enc with the way m2F.Enc is computed - this will help with our next goal of changing

Enc to match the circuit. This modification skews the distribution of TRICpw , but the

statistical difference this introduces is negligible. The difference is that in Game 2 (s, T)

is chosen uniformly from set {c ∈ {0, 1}n × G : ̸ ∃m̂ s.t. (m̂, c) ∈ TRICpw}, while in Game

3 first T is chosen uniformly in G and then s is chosen uniformly from set {s ∈ {0, 1}n :

̸ ∃m̂ s.t. (m̂, (s, T)) ∈ TRICpw}. Since there are at most q elements in table TRICpw , the

skew this introduces on the distribution of a chosen pair (s, T) is at most 4q/(2n · |G|) per

encryption query, leading to the following upper bound:

|P3 − P2| ≤
4 · q · qEnc
2n · |G|

≤ 4 · q2

2n · |G|
(5.4)

Game 4 (m2F.Enc can also be replaced by the two-round Feistel circuit): We now assert that

replacing Enc from the previous game by the m2F encryption circuit is also a valid game

175

change.

Since we check r ̸∈ usedRpw , the r that is picked by Enc does not appear in the H table

and thus T ← M/H(pw , r) will assign an uniform value to T just as Game 3 does. The

s ← BC.Enc(k, r) call, much like our BC.Dec query in Game 2, will in turn call AdvEnc

indirectly for m2F.Enc making the output of the latter the same as in the previous game.

As in Game 2, the side effect of modifying Enc in this way is that now we have certain

relationships between the table values. But since r is by definition not leaked by Enc this is

a negligible change just as before. In fact, looking at the newly introduced aborts, we see

that the only possible ones (note we may assume r ̸∈ usedRpw) are the ones inside the H′

query. This leads us to the bound

|P4 − P3| ≤
2q2

2µ
(5.5)

Game 5 (H is a random oracle): If we are to reach the real-world game described in Figure

9, we need to show that H is indistinguishable from a random oracle. Currently, the only

obstacle in the way of this proof is that TH is not only modified in response to a (direct or

indirect) H query, but it is also changed during a BC.Dec call. In this game we drop AdvDec

usage in BC.Dec and make clearer that this modification to TH is still uniform. We start

this process by expanding BC.Dec, see Figure 5.8.

In fact, if we look thoroughly at the current game, we notice that the innermost else in this

figure of the expanded BC.Dec query will never be reached. Namely, say a (necessarily fresh)

BC.Dec query reaches this line in the execution. Then there is m such that (m, (s, T)) is

in TRICpw . But since we removed direct AdvEnc and AdvDec queries from m2F invocations,

this tuple ((r,M), (s, T)) must have been added to TRICpw by a BC query. The only BC.Dec

176

on query BC.Dec(k, s)

if ̸ ∃ r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

if ̸ ∃m s.t. (m, (s, T)) ∈ TRICpw :

(r, h)
r←− D

if r ∈ usedRpw abort, else add r to it with tag m2F
M ← h · T
if ∃ĉ s.t. ((r,M), ĉ) ∈ TRICpw then abort
add ((r,M), (s, T)) to TRICpw

else:
let ((r,M), (s, T)) ∈ TRICpw

h←M · T−1

if ∃ŝ s.t. (k, r, ŝ) ∈ TBC then abort (advdec.abort)

if ∃ĥ s.t. (pw , r, ĥ) ∈ TH then abort (rcol.abort)
add (pw , r, h) to TH

else:
r

r←− {r ∈ {0, 1}n : ̸ ∃ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

remove tag m2F from record r ∈ usedRpw if k = TH′(pw , T)
return r

Figure 5.8: Expanding BC.Dec

query that could have caused ((·, ·), (s, T)) to have been added to TRICpw is one with (k, s)

as input, which would make the current query not fresh (i.e. a contradiction). Similarly,

a BC.Enc query couldn’t have added ((·, ·), (s, T)) to TRICpw since this implies that (k, ·, s)

would have been added to TBC - which again would contradict the freshness of the current

BC.Dec query.

Moreover, considering the above we can conclude that if either ∃ĥ s.t. (pw , r, ĥ) ∈ TH or

∃ŝ s.t. (k, r, ŝ) ∈ TBC with k = TH′(pw , T) is true, then r ∈ usedRpw . In particular, if the

latter is not the case then a call to H(pw , r) returns an uniform h. So we can let a H query

in BC.Dec pick h by itself, instead of doing (r, h)
r←− D ourselves. We can also assume that

(k, r) is available in the TBC table, so that we are allowed to drop this abort in BC.Dec as

it is already caught by the usedRpw abort.

The above remarks allows us to simplify BC.Dec considerably for Game 5 while not changing

the view of the environment: P5 = P4.

Game 6 (simplifying parameters): With our previous game changes TRICpw is now only

177

accessed/modified by (possibly indirect) BC.Enc and BC.Dec queries. It is clear from their

definition that any call to FRIC.AdvEnc uses the correct T , namely these calls return T̂ = T .

So there is no need to return T̂ and we can drop this component of the output. Similarly,

any tuple ((r,M), (s, T)) ∈ TRICpw satisfies M = TH(pw , r) · T hence we can remove this

component of the table TRICpw , i.e., we now use triples (r, (s, T)) and recover M with

this equation when needed. As these are just synctactic changes, the games are the same:

P6 = P5.

Game 7 (replacing (pw , T) by its H′ output): Since there are no collisions in the H′ table,

every (pw , T) pair that appears in a call to FRIC.AdvEnc, or a modification to TRICpw in

BC.Dec, corresponds to a unique k s.t. k := H′(pw , T)7. So we can switch the parameters

of the table TRIC (and consequently FRIC.AdvEnc) from (pw , r, T) to (k, r). Besides this,

the H queries in BC.Enc and BC.Dec can be delayed indefinitely until the adversary actually

queries these tables, so we drop these extraneous calls from the definition of BC.

Once again, since we are avoiding our aborts this game change is immaterial and we get

P7 = P6.

Game 8 (TRIC is redundant): We drop TRIC altogether, since in the previous game it is

always copied over to TBC. To be precise, if TRICk is not empty - which at this point implies

that there exists (a unique) (pw , T) with TH′(pw , T) = k - then all subsequent (resp. past)

accesses and modifications to TBC(k, ·) are (resp. were) done through invoking FRIC, that

is, using TRICk. This follows since we are avoiding bckey.abort.

The resulting FRIC.AdvEnc using TBC directly is presented in Figure 5.9. As these queries

are now only made during a BC.Enc call, we can actually drop AdvEnc usage altogether and

expand its definition directly in BC.Enc. The result is that BC.Enc is simplified into the

usual idealized block cipher encryption definition. Likewise, BC.Dec is also simplified but it

7i.e., we could invert such k by k 7→ (pw , T) where (pw , T, k) ∈ TH′.

178

is not yet the idealized block-cipher decryption (see next game). Note that for BC.Dec, the

check r ̸∈ usedRpw implies that there is no ŝ s.t. (k, r, ŝ) ∈ TBC. As in the previous games,

this is just a syntactic change and P8 = P7.

define FRIC.AdvEnc(k, r)

if ̸ ∃s s.t. (k, r, s) ∈ TBC:
s

r←− {ŝ ∈ {0, 1}n : ̸
∃r̂ s.t. (k, r̂, ŝ) ∈ TBC}

add (k, r, s) to TBC
return s

Figure 5.9: Replacing usage of TRIC by direct access to TBC

The current full game is given in Figure 5.10.

Game 9 (real-world): In Figure 5.11 we present the real-world game between the environ-

ment and our m2F circuit. This game change consists of dropping the aborts and changing

how r is picked in BC.Dec so as to make TBC consistent with the standard definition of an

ideal-cipher. We refer the reader to Figures 5.10 and 5.11.

We start by removing the H′ aborts. As before we can bound |TH′| and |TBC| by q so that

these aborts happen with probability ≤ 2q/2µ. H′ now matches the real-world definition

of Game 9. Then, we modify BC.Dec. We drop the r ∈ usedRpw abort in the innermost

if and replace the “remove tag m2F...” line with “add r to usedRpw ; if it is flagged m2F,

remove the flag”. We can do so as long as this abort does not happen - i.e. except with

probability ≤ |usedRpw |/2n ≤ q/2n. Finally, we compute r as is done in an ideal-cipher even

when k = TH′(pw , T) just as in the real-world. This last change is valid except when our

uniform choice of r in Game 8 collides with another (k, r, ŝ) ∈ TBC. This gives us the bound

|TBC|/2n ≤ q/2n. BC.Dec now matches the real-world in Figure 5.11 except that we have

the usedRpw line above.

Now, we are at the real-world game except that we have usedRpw aborts in m2F.Enc, H and

179

BC.Enc. The probability of the first one is trivially bound by another |usedRpw |/2n ≤ q/2n

factor. The last two, much like in our argument for the change from Game 0 to Game 1, do

not happen except when the adversary is lucky enough to completely guess r since r tagged

m2F is never leaked to the environment. This gives us the following overall bound, which

completes the proof:

|P9 − P8| ≤ q2
{

2

2µ
+

4

2n

}
(5.6)

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

if r ∈ usedRpw abort
T ←M/H(pw , r)
k ← H′(pw , T)
s← BC.Enc(k, r)
assign tag m2F to r in the set usedRpw

return (s, T)

on query m2F.Dec(pw , (s, T)):

k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
if m2F.Dec query was fresh, add tag m2F to r ∈ usedRpw

return M

on query H(pw , r)

if r ∈ usedRpw is tagged m2F, abort, else add r to usedRpw

if ̸ ∃h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on query H′(pw , T)

if ̸ ∃k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

if ∃ (p̂w , T̂) s.t. (p̂w , T̂ , k) ∈ TH′ then abort (col.abort)
if ∃ (r̂, ŝ) s.t. (k, r̂, ŝ) ∈ TBC then abort (bckey.abort)
add (pw , T, k) to TH′

return k

on query BC.Enc(k, r)

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F, abort, else add r ∈ usedRpw

if ̸ ∃ s s.t. (k, r, s) ∈ TBC:

s
r←− {s ∈ {0, 1}n : ̸ ∃r̂ s.t. (k, r̂, s) ∈ TBC}

add (k, r, s) to TBC
return s

on query BC.Dec(k, s)

if ̸ ∃ r s.t. (k, r, s) ∈ TBC:
if ∃ (pw , T) s.t. (pw , T, k) ∈ TH′:

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
else:

r
r←− {r ∈ {0, 1}n :̸ ∃ŝ s.t. (k, r, ŝ) ∈ TBC}

add (k, r, s) to TBC
remove tag m2F from record r ∈ usedRpw if k = TH′(pw , T)
return r

Figure 5.10: Full description of Game 8: one step away from the real-world

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

T ←M/H(pw , r)
k ← H′(pw, T)
s← BC.Enc(k, r)
return (s, T)

on query m2F.Dec(pw , (s, T)):

k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
return M

on query H(pw , r)

if ̸ ∃h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on query H′(pw , T)

if ̸ ∃k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

add (pw , T, k) to TH′

return k

on query BC.Enc(k, r)

if ̸ ∃s s.t. (k, r, s) ∈ TBC:

s
r←− {ŝ ∈ {0, 1}n : ̸ ∃r̂ s.t. (k, r̂, ŝ) ∈ TBC}

add (k, r, s) to TBC
return s

on query BC.Dec(k, s)

if ̸ ∃r s.t. (k, r, s) ∈ TBC:

r
r←− {r̂ ∈ {0, 1}n :̸ ∃ŝ s.t. (k, r̂, ŝ) ∈ TBC}

add (k, r, s) to TBC
return r

Figure 5.11: Game 9: the real-world interaction between Z and m2F

By the arguments for indistinguishability of successive games shown above, the total distin-

guishing advantage of environment Z between the real-world and the ideal-world interaction

is upper-bounded by the following expression, which sums up the bounds given by equations

(5.2) to (5.6):

|P00− P99| ≤ q2
(
10

2n
+

4

2n · |G|
+

6

2µ

)
≤ q2

(
14

2n
+

6

2µ

)

Since this quantity is negligible, this implies Theorem 5.1

Notes on Exact Security. By the above equation, the distinguishability advantage implied

by our proof can be upper-bounded as O(q2/2n) + O(q2/2µ). Both of these factors are

unavoidable in the m2F construction, and they correspond to collisions in resp. r and k

values, either of which allows an attacker to distinguish m2F from an ideal HIC functionality

FRIC.

181

Collisions in r values can happen on BC decryption queries, and if the adversary encounters

such collision then m2F fails to act like HIC in the decryption direction. Consider an adver-

sary which computes ki = H′(pw , Ti) and ri = BC.Dec(ki, si) for a fixed pw and q ciphertexts

(s1, T1), ..., (sq, Tq). If BC.Dec encounters a collision, i.e. ri = rj for some i, j, then m2F

decrypts ciphertexts (si, Ti) and (sj, Tj) under the same key pw to plaintexts resp. (ri,Mi)

and (ri,Mj) s.t. ri = rj and Mi/Mj = Ti/Tj. HIC decryption can output plaintexts with the

same correlations but FRIC.AdvDec(pw , ·) on (si, Ti) and (sj, Tj) outputs plaintexts (r,M)

s.t. r and M are uncorrelated, while m2F−1(pw , ·) has the property that if ri = rj then

Mi/Mj = Ti/Tj. The adversary can observe these correlations if BC.Dec collision occurs,

which implies distinguishing m2F from HIC with probability Θ(q2/2n).

Encountering a collision in H′ outputs also leads to distinguishing m2F from HIC. If the

adversary finds (pw 1, T1) and (pw 2, T2) s.t. H
′(pw 1, T1) = H′(pw 2, T2), then the s↔ r maps

corresponding to these two pw , T pairs will be the same. For example, for any s, cipher

m2F decrypts ciphertext (s, T1) under key pw 1 and ciphertext (s, T2) under key pw 2 to resp.

plaintexts (r1,M1) and (r2,M2) s.t. r1 = r2. Since HIC decryption outputs independent

plaintexts on all decryption queries, this leads to distinguishing m2F from HIC with proba-

bility Θ(q2/2µ).

Notice that these two terms dominate the advantage of the environment in distinguishing

m2F from the ideal HIC functionality FRIC. In particular, these terms are independent of

group G and involve only the size of the randomness space R and the size of the key space

of the ideal cipher BC. Note also that the two distinguishing attacks above correspond to

abort conditions marked resp. advdec.abort and kcol.abort in the simulator algorithm SIM in

Figure 5.3. The code of simulator SIM has three further abort conditions, and encountering

each of them creates inconsistency in the simulation, and can probably be translated into

another strategy for distinguishing m2F and HIC. However, they occur with probabilities

upper-bounded by the same bounds O(q2/2n) (rcol.abort and advenc.abort) and O(q2/2µ)

182

(bckey.abort).

5.4 Encrypted Key Exchange with Randomized Ideal

Cipher

We show that the Encrypted Key Exchange (EKE) protocol of Bellovin and Meritt [28] is a

universally composable PAKE if the password encryption is implemented with a Randomized

(Half-)Ideal Cipher on the domain of messages output by the key exchange scheme, provided

that the key exchange scheme has the random-message property (see Section 2). As discussed

in the introduction, the same statement was argued by Rosulek et al. [109] with regards

to password-encryption implemented using a Programmable Once Public Function (POPF)

notion defined therein, which can also be thought of as a weak form of ideal cipher. However,

since as we explain in the introduction, the POPF notion is unlikely to suffice in an EKE

application, so we need to verify that the notion of UC Randomized (Half-)Ideal Cipherdoes

suffice in such application.

In Figure 5.12 we show the Encrypted Key Exchange protocol EKE, specialized to use a

Randomized Ideal Cipher for the password-encryption of the message flows of the underlying

Key Agreement scheme KA. In Figure 5.12 we assume that KA is a single-round scheme. In

Section 5.4.1 we extend this to the case of two-flow KA, i.e. to EKE protocol instantiated

with a KEM scheme. We note that these two treatments are incomparable because in the

case of single-flow KA we start from a more restricted KA scheme and we argue security of

a single-flow version of EKE, whereas in the case of two-flow KA, i.e. if KA = KEM, we start

from a more general KA scheme but we argue security of a two-flow version of EKE.

The EKE instantiation shown in Figure 5.12 assumes that the Randomized Ideal Cipher RIC

works on domain D = R ×M where M is the message domain of the scheme KA. The

183

“randomness” set R is arbitrary, but its size influences the security bound we show for such

EKE instantiations. In particular we require that log(|R|) ≥ 2κ. If RIC is instantiated with

the modified 2-Feistel construction m2F of Section 5.3, one can set R = {0, 1}2κ, and this

instantiation of EKE will send messages whose sizes match those of the underlying KA scheme

extended by 2κ bits of randomness due to the Randomized Ideal Cipher encryption.

In Figure 5.12 for presentation clarity we assume that party identifiers P0,P1 are lexico-

graphically ordered. The full protocol will use two helper functions order and bit, defined

as order(sid,P,CP) = (sid,P,CP) and bit(P,CP) = 0 if P <lex CP, and order(sid,P,CP) =

(sid,CP,P) and bit(P,CP) = 1 if CP <lex P 8. Party P on input (NewSession, sid,P,CP, pw)

will then set fullsid ← order(sid,P,CP) and b ← bit(P,CP) and it will use RIC.Enc on

key p̂w b = (fullsid, b, pw) to encrypt its outgoing message, and it will use RIC.Dec on key

p̂w¬b = (fullsid,¬b, pw) to decrypt its incoming message.

• Single-round Key Exchange KA = (msg, key) with message spaceM
• Random Oracle Hash H onto {0, 1}κ
• Randomized Ideal Cipher RIC on domain R×M for R = {0, 1}Ω(κ)

P0 on NewSession(sid,P0,P1, pw 0) P1 on NewSession(sid,P1,P0, pw 1)

(Assume P0 <lex P1 and let fullsid = (sid,P0,P1))

(x0,M0)
r←− KA.msg (x1,M1)

r←− KA.msg
c0 ← RIC.Enc((fullsid, 0, pw 0),M0) c1 ← RIC.Enc((fullsid, 1, pw 1),M1)

-
c0 �

c1

M̂1 ← RIC.Dec((fullsid, 1, pw 0), c1) M̂0 ← RIC.Dec((fullsid, 0, pw 1), c0)

output K0 ← H(c0, c1,KA.key(x0, M̂1)) output K1 ← H(c0, c1,KA.key(x1, M̂0))

Figure 5.12: EKE: Encrypted Key Exchange with Randomized Ideal Cipher

In Theorem 5.2 below we show that protocol EKE realizes the (multi-session version of) the

PAKE functionality of Canetti et al. [48], denoted FpwKE (included in Figure 2.1 in Sec-

tion 2.3.3)(e.g., see [67]). The reason we target the multi-session version of PAKE function-

ality directly, rather than targeting its single-session version and then resorting to Canetti’s

composition theorem [47] to imply the security of an arbitrary (and concurrent) number of

8We assume that no honest P ever executes (NewSession, sid,P,CP, ·) for CP = P.

184

EKE instances, is that for the latter to work we would need the underlying UC HIC to be

instantiated separately for each EKE session identifier sid. Our UC HIC notion of Section 5.2

is a “global” functionality, i.e. it does not natively support separate instances indexed by

session identifiers. The modified 2-Feistel construction could support such independent in-

stances of HIC by prepending sid to the inputs of all its building block functions H,H′,BC,

where in the last case value sid would have to be prepended to the key of the (ideal) block-

cipher BC. However, this implies longer inputs for each of these blocks, which is especially

problematic in case of the block cipher, so it is preferable not to rely on it and show security

for a protocol variant where each EKE instance accesses a single HIC functionality, and hence

can be implemented with the same instantiation of the modified 2-Feistel HIC construction.

Theorem 5.2. If KA is a one-time active secure key-exchange scheme with and the random-

message property on domain M and RIC is a UC Randomized Ideal Cipher over domain

R×M, then protocol EKE, Figure 5.12, realizes the UC PAKE functionality FpwKE.

Proof. Let Z be an arbitrary efficient environment. In the rest of the proof we will assume

that the real-world adversary A is an interface of Z. In Figure 5.13 we show the construction

of a simulator algorithm SIM, which together with functionality FpwKE defines the ideal-world

view of Z. As is standard, the role of SIM is to emulate actions of honest parties executing

protocol EKE given the information revealed by functionality FpwKE, and to convert the

actions of the real-world adversary into queries to FpwKE. (In Figure 5.13 we use Psid to

denote P’s session indexed by sid which is emulated by SIM.) The proof then consists of a

sequence of games, shown in Figure 5.14, starting from the real-world game, Game 0, where

Z interacts with the honest parties running protocol EKE, and ending with the ideal-world

game, Game 7, where Z interacts via dummy honest parties with functionality FpwKE which

in turn interacts with simulator SIM. (This last game is not shown in Figure 5.14 because its

code can be derived from the code of simulator SIM, Figure 5.13, and functionality FpwKE,

see Figure 2.1.) We note that in each game in Figure 5.14 we write output [...] for output

185

SIM interacts with environment Z’s interface A and with functionality FpwKE. W.l.o.g.
we assume that A uses AdvDec to implement Dec queries to FRIC.

Initialization: Set Cset = {}, set TRICp̂w as an empty table and c2pw[c] := ⊥ for all
values p̂w and c.

Notation (used in all security games in Figure 5.14)

Let TRICp̂w .s[T] be a shortcut for set {s ∈ R : ∄m̂ s.t. (m̂, (s, T)) ∈ TRICp̂w}.
Let TRICp̂w .c be a shortcut for set {c ∈ D : ∄m̂ s.t. (m̂, c) ∈ TRICp̂w}.
Let TRICp̂w .m be a shortcut for set {m ∈ D : ∄ĉ s.t. (m, ĉ) ∈ TRICp̂w}.

On query (NewSession, sid,P,CP) from FpwKE:

Set fullsid ← order(sid,P,CP), b ← bit(P,CP), c
r←− D (abort if c ∈ Cset), add c to Cset,

record (sid,P,CP, fullsid, b, c), return c.

Emulating functionality FRIC:

• On A’s query (Enc, p̂w ,M) to FRIC: Set r
r←− R, m ← (r,M). If (m, c) ∈ TRICp̂w

return c; Else pick c
r←− TRICp̂w .c (abort if c ∈ Cset), set c2pw[c] ← p̂w , add c to

Cset and (m, c) to TRICp̂w , return c.

• On A’s query (AdvEnc, p̂w ,m, T) to FRIC: If (m, c) ∈ TRICp̂w return c; Else pick
s

r←− TRICp̂w .s[T], set c ← (s, T) (abort if c ∈ Cset), set c2pw[c] ← p̂w , add c to
Cset and (m, c) to TRICp̂w , return c.

• On A’s query (AdvDec, p̂w , c) to FRIC: If (m, c) ∈ TRICp̂w return m; Else pick
r

r←− R and (x,M)
r←− KA.msg, set m ← (r,M), add (m, c) to TRICp̂w (abort if

∃ ĉ ̸= c s.t. (m, ĉ) ∈ TRICp̂w), save (backdoor, c, p̂w , x), return m.

On A’s message ĉ to session Psid: (accept only the first such message)

Retrieve record (sid,P,CP, fullsid, b, c) and do:

1. If there is record (sid,CP,P, fullsid,¬b, ĉ): send (NewKey, sid,P,⊥) to FpwKE;

2. Otherwise set p̂w ← c2pw[ĉ] and do the following:

(a) If p̂w = ⊥ or p̂w = (ˆfullsid, b̂, ·) for (ˆfullsid, b̂) ̸= (fullsid,¬b), send
(TestPwd, sid,P,⊥) and (NewKey, sid,P,⊥) to FpwKE;

(b) If p̂w = (fullsid,¬b, pw ∗) retrieve ((r̂, M̂), ĉ) from TRICp̂w and:

i. service FRIC’s query (AdvDec, (fullsid, b, pw ∗), c), retrieve
(backdoor, c, (fullsid, b, pw ∗), x);

ii. set K ← KA.key(x, M̂), send (TestPwd, sid,P, pw ∗) and
(NewKey, sid,P,K) to FpwKE.

Figure 5.13: Simulator SIM for the proof of Theorem 5.2

186

of queries that service Z’s interaction with EKEinstances, and we write “return [...]” for

output of queries that service Z’s interaction with FRIC.

At each step we prove that the two consecutive games are indistinguishable, which implies

the claim by transitivity of computational indistinguishability. Note that we argue security

of EKE in the FRIC-hybrid model. Specifically, algorithm SIM emulates a “global” FRIC

functionality which services any number of EKE protocol instances. Note that Z or A can

call FRIC on keys which correspond to all strings p̂w = (fullsid, b, pw) including for fullsid

corresponding to sessions which were not (yet) started by Z. Indeed, algorithm SIM treats

queries pertaining to any key p̂w equally, and embeds random ciphertext c in response to

Enc queries, random partial ciphertext s in response to AdvEnc queries, and random KA

message M in response to AdvDec and Dec queries, saving the corresponding KA local state

in (backdoor, . . .) records. Since Dec is a wrapper over AdvDec we assume that the adversary

uses only interface AdvDec, and we implement the EKE code of Psid using AdvDec as well.

The intuition for the simulation is that it sends an outgoing EKE message on behalf of

Psid at random, since this is how RIC encryptions are formed. SIM services RIC encryption

queries as FRIC does except that it collects the ciphertexts created by any encryption query

and the ciphertexts chosen for every honest session in set Cset, and aborts if either process

regenerates a ciphertext in Cset. Here we use the fact that even though an adversary can

set the T part of the ciphertext c = (s, T) resulting from an adversarial encryption query

AdvEnc, the s part of c is chosen at random, and this prevents ciphertext collisions (except

with negligible probability) if |R| ≥ 22κ. Hence, assuming that R is big enough, we have

that (1) each adversarial ciphertext can be matched to (at most) one password on which it

decrypts to a non-random value in spaceM, and (2) the simulator can extract this unique

password and retrieve the corresponding plaintext (SIM stores the key p̂w which was used

to create ciphertext c in the c2pw table by setting c2pw[c] ← p̂w). Moreover, since by the

same collision-resistant property of FRIC ciphertexts the adversary cannot “hit” any honest

187

session Psid’s ciphertext c via an encryption query, the decryption of Psid’s ciphertext on

each password is also a random value in M. By the message-randomness property of KA,

simulator SIM can embed messages of fresh KA instances into each decryption query, and

combining this with fact (1) above allows for a reduction of EKE instances corresponding to

“wrong” password guesses to the KA’s security.

Let qIC be the bound on the number of queries Z makes to the interfaces of the (randomized)

ideal cipher FRIC, and let qP be the upper-bound on the number of honest EKE sessions

Psid which Z invokes for any identifiers P, sid. 9 Let εKA.sec and εKA.rand be the upper-

bounds on the distinguishing advantage against, respectively, the security and the random-

message properties of the key exchange scheme KA (see Section 2) of an adversary whose

computational resources are roughly those of an environment Z extended by execution of

qIC + qP instances of the key exchange scheme KA.10

For a glance of our proof strategy we show the code of all successive games in Figure 5.14.

Below we give the full proof for Theorem 5.2.

Game 0 (real-world game): This is the real world where parties follow the protocol. Tech-

nically, it is an hybrid world where the randomized ideal cipheris replaced by functionality

FRIC, and the adversary can query FRIC through interfaces Enc,AdvEnc,AdvDec.

Game 1 (randomizing protocol communication): We change the game so ciphertext c sent

by Psid is purely random, except the game aborts if plaintext (r,M) occurred in table TRICp̂w

or ciphertext c was output by any encryption. An upper bound on the probability of these

aborts is given by

|P0 − P1| ≤ qP (qIC + qP)

(
1

|R|
+

1

|R| · |M|

)
≈ qP (qIC + qP)

|R|
(5.7)

9We assume that Z invokes at most two sessions for any fixed identifier sid.
10This bound involves qIC+qP instead of qP key exchange instances because our reductions to KA security

run KA.msg for each adversarial AdvDec query to FRIC.

188

Game 0: real-world interaction

initialization

Initialize Cset = {} and ∀ p̂w empty TRICp̂w

on (NewSession, sid,P,CP, pw) to P:

fullsid ← order(sid,P,CP), b ← bit(P,CP), p̂w ←
(fullsid, b, pw)

(x,M)
r←− KA.msg

c← FRIC.Enc(p̂w ,M)

save (sid,P,CP, fullsid, b, pw , x, c,⊥), output c

on message ĉ to session Psid (accept only one):
if ∃ record (sid,P,CP, fullsid, b, pw , x, ·,⊥):

(r̂, M̂)← FRIC.AdvDec((fullsid,¬b, pw), ĉ)

K ← KA.key(x, M̂) and output (sid,P,K)

on query FRIC.Enc(p̂w ,M):

r
r←− R, set m← (r,M)

If ∃ c s.t. (m, c) ∈ TRICp̂w :
return c

else:
pick c

r←− TRICp̂w .c,
add c to Cset and (m, c) to TRICp̂w

return c

on query FRIC.AdvEnc(p̂w ,m, T):

if ∃ c s.t. (m, c) ∈ TRICp̂w :
return c

else:
s

r←− TRICp̂w .s[T], set c← (s, T),
add c to Cset and (m, c) to TRICp̂w

return c

on query FRIC.AdvDec(p̂w , c):

if ∃ m s.t. (m, c) ∈ TRICp̂w :
return m

else:
m

r←− TRICp̂w .m, add (m, c) to TRICp̂w

return m

Game 1: randomizing protocol communication

on (NewSession, sid,P,CP, pw) to P:

set (fullsid, b, p̂w) as in Game 00

(x,M)
r←− KA.msg, r

r←− R, c
r←− D

abort if ((r,M), ∗) ∈ TRICp̂w or c ∈ Cset

add ((r,M), c) to TRICp̂w

save (sid,P,CP, fullsid, b, pw , x, c,⊥), output c

Game 2: binding adversarial ciphertexts to passwords

on FRIC.Enc(p̂w ,M) or FRIC.AdvEnc(p̂w ,m, T):
Before adding c to Cset, do the following:

abort if c ∈ Cset
set c2pw[c]← p̂w

Game 3: adding trapdoors to decryption

on query FRIC.AdvDec(p̂w , c):

if ∃m s.t. (m, c) ∈ TRICp̂w return m, otherwise:

(x,M)
r←− KA.msg(1κ), r

r←− R, m← (r,M)
abort if (m, ∗) ∈ TRICp̂w

add (m, c) to TRICp̂w

save (backdoor, c, p̂w , x), return m

Game 4: KA messages via AdvDec

on (NewSession, sid,P,CP, pw) to P:

set (fullsid, b, p̂w) as in Game 00

c
r←− D, abort if c ∈ Cset, otherwise add c to Cset

query FRIC.AdvDec(p̂w , c)
retrieve (backdoor, c, p̂w , x)

save (sid,P,CP, fullsid, b, pw , x, c,⊥), output c

Game 5: extracting passwords

on message ĉ to session Psid:
if ∃ record rec = (sid,P,CP, fullsid, b, pw , x, c,⊥):

if ∃ record (sid,CP,P, fullsid,¬b, pw , ·, ĉ, K̂)
s.t. Z sent c to CPsid:

K ← K̂
else:

p̂w ← c2pw[ĉ]
if p̂w = (fullsid,¬b, pw):

retrieve ((r̂, M̂), ĉ) from TRICp̂w ,

set K ← KA.key(x, M̂)
else:

K
r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, b, pw , x, c,K)

output (sid,P,K)

Game 6: delaying password usage

on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP)

c
r←− D, abort if c ∈ Cset, otherwise add c to Cset

save (sid,P,CP, fullsid, b, pw ,⊥, c,⊥), output c

on message ĉ to session Psid:
if ∃ record (sid,P,CP, fullsid, b, pw ,⊥, c,⊥):

if ∃ record (sid,CP,P, fullsid,¬b, pw ,⊥, ĉ, K̂):

K ← K̂
else:

p̂w ← c2pw[ĉ]
if p̂w = (fullsid,¬b, pw):

query FRIC.AdvDec((fullsid, b, pw), c),
retrieve (backdoor, c, ·, x)
retrieve ((r̂, M̂), ĉ) from TRICp̂w ,

set K ← KA.key(x, M̂)
else:

K
r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, b, pw , x, c,K)

output (sid,P,K)

Figure 5.14: Game changes for the proof of Theorem 5.2 (compare Fig. 5.13 for notation)

189

Game 2 (binding adversarial ciphertexts to passwords): We add two changes in the process-

ing of both Enc and AdvEnc queries for any key p̂w : If the game responds to either query by

picking a new ciphertext c, it (1) aborts if this ciphertext is already in set Cset, (2) otherwise

it proceeds but also sets c2pw[c] ← p̂w . (Initially c2pw[c] = ⊥ for all inputs.) The second

change is purely syntactic, but the first one introduces a difference upper-bounded by the

probability of encountering such collisions. Since Enc picks ciphertext c at random in the

space of c’s not used for a given key p̂w , while AdvEnc picks only the s part of the ciphertext

c at random from the space of unused s for a given T and key p̂w , the upper-bound on these

collisions comes from AdvEnc queries which implies

|P1 − P2| ≤
(qIC + qP)

2

|R|
(5.8)

Game 3 (embedding KA messages in decryption queries): In this game we embed KA

messages into every (fresh) adversarial decryption query AdvDec(p̂w , c) to FRIC, and we save

the local state generated with this KA message associated with (c, p̂w). This change can be

thought of as done in two sub-steps: First we change the decryption so it picks (r,M) at

random in R× G and aborts if ((r,M), ∗) is in table TRIC. (Note that before a decryption

query picks (r,M) according to TRICp̂w .m, i.e. among pairs which are not yet in the table.)

The difference this introduces is the probability of encountering this abort, which can be

upper-bounded as (qIC + qP)
2/(|R| · |M|). The second sub-step is that we pick M according

to KA message generation algorithm KA.msg, and we save local state x generated together

with M in record (backdoor, c, p̂w , x). This second change can be reduced to an attack on

the random-message property of scheme KA. The argument hybridizes over all decryption

queries, where each consecutive hybrid differs by one more decryption query on which M

is generated via KA.msg instead of uniform in G. By a reduction to the random-message

property of our scheme KA the total difference this change introduces can be upper-bound

190

as (qIC + qP) · εKA.rand. We conclude that:

|P2 − P3| ≤
(qIC + qP)

2

|R| · |M|
+ (qIC + qP) · εKA.rand (5.9)

Game 4 (delegating KA message generation to AdvDec): We make a syntactic change in

processing NewSession: Rather than picking a random KA message M , random r, a random

ciphertext c, and defining ((r,M), c) as an IC pair for key p̂w , we pick only random c and

define M via a decryption query FRIC.AdvDec(p̂w , c). Since in Game 3 a decryption query

sets (r,M) in the same way this is only a syntactic change, hence P3 = P4.

Game 5 (extracting passwords and randomizing session keys on “wrong” passwords): We

change how Psid reacts to a received ciphertext ĉ. First of all we introduce a special processing

in case ĉ is sent by a matching session CPsid (i.e. a session that uses the same sid, same pw ,

and matching P,CP values) that received the honest message c sent out by Psid. In this case

we short-cut all processing and simply set the session key output by Psid to the one which was

output by CPsid. Note this corresponds to the case where the environment does not interfere

in the communication between Psid and CPsid. This introduces no change because such

sessions compute the same session keys in all previous games. Secondly, for all other ĉ cases,

instead of using FRIC to decrypt ĉ under stored p̂w , and using the decrypted plaintext M̂ to

compute the session key as K ← KA.key(x, M̂), we set p̂w = c2pw[ĉ] and consider two cases:

If p̂w = (fullsid,¬b, pw) then Game 5 computes K in the same way as in Game 4, except

that we render the decryption query as a retrieval from table TRIC ˆ̂pw instead of as a query

to FRIC.AdvDec, but this is only a notational change; In any other case, Game 5 shortcuts

this decryption and key-computation process and outputs a random key K
r←− {0, 1}κ.

The argument that Game 4 is indistinguishable from Game 5 is a hybrid argument which

changes the view in qP substeps, for each FpwKE session Psid invoked by Z. Note that

the only case where there is a difference between the two games is the last one we de-

191

scribed, i.e. if c2pw[ĉ] contains an entry p̂w ̸= (fullsid,¬b, pw).11 This corresponds to two

sub-cases: (a) ĉ was created via an adversarial encryption query on some key p̂w which

does not match the decryption key (fullsid,¬b, pw) that Psid would use in Game 4 to decrypt

this ciphertext (note that this p̂w is unique because of an abort in the case two encryp-

tion queries ever create the same ciphertext); and (b) ĉ was not created in any encryption

query. In either of these two sub-cases Game 4 would compute K ← KA.key(x, M̂) for

M̂ ← FRIC.AdvDec((fullsid,¬b, pw), ĉ), and since in either case ĉ was not inserted in table

TRIC(fullsid,¬b,pw) via an encryption query, this AdvDec query will embed a random KAmessage

into the decrypted plaintext M̂ .

We will argue that the existence of an adversary who distinguishes with non-negligible advan-

tage between Games 4 and 5 implies an attack on the security property of the key exchange

scheme KA. Since message M created by Psid is a random KA message, and we argued above

that M̂ = FRIC.AdvDec((fullsid,¬b, pw), ĉ) is a random KA message as well, the session key K

which Psid outputs in this case in Game 4 is a KA output on an exchange involving two ran-

dom KA messages, M and M̂ . It can thus be replaced by a random string by a reduction to

KA security done separately for each sid, in two sub-steps corresponding to the (at most) two

sessions Psid and CPsid which run on this particular sid. Consider the argument for a fixed

session Psid with corresponding counterparty session CPsid and b ← bit(P,CP): Given the

KA security challenge (M, M̂,K), the reduction does the following: First, it uses challenge

value M when computing the outgoing message c of Psid, i.e. it uses M from the challenge

when processing query (NewSession, sid,P,CP, pw) in Game 4. Second, it guesses an index

i
r←− [1, ..., qIC+qP] of a query to FRIC.AdvDec using key (fullsid,¬b, pw) and embeds challenge

value M̂ into the decrypted plaintext. (Note that by Game 4 each NewSession query also uses

AdvDec. Notice also that ĉ in this AdvDec query could be equal to ciphertext c′ generated

by session CPsid, this corresponds to the adversary passively connecting two sessions Psid and

CPsid which run on matching inputs). Third, if the guess is right and the adversary sends

11This includes the case of p̂w = ⊥.

192

ciphertext ĉ used in this i-th query to Psid, the reduction embeds the K challenge value into

the session key output by Psid (if the guess is not right the reduction aborts). If the guess is

right and case (b) occurs, the reduction reproduces how Psid acts in Game 4 if K is the real

key corresponding to KA instance (M, M̂), and it reproduces how Psid acts in Game 5 if K

is random. Since the right guess occurs with probability 1/(qIC + qP) and the identity of the

index i does not affect the view the reduction produces before the abort, and the argument

goes by a hybrid over all honest party sessions, we arrive at the following upper-bound:

|P4 − P5| ≤
(qIC + qP)

2

|R| · |M|
+ qP (qIC + qP) · εKA.sec (5.10)

Game 6 (delaying password usage): In this game we delay using the password pw of session

Psid to decrypt (and consequently embed the backdoor into) its honest outgoing message c

to the moment Psid receives an incoming message ĉ. Moreover, we perform this decryption

only in the case adversary created ĉ via encryption under key (fullsid,¬b, pw). Since Game 5

does not use the decrypted value M and the associated trapdoor x until this exact situation

occurs, postponing this decryption does not matter as long as item (∗, c) is not written

into table TRIC(fullsid,b,pw) via an encryption query. However, the latter cannot happen in

Game 5 because each NewSession and each encryption queries generate disjoint ciphertexts

(a collision in the ciphertexts created by any of these queries leads to an abort), which implies

that P5 = P6.

Game 7 (ideal-world game implied by FpwKE and SIM): This is the ideal-world game induced

by functionality FpwKE interacting with simulator SIM of Figure 5.13. In that interaction

FpwKE creates a session record with password pw in it, but FpwKE does not pass pw to SIM.

However, SIM picks Psid’s c at random and aborts if c ∈ Cset, which is how NewSession

processing is done in Game 6. Note also that SIM replies to Enc or AdvEnc queries in a

193

way which matches processing of these queries starting from Game 2, and that it replies to

AdvDec queries in a way which matches processing of these queries starting from Game 3.

Finally, when the environment sends ĉ to session Psid, we have the following cases:

1. Message ĉ was sent by counterparty session CPsid which matches session Psid in session

identifier sid and party identifiers (P,CP). This case is detected by the simulator SIM

who can check if identifiers (sid,P,CP) of the two sessions match, and it corresponds

to step 1 in SIM’s processing of ĉ. In this case SIM sends (NewKey, sid,P,⊥) to FpwKE

in which case FpwKE, since this NewKey was not proceeded by a TestPwd so session Psid

is marked fresh, does either of the following two things: (case 1) if the two sessions run

on the same password and CPsid completed while marked fresh, which happens only if

the adversary sent (to CPsid) the unmodified ciphertext c output by Psid, then FpwKE

makes key K output by Psid equal to key K̂ output by CPsid; and (case 2) in any other

case FpwKE picks key K output by Psid at random.

Note that this is exactly how Game 6 processes delivery of ĉ output by CPsid as well.

Case 1 corresponds to the first check performed by ĉ-delivery processing code of Game 6

which assigns K ← K̂ if all inputs of Psid and CPsid match and the adversary delivered

the ciphertext output by Psid to CPsid. Case 2 means that the ĉ-delivery processing

code of Game 6 will recover p̂w ← c2pw[ĉ] and check if p̂w = (fullsid,¬b, pw). In case

2, where ĉ is output by CPsid value c2pw[ĉ] is guaranteed to be ⊥ because Game 6, just

like the ideal-world interaction, does not allow collisions between ciphertexts output by

honest sessions and ciphertexts output via Enc or AdvEnc queries. Therefore ĉ-delivery

processing code of Game 6 will jump to the second “else” clause and set K
r←− {0, 1}κ,

matching the behavior of the ideal-world interaction.

2. If message ĉ was not sent by counterparty session CPsid which matches session Psid in

its session+party identifiers inputs, i.e. if ĉ is a ciphertext created by the adversary (or

output by any other session than the intended counterparty of Psid), this corresponds

194

to 2. in SIM’s definition of its processing of ĉ, which has two sub-cases based on the

value p̂w ← c2pw[ĉ]:

(a) In (a) SIM processes the case when p̂w = ⊥ or p̂w ̸= ⊥ but p̂w does not have the

form (fullsid,¬b, pw ∗) for any password pw ∗ (which means that p̂w is guaranteed

not to match the key Psid would use to decrypt ĉ regardless of the password

Psid uses). In that case SIM sends (TestPwd, sid,P,⊥) to FpwKE before sending

(NewKey, sid,P,⊥), which means that FpwKE marks this session as interrupted and

sets its key as K
r←− {0, 1}κ.

Observe that in this case Game 6 will set K in the same way as in the above

SIM+FpwKE interaction, because p̂w ̸= (fullsid,¬b, pw ∗) for any pw ∗ including pw

held by Psid, so the ĉ-delivery processing code of Game 6 will go to the second

“else” clause and set K
r←− {0, 1}κ.

(b) In (b) SIM processes the case when p̂w = (fullsid,¬b, pw ∗) for some pw ∗, which

might or might not be equal to the password input pw of Psid. In this case

SIM retrieves ((r̂, M̂), ĉ) from TRICp̂w , services query (AdvDec, (fullsid, b, pw ∗), c),

retrieves (backdoor, c, (fullsid, b, pw ∗), x), sets K ← KA.key(x, M̂), and sends (

TestPwd, sid,P, pw ∗) and (NewKey, sid,P,K) to FpwKE. Consider two sub-cases

depending on Psid’s input pw :

i. If pw ∗ ̸= pw then FpwKE will mark session Psid as interrupted in response to

the above TestPwd query, and consequently FpwKE will ignore the value K

which SIM sends in the NewKey query, and it will pick the session key output

by Psid uniformly from {0, 1}κ.

This is also how Game 6 ĉ-delivery code will process this case, because

it corresponds to the case when p̂w retrieved from c2pw[ĉ] is not equal to

(fullsid,¬b, pw).

ii. If pw ∗ = pw then FpwKE will mark session Psid as compromised in response

195

to TestPwd and in response to NewKey it will make Psid output the key K

computed by SIM.

This is also how Game 6 will behave in this case, because it corresponds to

the case p̂w = (fullsid,¬b, pw), in which case Game 6 retrieves backdoor x as

the KA state corresponding to the decryption of c under key (fullsid, b, pw),

and it sets Psid’s output as K ← KA.key(x, M̂) for ((r̂, M̂), ĉ) retrieved from

TRICp̂w , exactly like SIM does above.

Since Game 6 matches the ideal-world interaction of Game 7 exactly we conclude that

P6 = P7, which completes the proof of Theorem 5.2.

From the proof the total distinguishing advantage of environment Z between the real-world

and the ideal-world interaction is upper-bounded by the following expression, which sums

up the bounds given by equations (5.7), (5.8), (5.9), (5.10):

(qIC + qP)

[
1

|R|
·
{
2qP + qIC + 2 · qIC + qP

|M|

}
+ εKA.rand + qP · εKA.sec

]
(5.11)

Since this quantity is negligible if R = {0, 1}Ω(κ), it implies Theorem 5.2.

Notes on Exact Security.

The dominating factors are (qIC + qP)
2/|R| and (qIC + qP) · (εKA.rand + qP · εKA.sec). The first

factor is due to possible collisions in Randomized Ideal Cipher, and it is unavoidable using

an arbitrary HIC realization because it is the probability of generating the same ciphertext

c as an encryption of two different KA instances under two different passwords, which would

also form an explicit attack on the security of EKE (the adversary would effectively make two

password guesses in one on-line interaction). However, whereas the bound (qIC)
2/|R| is tight

if the encryption is modeled as a Randomized Ideal Cipher, we do not know if it is tight in

relation to the specific modified 2-Feistel instantiation of Randomized Ideal Cipher, because

196

we do not know how to stage an explicit attack on EKE using modified 2-Feistel along

these lines. This relates to the fact that whereas the modified 2-Feistel realizes functionality

FRIC, this functionality allows more freedom to the adversary than the modified 2-Feistel

construction. Namely, whereas FRIC allows the adversary to encrypt any messages M using

a ciphertext c = (s, T) where T can be freely set, the same is not true about the modified

2-Feistel construction, where for any fixed M the adversary can choose T from the set of

values of the form T = M/H(pw, r) for some r.

The second factor is due to reductions to KA security properties. Note that some KA schemes,

e.g. Diffie-Hellman, have perfect message-randomness, i.e. εKA.rand = 0. Further, if the KA

scheme is random self-reducible, as is Diffie-Hellman, then this factor can be reduced to

εKA.sec because a reduction to KA security for the transition between Games 44 and 55, see

Section 5.4 the proof in [67], can then be modified so that it deals with all honest sessions

at once instead of staging a hybrid argument over all sessions, and it embeds randomized

versions of the KA challenge into each decryption query rather than guessing a target query.

5.4.1 EKE with Randomized Ideal Cipher : the KEM version

In Figure 5.15 we show protocol EKE-KEM, which is a KEM version of the EKE protocol

using a Randomized Ideal Cipher. In the 1-flow protocol EKE considered in Figure 5.12,

the message flows are generated by a single-round KA scheme, whereas here we consider an

EKE variant which is built from any two-flow key exchange, i.e. KEM, see Section 2.2. The

drawback is that it is 2-flow instead of 1-flow, but the benefits are that the HIC can be used

only for one message, so if KEM is instantiated with Diffie-Hellman and HIC is implemented

using m2F, this implies a single RO hash onto a group per party instead of two such hashes.

Moreover, this version of EKE can use any CPA-secure KEM as a black box, as long as

the KEM satisfies the anonymity and uniform public keys properties, which implies, e.g.,

197

lattice-based UC PAKE given any lattice-based KEM with these properties.

• KEM scheme KEM = (kg, enc, dec) with public key space PK
• Randomized Ideal Cipher RIC on domain R×PK for R = {0, 1}Ω(κ)

• Random oracle hash H onto {0, 1}κ

P0 on NewSession(sid,P0,P1, pw 0) P1 on NewSession(sid,P1,P0, pw 1)

(Assume P0 ≤lex P1 and let fullsid = (sid,P0,P1))

(sk , pk)
r←− kg

c← RIC.Enc((fullsid, pw 0), pk) -
c

pk ′ ← RIC.Dec((fullsid, pw 1), c)
(e,K)← enc(pk ′)
τ ← H(K , pk ′, c, e)

K ← dec(sk , e) �
e, τ

output K1 ← H(K , pk ′, c, e, τ)
if τ = H(K , pk , c, e) output K0 ← H(K , pk , c, e, τ)
else output K0

r←− {0, 1}κ

Figure 5.15: EKE-KEM: Encrypted Key Exchange with Randomized Ideal Cipher (KEM version)

Note that in the protocol of Fig. 5.15 party P0 outputs a random session key if the key

confirmation message τ fails to verify. This is done only so that the protocol conforms to

the implicit-authentication functionality FpwKE. In practice P0 could output ⊥ in this case,

and this would implement explicit authentication in the P1-to-P0 direction.

Theorem 5.3. If KEM is IND secure, anonymous, and has uniform public keys in domain

PK (see Section 2.2), RIC is a UC Randomized Ideal Cipher in domain R× PK, and H is

an RO hash, then protocol EKE-KEM realizes the UC PAKE functionality FpwKE.

The proof of Theorem 5.3 follows the same blueprint as the proof of Theorem 5.2. The

most important intuition needed for the adaptation of the proof of Theorem 5.2 to the proof

of Theorem 5.3 is why it works for KEMs that satisfy the anonymity property: The key

issue is that we need anonymity of the KEM ciphertext e only for honest keys pk and not

for adversarial ones, and the reason for this is that the only non-random pk under which

an honest party encrypts is the key pk decrypted under a unique password guess pw ∗ used

in the adversarial ciphertext c this party receives. If pw ∗ equals to P1’s password pw then

this session is already successfully attacked, so the non-randomness of P1’s ciphertext is

198

not an issue. But if pw ∗ ̸= pw then KEM ciphertext e is effectively encrypted under key

pk ′ = AdvDec(pw , c) which is random, and the key confirmation works as a commitment

to the KEM key pk decrypted from HIC ciphertext c, hence also to the password used in

that decryption. This commitment is also effectively encrypted under the KEM session key

K , hence it can be verified only by a party which created pk and HIC-encrypted it under

the right pw . Here we again rely on the property of HIC, which just like IC assures that

decryption under any password except for the unique password committed in the ciphertext

results in a random plaintext, i.e. a random KEM public key pk , which makes the KEM

session key K encrypted under such pk hidden to the adversary by KEM security.

We note that the key confirmation could involve directly pw instead of pk , but pk is a

commitment to pw unless the adversary creates a collision in HIC plaintext, and using

pk instead of pw lets P0 erase pw after sending its first message. This way an adaptive

compromise on party P0 during protocol execution allows for offline dictionary attack on

the password, but does not leak it straight away. (Note that adaptive party compromise is

not part of our security model.) We note also that RO hash H can probably be replaced

by a key derivation function which is both a CRH (because it needs to commit to pk) and

a PRF (because it must encrypt this commitment under K), but since HIC implies RO

hash (and indeed our m2Fuses it) we opt for the simpler option of RO hash to compute the

authenticator.

Below we prove Theorem 5.3 from Section 5.4.1, i.e. the EKE-KEM protocol shown in Fig-

ure 5.15 is a UC PAKE. Following the blueprint of EKE proof in Section 5.4, we argue

security of EKE-KEM in the FRIC-hybrid model.

Figure 5.16 shows simulator SIM used in this proof. We fix the adversarial environment

Z, and let qIC, qH, qNS be the maximum bounds on resp. Z’s queries to the HIC interfaces

FRIC, Z’s queries to the RO hash H, and Z’s calls to NewSession to invoke honest protocol

parties. Let εKEM.sec, εKEM.randpk, and εKEM.anonymity be the upper-bounds on the distinguishing

199

advantage against respectively the IND security, the uniform public keys, and the anonymity

properties of KEM (see Section 2.2), of an attacker whose computational resources are com-

parable to those of Z, plus the cost of our reductions, which are always close to the cost of

simulator SIM running against Z.

Simulator Notation. We write simulator SIM in Figure 5.16 s.t. it interacts with en-

vironment Z’s “adversary” interface A, and with PAKE functionality FpwKE. Let PK be

the public key space of KEM, and let D = R × PK be the domain of Randomized Ideal

Cipher RIC. Without loss of generality we assume that A uses interface AdvDec to im-

plement Dec query to FRIC. We use TRICp̂w .s[T], TRICp̂w .m and TRICp̂w .c as shortcuts for

respectively sets {s ∈ R s.t. (·, (s, T)) ̸∈ TRICp̂w}, {m ∈ D : s.t. (m, ·) ̸∈ TRICp̂w} and

{c ∈ D : s.t. (·, c) ̸∈ TRICp̂w}.

Proof. Game 0 (real-world game): This is the real world constructed by parties following

the protocol, functionality FRIC, and the adversary who can query FRIC through interfaces

Enc,AdvEnc,AdvDec. We also record all ciphertexts generated by Enc,AdvEnc queries into

set Cset which is syntactic.

Game 1 (randomizing first message): In this game we change how Psid generates the first

message c. As in Game 0, Psid picks (sk , pk)
r←− KEM.kg, but then instead of querying c via

FRIC.Enc, Game 1 picks c at random, and pick a random r. And before adding ((r, pk), c) to

TRICp̂w and adding c to Cset, the game aborts (1) if ((r, pk), ·) is already in table TRICp̂w , or

(2) if ciphertext c randomly picked by P0 in Game 1 was output by any previous encryption

queries, i.e. c ∈ Cset. The probability of these aborts is upper-bounded by qP (qIC+qP)
|R| .

We further bind adversarial ciphertexts to passwords by removing collisions on ciphertexts

generated (for any key p̂w) by Enc, AdvEnc queries. We add an abort if any new c generated

by such queries already exists in Cset. Since by definition Enc query already picks c at

200

Notation: See the “Simulator Notation” note in Section 5.4.1.
Initialization: Set Cset = {}, set TH as empty table, set TRICp̂w as empty table for all
p̂w , set c2pw[c] := ⊥ for all c.
On query (NewSession, sid,P,CP) from FpwKE:

Set fullsid← order(sid,P,CP), b← bit(P,CP).
1. If b = 0, pick c

r←− D (abort if c ∈ Cset), add c to Cset, send c to A as a message
from Psid and record (sid,P,CP, 0, fullsid, c).

2. If b = 1, record (sid,P,CP, 1, fullsid,⊥,⊥,⊥).
Emulating FRIC:

• On A’s query (Enc, p̂w ,M) to FRIC: Set r
r←− R, m ← (r,M). If (m, c) ∈ TRICp̂w

return c; Else pick c
r←− TRICp̂w .c (abort if c ∈ Cset), set c2pw[c] ← p̂w , add c to

Cset and (m, c) to TRICp̂w , return c.

• On A’s query (AdvEnc, p̂w ,m, T) to FRIC: If (m, c) ∈ TRICp̂w return c; Else pick
s

r←− TRICp̂w .s[T], set c ← (s, T) (abort if c ∈ Cset), c2pw[c] ← p̂w , add c to Cset
and (m, c) to TRICp̂w , return c.

• On A’s query (AdvDec, p̂w , c) to FRIC: If (m, c) ∈ TRICp̂w return m; Else pick
r

r←− R and (pk , sk)
r←− KEM.kg, set m ← (r, pk) (abort if (m, ·) ∈ TRICp̂w), add

(m, c) to TRICp̂w , save (backdoor, c, p̂w , sk , pk), return m.

On A’s message ĉ to session Psid: (accept only one such message)

Retrieve record rec = (sid,P,CP, 1, fullsid,⊥,⊥,⊥), pick τ
r←− {0, 1}κ, pk ∗ r←− PK, and

(e, ·)← KEM.enc(pk ∗), and do the following:

• If ∃ record (sid,CP,P, 0, fullsid, ĉ) then send (NewKey, sid,P,⊥) to FpwKE.

• Otherwise, set p̂w ← c2pw[ĉ] and if p̂w = ⊥ or p̂w ̸= (fullsid, ·), send (TestPwd, sid,
P,⊥) and (NewKey, sid,P,⊥) to FpwKE;

• Otherwise, i.e. if p̂w = (fullsid, pw ∗), send (TestPwd, sid,P, pw ∗) to FpwKE and:

1. if answer is “incorrect”, send (NewKey, sid,P,⊥) to FpwKE;
2. if answer is “correct”, retrieve ((r̂, p̂k), ĉ) from TRICp̂w , reset (e,K ∗) ←

KEM.enc(p̂k) and τ ← H(K ∗, p̂k , ĉ, e), send (NewKey, sid,P,H(K ∗, p̂k , ĉ, e, τ))
to FpwKE.

Update rec to (sid,P,CP, 1, fullsid, ĉ, e, τ) and send (e, τ) to A.
On A’s message (ê, τ̂) to session Psid: (accept only one such message)
Retrieve record (sid,P,CP, 0, fullsid, c) and:

• If ∃ record (sid,CP,P, 1, fullsid, c, ê, τ̂), send (NewKey, sid,P,⊥) to FpwKE.

• Otherwise, if ∃ record (backdoor, c, (fullsid, pw ∗), sk , pk) s.t. τ̂ = H(K ∗, pk , c, ê) for
K ∗ = KEM.dec(sk , ê) (abort if multiple pw ∗ satisfy above), send (TestPwd, sid,
P, pw ∗) and (NewKey, sid,P,H(K ∗, pk , c, ê, τ̂)) to FpwKE

• Otherwise send (TestPwd, sid,P,⊥) and (NewKey, sid,P,⊥) to FpwKE

On A’s query x to H:

If ∃⟨x, y⟩ in TH output y, else output y
r←− {0, 1}κ and add ⟨x, y⟩ to TH.

Figure 5.16: Simulator SIM for the proof of Theorem 5.3

201

random in the space of unused c’s for a given p̂w , the game aborts only in AdvEnc which

picks the s part of c for a given T and p̂w . The probability of encountering abort is upper-

bounded by
q2IC
|R| . We also add a syntactic change where we record c2pw[c] ← p̂w in Enc or

AdvEnc queries. As in the case of EKE proof we have:

|P0 − P1| ≤
qP (qIC + qP)

|R|
+

q2IC
|R|

(5.12)

Game 2 (embedding public key in decryption queries): In this game we embed public key

into every fresh adversarial AdvDec(p̂w , c) query to FRIC, and we save the corresponding

(sk , pk) associated with (c, p̂w). This change can be done in two sub-steps: First we change

the decryption so it picks (r, pk) randomly in R × PK, and aborts if ((r, pk), ·) is in table

TRICp̂w , whereas before, a decryption query picks (r, pk) according to TRICp̂w .m, i.e. among

pairs which are not yet in the table. The probability of encountering this abort can be

upper-bounded by (qIC + qP)
2/(|R| · |PK|). The second sub-step is that, instead of picking

pk at random, we generate key pair (sk , pk) according to KEM key generation algorithm kg,

and we save (sk , pk) in record (backdoor, c, p̂w , sk , pk). This second change can be reduced

to an attack on the uniform public keys property 2.5 of KEM. The argument hybridizes over

all decryption queries, where each consecutive hybrid differs by one more decryption query

on which pk is generated via kg instead of uniform in PK. By a reduction to the uniform

public keys property of KEM the total difference this change introduces can be upper-bound

as (qIC + qP) · εKEM.randpk. We conclude that:

|P1 − P2| ≤
(qIC + qP)

2

|R| · |PK|
+ (qIC + qP) · εKEM.randpk (5.13)

Game 3 (delegating key generation to AdvDec): We make a syntactic change in processing

NewSession for the party Psid who sends out message c: rather than generating random

202

(sk , pk), r, c, and adding ((r, pk), c) as an IC pair for key p̂w in Game 1, Game 3 picks

c at random(abort if c ∈ Cset) as before, but then it retrieves (sk , pk) via a decryption

query FRIC.AdvDec(p̂w , c). Since in Game 2 such a decryption query sets (sk , pk) and adds

((r, pk), c) to TRICp̂w in the same way, this is only a syntactic change, hence P2 = P3.

Game 4 (abort on H collision):

We add an abort on H collisions. It follows that |P4 − P3| ≤
q2H
2κ

Game 5 (randomizing second message and session keys in passive cases):

In this game we change how Psid reacts to received message ĉ in the passive case, where Psid

receives the honest message ĉ sent by a matching session CPsid. In this case we shortcut all

processing, and let Psid generate e via KEM encapsulation on a random public key picked by

SIM, and output τ and session key K as random elements in {0, 1}κ. Furthermore, if CPsid

receives this (e, τ) then we shortcut all processing and simply set the session key of CPsid to K

output by Psid. Note this corresponds to the case where the environment does not interfere in

the communication between Psid and CPsid. We abort if τ has been output by H before, thus

the change on τ introduces the difference bounded by qH
2κ
. The change on e can be reduced to

an attack on the anonymity property 2.6 of KEM. The argument is hybrid and changes in qP

substeps, for each FpwKE session Psid who received this passive ĉ. Each consecutive differs by

one more e generation, where e is picked via KEM.enc(pk ∗) for a random pk ∗ picked by SIM,

instead of generated via KEM.enc(pk) for pk ← FRIC.AdvDec(p̂w , c) where p̂w refers to the

pw which Psid holds. By a reduction to the anonymity property of KEM, the total difference

introduced by this change can be upper-bounded as (qIC + qP) · εKEM.anonymity. The change on

session key generation introduces no difference because such sessions compute same session

keys in all previous games. Thus we have |P5 − P3| ≤ qH
2κ

+ (qIC + qP) · εKEM.anonymity

Game 6 (randomizing second message and session keys in other cases):

203

Now we change how Psid reacts for all other ĉ cases: instead of querying FRIC.AdvDec(p̂w , ĉ)

to get p̂k and generate corresponding e, τ and K , we set p̂w = c2pw[ĉ] and consider two cases:

(case 1) if p̂w = (fullsid, pw) then Game 5 computes K in the same way as in Game 3, except

we render the decryption query as retrieval from table TRIC ˆ̂pw , which is just a notational

change; (case 2) In any other case, Game 5 shortcuts the decryption and key-computation

process and outputs a random e, with τ , K as random elements in {0, 1}κ. On the other

side, CPsid computes K as before.

We argue that the change introduced in case 2 is negligible, i.e. if c2pw[ĉ] contains an entry

p̂w ̸= (fullsid, pw), including p̂w = ⊥. The argument is hybrid and changes the view in qP

substeps, for each FpwKE session Psid invoked by Z. We consider two sub-cases, (case 2a)

where ĉ was created via an adversarial encryption query on some key p̂w , which does not

match the decryption key (fullsid, pw) that Psid would use in Game 3 to decrypt this ciphertext

(note that this p̂w is unique because in Game 1 we add an abort if two encryption queries ever

create the same ciphertext), and (case 2b) where ĉ was not created in any encryption query.

In either of these two sub-cases Game 3 would compute τ ← H(K∗, p̂k , ĉ, e), and compute

K ← H(K∗, p̂k , ĉ, e, τ) for (r̂, p̂k) ← FRIC.AdvDec((fullsid, pw), ĉ) and (e, K∗) ← enc(p̂k),

and since in either case ĉ was not inserted in table TRIC(fullsid,pw) via an encryption query,

this AdvDec query will embed a random p̂k into the decrypted plaintext.

204

Game 0: real-world interaction
Initialize Cset = {} and empty table TRICp̂w for all p̂w ;

on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP), p̂w ← (fullsid, pw)
if b = 0: (sk , pk)

r←− KEM.kg, c ← FRIC.Enc(p̂w , pk), save

(sid,P,CP, fullsid, 0, pw , sk , pk , c,⊥), output c
if b = 1: save (sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥,⊥)
on message ĉ to session Psid (accept only one): if ∃ record
(sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥,⊥):

(r̂, p̂k)← FRIC.AdvDec((fullsid, pw), ĉ)
(e,K∗)← KEM.enc(p̂k),τ ← H(K∗, p̂k , ĉ, e)
K ← H(K∗, p̂k , ĉ, e, τ)
reset Rec← (sid,P,CP, fullsid, 1, pw , ĉ, e, τ,K)

output (e, τ) and (sid,P,K)

on message (ê, τ̂) to session Psid (accept only one):

if ∃ record (sid,P,CP, fullsid, 0, pw , sk , pk , c,⊥):

K∗ ← KEM.dec(sk , ê)

if τ = H(K∗, pk , c, ê) then set K ′ ← H(K∗, pk , c, ê, τ) and

output (sid,P,K ′)

else output K ′ r←− {0, 1}κ

on query FRIC.Enc(p̂w ,M) (assuming M ∈ PK): r
r←− R, set

m← (r,M)
If ∃ c s.t. (m, c) ∈ TRICp̂w : return c
else:c

r←− TRICp̂w .c, add (m, c) to TRICp̂w , c to Cset, return c

on query FRIC.AdvEnc(p̂w ,m, T): (m ∈ R × PK and T ∈

PK): if ∃ c s.t. (m, c) ∈ TRICp̂w : return c
else: s

r←− TRICp̂w .s[T], set c← (s, T)
add (m, c) to TRICp̂w and c to Cset, return c

on query FRIC.AdvDec(p̂w , c) (assuming c ∈ R× PK):

if ∃ m s.t. (m, c) ∈ TRICp̂w : return m

else: m
r←− TRICp̂w .m, add (m, c) to TRICp̂w , return m

On A’s query x to H:

If ∃⟨x, y⟩ in TH output y, else output y
r←− {0, 1}κ and add

⟨x, y⟩ to TH.
Game 1: randomizing first message

on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP), p̂w ← (fullsid, pw)

if b = 0: set (sk , pk)
r←− KEM.kg, r

r←− R, m← (r, pk), c
r←− D,

abort if (m, ·) ∈ TRICp̂w or c ∈ Cset, add (m, c) to TRICp̂w ,

save (sid,P,CP, fullsid, 0, pw , sk , pk , c,⊥), output c

on FRIC.Enc(p̂w ,M) or FRIC.AdvEnc(p̂w ,m, T):

Before either process adds c to Cset, abort if c ∈ Cset and set

c2pw[c]← p̂w

Game 2: embedding public key in decryption

queries

on query FRIC.AdvDec(p̂w , c):

if ∃m s.t. (m, c) ∈ TRICp̂w return m, otherwise set (sk , pk)
r←−

KEM.kg, r
r←− R, m ← (r, pk), abort if (m, ·) ∈ TRICp̂w , add

(m, c) to TRICp̂w , save (backdoor, c, p̂w , sk , pk), return (r, pk)

Game 3: delegating key generation to AdvDec
on (NewSession, sid,P,CP, pw) to P:
fullsid← order(sid,P,CP), b← bit(P,CP), p̂w ← (fullsid, pw)
if b = 0: c

r←− D, abort if c ∈ Cset, otherwise add c to Cset
query FRIC.AdvDec(p̂w , c), retrieve (backdoor, c, p̂w , sk , pk)
save (sid,P,CP, fullsid, b, pw , sk , pk , c,⊥) and output c

Game 456: randomizing second message and keys

on message ĉ to session Psid:

if ∃ record rec = (sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥):
if ∃ record (sid,CP,P, fullsid, 0, pw , sk , pk , ĉ,⊥):

pick e ← c[pk∗], τ
r←− {0, 1}κ,K ← {0, 1}κ (pk∗ r←− PK,

e ← c[pk∗] is a shortcut for (e, ·)← KEM.enc(pk∗))
else: p̂w ← c2pw[ĉ]
if p̂w = (fullsid, pw): retrieve ((r̂, p̂k), ĉ) from TRICp̂w

set (e,K∗)← KEM.enc(p̂k), τ ← H(K∗, pk , ĉ, e)
K ← H(K∗, pk , ĉ, e, τ)

else: pick e ← c[pk∗], τ
r←− {0, 1}κ, K r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, 1, pw , ĉ, e, τ,K)

output (e, τ), (sid,P,K)

on message (ê, τ̂) to session Psid:

if ∃ record (sid,P,CP, fullsid, 0, pw , sk , pk , c,⊥):
if ∃ record (sid,CP,P, fullsid, 1, pw , c, ê, τ̂ ,K) then set

K ′ ← K , output (sid,P,K ′)

else: set K∗ ← KEM.dec(sk , ê)
if τ̂ = H(K∗, pk , c, e) then set K ′ ← H(K∗, pk , c, e, τ̂),

and output (sid,P,K ′)

otherwise output K ′ r←− {0, 1}κ

Game 7: delaying password usage
on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP)
if b = 0: c

r←− D, abort if c ∈ Cset, otherwise add c to Cset
save (sid,P,CP, fullsid, b, pw ,⊥, c,⊥) and output c

on message ĉ to session Psid:

if ∃ record (sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥,⊥):
if ∃ record (sid,CP,P, fullsid, 0, pw ,⊥,⊥, ĉ,⊥):

pick e ← c[pk∗], τ
r←− {0, 1}κ, K r←− {0, 1}κ

else: p̂w ← c2pw[ĉ]
if p̂w = (fullsid, pw): query FRIC.AdvDec((fullsid, pw), ĉ),

retrieve ((r̂, p̂k), ĉ) from TRICp̂w , set (e,K∗) ←

KEM.enc(p̂k), τ ← H(K∗, p̂k , ĉ, e),K ← H(K∗, p̂k , ĉ, e, τ)

else: pick e ← c[pk∗], τ
r←− {0, 1}κ, K r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, 1, pw , ĉ, e, τ,K)

output (e, τ) and (sid,P,K)

on message (ê, τ̂) to session Psid:

if ∃ record (sid,P,CP, fullsid, 0, pw ,⊥,⊥, c,⊥):
if ∃ record (sid,CP,P, fullsid, 1, pw , c, ê, τ̂ ,K) then set

K ′ ← K , and output (sid,P,K ′)

else if ∃ pw s.t. ∃ (backdoor, c, (fullsid, pw), sk , pk)
set K∗ ← KEM.dec(sk , ê)
if τ̂ = H(K∗, pk , c, ê) then set K ′ ← H(K∗, pk , c, ê, τ̂)

and output (sid,P,K ′)

otherwise output K ′ r←− {0, 1}κ

Figure 5.17: Game changes for the proof of Theorem 5.3

205

We make the following changes. First we pick a random K∗ instead of via output of

KEM.enc(pk), we argue that an adversary who distinguishes this change with non-negligible

advantage implies an attack on the security property of the KEM scheme. Given the

KEM security challenge (pk ∗, e∗,K ∗), the reduction does the following: it guesses an index

i
r←− [1, ..., qIC + qP] of a query to FRIC.AdvDec using key (fullsid, pw) and embeds challenge

value pk ∗ into the decrypted plaintext.

If the guess is right and the adversary sends ciphertext ĉ used in this i-th query to Psid,

the reduction embeds the (e∗,K ∗) challenge value into the KEM.enc output by Psid. (If the

guess is not right the reduction aborts.) If the guess is right, the reduction reproduces how

Psid acts in Game 3 if K ∗ is the real key corresponding to KEM instance (pk ∗, e∗,K ∗), and

it reproduces how Psid acts in Game 5 if K ∗ is random. Since the right guess occurs with

probability 1/(qIC+qP) and the identity of the index i does not affect the view the reduction

produces before the abort, and the argument goes by a hybrid over all honest party sessions,

this change is upper-bounded by qP/(qIC + qP) · εKEM.sec.

Then we pick τ at random instead of via H, with an abort if τ has been output by H before.

We also change e to be directly generated via a random public key pk ∗ picked by SIM, which

is only a syntactic change because as mentioned in previous part of this game, in case 2

AdvDec query will always embed a random pk into the decrypted plaintext, and generate

e based on this pk . Now that FRIC.AdvDec is not used in response to ĉ, we further remove

query to FRIC.AdvDec.

Note that process on CPsid remains unchanged, where τ checking always fails and CPsid always

output a random session key as in the previous game. We conclude that:

|P6 − P5| ≤ qP/(qIC + qP) · εKEM.sec +
qH
2κ

(5.14)

206

Game 7 (delaying password usage): In this game we delay using the password pw of session

Psid to decrypt its outgoing message c to the moment when Psid receives an incoming message

(ê, τ̂) in the case of an active attack, where A made a decryption query on c using correct

password. In this case Psid will go through the list of backdoor records based on pw and c

to retrieve sk for KEM decapsulation, whereas Game 5 retrieves sk from Psid’s record. This

is just a notational change. We also change how CPsid reacts to an incoming message ĉ,

and we perform the decryption query only in the case adversary created ĉ via encryption

under correct key (fullsid, pw). Since Game 5 does not use the decrypted value (r, pk) and

the associated trapdoor sk until the exact same case occurs, postponing this decryption does

not matter as long as item (∗, c) is not written into table TRIC(fullsid,pw) via an encryption

query. However, the latter cannot happen in Game 5 because each NewSession and each

encryption queries generate disjoint ciphertexts (a collision in the ciphertexts created by any

of these queries leads to an abort). Both cases imply that P6 = P7.

Game 8 (ideal-world game implied by FpwKE and SIM): This is the ideal-world game induced

by functionality FpwKE interacting with simulator SIM of Figure 5.16. Since Game 7 matches

the ideal-world interaction of Game 8 exactly we conclude that P7 = P8, which completes

the proof.

5.5 Applications of HIC to asymmetric PAKE

Gu et al. [74] proposed an asymmetric PAKE protocol called KHAPE which is a generic

compiler from any UC key-hiding Authenticated Key Exchange (AKE), using an Ideal Cipher

on the domain formed by (private, public) key pairs of the AKE.

207

Here we claim that KHAPE remains a UC aPAKE12 if the Ideal Cipher used to encrypt the

private and public AKE keys in protocol KHAPE is replaced by a Randomized Ideal Cipher .

The benefit of replacing IC∗ implementation of the ideal cipher on a group in [74] with a RIC

is that, as we show with the m2F construction of RIC, the latter can be implemented over any

group which admits an RO-indifferentiable random oracle hash onto a group, requires only

one such hash to both encrypt and decrypt, and it has bandwidth overhead of 2κ bits. By

contrast, the IC∗ implementations of an ideal cipher on a group suggested in [74] work only

for restricted elliptic curve groups and/or require more bandwidth and more computation

in encryption and decryption. The same change can also benefit protocol OKAPE[68], which

improves the round efficiency of KHAPE, and the change should be done similarly to KHAPE.

We show the KHAPE protocol using Randomized Ideal Cipher for password-encryption of

keys in Figure 5.18. Intuitively Randomized Ideal Cipher works because: in KHAPE the

attacker can attack client by sending an arbitrary ciphertext of his choice, but with the

credential encryption implemented using an ideal cipher, the ciphertext commits the attacker

to only one choice of key/password, for which he can decide the plaintext. And for all other

keys the decrypted plaintext will be random, i.e. there are two requirements: (1) ciphertext

c = Enc(k,m) is an encryption of some unique (k,m). RIC satisfies since for every (k,m)

RIC.Enc and RIC.AdvEnc outputs c = (s, T) which has no collisions on s part; (2) Dec(k′, c)

for k′ ̸= k outputs random M , which is defined as in RIC.AdvDec and RIC.Dec.

For reference, for AKE functionality FkhAKE see e.g., [74], and for aPAKE functionality FaPAKE

see Figure 2.4 e.g., [67].

Theorem 5.4. Protocol KHAPE of [74] realizes the UC aPAKE functionality FaPAKE if the

AKE protocol realizes the Key-Hiding AKE functionality FkhAKE assuming that kdf is a secure

PRF and RIC is a randomized ideal cipherover message space of private and public key pairs

in AKE.
12The UC asymmetric PAKE functionality, adapted to the case of explicit C-to-S authentication imple-

mented by protocol KHAPE, is shown in Section 2.3.3.

208

We note that Freitas et al. [68] showed a UC aPAKE which improves upon protocol KHAPE

of [74] in round complexity. The aPAKE of [68] relies on IC in a similar way as protocol

KHAPE, and the proof therein should also generalize to the case when IC is replaced by HIC.

• Randomized Ideal Cipher RIC = (Enc,Dec) on space of private and public keys
• pseudorandom function kdf

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S generates two AKE key pairs (a,A) and (b,B), sets e ← RIC .Enc(pw , (a,B)), stores
file[uid, S]← (e, (b,A)), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

(a,B)← RIC .Dec(pw , e) �
e

(e, (b,A))← file[uid, S]

-(sid,C, S, a,B) � (sid, S,C, b,A)

Key-Hiding AKE
� k1 -k2

τ ← kdf(k1, 1) -
τ

γ ← ⊥ if τ ̸= kdf(k2, 1)
else γ ← kdf(k2, 2)

�
γ

K1 ← ⊥ if γ ̸= kdf(k1, 2) K2 ← ⊥ if τ ̸= kdf(k2, 1)
else K1 ← kdf(k1, 0) else K2 ← kdf(k2, 0)
output K1 output K2

Figure 5.18: protocol KHAPE using Randomized Ideal Cipher (changes from [74] marked so)

Proof. We describe how the security proof for KHAPE should be adapted to the case using

RIC. We specify how we deal with the RIC-specific differences when they occur and mark

them in gray . We show that the environment’s view of the real-world security game, denoted

Game 0, i.e. an interaction between the real-world adversary and honest parties who follow

protocol KHAPE, is indistinguishable from the environment’s view of the ideal-world game,

denoted Game 8, i.e. an interaction between simulator SIM13 of Figures 5.20 and functionality

FaPAKE2.4. As before, we use Gi to denote the event that Z outputs 1 while interacting with

13here we only attach part of the simulator since the rest, i.e. the “Respodning to AKE messages” part,
is same as in [74]

209

Initialize empty table TRIC. Notation TRICp̂w .X
′, TRICp̂w .Y and TRICp̂w .s[T] as in Fig. 5.20.

Code below assumes queries Enc,AdvEnc,AdvDec,Dec are new.

• On (StorePwdFile, uid, pwuid
S) to S: Generate keys (a,A), (b, B), set euidS ←

Enc(pwuid
S , (a,B)), and file[uid,S]← (euidS , b, A)

• On (pw , x) to Enc: pick r
r←− R, set x′ ← (r, x) , output y

r←− Y \ TRICp̂w .Y , add

(pw , x′, y) to TRIC

• On (pw , x′, T) to AdvEnc: pick s
r←− TRICp̂w .s[T], y ← (s, T), add (pw , x′, y) to TRIC,

and output y

• On (pw , y) to AdvDec: Output x′
r←− X ′ \ TRICp̂w .X

′, add (pw , x′, y) to TRIC

• On (pw , y) to Dec: Query (r, x)← AdvDec(pw , y), output x

• On (StealPwdFile, S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: Set (euidS , (b, A)) ← file[uid, S], send euidS and start AKE
session Ssid on (sid,S,C, b, A), set k2 to Ssid output;

If Z sends τ ′ = kdf(k2, 1) to Ssid, set K2, γ as kdf(k2, 0), kdf(k2, 2), else as ⊥,⊥

• On (CltSession, sid, S, pw) and message e ′ to C: Set (a,B) ← (Dec(pw , e ′)), and start
AKE session Csid on (sid,C, S, a, B), set k1 to Csid output, send τ = kdf(k1, 1) to Z;
If Z sends γ′ = kdf(k1, 2) to Csid, set K1 = kdf(k1, 0) else K1 = ⊥

Figure 5.19: Game 0: Z’s interaction with real-world protocol KHAPE

Game i, and the theorem follows if |Pr[G0]−Pr[G8]| is negligible. For a fixed environment Z,

let qpw, qRIC , and qses be the upper-bounds on the number of resp. password files, RIC queries,

and online S or C aPAKE sessions. Let ϵZkdf(SIMAKE) and ϵZake(SIMAKE) be the advantages of an

environment who uses the resources of Z plus O(qRIC+qses+qpw) exponentiations in G in resp.

breaking the PRF security of kdf, and in distinguishing between the real-world AKE protocol

and its ideal-world emulation of SIMAKE interacting with FkhAKE. Let X ′ = Y = R× G be

the domain and range of the Randomized Ideal Cipher RIC used, let X be the domain of

(private,public) keys in AKE(e.g. for both 3DH and HMQV we have X = Zp ×G where G

is a group of order p). Whereas [74] defined a mapping from groups to bitstrings and used a

“bitstring” IC on the result, here we directly show a (randomized) IC on groups, precisely so

210

that it can be used directly for public key systems where public keys live in groups14, which

is the case for all public keys we give as our examples (either DH-based or Lattice-based).

Game 0 (real world): This is the interaction, shown in Figure 6.6, of environment Z with

the real-world protocol KHAPE, except that the symmetric encryption scheme is idealized

as a Randomized Ideal Cipher oracle. (Technically, this is a hybrid world where each party

has access to the Randomized Ideal Cipher functionality FRIC .)

Game 1 (embedding random keys in FRIC.AdvDec outputs): We modify processing of Z’s

query (pw , y) to AdvDec 15 for any y ̸∈ TRICp̂w .Y , i.e. y for which AdvDec(pw , y) has not

been yet defined. On such query Game 1 pick a random r, generates fresh key pairs (a,A)

and (b, B), sets x′ ← (r, (a,B)) , and if x′ ̸∈ TRICp̂w .X
′ then it sets AdvDec(pw , y) ← x′. If

x′ ∈ TRICp̂w .X
′, i.e. x′ is already generated by AdvEnc(pw , ·, ·) or Enc(pw , ·), Game 1 aborts.

If y = euidS for some (S, uid) then the game also sets pkuid
S (pw)← (r, A,B).

The divergence this game introduces is due to the probability (qRIC)
2/2n of ever encountering

an abort 16, which leads to |Pr[G1]− Pr[G0]| ≤ (qRIC)
2/2n.

Game 2 (random euidS in the password file): We change StorePwdFile processing by picking

ciphertext euidS as a random element in {0, 1}n ×G instead of via query to Enc, then we pick

two key pairs (a,A), (b, B), pick a random r and define (ruidS ,Auid
S ,Buid

S)← (r, A,B), set x′ ←

(r, (a,B)). If euidS ∈ TRICp̂w .Y for any pw , not necessarily pwuid
S , the game aborts. The game

also aborts if x′ ∈ TRICp̂w .X
′ for pw = pwuid

S . Otherwise the game sets AdvDec(pwuid
S , euidS)←

x′ and pkuid
S (pwuid

S)← (r, A,B). The divergence this game introduces is due to the probability

of abort occuring in either case, which leads to |Pr[G2]− Pr[G1]| ≤ 2qpwqRIC/2
n.

Game 3 (abort on ambiguous ciphertexts): In[74] to eliminate the possibility of ambiguous

14the secret keys in our cases are either Zp elements or bitstrings which are in groups
15all the Enc,AdvEnc,AdvDec notation refers to oracles defined by FRIC
16the probability of collission comes from the n-bit string ris is at most (qRIC)

2/2n

211

Initialization
Initialize simulator SIMAKE, an empty table TRIC , empty lists CPK ,PKC,PK S

Notation: TRICp̂w .X
′ = {x′ | (pw , x′, ·) ∈ TRIC}, TRICp̂w .Y = {y | (pw , ·, y) ∈ TRIC},

TRICp̂w .s[T] = {s ∈ R | (·, (s, T)) ̸∈ TRICp̂w}.
Convention: First call to SvrSession or StealPwdFile for (S, uid) sets euidS

r←− Y . W.l.o.g. we
assume A uses AdvDec interface to implement FRIC.Dec queries.

Randomized Ideal Cipher queries

• On query (Enc, pw , x) to FRIC, send back y if (pw , (·, x), y) ∈ TRIC , else pick r
r←− R, y r←−

Y \ TRICp̂w .Y , add (pw , (r, x), y) to TRIC, send back y

• On query (AdvEnc, pw , x′, T) to FRIC , send back y if (pw , x′, y) ∈ TRIC, else pick s
r←−

TRICp̂w .s[T], set y ← (s, T), add (pw , x′, y) to TRIC, send back y

• On query (AdvDec, pw , y) to FRIC, send back x′ if (pw , x′, y) ∈ TRIC, else do:

1. If y ̸= euidS for any (S, uid) then pick x′
r←− X ′ \ TRICp̂w .X

′

2. If y = euidS for some (S, uid) send (OfflineTestPwd, S, uid, pw) to FaPAKE and:
(a) If FaPAKE sends “correct guess” then set (r,A,B)← (ruidS ,Auid

S ,Buid
S)

(b) Otherwise pick r
r←− R, initialize keys A and B via two Init calls to SIMAKE,

add A to PKC and B to PK S

Set pkuidS (pw) ← (r,A,B), send query (Compromise, A) to SIMAKE, define a as

SIMAKE’s response, add A to CPK , set x′ ← (r, (a,B))

In either case add (pw , x′, y) to TRIC and send back x′

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE. If FaPAKE sends “no password
file,” pass it to A, otherwise declare (S, uid) compromised and:

1. If FaPAKE returns no value then pick r
r←− R, initialize keys A and B via two Init calls to

SIMAKE, add A to PKC and B to PK S

2. If FaPAKE returns pw then set (r,A,B)← pkuidS (pw)

Send (Compromise, B) to SIMAKE, define b as SIMAKE’s response, add B to CPK , set
(ruidS ,Auid

S ,Buid
S)← (r,A,B), return file[uid, S]← (euidS , b, A) to A.

Starting AKE sessions

On (SvrSession, sid, S,C, uid) from FaPAKE, initialize random function Rsid
S : ({0, 1}∗)3 → {0, 1}κ,

set flag(Ssid)← hbc, send euidS to A as a message from Ssid, and (NewSession, sid, S,C) to SIMAKE.

On (CltSession, sid,C,S) from FaPAKE and message e ′ sent by A to Csid, initialize random func-
tion Rsid

C : ({0, 1}∗)3 → {0, 1}κ, and:
1. If e ′ = euidS set flag(Csid)← hbcuidS , send (NewSession, sid,C, S) to SIMAKE

2. If e ′ ̸= euidS check if e ′ was output by FRIC.Enc on some (pw , x) or FRIC.AdvEnc on
some (pw , (r, x)), and:

(a) If there is no such query then send (TestPwd, sid,C,⊥) to FaPAKE, set
flag(Csid)← rnd, and send (NewSession, sid,C, S) to SIMAKE

(b) Otherwise define (pw , x) (resp.(pw , (r, x))) as the first such query(abort others)

which outputted e ′, send (TestPwd, sid,C, pw) to FaPAKE, and:
i. If FaPAKE returns “wrong guess” then set flag(Csid)← rnd and send

(NewSession, sid,C, S) to SIMAKE
ii. If FaPAKE returns “correct guess” then set (a,B)← x and run the AKE pro-

tocol on behalf of Csid on inputs (sid,C, S, a, B); When Csid terminates with key
k then send τ ← kdf(k , 1) to A and (NewKey, sid,C, kdf(k , 0)) to FaPAKE

Figure 5.20: Simulator SIM showing that protocol KHAPE realizes FaPAKE

212

ciphertexts we introduce an abort if IC.Enc oracle picks the same ciphertext for any two

queries containing pair (pw 1, x1) and (pw 2, x2). Now this ambiguous case is already consid-

ered and avoided in definition of Enc and AdvEnc in FRIC. so we have Pr[G3] = Pr[G2] .

Taking stock of the game. Let us review how Game 3 operates: The initialization of

password file file[uid, S] on password pwuid
S picks a random r and fresh keys (a,A), (b, B),

keeps them as pkuid
S (pwuid

S) = (ruidS ,Auid
S ,Buid

S) = (r, A,B), picks euidS as a random string,

and programs AdvDec(pwuid
S , euidS) to (r, (a,B)). Oracle AdvDec on inputs (pw ′, y) for which

decryption is undefined, picks some random r′ and fresh key pairs (a′, A′) and (b′, B′), and

programs AdvDec(pw ′, y) to (r′, (a′, B′)). In addition, if y = euidS then it assigns pkuid
S (pw ′)←

(r′, (a′, B′)). Finally, encryption is now unambiguous, i.e. every ciphertext e can be output

by Enc or AdvEnc on only one pair (pw , x′).

This is already very close to how simulator SIM operates as well. The crucial difference

between the ideal-world interaction and Game 3, is that in Game 3, ruidS and keys (Auid
S ,Buid

S)

are generated at the time of password file initialization, and AdvDec(pwuid
S , euidS) is set to

(ruidS , (auid
S ,Buid

S)) at the same time. In the ideal-world game these values are undefined

until password compromise, and AdvDec(pwuid
S , euidS) is set only after offline dictionary attack

succeeds in finding pwuid
S . This delayed generation of the keys in file[uid, S] is possible because

AKE sessions which S and C run on these keys can be simulated without knowledge of

these keys, a key-hiding AKE functionality allows precisely for such simulation, as we show

next. Delayed r generation is also okay because it’s not used in AKE sessions.

Game 4 (Using SIMAKE for AKE’s on honestly-generated keys): In Game 4 we modify

Game 3 by replacing all honest parties that run AKE instances on keys A,B generated

either in password file initialization or by oracle AdvDec, with a simulation of these AKE

instances via simulator SIMAKE. For notational brevity we say that query (pw , x) to Enc(resp.

(pw , x′, T) to AdvEnc) or (pw , y) to AdvDec are new(!) as a shortcut for saying that table

TRIC includes no prior tuple corresponding to these inputs. If such tuple exists then Enc,

213

Initialize simulator SIMAKE, empty table TRIC and TRICp̂w .s[T], and lists CPK ,PKC,PK S.
• On (StorePwdFile, uid, pwuid

S) to S: Pick euidS
r←− Y , mark pwuid

S as fresh

• On new(!) (pw , x) to Enc : Pick r
r←− R, set x′ ← (r, x), output y

r←− Y \ TRICp̂w .Y , add

(pw , x′, y) to TRIC

• On new(!) (pw , x′, T) to AdvEnc : Pick s
r←− TRICp̂w .s[T], y ← (s, T), add (pw , x′, y) to

TRIC, and output y

• On new(!) (pw , y) to AdvDec, do cases below then add (pw , x′, y) to TRIC and output x′:
1. If y ̸= euidS for any (S, uid) then pick x′

r←− X ′ \ TRICp̂w .X
′

2. If y = euidS for some (S, uid) then:

(a) If pwuid
S is fresh or pw ̸= pwuid

S then record ⟨offline,S, uid, pw⟩, pick r
r←− R ,

initialize A and B via Init calls to SIMAKE, add A to PKC and B to PK S

(b) If pwuid
S is compromised&pw = pwuid

S , set (r,A,B)← (ruidS ,Auid
S ,Buid

S)

In both cases (a) and (b), set pkuidS (pw)← (r,A,B), define a as SIMAKE’s response
to (Compromise, A), add A to CPK , and set x′ ← (r, (a,B))

• On (StealPwdFile,S, uid): mark pwuid
S compromised and: If ∃ record ⟨offline, S, uid, pwuid

S ⟩
then set (r,A,B)← pkuidS (pwuid

S); Else pick r
r←− R, initialize A,B via Init calls to SIMAKE,

add A to PKC and B to PK S; In either case, set (ruidS ,Auid
S ,Buid

S)← (r,A,B) , define b as

SIMAKE’s response to (Compromise, B), add B to CPK , output file[uid, S]← (euidS , b, A)

• On (SvrSession, sid,C, uid) to S: Initialize function Rsid
S , set flag(Ssid) ← hbc, output euidS

and send (NewSession, sid, S,C) to SIMAKE

• On (CltSession, sid,S, pw) and e ′ to C: Initialize function Rsid
C and:

1. If e ′ = euidS then: (1) set flag(Csid)← hbcuidS if pw = pwuid
S , otherwise set flag(Csid)←

rnd; (2) send (NewSession, sid,C, S) to SIMAKE

2. If e ′ ̸= euidS then:
(a) If e ′ was not output by Enc or AdvEnc or it was output on (pw ′, ·) for pw ′ ̸= pw ,

then set flag(Csid)← rnd and send (NewSession, sid,C, S) to SIMAKE
(b) If e ′ was output by Enc on (pw , x) or AdvEnc on (pw , (·, x), ·) then set (a,B)←

x, run Csid of AKE on (sid, S, a, B); If Csid terminates with k , output τ ←
kdf(k , 1) and K1 ← kdf(k , 0)

Responding to AKE messages:

• On (Interfere, sid, S): set flag(Ssid)← act
• On (Interfere, sid,C): if flag(Csid) = hbcuidS then flag(Csid)← actuidS if pwuid

S is compromised,
otherwise flag(Csid)← rnd

• On (NewKey, sid,C, α):
1. If flag(Csid) = actuidS set k1 ← Rsid

C (Auid
S ,Buid

S , α), output τ ← kdf(k1, 1)
2. Otherwise output τ

r←− {0, 1}κ
• On (NewKey, sid, S, α) and τ ′ to Ssid:

1. If flag(Ssid) = act and τ ′ = kdf(k2, 1) for k2 = Rsid
S (B,A, α) where (·, (A,B)) =

pkuidS (pwuid
S), then output (K2, γ)← (kdf(k2, 0), kdf(k2, 2))

2. If flag(Ssid) = hbc and τ ′ was generated by Csid where flag(Csid) = hbcuidS , then
output K2

r←− {0, 1}κ and γ
r←− {0, 1}κ

3. In all other cases output (K2, γ)← (⊥,⊥)
• On γ′ to Csid:

1. If flag(Csid) = actuidS and γ′ = kdf(k1, 2), output K1 ← kdf(k1, 0))
2. If flag(Csid) = hbcuidS and γ′ was generated by Ssid for Ssid s.t. flag(Ssid) = hbc, output

K1 equal to the key K2 output by Ssid

3. In all other cases output K1 ← ⊥
• On (ComputeKey, sid,P, pk , pk ′, α): send Rsid

P (pk , pk ′, α) if pk∈PKP, pk
′∈CPK

Figure 5.21: KHAPE: Z’s view of ideal-world interaction (Game 8)

214

AdvEnc and AdvDec oracles use the retrieved (key,input,output) tuple to answer the according

query. We also omit the possibilities of the game aborts, because such aborts happen only

with negligible probability. These aborts occur in three places, all marked (∗): (1) When euidS

is chosen in StorePwdFile the game aborts if euidS ∈ TRICp̂w .Y for any pw (not necessarily

pw = pwuid
S); (2) When x′ is then set as x′ ← (r, (a,B)), the game aborts if x′ ∈ TRICp̂w .X

′

for pw = pwuid
S ; (3) When x′ ← (r, (a,B)) is set in AdvDec query (pw , y) the game aborts

also if x′ ∈ TRICp̂w .X
′.

Game 4 operates like Game 3, except that it outsources AKE key generation in StorePwdFile

and AdvDec to SIMAKE, and whenever Ssid or Csid runs AKE on such keys these executions

are outsourced to SIMAKE, while the game emulates what FkhAKE would do in response to

SIMAKE’s actions. In particular, Game 4 initializes random function Rsid
P for every AKE

session Psid invoked by emulated FkhAKE. Whenever C and S run an AKE instance under

keys generated by AKE key generation the game, playing FkhAKE, triggers SIMAKE with

messages resp. (NewSession, sid,C, S) and (NewSession, sid, S,C). When SIMAKE translates the

real-world adversary’s behavior into Interfere actions on these sessions, the game emulates

FkhAKE by marking these sessions as actively attacked. If SIMAKE sends (NewKey, sid,P, α)

on activey attacked session, its output key k is set to Rsid
P (pkP, pkCP, α) where (pkP, pkCP)

are the keys this session runs under, which are (Buid
S ,Auid

S) for S, and keys (A,B) defined

by AdvDec(pw , e ′) for C. The game must also emulate ComputeKey interface of FkhAKE and

let SIMAKE evaluate Rsid
P (pk , pk ′, α) for any pk ∈ PK P and any pk ′ ∈ CPK . (Note that all

sessions emulated by SIMAKE run on public keys pk ′ which are created by the Init interface.)

Set PK S contains only one key, Buid
S , while set PK C contains Auid

S and all keys A′ created by

AdvDec queries. Set CPK consists of Auid
S ,Buid

S , because these were compromised in file[uid, S]

initialization, which used the corresponding private keys, and all client-side keys A′ generated

in AdvDec queries, because each AdvDec query creates and immediately compromises key A′,

since it needs to embed the corresponding private key a′ into AdvDec output. Finally, if

SIMAKE sends NewKey on non-attacked session, the game emulates FkhAKE by issuing random

215

keys to such sessions except if Csid runs under key pair (A′, B′) = (Auid
S ,Buid

S), which matches

the key pair used by Ssid, in which case the game copies the key output by the session which

terminates first into the key output by the session which terminates second. The rest of the

code is as in Game 3: C uses its key k1 to compute authenticator τ = kdf(k1, 1) and its local

output K1 = kdf(k1, 0), while S uses its key k2 to verify the incoming authenticator τ ′ and

outputs K2 = kdf(k2, 0) if τ
′ = kdf(k2, 1) and K2 = ⊥ otherwise.

The one case where a party might not run AKE on keys generated via a call to SIMAKE is

client session C which receives e ′ which was output by Enc(pw , x) or AdvEnc(pw , (·, x), ·)

for some x and pw matching the password input to Csid. In this case Csid runs AKE on

(a,B) = x, and since wlog these keys are chosen by the adversary and not by SIMAKE, we

cannot outsource that execution to SIMAKE. As we said above, functionality FkhAKE does not

admit honest parties running AKE on arbitrary private keys a, hence SIMAKE does not have

an interface to simulate such executions. In Game 4 such AKE instances are executed as in

Game 3.

Since Game 4 and Game 3 are identical except for replacing real-world AKE executions with

the game emulating functionality FkhAKE interacting with SIMAKE, it follows that |Pr[G4]−

Pr[G3]| ≤ ϵZake(SIMAKE)

Game 5 (delay ruidS ,Auid
S ,Buid

S generation until password compromise): In Game 4, ruidS and

keys Auid
S ,Buid

S are initialized and compromised in StorePwdFile, in Game 5 we postpone these

steps until password compromise. This change can be done in several steps.

Denote first step as Game 5(a), we remove compromising Buid
S , adding it to CPK and set-

ting file[uid, S] in StorePwdFile, and delay them to StealPwdFile. Z cannot notice this change

because in Game 4, only StealPwdFile will need file[uid, S], and compromising Buid
S to get buidS

is not needed anywhere else except when generating file[uid, S].

In Game 5(b) we make a change in AdvDec, that if y ̸= euidS then set x′
r←− X ′ \ TRICp̂w .X

′,

216

while in Game 4 we set x′ ← (r, (a,B)) for randomly initialized (r, (a,B)), with restriction

that this x′ hasn’t been set before. This is just a notational change.

Then in Game 5(c) we remove compromising Auid
S , adding it to CPK , setting x′ and adding

(pwuid
S , x′, euidS) to TRIC in StorePwdFile, and delay them to new(!) (pw , y) to AdvDec. After

this change, in StorePwdFile we now only initialize ruidS and (Auid
S ,Buid

S), add them to PK and

pick euidS . Since (pwuid
S , x′, euidS) is no longer added to TRIC in StorePwdFile, query (pwuid

S , euidS)

is now new(!) to AdvDec, and we add that in this case AdvDec responds by retrieving

(ruidS ,Auid
S ,Buid

S), compromising Auid
S , setting corresponding x′ and adding (pwuid

S , x′, euidS) to

TRIC. For any other queries, AdvDec reacts same as in Game 5(b). Game 5(c) and Game 5(b)

is identical since we only postpone executing those steps removed from StorePwdFile.

In Game 5(d) we further remove usage of (Auid
S ,Buid

S) when responding to AKE messages,

except for input to Rsid
P in actively attacked sessions. We change hbc(A,B) in Game 5(c) to

hbcuidS if (A,B) = (Auid
S ,Buid

S), and rnd otherwise. Similarly we change act(A,B) in Game 5(c)

to actuidS if (A,B) = (Auid
S ,Buid

S), which corresponds to active attack, otherwise set to rnd and

derive corresponding k1 from random element of {0, 1}κ instead of Rsid
C (A,B , α), from ran-

domness of Rsid
C this change makes indistinguishable difference to Z. Since these are only

notational changes and Z cannot notice them, Game 5(d) and Game 5(c) are identical to Z.

Finally, in Game 5(e) we remove steps of picking ruidS and initializing (Auid
S ,Buid

S) via SIMAKE

in StorePwdFile, and delay them to StealPwdFile or AdvDec(pwuid
S , euidS), depending on which

happens first. In order to set AdvDec(pwuid
S , euidS) only after A finds pwuid

S via successful of-

fline dictionary attack, we first mark pwuid
S fresh in StorePwdFile, and mark it compromised

anytime A runs (StealPwdFile, S, uid).

If A first runs (StealPwdFile, S, uid), we pick ruidS
r←− R, initialize (Auid

S ,Buid
S) via Init calls to

SIMAKE, add Auid
S to PK C and Buid

S to PK S, and later upon query AdvDec(pwuid
S , euidS), if pwuid

S

is already marked compromised, we simply retrieve (ruidS ,Auid
S ,Buid

S), then compromise Auid
S and

set x′ as in Game 5(d). In the other case, if AdvDec(pwuid
S , euidS) runs first, which means at

this moment pwuid
S must be fresh, we treat it same way as before, and just like any other

217

pw ̸= pwuid
S , where we pick ruidS

r←− R, init (Auid
S ,Buid

S) via SIMAKE, add them to PK and save

(ruidS ,Auid
S ,Buid

S) into pkuid
S (pwuid

S) for future retrieval. We also record ⟨offline, S, uid, pwuid
S ⟩, and

later if A runs StealPwdFile and there exists record ⟨offline, S, uid, pwuid
S ⟩, then just directly

retrieve (ruidS ,Auid
S ,Buid

S) from pkuid
S (pwuid

S) and skip initialization. In addition we also record

⟨offline, S, uid, pw⟩ upon query AdvDec(pw , euidS) even if pw ̸= pwuid
S . Game 5(e) is identical to

Game 5(d) since we only postpone (ruidS ,Auid
S ,Buid

S) initialization. Thus we conclude: G5 = G4

Game 6 (replace kdf output with random string in passive sessions): In Game 5, in passive

sessions, i.e. any sessions except actively attacked sessions, τ, γ are all derived from kdf of k1

or k2. In Game 6 in these sessions we remove usage of kdf and directly assign random elements

of {0, 1}κ to these values. Also we replace verifying τ ′, γ′ via checking τ ′ = kdf(k2, 1), γ
′ =

kdf(k1, 2) with checking whether they’re generated by corresponding hbc parties, since these

two checking methods are actually equal. In addition, we further remove usage of k1 and k2

in passive sessions, and instead set K2 ← {0, 1}κ, and in matching sessions we copy K2 to

K1, as Game 5 copy k1 to k2 or vice versa in such sessions. Since there’re at most qses such

sessions, and from security of kdf, the difference between Game 5 and Game 6 is negligble

to Z, i.e. |Pr[G6]− Pr[G5]| ≤ qsesϵ
Z
kdf(SIMAKE)

Game 7 (Ideal-world game): This is the ideal-world interaction, i.e. an interaction of

environment Z with simulator SIM and functionality FaPAKE, shown in Figure 6.11.

Observe that Game 6 is identical to the ideal-world Game 8. This completes the argument

that the real-world and the ideal-world interactions are indistinguishable to the environment,

and hence completes the proof.

218

5.6 Lattice-Based UC PAKE from EKE and Saber KEM

We argue that the CPA-secure Key Encapsulation Mechanism (KEM) at the heart of the

Saber [56] public key encryption, whose security is based on the Module-LWR problem,

achieves also the anonymity and uniform public keysproperty, see Section 2, under the same

Module-LWR assumption. In Figure 5.22 we show the EKE-KEM construction, which is

Figure 5.15 instantiated with Saber KEM. Note that Theorem 5.3 implies that the resulting

protocol is a UC PAKE under the Module-LWR assumption.

Saber Cryptosystem. We define the notation needed to introduce Saber. Let Zq be the

ring of integers modulo q represented in [−q/2+1, q/2] and Rq a polynomial ring Zq[X]/(Xn+

1), where n is a power of 2 and a security parameter (and a length of the session key output

by Saber). Let Rl1×l2
q be the ring of l1 by l2 matrices over Rq. (Below we use uppercase bold

font to denote matrices and lowercase bold font to denote vectors.) Let U(Rq) be a uniform

distribution over Rq and let χµ(Rq) be a distribution where each polynomial coefficient is

chosen from a binomial distribution centered at 0 with parameter µ (and standard deviation√
µ/2). When these distributions are taken over a matrix space Rl1×l2

q instead of Rq, this

stands for choosing each matrix entry (or vector if l2 = 1) according to that distribution.

Denote ⌊·⌋ as flooring to the nearest lower integer and ⌊·⌉ as rounding to the nearest integer.

The operation ⌊·⌋q→p takes an integer x ∈ Zq as input and outputs ⌊p/q · x⌋ ∈ Zp , and

similarly ⌊x⌉q→p = ⌊p/q ·x⌉ ∈ Zp . We use [·]p to denote mod p operation. Saber uses moduli

q = 2ϵq , p = 2ϵp , T = 2ϵT with q > p > T , and the constants added in ⌊·⌋ in Figure 5.22 are

set as h1 =
q
2p
∈ Rp, h2 =

p
4
− p

2T
+ q

2p
∈ Rp and h = q

2p
∈ Rl×1

q . (Saber NIST proposal [56]

suggests parameters ϵq = 13, ϵp = 10, ϵT = 4.)

Security of Saber relies on the hardness of the Module Learning with Rounding problem

(Mod-LWR)[20], defined as a variant of the Learning with Errors (LWE) problem where

219

• Parameters l, µ, moduli q = 2ϵq , p = 2ϵp , T = 2ϵT , for ϵq > ϵp > (ϵT + 1)
• Randomized Ideal Cipher RIC on domain R×PK for
PK = Rl×1

p × {0, 1}256
• Random oracle hash H onto {0, 1}κ

P0 on NewSession(sid,P0,P1, pw 0) P1 on NewSession(sid,P1,P0, pw 1)

(Assume P0 ≤lex P1 & fullsid = (sid,P0,P1))

seedA
r←− {0, 1}256

A← genA(seedA) ∈ Rl×l
q

s← χµ(R
l×1
q) s′ ← χµ(R

l×1
q)

b = ⌊AT s+ h⌋q→p

c← RIC.Enc((fullsid, pw 0), (b, seedA))
-

c

(b, seedA)← RIC.Dec((fullsid, pw 1), c0)
A← genA(seedA)
b′ = ⌊As′ + h⌋q→p

v′ = bT [s′]p + h1

k′ = ⌊v′⌋p→2

c = ⌊v′⌋p→T mod T/2
v = b′T [s]p �(b

′, c), τ τ ← H(k′, (b, seedA))
k = ⌊v − ⌊c⌋T→p + h2⌋p→2 output K1 ← H(k′)
if τ = H(k, (b, seedA)) then output K0 ← H(k)
else output K0

r←− {0, 1}κ

Figure 5.22: Protocol EKE-KEM of Section 5.4.1 instantiated with Saber KEM

the error is implicitly generated by the integer rounding operation. The advantage of a

polynimal-time adversary A against the generalized Mod-LWR problem is defined as follows

for parameters m, l, p, q, µ s.t. p < q:

AdvMod−LWR
m,l,q,p,µ (A) =

∣∣ Pr[1← A(A, ⌊As⌉q→p) : s
r←− χµ(R

l×1
q);A

r←− U(Rm×l
q)]

− Pr[1← A(A,u) : A
r←− U(Rm×l

q);u← U(Rm×1
p)]

∣∣

EKE instantiated with Saber. In Figure 5.22 we show the EKE-KEM protocol of Sec-

220

tion 5.4.1 instantiated with Saber KEM. The resulting protocol is essentially a Saber key

exchange protocol but with the initiator’s public key encrypted using Randomized Ideal

Cipher , and with the responder attaching a key-and-password confirmation message.

The following theorem, proven in [56], states the CPA security of Saber under the Mod-LWR

assumption:

Theorem 5.5. Assuming genA to be a random oracle. For any adversary A, there exists

two adversaries B1 and B2, such that:

AdvIND-CPA
Saber (A) ≤ Advmod−lwr

l,l,µ,q,p (B1) +Advmod−lwr
l+1,l,µ,q,p(B2) if q/p ≤ p/T.

The two further KEM properties needed in the EKE-KEM protocol of Section 5.4.1 are

ciphertext anonymity and uniform public keys (see Section 2.2 for definition of these notions),

but Saber satisfies these properties under the same Mod-LWR assumption:

Theorem 5.6. Saber KEM satisfies the uniform public keys property on domain PK and

the anonymity property under Module-LWR assumption.

Proof. Below we sketch the proof of Theorem 5.6. The uniform public keys property which

requires the public key generated to be indistinguishable from uniform, is by definition of

Module-LWR problem and proved in Game 2 in the same proof of Theorem 5.5, where b

is replaced with a uniform value. The anonymity property, which requires that given two

different public keys and a ciphertext (b′, c) generated by one of them, it’s computationally

hard to distinguish the correct key, is also satisfied by Saber since without information about

secret s′, LWR samples (A,b’) and (b, v′) are both indistinguishable from random elements

by definition of LWR. The full proof is given in [106].

221

Comparison with prior lattice-based PAKEs. We recall prior work on lattice-based

PAKE’s to compare it to the EKE-KEM(Saber) protocol shown in Figure 5.22. The short

summary is that EKE-KEM(Saber) appears to be the first UC PAKE from lattice assumption,

and it also forms a two-round PAKE which has the smallest bandwidth among prior lattice-

based PAKE proposals. Indeed, its bandwidth is minimal because it adds only 3κ bits to

the underlying (plain) Key Exchange implemented by KEM.

The first lattice-based PAKE was shown by Katz and Vaikuntanathan [94], where both

parties send a CCA-encrypted ciphertext to each other, compute Approximate Smooth Pro-

jective Hash (ASPH) values on ciphertexts, and conduct a key reconciliation subprotocol to

derive a session key. This protocol needs three rounds and the underlying CCA-encrypted

ciphertext actually contains n CPA-encrypted ciphertexts, which is costly to compute. KV is

further optimized by Zhang and Yu [125], who proposed a 2-round PAKE with a new ASPH

based on a “splittable CCA-secure encryption”. Following the same track, Benhamouda [30]

adapts Groce and Katz [73] framework using KV’s realization of ASPH and as result, gets

new 3-round and 2-round PAKEs in standard model, and they further optimize the proto-

col to one round, using the same SS-NIZK approach as in [125]. However, construction of

lattice-based SS-NIZK in standard model appears to be still an open question. Moreover,

all of these works rely on standard-model CCA-secure encryption which appears expensive

to realize. We refer for more details to [91], who explain the effiency challenges in this line

of work.

[91] is the first to construct a lattice-based PAKE in the standard model which only re-

quires CPA-secure encryption, and it’s significantly more efficient compared compared to

the PAKEs which use CCA-secure lattice-based encryption. Ding et al. [59] proposed a

still much more efficient scheme assuming ROM. Their scheme appears to be a lattice-based

counterpart to the PPK protocol of Boyko et al. [42], and thus also to EKE. The significant

difference, however, is that in PPK hashed password is used as a one-time mask on the KE

222

messages, wheres in EKE it is used as key that encrypts the KE messages using an ideal

cipher. Consequently, Ding et al. [59] analyze the security of their PAKE in the “BMP”

model of [42], whereas we analyze our proposal in the UC PAKE model. (We note, how-

ever, that the BMP model for PAKE is mostly likely equivalent to the recently proposed

UC relaxed PAKE model [5].) Apart of this difference in analysis, the fact that our analysis

uses KEM as a black-box allows instant reuse of efficiency improvements in lattice-based

KEMs. Indeed, Saber uses a much smaller field modulus q = 213 compared to 232−1 in [59],

which reduces the size of both the KEM public key and the ciphertext (and these sizes are

further reduced by rounding operations).17. We benchmark the bandwidth for the last three

lattice PAKEs discussed above, which seem to form the most efficient proposals. For security

parameter κ = 128, the total bandwidth is 207 KB for [91], 8.32 KB for [59] and 1.376 KB

for EKE-KEM(Saber).

Table 5.6 provides a detailed comparison on efficiency of these last three lattice PAKEs.

Scheme Bndw (KB) Rounds Assum Security Model
JGHNW[91] 207 3 (R)LWE BPR Standard
Ding17[59] 8.320 2 (R)LWE Bokyo[42] ROM

PairWE
EKE-KEM 1.376 2 LWR UC ROM
(Saber)

Table 5.1: Comparison of lattice-based PAKE protocols based on bandwidth, rounds, secu-
rity assumptions, security claims, and security model

17Saber[56] authors argue that this more aggressive parameter suffices in their construction, and while using
large prime moduli can possibly adopt Number Theoretic Transformation (NTT) to speedup polynomial
multiplications, [56] using power-of-two moduli has its own advantages including: (1) avoiding modular
reduction and rejection sampling; (2) the use of LWR halves the amount of randomness required compared
to LWE-based schemes, and thus reduces bandwidth; (3) the module structure provides flexibility by reusing
one core component for multiple security levels. See more details in [56]

223

Chapter 6

Generic compiler from PAKE to

asymmetric PAKE using KEM

6.1 Introduction

Password Authenticated Key Exchange (PAKE) [28] allows two parties to establish a high-

entropy session key for secure communication, if and only if they share the same password.

The asymmetric (or augmented) PAKE (aPAKE) [29] used for client-server communication,

is a variant of PAKE where the server stores a one-way function of the password, and a

shared session key is established if and only if the client enters the correct pre-image of the

server’s input. Currently used PKI-based “password-over-TLS” authentication has multiple

vulnerabilities which can lead to password disclosures: An active attacker learns the password

if the client falls victim to the so-called phishing attack, and the password appears in the

cleartext on the server side during protocol execution. This motivates the development of

aPAKE protocols and their integration with TLS1.3 in the ongoing standardization by the

Internet Engineering Task Force [120].

224

In the classic computational model there are many works both on PAKE, e.g. [11, 114, 76, 23]

in the Random Oracle Model (ROM) and [93, 71] in the standard model, and aPAKE,

e.g. [72, 88, 74, 68]. Some PAKE schemes were also shown secure specifically under post-

quantum assumptions. These include PAKE proposals using code-based cryptography [36]

and isogeny-based group actions [9], but PAKE constructions based on lattice assumptions

have received more attention and are closer to practicality. These include constructions in

the standard model, e.g. [94, 125, 30, 91, 12], and constructions that assume the random

oracle model [59, 67, 22, 19], which are much more efficient. In particular, [67, 22, 19] are

generic constructions of universally composable (UC) PAKE from any KEM which is (weak)

anonymous and PCA secure (i.e. Plaintext-Checking-Attack secure). These requirements

are satisfied by Kyber [40], a post-quantum KEM selected by NIST [3], secure under LWE

assumption in ROM. The cost of the resulting UC PAKE is dominated by one cycle of KEM

key generation, encryption, and decryption, and the bandwidth can be approximated as a

single pair of KEM public key and a ciphertext.

However, regarding UC aPAKE’s secure under PQ assumptions, to the best of our knowl-

edge the only known methods are implied by generic aPAKE constructions, if all the building

blocks required by a given construction are instantiated with post-quantum secure cryptosys-

tems. The first group of such constructions are generic PAKE-to-aPAKE compilers [72, 84]

which can be instantiated using post-quantum building blocks, but the resulting cost of

such aPAKE would be at least 4x larger than LWE-based PAKEs mentioned above. Other

aPAKE constructions include the OPAQUE protocol [88], which builds a (strong) aPAKE

from OPRF and AKE, and the KHAPE and OKAPE protocols [74, 68], which build aPAKE

from key-hiding AKE. However, post-quantum realizations of these building blocks either do

not yet exist or are much less efficient than LWE-based KEM like Kyber. We discuss these

points in more detail below.

225

6.1.1 Prior aPAKE Constructions

There are three prior generic constructions which convert any UC PAKE to UC aPAKE

using some additional cryptographic tool. Gentry, MacKenzie and Ramzan [72] showed such

compiler using signatures, and Hwang et al. [84] showed two such compilers, one using non-

interactive zero-knowledge proof of knowledge (NIZK), the other using KEM. We discuss

their implications to aPAKE based on PQ assumptions below.

PAKE-to-aPAKE compilers using Signatures or NIZK’s. The PAKE-to-aPAKE

compiler of [72], called the Ω-method, shown in Figure 6.1, transforms any UC PAKE into

UC aPAKE in ROM using a secure signature scheme. Note that parties C and S in Figure 6.1

interact with a box denoted PAKE: This stands for running any UC-secure PAKE in a black-

box way. Each party forms inputs to this UC PAKE subprotocol using a unique session

identifier sid, the identifiers of their own party and their counterparty, e.g. C and S for the

client, and string h used as a PAKE password. In addition to identifiers sid,C, S, the top-

layer aPAKE protocol inputs include password pw for client C, and a user account identifier

uid for both parties, which server S uses to retrieve previously created password file file[uid, S].

Intuitively, aPAKE can be secure only if file[uid, S] stores a one-way function of the password,

which leaks the password only via a successful brute-force offline dictionary attack. This is

true in the Ω-method, where file[uid, S] = (h, pk , ē), because h and ē are derived via RO

hash functions involving password pw , and they leak no information unless the adversary

queries these hash functions on inputs that include pw . Importantly, the Ω-method relies on

sub-protocol PAKE which in addition to session key K also outputs its transcript tr. The

only assumption on these transcripts is that they are non-colliding.

The main idea of the Ω-method is that C signs PAKE transcript tr using a signature key

retrieved from S via a decryption that involves both password pw and key ke derived from

PAKE output K . For this purpose the protocol uses two specific symmetric encryption

226

• signature scheme (Sig.KG, Sign,Verify), with secret keys of size s[κ]
• symmetric encryption scheme (OTP.E,OTP.D) s.t. OTP.Ek(m) = H(k)⊕m
• authenticated encryption (AEnc,ADec) s.t. AEnck(m) = H(k)⊕ (m|H′(m))
• hash functions H,H′,H′′ with ranges resp. {0, 1}κ+s[κ], {0, 1}κ, {0, 1}κ
• pseudorandom function prf with range {0, 1}κ

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets h ← H′′(S, uid, pw), generates keys (sk , pk) ← Sig.KG(1κ) and ciphertext ē ←
AEncpw(sk), stores file[uid, S]← (h, pk , ē), and discards all other values.

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid,C, uid)

h← H′′(S, uid, pw) (h, pk , ē)← file[uid, S]

-(NewSession, sid,C, S, h) �(NewSession, sid, S,C, h)

PAKE
� K , tr -K , tr

K ′ ← prf(K , 0),
ke ← prf(K , 1)

K ′ ← prf(K , 0),
ke ← prf(K , 1)

sk ← ADecpw(OTP.Dke(c̄)) � c̄ c̄← OTP.Eke(ē)
output ⊥ if sk = ⊥
else set σ ← Sign(sk , tr) -

σ
b← Verifypk(tr, σ)

and output K ′ output K ′ if b = 1
else output ⊥

Figure 6.1: Ω-method: PAKE to aPAKE compiler using Signatures [72]

schemes OTP.E and AEnc, where OTP.E is simply a one-time pad and AEnc is a one-time

pad of plaintext concatenated with its hash. Intuitively, Ω-method works because if an

adversary doesn’t enter the correct password hash h into a PAKE instance then it has no

information about ke, hence it learn nothing from S’s ciphertext c̄ (which is encrypted under

ke), and cannot send any ciphertext c̄ of its own to C s.t. ADpw(Dke(c̄)) ̸= ⊥, because that

happens only if c̄ = H(pw) ⊕ H(ke) ⊕ (m|H′(m)) for some m. Moreover, if adversary A

corrupts S and learns file[uid, S] = (h, pk , ē), it can use it to authenticate to C, but without

hashing the right pw it cannot learn sk = ADpw(ē). Furthermore, CMA-security of signature

implies that A’s interaction with any number of C sessions, which leak Sign(sk, tr) for any

transcript tr of a PAKE session established between A and C, does not let the adversary

227

forge a signature σ′ on transcript tr′ of a PAKE session established between A and S.

The Ω-method adds 2 flows to the underlying PAKE. However, assuming PAKE constructed

from KEM following [67, 22, 19], the PAKE sub-protocol takes only 2 flows, hence the 1st flow

of the Ω-method can be piggybacked on the 2nd flow of the PAKE, in which case the resulting

UC aPAKE takes only 3 communication rounds (and provides implicit authentication). The

computation overhead is dominated by signature generation for C and verification for S, and

the bandwidth overhead by the sizes of the signing key and the signature.1

A variant of the Ω-method was shown by Hwang et al. [84], with signature replaced by

a ROM-based NIZK of sk = H(pw) where pk = OWF(sk) is held by the server. This

construction adds only one C-to-S flow to PAKE, with the PAKE key used to encrypt the

NIZK, and the PAKE transcript used as a NIZK label to enforce a binding between the

NIZK and a PAKE session. However, if PAKE is instantiated as above then this aPAKE

would still require 3 communication rounds, if C is the initiator. Moreover, current NIZK’s

of preimage of a PQ one-way function are significantly more expensive than PQ signatures,

see e.g. [104] for a NIZK PoK of preimage of the LWE one-way function.

Performance Considerations. NIST [3] selected Dilithium signature [62] as a primary

post-quantum signature method, with Falcon [116] and Sphincs+ [83] as secondary options.

Performence benchmarks comparing Kyber KEM and Dilithium signature are reported in

[102] and comparisons to Falcon signatures are included in [103]. For 196-bit security, the

size of Dilithium signature is 2700 bytes and the size of the secret key is roughly twice

that, while the sizes of public keys and ciphertexts in the CCA-secure KEM of Kyber are

resp. 1088 and 1184 bytes. The running time of Kyber KEM (kg, enc, dec) in CPU cycles

are respectively (85k, 125k, 135k), while Dilithium (kg, sign, ver) are (250k, 1000k, 300k).

Compared to Dilithium, Falcon has 4x smaller signature size but its signing operation is at

1The encrypted signing key sk can be omitted if C regenerates sk using password hash as key generation
randomness. This introduces performance overheads which vary depending on the specifics of the key
generation algorithm.

228

least 3.5x slower and verification 5.4x faster [103].2

It follows that the costs of KEM-based UC PAKE [67, 22, 19] instantiated with Kyber KEM

can be estimated at 2272 bytes of bandwidth and 345k CPU cycles, counting the costs of

only Kyber KEM component of such PAKE, while the overhead of the Ω-method PAKE-

to-aPAKE compiler instantiated with Dilithium signature would be at least 2700 bytes of

bandwidth (counting only signature size, although this would increase computation costs,

see footnote 1) and 1300k CPU cycles, resulting in UC aPAKE which is a factor of 2.2x

(1+2700/2272) and 4.8x (1+1300/345) more expensive than the underlying UC PAKE in

respectively bandwidth and computation. If Ω-method is instantiated with Falcon signatures

then the factors of bandwidth and computation increase between the resulting aPAKE and

the underlying PAKE would be respectively at least 1.3x and 14.4x. (We omit Sphincs+

because it has much larger signature sizes still, together with larger computation costs.)

PAKE-to-aPAKE compiler based on Diffie-Hellman KEM. Hwang et al. [84] showed

another PAKE-to-aPAKE compiler, denoted HJK+(2) and shown in Figure 6.2, which uses

KEM instead of signature or NIZK to implement client-to-server authentication necessary

in aPAKE. In [84] this construction was using specifically the DH-based KEM, but we use

abstract KEM notation to highlight KEM properties needed for this construction. Follow-

ing [84], we assume that the KEM secret key sk is chosen at random from some domain and

that pk is derived from sk via a deterministic algorithm PK. (Without loss of generality, sk

can be the randomness of the key generation algorithm, and as mentioned in footnote 1 the

same can be done for signatures in the Ω-method.)

Compiler HJK+(2) is simple: The public key pk in the server’s password file is a KEM

public key, and after generating session key K and transcript tr by a PAKE instance on a

password hash h (this part is the same as in the Ω-method), the server sends a challenge

2The 3.5x factor in signing cost increase is a lower-bound because [103] compares performance of Falcon
with 128-bit security to Dilithium with 196-bit security.

229

• Diffie-Hellman KEM scheme (kg, enc, dec), with sk domain SK, and algorithm PK
which on input sk generates corresponding pk
• hash functions H,H′ with ranges resp. {0, 1}κ × SK and {0, 1}κ
• pseudorandom function prf with range {0, 1}κ

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets (h, sk)← H(S, uid, pw) and pk ← PK(sk), stores file[uid, S]← (h, pk), and discards
all other values

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid,C, uid)

(h, sk)← H(S, uid, pw) (h, pk)← file[uid, S]

-(NewSession, sid,C, S, h) �(NewSession, sid, S,C, h)

PAKE
� K , tr -K , tr

K ′ ← prf(K , 0),
ke ← prf(K , 1)

K ′ ← prf(K , 0),
ke ← prf(K , 1)

km ← dec(sk , e) �
e

(e, km)← enc(pk)
τ ← H′(ke, km, e, tr) -

τ
τ ′ ← H′(ke, km, e, tr)

output K ′ output K ′ if τ = τ ′

else output ⊥

Figure 6.2: Protocol HJK+(2): PAKE to aPAKE complier using DH KEM [84]

KEM ciphertext e generated from pk to the client, and accepts if the client sends back a key

confirmation message τ computed as an RO hash of the protocol transcript (tr, e), key ke

derived from the PAKE output K , and key km decrypted from ciphertext e.

The authors of [84] did not claim security for general KEMs but it appears that this compiler

is secure if instantiated with any KEM that satisfies strong anonymity and one-wayness under

Plaintext Checking Attack (OW-PCA). Strong anonymity requires that KEM ciphertext e

cannot be linked to a KEM public key used in creating it even if the attacker knows the

corresponding secret key. (See Section 2 for formal definitions.) Strong anonymity is needed

because the KEM secret key is derived from a password hash, hence the adversary can

compute it off-line and test it against the KEM ciphertext e sent by the server. OW-PCA

security of KEM is required for similar reasons as CMA security of signature in the Ω-

method: If an adversary compromises the server and learns hash h and public key pk, then

230

it can learn key K from a PAKE subprotocol executed on h, and it can then use the client

session holding key sk as a Plaintext-Checking Oracle: To test if a ciphertext,plaintext pair

(e′, k ′m) is correct, the adversary sends e′ to the client and conclude that it is correct if the

authenticator τ sent by the client is equal to H′(ke, k
′
m, e

′, tr).

Both of these requirements can be realized by the hashed Diffie-Hellman KEM: Strong

anonymity holds because DH KEM ciphertext is a random group element independent of the

KEM key, while OW-PCA property of hashed DH KEM is equivalent to the GapDH assump-

tion, i.e. that solving the Computational DH problem is hard even given access to a Decisional

DH oracle.3 However, it is not clear how to achieve both properties with e.g. LWE-based

KEM, and to the best of our knowledge none of the NIST KEM candidates satisfy them.

Hashed Diffie-Hellman KEM achieves OW-PCA under GapDH because it is actually IND-

CCA secure under the same assumption, which is a basis of the DHIES IND-CCA public key

encryption [6]. However, we do not know if LWE-based cryptosystems can be secure under

a corresponding assumption, and to the best of our knowledge there is no DHIES equivalent

based on LWE. Indeed, all post-quantum NIST KEM proposals achieve CCA-security by

applying the Fujisaki-Okamoto transform [70] to the underlying CPA-secure KEM. In this

method the underlying KEM is used in a circular way, utilizing ROM: The ciphertext effec-

tively encrypts the random seed which was used to generate it, and the decryptor accepts

a ciphertext as valid only if it can regenerate it using the decrypted randomness. Unfortu-

nately, this method also directly contradicts the strong anonymity requirement because this

validity test holds only using the correct secret key.

Other aPAKE constructions. Another aPAKE construction type is OPAQUE [88], which

achieves a strong aPAKE i.e. aPAKE which in addition is secure against offline dictionary

attacks made before server corruption. The key ingredient of the OPAQUE protocol is an

Oblivious Pseudorandom Function subprotocol (OPRF), and there is much active work on

3In particular, the security claim in [84] regarding HJK+(2) appears incorrect: They claim security under
CDH assumption, but it appears that GapDH is necessary.

231

OPRFs secure under lattice or isogeny assumptions [15, 14, 21, 37], but so far the construc-

tions are far less efficient than KEMs constructed under the same assumptions.4 Another

type of aPAKE constructions are KHAPE [74] and OKAPE [68] schemes, which are generic

constructions from any key-hiding AKE. Such key-hiding AKE can be instantiated with

SKEME, which is built solely from KEM. However, similarly to the case of aPAKE construc-

tion HJK+(2), SKEME satisfies the key-hiding AKE property needed in [74, 68] only if it is

built from KEM that satisfies both strong anonymity and OW-PCA security. Consequently,

these constructions are secure under GapDH if instantiated with (hashed) Diffie-Hellman

KEM, but it is an open problem to construct such KEM (and a key-hiding AKE) based on

post-quantum assumptions. [119] provides another type of aPAKE construction based on

CDH assumption, and it also remains open how to instantiate it with e.g. LWE.

6.1.2 Our Contributions

In this work we present a new aPAKE compiler as shown in Figure 6.3, which converts any

UC-secure symmetric PAKE into a UC-secure asymmetric PAKE. This compiler is a general

one which can be initiated efficiently upon quantum-hard problems. We now discuss our

results and compare the efficiency with previous compilers in detail.

Compared to previous aPAKE compilers, the significant difference is that our compiler relies

on a different construction paradigm, namely PAKE+KEM. Since we leverage the perfor-

mance advantage of lattice KEMs, our compiler overcomes the current computation ineffi-

ciency of lattice signatures or lattice NIZK, which are the core building blocks of previous

PAKE-to-aPAKE compilers. Our result shows that as long as the underlying KEM is CCA-

secure (which is satisfied by all lattice KEMs currently being considered for standardization),

and the given PAKE protocol is a UC realization of PAKE functionality [72] as shown in

4Efficient post-quantum aPAKE would be attractive even if post-quantum OPRF were practical, because
OPRF used together aPAKE as shown in [88], realizes a strong aPAKE with an attractive property, not
present in OPAQUE, that the server is the first to learn if an authentication attempt succeeds.

232

Figure 2.1, then through our compiler the resultant aPAKE protocol realizes the UC aPAKE

functionality in Figure 2.4.

Our compiler derives the secret key of KEM scheme from a random oracle hash onto the

client’s password, which saves storage space on the server side. This can be realized in Diffi-

Hellman KEM and most lattice based KEMs (e.g. Kyber, since in these KEM schemes the

secret keys are in Rk
p , i.e. an array of ring elements which you can derive from hash) and

isogeny-based KEMs (where secret keys are randomly sampled from a group). In addition we

also present a key-generation oblivious variant of our general PAKE-to-aPAKE compiler in

Figure 6.8, where similar to GMR compiler, the client doesn’t directly derives KEM’s secret

key from hash on password, instead server stores the encrypted secret key under password,

and send to client during online sessions who later decrypts with the correct password. While

this variant reduces the computation cost on server side during online phase at the cost of

extra storage, the main reason for this variant is to further increase the generality of the

compiler so it can also fit cryptographic schemes whose secret keys are hard to derive from

hash, such as RSA signatures/KEMs.

Note that although our compiler adds two additional messages to the underlying PAKE, they

can be reduced to only one round of communication if the last message in symmetric PAKE

goes from server to client. To see this more clearly, we show an efficient instantiation of our

compiler in Figure 6.9, where the underlying symmetric PAKE satisfies this “last message

goes S-to-C” property, and the resultant aPAKE protocol only requires three message flows.

While the KEM part is the core building block of our compiler and can be instantiated with

DH-KEM using classical assumption, or any CCA-secure lattice KEM for post-quantum

security, our compiler does require other building blocks, including message authentication

code (MAC) and authenticated encryption (AE). However, these other building blocks can

be easily and efficiently realized with existing tools, even for quantum resistance purpose.

For example, MAC can be instantiated using HMAC with a sufficiently long key (e.g. 128

233

• CCA-secure KEM scheme (kg, enc, dec), with sk domain SK, and algorithm PK which
on input sk generates corresponding pk
• symmetric authenticated encryption scheme (AEnc,ADec) with κ-bit keys
• hash function H with range {0, 1}κ × SK
• message authentication code (Mac,Vrfy) with κ-bit keys
• pseudorandom function prf with range {0, 1}κ

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets (h, sk) ← H(S, uid, pw), generates KEM public key pk ← PK(sk), stores
file[uid, S]← (h, pk), and discards all other values

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid,C, uid)

(h, sk)← H(S, uid, pw) (h, pk)← file[uid, S]

-(NewSession, sid,C, S, h) �(NewSession, sid, S,C, h)

PAKE
� K , tr -K , tr

(e, km)← enc(pk)

K ′ ← prf(K , 0),
ke ← prf(K , 1)

K ′ ← prf(K , 0),
ke ← prf(K , 1)

e ← ADec(ke, c),
km ← dec(sk , e)

�
c

c← AEnc(ke, e)

output ⊥ if e = ⊥ or km = ⊥
else set τ ← Mac(km, tr) -

τ
b← Vrfy(km, tr, τ)

and output K ′ output K ′ if b = 1
else output ⊥

Figure 6.3: Protocol APAKEM: PAKE to aPAKE compiler using CCA-secure KEM

or 160 bit). AE, with random-key robustness and authenticity properties, can be achieved

using encrypt-then-MAC paradigm, where the MAC part needs to be collision resistant with

respect to the message and the key, which can also be instantiated with HMAC.

In addition, the concrete instantiation of our compiler shown in Figure 6.9, gives the first

aPAKE that can be solely built upon KEM, i.e. a KEM-to-aPAKE compiler. That said, for

post-quantum purpose, only the KEM part needs to be based on quantum-resistant assump-

tions, which can efficiently realized by CCA-secure lattice KEM, e.g. Kyber, or CCA-secure

isogeny KEM, e.g. group action based KEM from Hashed ElGamma method. This feature

234

also offers significant advantages for practical deployment, since its modularity and gener-

ality allows its use with different KEM schemes from different assumptions, which provide

different features and performance tradeoffs. In our concrete instantiation, the underlying

symmetric PAKE also relies on KEM, but only requires a weak anonymity 2.6 property,

which is defined by [67] and proven to be realized directly by the key exchange protocol

of Kyber and Saber, and many other existing lattice KEM schemes which only requires

CPA security. This offers additional modularity in protocol design level, which allows both

“strong” and “weak” secure KEMs to be implemented using the code library from the same

scheme, which is more friendly for developers.

Scheme Reference Round
complexity(1)

Lattice-
based

instantiation

Building
blocks

Security
model

Ω-method [72] 3 ✓ PAKE+Sign ROM

HJK+(1) [84] 3 ✓(2) PAKE+NIZK ROM
HJK+(2) [84] 3 ✗ PAKE+DDH ROM

OPAQUE [88] 3 ✓(3) OPRF+AKE ROM

KHAPE [74] 3 ✗ kh-AKE(4) ROM, IC

OKAPE [68] 2 ✗ kh-AKE(4) ROM, IC
APAKEM this paper 3 ✓ PAKE+KEM ROM

Table 6.1: Comparison of UC aPAKE constructions. Comments: (1)For all PAKE-to-aPAKE
results we assume two-round PAKE instantiated from LWE [67, 22, 19]; (2)Given current
LWE-based NIZK’s this scheme is not more efficient than Ω-method; (3)Current lattice-
based OPRF’s are significantly more costly than KEM’s; (4)kh-AKE stands for key-hiding
AKE, for which there are no current lattice-based solutions;

Note on Quantum Attackers and QROM. In this work we only analyze security of

the proposed scheme against a classic computation adversary as opposed to a quantum

computation adversary. In particular, we do not consider adversarial access to quantum

random oracle because. Note that neither the KEM-to-PAKE compilers [67, 22, 19] nor the

prior PAKE-to-aPAKE compilers [72, 84] analyze their security in the quantum setting.

Due to technical difficulties, there has been very limited work that considers quantum ad-

versaries in UC framework, and even less for QROM, and currently the best we can do is to

235

prove the security assuming ROM. We also don’t observe any other work on aPAKE that

is proven secure assuming QROM, either in UC model or in BPR model (where we expect

QROM to be easier to deal with), and we leave that as future work.

Performance Considerations. As discussed earlier, the costs of KEM-based UC PAKE

[67, 22, 19] instantiated with Kyber KEM can be estimated at 2272 bytes of bandwidth and

345k CPU cycles. The overhead of moving from PAKE to aPAKE created by our compiler

instantiated with the same Kyber KEM is around 1184 bytes of bandwidth and 260k CPU

cycles (again counting only the KEM overheads), resulting in UC aPAKE which is a factor

of 1.5x and 1.8x more expensive than the underlying UC PAKE in resp. bandwidth and

computation. Recall from the performance discussion few pages back that the corresponding

costs of aPAKE constructed via the Ω-method, counted as fractional increase compared to

the UC PAKE, were 2.2x and 4.8x if Ω-method uses Dillithium signatures, and at least 1.3x

and 14.4x if it uses Falcon signatures. This implies that our KEM-based aPAKE will use

roughly 1.5x (2.2/1.5) less bandwidth and 2.7x (4.8/1.8) less computation than the aPAKE

of [72] instantiated with Dilithium signatures, and roughly the same bandwidth but at least

8x (14.4/1.8) less computation than [72] instantiated with Falcon signatures.

Note that although our analysis focus on the performance advantage of our compiler over

other aPAKE compilers built on lattice assumptions, our compiler is a general PAKE-to-

aPAKE compiler, and even if built on classical assumptions or other quantum-resistant

assumptions such as isogeny, our compiler is still very efficient compared to other existing

methods. Table 6.1 provides a detailed comparison on efficiency of the existing aPAKE

compilers versus ours56.

5Note that we do not compare computation cost here because it depends on the cryptographic assumption
and the concrete instantiation for the underlying building blocks, however we give a detailed discussion on
computation cost of different building blocks initiated in lattice assumption in Section 6.1.1

6There are other post-quantum assumptions like group action which one can base on and reduce the
number of message flows at the cost of heavier computation, and there exists (s)aPAKE compilers that
supports such assumption[110]. Our general compiler also supports such assumption, although we don’t
explicitly compare here

236

6.2 Compiler from PAKE to asymmetric PAKE

In Figure 6.3 we show our aPAKE compiler which transforms any UC PAKE protocol into

a UC asymmetric PAKE (aPAKE) protocol, whose only additional cost is client-to-server

authentication implemented using CCA-secure KEM.

Ideal PAKE Functionality. Our aPAKE protocol assumes a revised PAKE functional-

ity FrpwKE, which in addition to a session key outputs a protocol transcript to each party.

Functionality FrpwKE was introduced by [72], since their Ω-method construction needs, just

like our protocol, a cryptographic handle on the PAKE protocol instance. We include this

revised functionality in Figure 2.1. (Our version of FrpwKE is slightly streamlined compared

to the original in [72], but the differences are only syntactic.)

Note that the transcripts on any two sessions output by FrpwKE are forced to be different

unless these two sessions are passively connected (i.e. both end up in fresh state after sym-

metric PAKE completes). Similarly to [72], the reason of this augmentation of FrpwKE is to

make the key confirmation message τ non-malleable. Note that a man-in-the-middle adver-

sary who compromises the server’s password file can run the symmetric PAKE subprotocol

with both the client and the server using the password hash found in that file. Since the UC

PAKE functionality allows the attacker with a matching password to set the PAKE session

key arbitrarily, the PAKE key can be the same on these two sessions, and the attacker could

win by just forwarding any further authentication messages between the client to server.

Adding a transcript to PAKE outputs, and requiring that no two PAKE instances can have

the same transcript, and binding the authentication mechanism to that transcript, allows us

to foil the above attack.

Theorem 6.1. Protocol APAKEM, shown in Figure 6.3, realizes UC aPAKE functionality

FaPAKE in the FrpwKE-hybrid world (i.e. assuming a realization of the revised UC PAKE

functionality FrpwKE) in the Random Oracle Model (ROM) for hash function H, assuming

237

that KEM is a CCA-secure KEM, AE is a CCA-secure, random-key robust, and unforgeable

authenticated encryption scheme, MAC is an unforgeable and tag-random MAC, and PRF is

a PRF.

To prove Theorem 6.1 we show that the environment’s view of the real-world security game,

which is an interaction between the real-world adversary, the honest parties who follow

the protocol, and functionality FrpwKE shown in Figure 2.1, is indistinguishable from the

environment’s view of the ideal-world, which is an interaction between simulator SIM in

Figures 6.4 and 6.10, and functionality FaPAKE. The UC aPAKE functionality FaPAKE, taken

from [72], is included for reference in Figure 2.4, along with functionality FrpwKE in Figure 2.1.

Simulator construction. We show an overview of our simulation strategy in Fig 6.5, which

compares the real world execution with the ideal world one which involves the simulator SIM

shown in Figures 6.46.10. SIM is split into two parts: Figure 6.4 contains the SIM pt.1 part

of the diagram in Fig 6.5, i.e. it deals with adversarial hash queries, and in addition with the

compromise of password files. Fig 6.10 contains the SIM pt.2 part of the diagram in Fig 6.5

dealing with online aPAKE sessions. In addition it also emulates functionality FrpwKE.

Notation. In the simulator, for clear arguments we use flag(Psid) to mark one session’s

status. We use hbc to mark a session’s status as honest-but-curious and not attacked yet.

We use act to mark the session as being actively attacked by A, and we further mark it

act(1) if adversary guessed the correct password, and act(2) if adversary has compromised

the password file. In the simulator and games after Game 6, this act flag is also expanded

to store honest server’s pk as act(pk , b) to simplify the proof. We use rnd to denote all other

cases.

In the proof we use Gi to denote the event that Z outputs 1 while interacting with Game i.

Hence the theorem follows if |Pr[G0]− Pr[G8]| is negligible. For a fixed environment Z, let

qpw, qH and qses be the upper-bounds on the number of resp. password files, H queries and

238

Initialization
Initialize empty table TH

Notation: TH.H = {h | ∃pw s.t.⟨(S, uid, pw), (h, sk)⟩ ∈ TH}, TH.SK =
{sk | ∃pw s.t.⟨(S, uid, pw), (h, sk)⟩ ∈ TH}

On query (S, uid, pw) to random oracle H
Send back (h, sk) if ∃ ⟨(S, uid, pw), (h, sk)⟩ ∈ TH;
Otherwise send (OfflineTestPwd, S, uid, pw) to FaPAKE and:

1. if FaPAKE sends “correct guess” then set (h, sk , pk)← (huidS , skuidS , pkuidS)

2. else pick h
r←− H \ TH.H, sk

r←− SK \ TH.SK , pk ← PK(sk)

Set infouidS (pw)← (h, sk , pk), add ⟨(S, uid, pw), (h, sk)⟩ to TH, send back (h, sk).

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE. If FaPAKE sends “no password
file,” pass it to A, otherwise declare (S, uid) compromised and:

1. if FaPAKE returns pw ̸= ⊥, set (h, sk , pk)← infouidS (pw)

2. else pick h
r←− {0, 1}κ, sk r←− {0, 1}κ, set pk ← PK(sk)

Set (huidS , skuidS , pkuidS)← (h, sk , pk), return file[uid, S]← (huidS , pkuidS) to A.

Figure 6.4: Simulator SIM showing that protocol APAKEM realizes FaPAKE:Part 1

online C or S aPAKE sessions. Notations εMAC.sec, εMAC.rand, εprf , εRBST , εAUTH and εAE.sec are

adversarial advantage against MAC unforgeability, MAC tag randomness, pseudorandomness

of prf, AE key robustness, AE unforgeabiity and AE CCA security, as defined in Section 2.

Note that the password hash in UC aPAKE, as defined by functionality FaPAKE, requires that

an offline password test corresponds to a unique choice of (S, uid), and we enforce that by

setting the RO hash as H(S, uid, pw) in protocol APAKEM in Figure 6.3. Also note that in the

SIM w.l.o.g we assume that server side receives the PAKE session key and the corresponding

transcript before client. And in the proof part, notion “we” refers to the SIM.

Below we include the full proof of Theorem 6.1.

Game 0 (real world): The real-world game shown in Figure 6.6 is the real world view of

executing the protocol of Figure 6.3.

Game 1 (random huid
S and skuid

S in the password file): We change the StorePwdFile process-

239

Z C/S

A APAKEM/FrpwKE

H

oo //
OO

��

OO

��
oo //
OO

��

55

uu

Z C̄/S̄

FaPAKE

A SIM pt.2

SIM pt.1

oo //
OO

��

OO

��

OO

��
oo //
OO

H
��

Figure 6.5: real-world (left) vs. simulation (right) for protocol APAKEM

ing part by picking huid
S and skuid

S as random elements in {0, 1}κ and adding ⟨(S, uid, pwuid
S),

(huid
S , skuid

S)⟩ to TH, instead of directly querying H. Then we pick corresponding pk ←

PK(skuid
S). If huid

S ∈ Tpw
H .H or skuid

S ∈ Tpw
H .SK for any pw , the game aborts. We further

change CltSession where we directly retrieve huid
S , skuid

S instead of querying oracle H if client

input pw = pwuid
S . This is only a syntactic change. The divergence introduced in this game is

due to the probability of encountering abort, which leads to |Pr[G1]−Pr[G0]| ≤ qHqpw/2
κ−1.

Game 2 (emulate FrpwKE): On (TestPwd, sid|C|S,P, h) to FrpwKE:

1. if A already stole the password file by sending (StealPwdFile, S, uid), and h = huid
S , then

we return “correct” and set flag(Psid)← act(1)

2. if there exists adversarial hash query (S, uid, pwuid
S) to H, and h = huid

S , then we return

“correct” and set flag(Psid)← act(2)

3. in any other case set flag(Psid)← rnd and return “incorrect”

We emulate TestPwd in FrpwKE as above. We output “correct” only in the following cases:

(1) adversary stole password file, or (2) adversary compromised the password and queried

the corresponding hash. The flag is only used internally, so this game looks identical to the

previous one. We further emulate NewSession in FrpwKE by sending (NewSession, sid|C|S,C, S)

240

to A as a message from FrpwKE, which is also a syntactic change. Since we no longer need

to retrieve huid
S in SvrSession, or compute hsid

C in CltSession, we remove the corresponding

steps. The game is identical to the previous one from the environment’s view, thus we have

|Pr[G2] = Pr[G1]|.

Game 3 (abort if c valid under two different keys): In this game we bind the authenticated

encryption ciphertext c to a single encryption key ke (and therefore a single pw) by adding

an abort if c is valid under two different keys.

Initialize empty table TH; (Notation TH.H and TH.SK as in Fig. 6.4)

• On (StorePwdFile, uid, pwuid
S) to S: Get (huidS , skuidS) ← H(S, uid, pwuid

S), set pkuidS ←
PK(skuidS), and file[uid,S]← (huidS , pkuidS)

• On new (S, uid, pw) to H: Pick h
r←− H\TH.H, sk

r←− SK \TH.SK , add ((S, uid, pw), (h, sk))
to TH and return (h, sk)

• On (StealPwdFile,S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: Set (huidS , pkuidS) ← file[uid,S], send
(NewSession, sid|C|S, S,C, huidS) to FrpwKE and await for response

• On (CltSession, sid, S, uid, pw) to C: query (S, uid, pw) to oracle H and obtain (hsidC , sk sidC),
send (NewSession, sid|C|S,C,S, hsidC) to FrpwKE and await for response

• S receives (sid|C|S,K) and (sid|C|S, transcript, tr) from FrpwKE: set (e, km) ← enc(pkuidS),
K ′ ← prf(K , 0), ke ← prf(K , 1), c← AEnc(ke, e), send c to Z

• C receives (sid|C|S,K) and (sid|C|S, transcript, tr) from FrpwKE, and c′ from Z: set K ′ ←
prf(K , 0), ke ← prf(K , 1), e ← ADec(ke, c

′) and

1. if e = ⊥ then output ⊥
2. else set km ← dec(sk sidC , e), τ ← Mac(km, tr), send τ to Z, output K ′

• S receives τ ′ from Z: If Vrfy(km, tr, τ ′) = 1 then output K ′, else output ⊥

Figure 6.6: Game 0: Z’s interaction with real-world protocol APAKEM

In passive sessions, once received an honest c from matching Ssid, Csid would output ⊥ ←

ADec(ke, c) when using a wrong key ke, which further suggests that Csid is using pw ̸= pwuid
S .

In Game 3 we abort on some Csid-side event defined as Bad1, where C
sid uses a wrong ke and

241

still decrypts this honest c to a message m ̸= ⊥, in which case Game 2 outputs τ,K ′ and

Game 3 outputs ⊥.

We construct a reduction R1 that reduces Bad1 to the random-key robustness of symmetric

authenticated encryption, where k ′ and k are the challenge keys: R1 sets k as the resulting

key for ADec for Csid running on pwuid
S and sets k ′ as the resulting key for ADec for Csid

running on pw ̸= pwuid
S . R1 runs the code of Game 2 except that it uses k ′ and k as input.

In every client session R1 checks if neither ADec(k , c) or ADec(k ′, c) outputs ⊥, and if so it

outputs c and aborts the game. The probability of encountering this abort is bounded by

qses · εRBST .

Thus we have |Pr[G3]− Pr[G2]| ≤ qses · εRBST .

Game 4 (abort if adversarial c∗ valid without A computing ke): In Game 4 we add an

abort in the case that A replaces the KEM ciphertext c sent from Ssid to Csid with c∗ ̸= c,

and although A doesn’t know ke, ADec(ke, c
∗) ̸= ⊥. In this case ke is a random string from

environment’s view, and we can construct a reduction R to the unforgeability of AE in this

case, where ke is the challenge AE key. R encrypts c ← AEnc(ke, e) using its encryption

oracle, and in every client subsession R computes ADec(ke, c
∗) using decryption oracle. In

each client subsession R checks if c∗ ̸= c and ADec(ke, c
∗) ̸= ⊥, if so R outputs c∗ and solves

AE unforgeability challenge. We have that |Pr[G4]− Pr[G3]| ≤ εAUTH .

Game 5 (random messages and keys in passive sessions): In this game, we change the

passive sessions, where both Csid and Ssid are fresh and messages are passively exchanged.

We mark Csid and Ssid as hbc at the beginning of CltSession and SvrSession commands,

respectively. We first randomize c sent by Ssid, and when Csid receives this c we shortcut all

processing and output τ and K ′ as random elements in {0, 1}κ. Furthermore, if Ssid receives

this τ then we shortcut the verification and set Ssid’s session key to K ′ output by Csid. This

change can be done in following steps:

242

Step (a), recall that in Game 2 in passive sessions Csid and Ssid receive same K and tr from

FrpwKE, and they further generate same ke ← prf(K, 1) and Ssid generates c ← AEnc(ke, e)

where (e, km)← Enc(pkuid
S), and in Game 3 we bind each ciphertext to a single ke. In Game 5

we directly set c
r←− {0, 1}κ. This can be done in several sub-steps. First we randomize km

for Ssid, and once Csid receives the c passively sent from the matching Ssid, we skip computing

e ← ADec(ke, c), km ← Dec(sk , e), and directly retrieve this km for Csid, since in passive

sessions Csid always gets same km as Ssid, this is only syntactic change. Second we randomize

e instead of getting it from Enc(pkuid
S), and send the ciphertext of e to Csid as before. This

change introduces negligible difference under CPA security of AE, which can be proved under

a hybrid argument over the number of encryption queries qAE. In the i-th hybrid, R respond

the first i − 1 encryption queries of a random e ← {0, 1}κ, and respond the i-th to qAE-th

encryption of the real e ← Enc(pkuid
S). The first hybrid is identical to Game 3 and the qAEnc-th

hybrid is identical to the current Game 4. If the environment can distinguish the i-th hybrid

from the i+ 1-th hybrid, R picks a random index j ← {0, ..., qses}, and embed the challenge

ciphertext c∗ into the i-th AE encryption query. If this encryption query doesn’t occur in this

j-th session then abort. The bit output by the environment indicating which game it sees

will be returned as the solution to CPA security game. Thus this change is upper-bounded

by qses ·qAE ·εAE.sec. Since e is now random, we further skip AEnc and directly get c← {0, 1}κ.

Step(b), instead of letting client set τ ← Mac(km, tr) and server verify, we directly set

τ
r←− {0, 1}κ for Csid, and skip the verification for Ssid receiving this τ . This change on

τ introduces negligible difference since the verification always passes in all previous games.

This change on τ can be reduced to the tag-randomness ofMac (Definition 2.13) and therefore

is bounded by qses · εMAC.rand.

Step(c), we remove the usage of prf and directly generate session key K ′ as same random

string for Csid and Ssid. Because such sessions always compute same session keys in previous

games, the change is negligible and can be reduced to the security of prf, which is bounded

243

by qses · εprf .

Now that in passive sessions (c, τ,K ′) are all random strings independent of e, km and pkuid
S ,

we further remove the usage of e, km, pk
uid
S , including processing (e, km) ← Enc(pkuid

S). To

sum up, |Pr[G5]− Pr[G4]| ≤ qses · (εprf + εMAC.rand + qAE · εAE.sec).

Initialize empty tables TH; (Notation TH.H and TH.SK as in Fig. 6.4)

• On (StorePwdFile, uid, pwuid
S) to S: Pick (huidS , skuidS)

r←− {0, 1}2κ, set pkuidS ← PK(skuidS),
add ⟨(S, uid, pw), (huidS , skuidS)⟩ to TH and set file[uid, S]← (huidS , pkuidS)

• On new (S, uid, pw) to H: Pick h
r←− H\TH.H, sk

r←− SK \TH.SK , add ((S, uid, pw), (h, sk))
to TH and return (h, sk)

• On (StealPwdFile,S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: set flag(Ssid) ← hbc and send (NewSession, sid|C|S,S,C)
to A as message from FrpwKE, await for response

• On (CltSession, sid, S, pw) to C: set flag(Csid) ← hbc and send (NewSession, sid|C|S,C,S)
to A as message from FrpwKE, await for response

• On (TestPwd, sid|C|S,P, h) to FrpwKE:

1. if there exists adversarial hash query (S, uid, pwuid
S) to H, and h = huidS , then we

return “correct” and set flag(Psid)← act(1)
2. if A already stole the password file by sending (StealPwdFile,S, uid), and h = huidS ,

then we return “correct” and set flag(Psid)← act(2)
3. in any other case set flag(Psid)← rnd and return “incorrect”

• On A’s query (NewKey, sid|C|S,S,K, tr) to FrpwKE

1. if flag(Csid) = hbc: set csidS
r←− {0, 1}κ, send csidS to Z

2. else set (e, km) ← enc(pkuidS), ke ← prf(K , 1), c ← AEnc(ke, e), K
′
S ← prf(K , 0),

record (sid|C|S, km, tr,K ′S), send c to Z
• On A’s query (NewKey, sid|C|S,C,K, tr) to FrpwKE and A sends c′ to Csid

1. if flag(Csid) = hbc and c′ = csidS then output K ′
r←− {0, 1}κ and τ

r←− {0, 1}κ
2. else if ∃ record (sid|C|S, ·, tr, ·) then ignore such query. Otherwise set K ′ ← prf(K , 0),

ke ← prf(K , 1), e ← ADec(ke, c) and
(a) if e = ⊥ then output ⊥
(b) else set km ← dec(sk sidC , e), τ ← Mac(km, tr), send τ to Z, output K ′

• On A’s message τ ′ to Ssid

1. If flag(Ssid) = hbc and τ ′ is generated by Csid s.t.flag(Csid) = hbc, then output K ′

equals to the key output by Csid

2. Else retrieve (sid|C|S, km, tr,K ′S) and if Vrfy(km, tr, τ ′) = 1: output K ′S
3. Otherwise output ⊥

Figure 6.7: Z’s view after Game 5

Game 6 (random messages and keys in other sessions): In Game 5 we shortcut the

processing of passive sessions, as shown in Figure 6.7. In Game 6 we change how Csid and Ssid

react in all other cases. Recall that all sessions marked as act(1) means A has compromised

244

the corresponding password file and act(2) means A has guessed the correct password. In

both cases A knows the PAKE session key K and therefore ke.

Upon receiving NewKey command, actively attacked Ssid (marked as act) act as in the real

world, i.e. generates e, km, ke, c,K
′
S and record (sid, km, tr,K

′
S). In other cases where Ssid

marked rnd (meaning that A interfered with the PAKE session and receives a wrong session

key K and ke, and client side decryption always fails, which is same as in previous games),

we just randomize c by following the procedures as step (a) in Game 4, and by the same

reduction to CPA security of AE the difference introduced by this change is bounded by

qses · qAE · εAE.sec.

We also change how Ssid reacts for all other non-passive τ ′ cases: if τ ′ verification fails, we

output ⊥ as before; if τ ′ is verified, then we process as real world and output the correct

K ′, except when A steals the password file without successfully guessing pwuid
S , i.e. A hasn’t

queried H(S, uid, pwuid
S), but still send this verified τ ′ by successfully decrypting the KEM

ciphertext. We abort in this case, denoted as event Bad, and we argue that Bad can only

happen with negligible probability, and can be reduced to an attack on CCA security of

KEM. We construct such a reduction called R, which works as follows: on KEM’s CCA-

security challenge (pk ∗, e∗, k ∗m), R picks an index i
r←− {1, 2, ..., qses} and embeds pk ∗ as pkuid

S

for the i-th session from all sever sessions indexed from {1, 2, ..., qses}. R also picks an index

j
r←− {1, 2, ..., qses}, and embeds (e∗, k ∗m) as the KEM encryption of this j-th session outputs.

e∗ is then encrypted and sent to A. After A finishes all the processing and sends back τ ∗ in

the j-th session, R immediately breaks CCA-security once it sees τ ∗ passes verification and

server outputs a key instead of ⊥.

We also add an abort if A successfully forges a valid Mac tag τ ′ ← Mac(km, tr
′) after seeing

τ ← Mac(km, tr) output by honest client, where tr ̸= tr′. This abort happens with negligible

probability and can be reduced to MAC security, thus is bounded by qsesεMAC.sec.

245

We change how Csid reacts for all c′ cases other than in fresh sessions in Game 5. For actively

attacked sessions, Game 6 acts in the same way as in Game 5. In any other case, i.e. for

Csid marked rnd and received a random K as PAKE session key, we shortcut all the process

and output ⊥ since the probability of a successful ADec decryption in this case is already

aborted in Game 3. Thus we have |Pr[G6]−Pr[G5]| ≤ qses · (εKEM.sec+ εMAC.sec+ qAE · εAE.sec).

Game 7 (delay (huid
S , skuid

S , pkuid
S) generation until password compromise): In Game 6

(huid
S , skuid

S , pkuid
S) are initialized in StorePwdFile, in Game 7 we postpone these steps until

password compromise. This change can be done in several steps.

Step(a), we delay generating file[uid, S]← (huid
S , pkuid

S) in StorePwdFile to StealPwdFile. This

introduce no difference since file[uid, S] is not used anywhere else.

Step(b), we remove steps of initiating huid
S , skuid

S , pkuid
S in StorePwdFile and instead delay

them to StealPwdFile or H(S, uid, pwuid
S), depending on which happens first. In order to

set H(S, uid, pwuid
S) only after A finds pwuid

S via a successful offline dictionary attack, we

mark pwuid
S compromised anytime when A runs (StealPwdFile, S, uid). (case 1) If A first runs

(StealPwdFile, S, uid), we pick huid
S , skuid

S , pkuid
S at random, and later upon query H(S, uid, pwuid

S),

if pwuid
S is already marked compromised, we simply retrieve huid

S , skuid
S , pkuid

S , store them into

infouidS (pwuid
S) file and add to TH. (case 2) If A runs H(S, uid, pwuid

S) first, which means at this

moment pwuid
S must be fresh, we treat it the same way as before, just like other pw ̸= pwuid

S .

We also record ⟨offline, S, uid, pwuid
S ⟩, and later if A runs (StealPwdFile, S, uid) and record

⟨offline, S, uid, pwuid
S ⟩ exists, we directly retrieve (huid

S , skuid
S , pkuid

S) from infouidS (pwuid
S) file and

set them to the corresponding password file. We also simultaneously change the correspond-

ing part in TestPwd, where we replace “if there exists adversarial hash query (S, uid, pwuid
S)

to H” with checking “if ∃pw s.t. infouidS (pw) = (h, sk , pk)”, and replace “if A already stole

the password file by sending (StealPwdFile, S, uid)” with checking “if ∃(huid
S , skuid

S , pkuid
S) s.t.

huid
S = h”, which is only syntactic changes. We further treat TestPwd into client and server

246

case separately, and mark flag with additional internal info. Game 7(b) is identical to

Game 7(a) since we only postpone (huid
S , skuid

S , pkuid
S) generation. Thus |Pr[G7] = Pr[G6]|.

Game 8 (ideal world): This is the ideal-world interaction, i.e. an interaction of environment

Z with simulator SIM and functionality FaPAKE, shown in Figure 6.11. Observe that Game 7

is identical to the ideal world Game 8, which completes our argument that the real-world

and the ideal-world interaction are indistinguishable to Z, and thus completes the proof of

Theorem 6.1.

KG-oblivious variant of our aPAKE construction. W also show a key-generation

oblivious variant of our general PAKE-to-aPAKE compiler in Figure 6.8. Similar to GMR

compiler, the client doesn’t directly derive KEM’s secret key from hash on password, instead

server stores the secret key encrypted under password, and send to client during online

sessions who later decrypts with the correct password. This variant reduces the computation

cost on server side during online phase, meanwhile it requires extra storage, and the main

reason we show this variant is to further increase the generality of the compiler, such that it

can fit those cryptographic schemes whose secret keys are hard to derive from hash, such as

RSA signatures/KEMs.

6.3 An Efficient Instantiation of Our Compiler

To concretely show the practicality of our PAKE-to-aPAKE compiler, in this section we

present an efficient instantiation of our aPAKE protocol in Figure 6.9, with the PAKE

subprotocol instantiated with the UC PAKE from [67]. The Randomized Ideal Cipher (RIC)

can be realized by the modified 2-round Feistel(m2F). The concrete instantiations of other

building blocks such as MAC and AE are discussed in Section 6.1.2. Since the underlying

PAKE subprotocol is two round, we obtain a highly efficient UC asymmetric PAKE, with

247

• KEM scheme KEM = (kg, enc, dec), with secret keys of size s[κ]
• symmetric authenticated encryption AE = (AEnc,ADec)
• symmetric encryption scheme (¯AEnc, ¯ADec) where ¯AEnck(m) = H′(k)⊕ (m|H′′(m))
• global hash function H,H′,H′′ with range {0, 1}κ, {0, 1}κ+s[κ], {0, 1}κ
• message authentication code MAC = (Mac,Vrfy) with κ-bit keys
• pseudorandom function prf with range {0, 1}2κ

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets h ← H′′(S, uid, pw), generates KEM keys (sk , pk) ← kg, ē ← ¯AEncpw(sk), stores
file[uid, S]← (h, pk , ē), and discards all other values

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid,C, uid)

h← H(S, uid, pw) (h, pk , ē)← file[uid, S]

-(NewSession, sid,C, S, h) �(NewSession, sid, S,C, h)

PAKE
� K , tr -K , tr

(e, km)← enc(pk)

K ′ ← prf(K , 0),ke ← prf(K , 1) K ′ ← prf(K , 0),ke ← prf(K , 1)
ē ← ADec(ke, c̄),
e ← ADec(ke, c)

�
c̄, c

c̄← AEnc(ke, ē),
c← AEnc(ke, e)

sk ← ¯ADecpw(ē), km ←
dec(sk , e)
output ⊥ if any of the above decryption outputs ⊥
τ ← Mac(km, tr) -

τ
b← Vrfy(km, tr, τ)

output K ′ output K ′ if b = 1
else output ⊥

Figure 6.8: Key-Generation Oblivious variant of our PAKE-to-aPAKE compiler

only 3 rounds of communications (i.e. 3 message flows).

[67] provides a two-round PAKE protocol called EKE-KEM that can be built upon KEM

which only requires weak anonymity property (Definition 2.6).

Note that this weak anonymity property is satisfied by many existing lattice KEMs, in-

cluding the ones competing in NIST standardization, e.g. Kyber and Saber, whose key

exchange protocol can be seen as the plain KEM which is CPA-secure and proved to be

weak anonymous in [67]. Since these lattice KEMs can also derive their CCA-secure versions

248

via Fujisaki-Okamoto transform, our concrete instantiation also enjoys a favor in real world

implementation, as KEM0 can be realized by the plain KEM, and KEM1 can be just the

corresponding CCA-secure version of KEM0, and usually both versions are supported and

implemented in the same code library of these lattice based KEMs.

We also want to point out that this instantiation itself can also be seen as a KEM-to-aPAKE

compiler. Thus our KEM-to-aPAKE compiler is the first aPAKE compiler that solely based

on KEM, and can be efficiently built upon lattice7.

7[84] also provides a KEM-to-aPAKE compiler but as discussed in Section 6.1.1 it cannot be generalized
to base on lattice assumptions, due to technical difficulties in constructing a lattice based KEM satisfying
both OW-PCA and strong anonymity properties (Definition 2.7).

249

• Anonymous KEM scheme KEM0 = (kg, enc, dec) with public key space PK
• Randomized Ideal Cipher RIC on domain R×PK for R = {0, 1}Ω(κ)

• Random oracle hash H0 onto {0, 1}κ and H1 onto {0, 1}2κ
• CCA-secure KEM scheme KEM1 = (kg, enc, dec)
• Symmetric authenticated encryption AE = (AEnc,ADec)
• Message authentication code MAC = (Mac,Vrfy)
• Pseudorandom function prf with range {0, 1}κ

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets (h, sk 1) ← H1(S, uid, pw), generates KEM1 public key pk 1 ← PK(sk 1), stores
file[uid, S]← (h, pk 1), and discards all other values

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid,C, uid)

(h, sk 1)← H1(S, uid, pw) (sid′ = (sid|C|S)) (h, pk 1)← file[uid, S]

(sk 0, pk 0)
r←− KEM0.kg

c0 ← RIC.Enc((sid′, h), pk 0) -
c0 pk ′0 ← RIC.Dec((sid′, h), c0)

(e0,K)← KEM0.enc(pk
′
0)

τ ← H0(K , pk ′0, c0, e0)
K1 ← H0(K , pk ′0, c0, e0, τ)
(e1, km)← KEM1.enc(pk 1)

K ′ ← prf(K , 0),ke ← prf(K1, 1)
K ← KEM0.dec(sk 0, e0) �

e1, τ, c1 c1 ← AEnc(ke, e1)
abort if τ ̸= H0(K , pk 0, c0, e0)
else set
K0 ← H0(K , pk 0, c0, e0, τ)
K ′ ← prf(K0, 0),ke ←
prf(K0, 1)
e1 ← ADec(ke, c1)
abort if e1 = ⊥, else continue
km ← KEM1.dec(sk 1, e1)
abort if km = ⊥, else continue
γ ← Mac(km, c0||e0||τ ||c1) -

γ
b← Vrfy(km, c0||e0||τ ||c1, γ)

output K ′ output K ′ if b = 1

Figure 6.9: A three-round UC asymmetric PAKE using compiler APAKEM instantiated with
UC PAKE protocol from [67]

250

On (CltSession, sid,C,S) from FaPAKE

set flag(Csid)← hbc, send (NewSession, sid|C|S,C, S) to A as FrpwKE’s msg and await for response.
On (SvrSession, sid,S,C, uid) from FaPAKE

set flag(Ssid)← hbc, send (NewSession, sid|C|S,S,C) to A as FrpwKE’s msg and await for response.

On A’s query (TestPwd, sid|C|S,C, h) to FrpwKE (only respond to first such query)

1. If ∃pw s.t. infouidS (pw) = (h, sk , pk), send (TestPwd, sid,C, pw) to FaPAKE, if return “cor-
rect guess” then set flag(Csid)← actuidS (sk , 1), return “correct”

2. Else if ∃(huidS , skuidS , pkuidS) s.t. huidS = h then send (Impersonate, sid,C,S, uid) to FaPAKE, if
return “correct guess” then set flag(Csid)← actuidS (skuidS , 2), return “correct”

3. In any other case set flag(Csid)← rnd, return “incorrect”

On A’s query (TestPwd, sid|C|S,S, h) to FrpwKE (only respond to first such query)

1. If ∃pw s.t. infouidS (pw) = (h, sk , pk), send (TestPwd, sid,S, pw) to FaPAKE and if FaPAKE

returns “correct guess” then set flag(Ssid)← act(pk , 1), return “correct”
2. Else if S is compromised and ∃(huidS , skuidS , pkuidS) s.t. h = huidS : set flag(Ssid)← act(pkuidS , 2),

return “correct”
3. In any other case set flag(Ssid)← rnd and return “incorrect”

On A’s query (NewKey, sid|C|S,S,K, tr) to FrpwKE

1. If flag(Ssid) = hbc then output csidS
r←− {0, 1}κ

2. If flag(Ssid) = act(pk , ·), compute (e, km) ← enc(pk), ke ← prf(K , 1), c ← AEnc(ke, e),
and output c; record (sid|C|S, km, tr,K)

3. In any other case, output c
r←− {0, 1}κ

On A’s query (NewKey, sid|C|S,C,K, tr) to FrpwKE and A sends c′ to Csid

1. If flag(Csid) = hbc and c′ = csidS generated by SIM for Ssid s.t. flag(Ssid)← hbc, then send
(NewKey, sid,C,⊥) to FaPAKE and output τ

r←− {0, 1}κ
2. Else, if ∃ record (sid|C|S, ·, tr, ·) then ignore such NewKey query. Otherwise:

(a) If flag(Csid) = actuidS (sk , b), set ke ← prf(K , 1), e ← ADec(ke, c
′), and

i. if e = ⊥ then output ⊥
ii. if e ̸= ⊥ then set km ← dec(sk , e), set τ ← Mac(km, tr), and send

(NewKey, sid,C, prf(K, 0)) to FaPAKE and output τ
(b) In other cases, send (TestPwd, sid,C,⊥), (NewKey, sid,C,⊥) to FaPAKE, output ⊥

On A’s message τ ′ to Ssid

1. If flag(Ssid) = hbc and τ ′ is generated by SIM for Csid s.t.flag(Csid) = hbc, then send
(NewKey, sid, S,⊥) to FaPAKE

2. If flag(Ssid) = act(pk , b), retrieve (sid|C|S, km, tr,K)(if not exist go to 3.) and :

(a) if Vrfy(km, tr, τ ′) ̸= 1, send (NewKey, sid,S,⊥) to FaPAKE

(b) if Vrfy(km, tr, τ ′) = 1:
i. if b = 1: send (NewKey, sid, S, prf(K, 0)) to FaPAKE
ii. if b = 2: if ∃ infouidS (pw) = (·, ·, pk) then send (TestPwd, sid,S, pw) and

(NewKey, sid,S, prf(K, 0)) to FaPAKE; else abort.
3. Else send (TestPwd, sid, S,⊥), (NewKey, sid, S,⊥) to FaPAKE

Figure 6.10: Simulator SIM showing that protocol APAKEM realizes FaPAKE:Part 2

251

Initialize empty table TH; Notation: TH.H,TH.SK from Figure 6.4

• On query (S, uid, pw) to random oracle H

1. If pwuid
S is compromised and pw = pwuid

S : set (h, sk , pk)← (huidS , skuidS , pkuidS)
2. If pwuid

S is fresh or pw ̸= pwuid
S , record ⟨offline, S, uid, pw⟩, pick h

r←− H \ TH.H,
sk

r←− SK \ TH.SK , pk ← PK(sk)
In both cases set infouidS (pw)← (h, sk , pk), add ⟨(S, uid, pw), (h, sk)⟩ to TH, output (h, sk).

• On (StealPwdFile, S, uid): mark pwuid
S compromised and

1. If ∃ record ⟨offline,S, uid, pwuid
S ⟩ then set (h, sk , pk)← infouidS (pw)

2. Else pick h
r←− {0, 1}κ, sk r←− {0, 1}κ, set pk ← PK(sk)

In either case set (huidS , skuidS , pkuidS)← (h, sk , pk), output file[uid,S]← (huidS , pkuidS).

• On (CltSession, sid,C, S) from FaPAKE: set flag(C
sid)← hbc, send (NewSession, sid|C|S,C,S)

to A as message from FrpwKE, await for response

• On (SvrSession, sid,S,C, uid) from FaPAKE: set flag(Ssid)← hbc, send
(NewSession, sid|C|S,S,C) to A as message from FrpwKE, await for response

• On A’s query (TestPwd, sid|C|S,C, h) to FrpwKE:(only respond to first such message)

1. If ∃pw s.t. infouidS (pw) = (h, sk , pk) and pw = pwuid
S then set flag(Csid) ←

actuidS (sk , 1) and return “correct”
2. Else if ∃(huidS , skuidS , pkuidS) s.t. huidS = h: set flag(Csid) ← actuidS (skuidS , 2), return

“correct”
3. In any other case set flag(Csid)← rnd and return “incorrect”

• On A’s query (TestPwd, sid|C|S,S, h) to FrpwKE:(only respond to first such message)

1. If ∃pw s.t. infouidS (pw) = (h, sk , pk) and pw = pwuid
S , set flag(Ssid)← act(pk , 1) and

return “correct”
2. If pwuid

S is compromised and ∃(huidS , skuidS .pkuidS) s.t. h = huidS : set flag(Ssid) ←
act(pkuidS , 2) and return “correct”

3. In any other case set flag(Ssid)← rnd and return “incorrect”

• On A’s query (NewKey, sid|C|S,S,K, tr) to FrpwKE

1. If flag(Ssid) = hbc then output csidS
r←− {0, 1}κ

2. If flag(Ssid) = act(pk , ·), compute (e, km) ← enc(pk), ke ← prf(K , 1), c ←
AEnc(ke, e), and output c; record (sid|C|S, km, tr,K)

3. In any other case, output c
r←− {0, 1}κ

• On A’s query (NewKey, sid|C|S,C,K, tr) to FrpwKE and A sends c′ to Csid

1. If flag(Csid) = hbc and c′ = csidS then output K ′
r←− {0, 1}κ and τ

r←− {0, 1}κ
2. Else, if ∃ record (sid|C|S, ·, tr, ·) then ignore such query. Otherwise:

(a) If flag(Csid) = actuidS (sk , b), set ke ← prf(K , 1), e ← ADec(ke, c), and
i. if e = ⊥: output ⊥
ii. else set km ← dec(sk , e), output τ ← Mac(km, tr) and K ′ ← prf(K, 0)

(b) In any other case output ⊥
• On A’s message τ ′ to Ssid

1. If flag(Ssid) = hbc and τ ′ is generated by Csid s.t.flag(Csid) = hbc, then output K ′

equals to the key output by Csid

2. If flag(Ssid) = act(pk , b), retrieve record (sid|C|S, km, tr,K)(if not exist goto 3.). If
Vrfy(km, tr, τ ′) = 1 then:
(a) if b = 1, then output K ′ ← prf(K, 0)
(b) if b = 2, then if ∃ infouidS (pw) = (·, ·, pk) and pw = pwuid

S then output K ′ ←
prf(K, 0); else abort.

3. In any other case output ⊥
Figure 6.11: Game 8: Z’s interaction with ideal-world protocol APAKEM

252

Bibliography

[1] Facebook stored hundreds of millions of passwords in
plain text, https://www.theverge.com/2019/3/21/18275837/

facebook-plain-text-password-storage-hundreds-millions-users.

[2] Google stored some passwords in plain text for four-
teen years, https://www.theverge.com/2019/5/21/18634842/

google-passwords-plain-text-g-suite-fourteen-years.

[3] Nist round 3 selection result, https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022, 2022.

[4] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Universally
composable relaxed password authenticated key exchange. In Advances in Cryptology
- CRYPTO 2020, pages 278–307, 2020.

[5] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Universally com-
posable relaxed password authenticated key exchange. In D. Micciancio and T. Risten-
part, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 278–307. Springer,
Heidelberg, Aug. 2020.

[6] M. Abdalla, M. Bellare, and P. Rogaway. The oracle diffie-hellman assumptions and
an analysis of DHIES. In Cryptographer’s Track at RSA Conference, CT-RSA, pages
143–158, 2001.

[7] M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party
password-based key exchange protocols in the UC framework. In Topics in Cryptology
– CT-RSA 2008, pages 335–351. Springer, 2008.

[8] M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party
password-based key exchange protocols in the UC framework. In T. Malkin, editor,
CT-RSA 2008, volume 4964 of LNCS, pages 335–351. Springer, Heidelberg, Apr. 2008.

[9] M. Abdalla, T. Eisenhofer, E. Kiltz, S. Kunzweiler, and D. Riepel. Password-
authenticated key exchange from group actions. Cryptology ePrint Archive, Paper
2022/770, 2022. https://eprint.iacr.org/2022/770.

[10] M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange pro-
tocols. In Topics in Cryptology – CT-RSA 2005, pages 191–208. Springer, 2005.

253

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/770

[11] M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange pro-
tocols. In Topics in Cryptology – CT-RSA 2005, pages 191–208. Springer, 2005.

[12] B. Abdolmaleki, S. Badrinarayanan, R. Fernando, G. Malavolta, A. Rahimi, and A. Sa-
hai. Two-round concurrent 2pc from sub-exponential lwe. Cryptology ePrint Archive,
Paper 2022/1719, 2022. https://eprint.iacr.org/2022/1719.

[13] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram,
I. von Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Pe-
ters, P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai, M. Tomlinson, and W. Wang.
Classic mceliece: Nist round 3 submission, https://csrc.nist.gov/Projects/

post-quantum-cryptography/round-3-submissions, 2021.

[14] M. R. Albrecht, A. Davidson, A. Deo, and D. Gardham. Crypto dark matter on the
torus: Oblivious prfs from shallow prfs and fhe. Cryptology ePrint Archive, Paper
2023/232, 2023. https://eprint.iacr.org/2023/232.

[15] M. R. Albrecht, A. Davidson, A. Deo, and N. P. Smart. Round-optimal verifiable
oblivious pseudorandom functions from ideal lattices. Cryptology ePrint Archive, Pa-
per 2019/1271, 2019. https://eprint.iacr.org/2019/1271.

[16] . E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig, V. Niko-
laenko, C. Peikert, A. Raghunathan, and D. Stebil. Frodokem: Nist round
3 submission, https://csrc.nist.gov/Projects/post-quantum-cryptography/

round-3-submissions, 2021.

[17] E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, and J. P. Steinberger. On the
indifferentiability of key-alternating ciphers. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 531–550. Springer, Heidelberg,
Aug. 2013.

[18] D. F. Aranha, P.-A. Fouque, C. Qian, M. Tibouchi, and J.-C. Zapalowicz. Binary
elligator squared. In A. Joux and A. M. Youssef, editors, SAC 2014, volume 8781 of
LNCS, pages 20–37. Springer, Heidelberg, Aug. 2014.

[19] A. Arriaga, M. Barbosa, S. Jarecki, and M. Skrobot. C’est très CHIC: A com-
pact password-authenticated key exchange from lattice-based kem. Cryptology ePrint
Archive, Paper 2024/308, 2024.

[20] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
D. Pointcheval and T. Johansson, editors, Advances in Cryptology – EUROCRYPT
2012, pages 719–737, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[21] A. Basso. A post-quantum round-optimal oblivious prf from isogenies. Cryptology
ePrint Archive, Paper 2023/225, 2023. https://eprint.iacr.org/2023/225.

254

https://eprint.iacr.org/2022/1719
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2019/1271
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2023/225

[22] H. Beguinet, C. Chevalier, D. Pointcheval, T. Ricosset, and M. Rossi. Get a cake:
Generic transformations from key encaspulation mechanisms to password authenti-
cated key exchanges. In Applied Cryptography and Network Security, ACNS 2023,
Kyoto, Japan. Springer-Verlag, 2023.

[23] H. Beguinet, C. Chevalier, D. Pointcheval, T. Ricosset, and M. Rossi. Get a cake:
Generic transformations from key encaspulation mechanisms to password authenti-
cated key exchanges. Cryptology ePrint Archive, Paper 2023/470, 2023. https:

//eprint.iacr.org/2023/470.

[24] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key privacy in public-key
encryption. In Advances in Cryptology – ASIACRYPT 2001. Springer, 2001.

[25] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
566–582. Springer, Heidelberg, Dec. 2001.

[26] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In Advances in Cryptology – EUROCRYPT 2000, pages 139–155.
Springer, 2000.

[27] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

[28] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE Computer Society Symposium on Research
in Security and Privacy – S&P 1992, pages 72–84. IEEE, 1992.

[29] S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In ACM
Conference on Computer and Communications Security – CCS 1993, pages 244–250.
ACM, 1993.

[30] F. Benhamouda, O. Blazy, L. Ducas, and W. Quach. Hash proof systems over lat-
tices revisited. In Public-Key Cryptography – PKC 2018, volume 10770 of Public-Key
Cryptography – PKC 2018, pages 644–674. Springer, 2018.

[31] F. Benhamouda and D. Pointcheval. Verifier-based password-authenticated key ex-
change: New models and constructions. IACR Cryptology ePrint Archive, 2013:833,
2013.

[32] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In A.-R. Sadeghi, V. D. Gligor,
and M. Yung, editors, ACM CCS 2013, pages 967–980. ACM Press, Nov. 2013.

255

https://eprint.iacr.org/2023/470
https://eprint.iacr.org/2023/470

[33] D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz,
T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and B. Viguier. Gimli : A cross-
platform permutation. In W. Fischer and N. Homma, editors, CHES 2017, volume
10529 of LNCS, pages 299–320. Springer, Heidelberg, Sept. 2017.

[34] D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz,
T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and B. Viguier. Gimli: a
cross-platform permutation. Cryptology ePrint Archive, Report 2017/630, 2017.
http://eprint.iacr.org/2017/630.

[35] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak. In T. Johansson and
P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 313–314.
Springer, Heidelberg, May 2013.

[36] S. Bettaieb, L. Bidoux, O. Blazy, Y. Connan, and P. Gaborit. A gapless code-based
hash proof system based on rqc and its applications. Cryptology ePrint Archive, Paper
2021/026, 2021. https://eprint.iacr.org/2021/026.

[37] W. Beullens, L. Dodgson, S. Faller, and J. Hesse. The 2hash oprf framework and
efficient post-quantum instantiations. Cryptology ePrint Archive, Paper 2024/450,
2024. https://eprint.iacr.org/2024/450.

[38] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In B. Preneel, editor,
CT-RSA 2002, volume 2271 of LNCS, pages 114–130. Springer, Heidelberg, Feb. 2002.

[39] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In M. Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 320–335. Springer, Heidelberg, Aug. 2002.

[40] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehlé. Crystals – kyber: a cca-secure module-lattice-based kem.
Cryptology ePrint Archive, Paper 2017/634, 2017. https://eprint.iacr.org/2017/
634.

[41] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated key
exchange using Diffie-Hellman. In Advances in Cryptology – EUROCRYPT 2000, pages
156–171. Springer, 2000.

[42] V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In B. Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 156–171. Springer, Heidelberg, May 2000.

[43] T. Bradley, J. Camenisch, S. Jarecki, A. Lehmann, G. Neven, and J. Xu. Password-
authenticated public-key encryption. In ACNS, volume 11464 of Lecture Notes in
Computer Science, pages 442–462. Springer, 2019.

[44] T. Bradley, S. Jarecki, and J. Xu. Strong asymmetric PAKE based on trapdoor CKEM.
In Advances in Cryptology - CRYPTO 2019, pages 798–825, 2019.

256

http://eprint.iacr.org/2017/630
https://eprint.iacr.org/2021/026
https://eprint.iacr.org/2024/450
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634

[45] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient in-
differentiable hashing into ordinary elliptic curves. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 237–254. Springer, Heidelberg, Aug. 2010.

[46] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.

[47] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In IEEE Symposium on Foundations of Computer Science – FOCS 2001, pages
136–145. IEEE, 2001.

[48] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology – EUROCRYPT 2005, pages
404–421. Springer, 2005.

[49] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Advances in Cryptology – EUROCRYPT 2001, pages
453–474. Springer, 2001.

[50] J.-S. Coron, Y. Dodis, A. Mandal, and Y. Seurin. A domain extender for the ideal
cipher. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 273–289.
Springer, Heidelberg, Feb. 2010.

[51] J.-S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal cipher
model are equivalent. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 1–20. Springer, Heidelberg, Aug. 2008.

[52] D. Dachman-Soled, J. Katz, and A. Thiruvengadam. 10-round Feistel is indifferentiable
from an ideal cipher. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 649–678. Springer, Heidelberg, May 2016.

[53] J. Daemen, S. Hoffert, G. V. Assche, and R. V. Keer. The design of Xoodoo and
Xoofff. IACR Trans. Symm. Cryptol., 2018(4):1–38, 2018.

[54] Y. Dai, Y. Seurin, J. P. Steinberger, and A. Thiruvengadam. Indifferentiability of
iterated Even-Mansour ciphers with non-idealized key-schedules: Five rounds are nec-
essary and sufficient. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 524–555. Springer, Heidelberg, Aug. 2017.

[55] Y. Dai and J. P. Steinberger. Indifferentiability of 8-round Feistel networks. In M. Rob-
shaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 95–120.
Springer, Heidelberg, Aug. 2016.

[56] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren. Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. In A. Joux, A. Nitaj,
and T. Rachidi, editors, Progress in Cryptology – AFRICACRYPT 2018, pages 282–
305, Cham, 2018. Springer International Publishing.

257

[57] A. Desai. The security of all-or-nothing encryption: Protecting against exhaustive key
search. In M. Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 359–375.
Springer, Heidelberg, Aug. 2000.

[58] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

[59] J. Ding, S. Alsayigh, J. Lancrenon, S. RV, and M. Snook. Provably secure password au-
thenticated key exchange based on rlwe for the post-quantum world. In H. Handschuh,
editor, Topics in Cryptology – CT-RSA 2017, pages 183–204, Cham, 2017. Springer
International Publishing.

[60] Y. Dodis and P. Puniya. Feistel networks made public, and applications. In M. Naor,
editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 534–554. Springer, Heidel-
berg, May 2007.

[61] Y. Dodis, M. Stam, J. P. Steinberger, and T. Liu. Indifferentiability of confusion-
diffusion networks. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 679–704. Springer, Heidelberg, May 2016.

[62] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. Crystals
– dilithium: Digital signatures from module lattices. Cryptology ePrint Archive, Paper
2017/633, 2017. https://eprint.iacr.org/2017/633.

[63] S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom
permutation. In H. Imai, R. L. Rivest, and T. Matsumoto, editors, ASIACRYPT’91,
volume 739 of LNCS, pages 210–224. Springer, Heidelberg, Nov. 1993.

[64] A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. Hashing
to elliptic curves draft-irtf-cfrg-hash-to-curve, https://datatracker.ietf.org/doc/
draft-irtf-cfrg-hash-to-curve/, June 2020.

[65] A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. Hash-
ing to elliptic curves, irft-cfrg active draft, https://datatracker.ietf.org/doc/

draft-irtf-cfrg-hash-to-curve/, 2022.

[66] P.-A. Fouque, A. Joux, and M. Tibouchi. Injective encodings to elliptic curves. In
C. Boyd and L. Simpson, editors, ACISP 13, volume 7959 of LNCS, pages 203–218.
Springer, Heidelberg, July 2013.

[67] B. Freitas, Y. Gu, and S. Jarecki. Randomized half-ideal cipher on groups with appli-
cations to uc (a)pake. In C. Hazay and M. Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, pages 128–156, Cham, 2023. Springer Nature Switzerland.

[68] B. Freitas Dos Santos, Y. Gu, S. Jarecki, and H. Krawczyk. Asymmetric pake with low
computation and communication. In EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
2022.

258

https://eprint.iacr.org/2017/633
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

[69] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryp-
tion schemes. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
537–554. Springer, Heidelberg, Aug. 1999.

[70] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryp-
tion schemes. In CRYPTO’99, pages 537––554, 1999.

[71] R. Gennaro and Y. Lindell. A framework for password-based authenticated key ex-
change. Cryptology ePrint Archive, Paper 2003/032, 2003. https://eprint.iacr.

org/2003/032.

[72] C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based key
exchange resilient to server compromise. In Advances in Cryptology – CRYPTO 2006,
pages 142–159. Springer, 2006.

[73] A. Groce and J. Katz. A new framework for efficient password-based authenticated
key exchange. In Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS ’10, page 516–525, New York, NY, USA, 2010. Association for
Computing Machinery.

[74] Y. Gu, S. Jarecki, and H. Krawczyk. KHAPE: Asymmetric PAKE from key-hiding
key exchange. In Advances in Cryptology - Crypto 2021, pages 701–730, 2021. https:
//ia.cr/2021/873.

[75] C. Guo and D. Lin. Improved domain extender for the ideal cipher. Cryptography
Commun., 7(4):509–533, dec 2015.

[76] B. Haase and B. Labrique. AuCPace: Efficient verifier-based PAKE protocol tailored
for the IIoT. In Conference on Cryptographic Hardware and Embedded Systems 2019
– CHES 2019. IACR, 2019. Cryptology ePrint Archive, Report 2018/286.

[77] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. ACM
Transactions on Information and System Security (TISSEC), 2(3):230–268, 1999.

[78] S. Halevi and H. Krawczyk. One-pass hmqv and asymmetric key-wrapping. In Ad-
vances in Cryptology – PKC 2011, pages 317–334. Springer, 2011.

[79] F. Hao and S. F. Shahandashti. The SPEKE protocol revisited. Cryptology ePrint
Archive, Report 2014/585, 2014. http://eprint.iacr.org/2014/585.

[80] J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key cryp-
tosystem. In J. P. Buhler, editor, Algorithmic Number Theory, pages 267–288, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

[81] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the fujisaki-
okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017.
https://eprint.iacr.org/2017/604.

259

https://eprint.iacr.org/2003/032
https://eprint.iacr.org/2003/032
https://ia.cr/2021/873
https://ia.cr/2021/873
http://eprint.iacr.org/2014/585

[82] T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random oracle model
and the ideal cipher model, revisited. In L. Fortnow and S. P. Vadhan, editors, 43rd
ACM STOC, pages 89–98. ACM Press, June 2011.

[83] A. Hulsing, D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L. Gazdag,
P. Kampanakis, S. Kolbl, T. Lange, M. M. Lauridsen, F. Mendel, R. Niederha-
gen, C. Rechberger, J. Rijneveld, P. Schwabe, J.-P. Aumasson, B. Westerbaan,
and W. Beullens. Sphincs+ submission to the nist post-quantum project, https:

//sphincs.org/data/sphincs+-specification.pdf, 2017.

[84] J. Y. Hwang, S. Jarecki, T. Kwon, J. Lee, J. S. Shin, and J. Xu. Round-reduced
modular construction of asymmetric password-authenticated key exchange. In Security
and Cryptography for Networks – SCN 2018, pages 485–504. Springer, 2018.

[85] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way per-
mutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

[86] D. P. Jablon. Extended password key exchange protocols immune to dictionary attacks.
In 6th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 1997), pages 248–255, Cambridge, MA, USA,
June 18–20, 1997. IEEE Computer Society.

[87] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In Applied Cryptology and Network
Security – ACNS 2017, pages 39–58. Springer, 2017.

[88] S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In Advances in Cryptology - EUROCRYPT 2018,
pages 456–486, 2018. IACR ePrint version at http://eprint.iacr.org/2018/163.

[89] S. Jarecki, H. Krawczyk, and J. Xu. On the (in)security of the diffie-hellman oblivious
PRF with multiplicative blinding. In Public-Key Cryptography - PKC 2021, pages
380–409, 2021. https://ia.cr/2021/273.

[90] É. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC-MAC beyond
the birthday paradox limit: A new construction. In J. Daemen and V. Rijmen, editors,
FSE 2002, volume 2365 of LNCS, pages 237–251. Springer, Heidelberg, Feb. 2002.

[91] S. Jiang, G. Gong, J. He, K. Nguyen, and H. Wang. Pakes: New framework, new
techniques and more efficient lattice-based constructions in the standard model. In
A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, Public-Key Cryptography
– PKC 2020, pages 396–427, Cham, 2020. Springer International Publishing.

[92] C. S. Jutla and A. Roy. Smooth NIZK arguments. In Theory of Cryptography – TCC
2018, pages 235–262. Springer, 2018.

[93] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Advances in Cryptology — EUROCRYPT 2001,
pages 475–494, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

260

https://sphincs.org/data/sphincs+-specification.pdf
https://sphincs.org/data/sphincs+-specification.pdf
https://ia.cr/2021/273

[94] J. Katz and V. Vaikuntanathan. Smooth projective hashing and password-based au-
thenticated key exchange from lattices, 2009.

[95] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. In
N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 252–267. Springer, Hei-
delberg, Aug. 1996.

[96] T. Kim and M. Tibouchi. Invalid curve attacks in a GLS setting. In K. Tanaka and
Y. Suga, editors, IWSEC 15, volume 9241 of LNCS, pages 41–55. Springer, Heidelberg,
Aug. 2015.

[97] H. Krawczyk. SKEME: A versatile secure key exchange mechanism for internet. In
1996 Internet Society Symposium on Network and Distributed System Security (NDSS),
pages 114–127, 1996.

[98] H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In Advances in Cryptology – CRYPTO
2003, pages 400–425. Springer, 2003.

[99] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer,
Heidelberg, Aug. 2005.

[100] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol (extended
abstract). In Advances in Cryptology – CRYPTO 2005, pages 546–566. Springer, 2005.

[101] H. Krawczyk, K. Lewi, and C. Wood. The opaque asymmetric pake protocol, draft-
irtf-cfrg-opaque, https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/,
Feb. 2021.

[102] V. Lyubashevsky. comparison, https://pq-crystals.org/dilithium/data/

slides-pqcrypto17-lyubashevsky.pdf, 2017.

[103] V. Lyubashevsky. comparison, https://csrc.nist.gov/CSRC/media/

Presentations/crystals-dilithium-round-3-presentation/images-media/

session-1-crystals-dilithium-lyubashevsky.pdf, 2021.

[104] V. Lyubashevsky, N. K. Nguyen, and M. Plancon. Lattice-based zero-knowledge proofs
and applications: Shorter, simpler, and more general. Cryptology ePrint Archive,
Paper 2022/284, 2022. https://eprint.iacr.org/2022/284.

[105] P. MacKenzie. On the security of the SPEKE password-authenticated key exchange
protocol. Cryptology ePrint Archive, Report 2001/057, 2001. http://eprint.iacr.
org/2001/057.

[106] V. Maram, P. Grubbs, and K. G. Paterson. Anonymous, robust post-quantum public
key encryption. In EUROCRYPT 2022 - 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2022.

261

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://pq-crystals.org/dilithium/data/slides-pqcrypto17-lyubashevsky.pdf
https://pq-crystals.org/dilithium/data/slides-pqcrypto17-lyubashevsky.pdf
https://csrc.nist.gov/CSRC/media/Presentations/crystals-dilithium-round-3-presentation/images-media/session-1-crystals-dilithium-lyubashevsky.pdf
https://csrc.nist.gov/CSRC/media/Presentations/crystals-dilithium-round-3-presentation/images-media/session-1-crystals-dilithium-lyubashevsky.pdf
https://csrc.nist.gov/CSRC/media/Presentations/crystals-dilithium-round-3-presentation/images-media/session-1-crystals-dilithium-lyubashevsky.pdf
https://eprint.iacr.org/2022/284
http://eprint.iacr.org/2001/057
http://eprint.iacr.org/2001/057

[107] M. Marlinspike. Simplifying OTR deniability, https://signal.org/blog/

simplifying-otr-deniability/, 2013.

[108] M. Marlinspike and T. Perrin. The X3DH key agreement protocol, https://signal.
org/docs/specifications/x3dh/, 2016.

[109] I. McQuoid, M. Rosulek, and L. Roy. Minimal symmetric PAKE and 1-out-of-n OT
from programmable-once public functions. In J. Ligatti, X. Ou, J. Katz, and G. Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020., 2020.

[110] I. McQuoid and J. Xu. An efficient strong asymmetric pake compiler instantiable from
group actions. Cryptology ePrint Archive, Paper 2023/1434, 2023. https://eprint.
iacr.org/2023/1434.

[111] R. C. Merkle. One way hash functions and DES. In G. Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 428–446. Springer, Heidelberg, Aug. 1990.

[112] NIST Information Technology Lab. Post-quantum cryptography, https://csrc.

nist.gov/projects/post-quantum-cryptography.

[113] D. Pointcheval and G. Wang. VTBPEKE: Verifier-based two-basis password expo-
nential key exchange. In R. Karri, O. Sinanoglu, A.-R. Sadeghi, and X. Yi, editors,
ASIACCS 17, pages 301–312. ACM Press, Apr. 2017.

[114] D. Pointcheval and G. Wang. VTBPEKE: Verifier-based two-basis password exponen-
tial key exchange. In ASIACCS 17, pages 301–312. ACM Press, 2017.

[115] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In D. R. Stinson, editor, CRYPTO’93, volume 773 of LNCS,
pages 368–378. Springer, Heidelberg, Aug. 1994.

[116] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ri-
cosset, G. Seiler, W. Whyte, and Z. Zhang. Fast-fourier lattice-based compact signa-
tures over ntru, https://falcon-sign.info/, 2017.

[117] A. Shallue and C. van de Woestijne. Construction of rational points on elliptic curves
over finite fields. In ANTS, 2006.

[118] C. E. Shannon. Communication theory of secrecy systems. The Bell System Technical
Journal, 28(4):656–715, 1949.

[119] V. Shoup. Security analysis of SPAKE2+. IACR Cryptol. ePrint Arch., 2020:313,
2020.

[120] N. Sullivan, H. Krawczyk, O. Friel, and R. Barnes. Opaque with tls 1.3, draft-sullivan-
tls-opaque, https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/,
Feb. 2021.

262

https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://eprint.iacr.org/2023/1434
https://eprint.iacr.org/2023/1434
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://falcon-sign.info/
https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/

[121] M. Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as
uniform random strings. In N. Christin and R. Safavi-Naini, editors, FC 2014, volume
8437 of LNCS, pages 139–156. Springer, Heidelberg, Mar. 2014.

[122] R. S. Wahby and D. Boneh. Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. IACR TCHES, 2019(4):154–179, 2019. https://tches.iacr.org/
index.php/TCHES/article/view/8348.

[123] R. S. Winternitz. Producing a one-way hash function from DES. In D. Chaum, editor,
CRYPTO’83, pages 203–207. Plenum Press, New York, USA, 1983.

[124] K. Xagawa. Anonymity of nist pqc round 3 kems. In EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2022.

[125] J. Zhang and Y. Yu. Two-round pake from approximate sph and instantiations from
lattices. In ASIACRYPT (3), pages 37–67. Springer, 2017.

263

https://tches.iacr.org/index.php/TCHES/article/view/8348
https://tches.iacr.org/index.php/TCHES/article/view/8348

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Problem Statement
	Roadmap

	Preliminaries
	Cryptographic Assumptions
	Cryptographic Primitives
	Security Models and Frameworks
	The Random Oracle Model and Ideal Cipher Model
	Universally Composability Framework
	Functionalities

	KHAPE: Asymmetric PAKE from Key-Hiding Key Exchange
	Introduction
	The Key-Hiding AKE UC Functionality
	3DH as Key-Hiding AKE
	HMQV as Key-Hiding AKE
	SKEME as Key-Hiding AKE
	Compiler from key-hiding AKE to aPAKE
	Concrete aPAKE Instantiation: KHAPEHMQV
	Curve Encodings and Ideal Cipher
	Quasi bijections
	Implementing quasi-bijective encodings
	Ideal Cipher Constructions

	OKAPE:Asymmetric PAKE with low computation and communication
	Introduction
	Key-hiding one-time-key AKE
	2DH as key-hiding one-time-key AKE
	One-Pass HMQV as key-hiding one-time-key AKE
	1/2-SKEME as one-time-key AKE

	Protocol OKAPE: asymmetric PAKE construction

	Randomized Half-Ideal Cipher on Groups with application to UC (a)PAKE
	Introduction
	Universally Composable Randomized Ideal Cipher
	Randomized Ideal Cipher Construction: Modified 2-Feistel
	Encrypted Key Exchange with Randomized Ideal Cipher
	EKE with Randomized Ideal Cipher : the KEM version

	Applications of HIC to asymmetric PAKE
	Lattice-Based UC PAKE from EKE and Saber KEM

	Generic compiler from PAKE to asymmetric PAKE using KEM
	Introduction
	Prior aPAKE Constructions
	Our Contributions

	Compiler from PAKE to asymmetric PAKE
	An Efficient Instantiation of Our Compiler

	Bibliography

