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ABSTRACT OF THE THESIS

Machine Learning-Based Assessment of Obesity: An Investigation of Model

Performance and Feature Selection

by

Dareh Aslanpour

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2023

Professor Yingnian Wu, Chair

The objective of this paper is to employ various machine learning algorithms to inves-

tigate the assessment of obesity levels based on eating habits and physical conditions.

The study will utilize the obesity level estimation data provided by UCI Machine

Learning Repository. The performance of different model candidates will be evalu-

ated and compared in order to select the most robust model for obesity estimation

or prediction. Moreover, this research aims to identify the crucial features used in

the best predictive model to enhance the accuracy of obesity prediction. This study

intends to contribute to the ongoing research in the field of machine learning and

healthcare by providing insights into the prediction of obesity.
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CHAPTER 1

Introduction

Obesity has established itself as one of the most significant and ongoing epidemics

in the United States, affecting nearly half of the population and linked to leading

causes of preventable death such as heart disease and stroke [CDC22b]. Obesity is

identified through a person’s body mass index or BMI, which is calculated by dividing

a person’s weight in kilograms (kg) by their height in meters squared (m2) where a

BMI of 30 kg/m2 or more is recognized as obese [CDC22a]. On the surface level,

the concept of avoiding obesity may seem to be as simple as keeping your weight low

relative to your height, but the issue of obesity is multifaceted as 50% of the variance

in weight is explained by genetics and the other half by their environment [BLM15].

Therefore, it is of paramount importance to gain understanding of the environment

in relation to obesity given its amenability to modification in comparison to genetics.

This study develops a classification model with the primary objective of accu-

rately predicting obesity in individuals based on a multitude of environmental factors,

including but not limited to their smoking habits and even mode of transportation to

deepen the understanding of environmental impacts on obesity. By creating a myr-

iad of machine learning models, our investigation will not only successfully predict

obesity, but it will also allow us to achieve an understanding of the key drivers of

obesity prediction and further our understanding on environmental factors that play
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a pivotal role in predicting whether or not a person is classified as obese. Conversely,

the models will also aid in the understanding of factors that do not contribute to

obesity.
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CHAPTER 2

Exploratory Data Analysis

2.1 Data Set

The data set used is from the UCI Machine Learning Repository. Titled “Estimation

of obesity levels based on eating habits and physical condition Data Set,” it includes

data for estimating the obesity levels of people from Mexico, Peru, and Colombia

based on several habits and conditions. The data set contains 17 attributes and a

total of 2111 observations where 23% of the data is collected and the other 77% is

synthetic. The goal of implementing synthetic data into the data set was to not

only increase the number of observations in general, but to also balance the number

of observations that are obese and not obese. The variable we will be predicting

is “NObesity” or obesity level which is split into seven levels: Insufficient Weight,

Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity

Type II, Obesity Type III. For the purpose of our study, We will be converting this

variable to a binary variable where 0 signifies not obese and 1 signifies obese. In

addition, will be omitting the height and weight variables from our model due to

its correlation to BMI as a BMI over 30 classifies obesity and is calculated by the

formula BMI = kg
m2 . for reference, a test logistic regression model was implemented

that classified obesity using solely the variables weight and height which predicts
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obesity at a 95% accuracy with the 5% incorrect being likely due to incorrect labeling

of synthetic data. As a result, we will be converting height and weight variables to

BMI and using it to supplement our understanding of BMI with respect to our

categorical variables and obesity classification.

2.2 Attributes of Data Set

Gender: Female or Male (0 = Female, 1 = Male)

Age: Age in years

Height: Height in meters

Weight: Weight in kilograms

BMI: Body mass index of person (Weight(kg)
Height(m2)

)

family history with overweight: Yes/No does the person have a family member who

has suffered from being overweight (0 = No, 1 = Yes)

FAVC: Does the person frequently consume high caloric food (0 = No, 1 = Yes)

FCVC: How frequently does the person consume vegetables (0 = Never, 1 = Some-

times, 2 = Always)

NCP: How many main meals does the person consume a day (0 = 1 , 1 = 2-3, 2 =

3+)

CAEC: How often does the person consume food between their meals (0 = Never, 1

= Sometimes, 2 = Frequently, 3= Always)

SMOKE: Is the person a smoker (0 = No, 1 = Yes)

CH2O: How much water does the person drink per day (0 = ¡ 1 Liter, 1 = 1 -2 Liters,

2 = 2+ Liters)

SCC: Does the person monitor their daily calorie consumption (0 = No, 1 = Yes)
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FAF: How many times per week is the person physically active (0 = None, 1 = 1 or

2 Days, 2 = 3 or 4 Days, 3 = 5+ Days)

TUE: How much time in hours does the person spend using technology (0 = 0-2

Hours, 1 = 3 to 5 Hours, 2 = 5+ Hours)

CALC: How frequent does the person consume alcohol (0 = No, 1 = Sometimes, 2

= Frequently, 3 = Always)

MTRANS: What transportation does the person usually take (0 = Walk or Bike, 1

= Automobile, 2 = Public Transportation)

NObeyesdad: Obesity level ( Insufficient Weight, Normal Weight, Overweight Level

I, Overweight Level II, Obesity Type I, Obesity Type II, Obesity Type III) Re-labeled

to binary (0 = Not Obese, 1 = Obese)

As mentioned previously, Height and Weight will be omitted from all models as

both are used to derive BMI which has direct relationship to obesity level. However,

the BMI variable derived from the Height and Weight given in the data set will

be used in exploratory data analysis and influence variable selection as it portrays

obesity levels at a numeric level.

2.3 Dependent Variables

In the data set, the dependent variable is a categorical variable with seven levels:

Insufficient Weight (272 occurrences), Normal Weight (287 occurrences), Overweight

Level I (290 occurrences), Overweight Level II (290 occurrences), Obesity Type I (351

occurrences), Obesity Type II (297 occurrences), Obesity Type III (324 occurrences)

which is far too many levels for our purpose of comparing obesity and non-obesity
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groups. From the barplot below we see that the distribution of the frequency of BMI

classifications is roughly uniform although having seven levels.

Figure 2.1: Frequency of BMI Classifications

We opt to dissolve the seven levels into two levels which are “Not Obese” and

“Obese” as the primary objective is based around a broad view of obesity rather

than a holistic one that deep dives into every single stage of BMI Classification.
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Figure 2.2: Frequency of Not Obese and Obese

As a result we now have 1,139 observations of people who are not obese and 972

observations of people who are obese as evident in Figure 2.2.

Lastly, for the purpose of exploratory data analysis, a secondary dependent vari-

able, BMI, was created to further explore and understand how certain attributes

might impact obesity. BMI is directly proportional to the classification of obesity

since a BMI of 30 or more signifies obesity. Due to the presence of Height (in me-

ters) and Weight (in kilograms) we are able to manually derive the BMI of each

observation using the formula Weight(kg)
Height(m2)

. With the addition of BMI, we add another

layer to our analysis as we can observe not only what variables are drivers in obesity

prediction, but also in BMI. Our analysis is now observable at a numeric and cate-

gorical level. With this in mind and the fact that approximately 77% of the data set

is synthetic, we remove observations from the data set that are classified as obese,

but have a BMI less than 30, and observations that are classified as not obese, but

7



have a BMI of 30 or greater. Due to the synthetic nature of the data, it is possible

that the data created could be misclassified since it may not have been explicitly

classified with the definition of obesity with respect to BMI in mind. As a result,

our original data set of 2,111 observations drops to 2,105 after the removal of the

misclassified observations. Furthermore, there are now 1,135 and 970 observations

of non-obese and obese people, respectively, in the data set in comparison to the

original 1,139 and 972. Lastly, we limit the data to observations of people who are

age 18 or higher since due to personal intuition, environmental factors are likely to

be far less controllable by someone who is under 18. Our data set is now limited to

1,992 observations with 1,030 being classified as not obese and 962 being obese.

Figure 2.3: Frequency of Not Obese and Obese After Misclassified Observation and

Under 18 Removal
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Figure 2.4: Boxplots of BMI with Respect to Obesity

Figure 2.5: Histogram for the Distribution of BMI
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In Figure 2.4 above, we can see that BMI with respect to Obesity is now struc-

tured the way we need it to be as “Not Obese” ends right before a BMI of 30 and

“Obese” picks up right after. In addition, in Figure 2.5 it is also evident that the

new variable “BMI” is also roughly normally distributed. Although it will not be

explicitly used as a dependent variable in our model, it will be used as reference in

variable exploration and selection, so is treated similarly to how a response variable

in linear regression would normally be addressed.

2.4 Variable Exploration Methodology

In the data set there are three numeric variables and two of which are used in

combination to calculate BMI which is directly correlated to the classification of

obesity and are ultimately omitted from the analysis. This leaves Age as the only

numeric predictor in the data set and was explored by creating histograms of the

variable and various transformations of it to check for normality.

The rest of the variables in the data set are all categorical variables with the

most important variable being gender due to its potential to be used in interaction

effects or provide cause to create two different models, one for males and another for

females, in the event that there is significant variance between the genders and their

relation to obesity prediction. Every categorical variable will be plotted in the form

of a table against obesity to see the overall distribution of the variable and if there

looks to be any potential predictability power in hindsight. Moreover, boxplots will

be created for BMI with respect to every level of each categorical variable to add

a second layer of understanding and unveil how BMI is distributed for each level

and whether or not there looks to be any visual disparity between them. Lastly, the
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boxplots will be repeated two more times, one for each subset of genders as means

of exploring potential interaction effects.

2.5 Key Findings

Figure 2.6: Barplot of Gender with Respect to Obesity

Figure 2.6 above suggests that in our data neither gender is more likely to be

obese than the other as we have a similar amount of observations for each possible

combination. This may be likely due to the synthetic nature of the data.

Table 2.1: Family History with Overweight vs Obesity Status

Not Obese Obese

no 336 8

yes 694 954
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Table 2.1 contained one of the biggest findings within the analysis displaying that

only 2.3% of people without family history of being overweight obese while 57.9%

of people with a family history were obese. Although this has the potential to be a

powerful finding in regard to obesity prediction it is important to note that there have

been studies showing genetic factors to have a significant role in the pathogenesis

of obesity [LB03]. Therefore, this variable will be omitted from any models as 50%

of the variance in weight is explained by genetics and our focus is centered around

controllable aspects [BLM15].

Table 2.2: Frequent Consumption of High Caloric Food vs Obesity Status

Not Obese Obese

no 211 18

yes 819 944

Table 2.2 provides similar information as 2.1, but is not a genetic related factor.

From the table, we see that 53.5% of people who consume high caloric food frequently

are almost as those with a family history.

12



Figure 2.7: Boxplots of BMI by Whether or Not Person Frequently Consumes High

Caloric Food

From Figure 2.7, those who frequently consume high caloric food have a median

BMI of 31.15 in comparison to the 24.39 median BMI of those who do not. The

results from the table and boxplot fall in line with the general intuition that high

caloric foods would have an impact on obesity prediction and the difference in median

between the BMIs of both groups suggest that frequent consumption of high caloric

food could be a strong predictor of obesity.
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Table 2.3: Daily Calorie Consumption Monitoring vs Obesity Status

Not Obese Obese

no 955 959

yes 75 3

Figure 2.8: Boxplots of BMI by Daily Calorie Consumption Monitoring

Although Table 2.3 demonstrates that there is a sparse number of observations

in the data set of people who monitor their daily calorie consumption, it is still a

major finding that 96.15% of the observations that monitored their calories were

not obese. Generally speaking, tracking and monitoring calories is not something

that is commonly done by the general population and the people that do monitor

their calories tend to do so for specific reasons such as weight gain, weight loss,

or bodybuilding. It is important to emphasize that correlation is not causation as

tracking calories is likely linked to many other aspects in one’s lifestyle that can

influence obesity status. Nonetheless, from Figure 2.8, there is once again a clear
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difference in medians where those who monitored their calorie consumption had a

median BMI of 22.15 in comparison to a 30.11 BMI for those who did not track BMI.
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Figure 2.9: Variable Importance of Baseline Model by Mean Decrease Gini

Figure 2.10: Variable Importance of Baseline Model by Mean Decrease Accuracy
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To conclude the exploratory data analysis section, a baseline random forest model

is developed to objectively determine the variable importance for obesity prediction,

as shown in Figure 2.9. The variable importance scores or Mean Decrease Gini values

align with the key takeaways from the earlier analysis. For example, the second

most important variable with respect to Mean Decrease Gini is FAVC, indicating

the frequency of consumption of high calorie foods has a major impact on obesity

prediction. However, the variable CAEC, which represents how often a person eats

between meals, surpasses all other variables in terms of importance in regard to the

Mean Decrease Gini.
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CHAPTER 3

Methodology

3.1 Logistic Regression

Logistic regression falls into the classification group of supervised machine learning,

where in comparison to linear regression, logistic regression is used to predict a

binary or categorical outcome. In the case of this research, logistic regression is

used to predict whether or not a person is or is not obese. In comparison to logistic

regression, if the objective of the study was to predict BMI, then multiple linear

regression would be used instead since BMI is a continuous variable. Although

logistic regression does technically predict the class of an observation it is important

to note that it predicts the probability of the outcome which is furthermore what is

used in predicting an outcome or in other words the likelihood. For instance, through

logistic regression we can predict that the probability of an observation being obese

is, for example, 55% and use that to classify an observation as obese depending on

the threshold selection, typically being 50%.

18



The hypothesis for logistic regression can be defined with the formula:

hθ(x) = g(θTx) (3.1)

And the function g is defined by the sigmoid function :

g(z) =
1

1 + e−z
(3.2)

Ultimately, the sigmoid function serves to calculate the probability of the outcome

of the logistic regression and therefore results in values ranging from 0 to 1 as shown

below in Figure 3.1 [Nas17].

Figure 3.1: Visual of Sigmoid Function Plotted

In the process of creating a logistic regression model, our study will begin with a

baseline model that includes every single eligible variable similar to the approach in

Figure 2.9.
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After the baseline model is created, we will perform variable selection where the

baseline random forest will be referenced. The mean decrease Gini and mean decrease

accuracy will be referenced and each variable will be ranked based on importance

from the random forest model. Once ranked, a backwards selection style approach

will be used as we will iteratively go through the model removing variables based on

importance and assessing model performance. For each iteration of each method, the

training accuracy and testing accuracy will be logged for different levels of probability

in regard to classification. For instance, by default a probability of 50% or higher

will classify an observation as a person who is obese, but various probabilities will be

tested ranging from 40% to 60% in case a certain threshold of probability is better

than others in predicting obesity. Furthermore, the log odds at each probability

threshold will be evaluated to see how the odds change. The most robust model will

be selected and evaluated against the other top performing models in the selection

of the best one.

3.2 Random Forest

In comparison to logistic regression, random forest is a supervised learning method

that is used for both classification and regression where random forest is an ensemble

learning method that uses a large number of decision trees leading to a reduction

in variance when compared to using individual decision trees [CPB18]. The random

forest implements bootstrapping on the training data as a means to enhance variation

and furthermore randomizes a subset of the variables used within a tree to create

less correlation amongst the trees [CPB18]. The final classification of the observation

selected by the random forest is determined via a majority vote of the trees in the

20



random forest.

The general methodology that will be used for selecting the best random forest

model will be centered around the baseline model that was created in the exploratory

data analysis earlier. From that baseline model, we have established the mean de-

crease Gini and the mean decrease accuracy which will be used in dropping off

variables one by one until the model with the best training and testing accuracy is

selected without the use of any hyperparameters. After the best subset of variables

is selected, we move on and adjust the hyperparameters. Although “ntree” or the

number of trees is not necessarily a hyperparameter, it will be adjusted to be large

enough so the features that are randomly selected have adequate opportunities to

be selected [CPB18]. The next hyperparameter is “mtry” which by default is set to
√
p where p is the number of features in the data set. Since there are relatively few

features in the data set, every value of p will be tested. Lastly, “nodesize” which sig-

nifies the minimum size of the terminal nodes will be adjusted depending on whether

or not improvements occur when the baseline value 1 is changed [CPB18]. Similar

to logistic regression, the most robust model will be selected and evaluated against

the other models.
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3.3 Gradient Boosting

Another one of the more popular and powerful machine learning methods within

machine learning is known as Gradient Boosting, an ensemble method that utilizes

the creations of weak models and furthermore combine them together in order to

create an overall better performing model [Mas22]. Whereas models such as the

random forest “rely on simple averaging of models,” the boosting family of models

are based on the idea of adding new models to an ensemble sequentially where in

every iteration “a new weak, base-learner model is trained with respect to the error of

the whole ensemble learnt so far” [NK13]. These weak learners in gradient boosting

tend to be decision trees, which will be added one at a time and follow a “gradient

descent procedure” in order to minimize the loss [Mas22]. The gradient boosting

model essentially calculates residuals with respect to the classification previously

found, then fits a weak learner, for example trees, to those residuals to which a new

learner is now built via predicting the loss at every iteration [Mas22]. This iterative

process will continue until the error falls below a specific pre-decided threshold.

3.4 XGBoost

The next and final model that will be assessed is XGBoost. XGBoost is similar to

gradient boosting in the sense that it has “gradient boosting at its core” according

to, however it is more regularized since it “uses advanced regularization (L1 & L2),

which improves model generalization capabilities” [RUS16, Kha20]. Similar to the

previous methods, XGBoost will also have a baseline model that will be hypertuned

after variable selection is complete in order to maximize performance.
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CHAPTER 4

Model Analysis

To evaluate our models, our data set will be split into 70% training and 30% testing

at random meaning that of our original 1,992 observation data set will be broken out

as 1,394 observations for training and 598 observations for testing. The models that

will be tested correspond with the previous chapter and will be Logistic Regression,

Random Forest, Gradient Boosting and XGBoost. The most robust model using

each supervised learning method will be evaluated in its respective section.

In the following sections, a confusion matrix will be displayed for each model to

provide a visualization in regard to the breakout or overall distribution of predictions

for each model, various metrics in regard to the confusion matrix, and the AUC score.

In the confusion matrix, we can see how many true positives, true negatives, false

positives, and false negatives there are. Furthermore, with this any disproportionality

will be evident as the confusion matrix will show us the precision and recall of our

model and if any bias in classification is prevalent.

The “accuracy” of a model measures the number of correct predictions out of the

total number of predictions.

Accuracy =
Number of Correct Predictions

Number of Predictions
(4.1)
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Although accuracy is in a sense the gold standard in regard to model success it

is important to look one layer deeper to fully understand where our models succeed

and where they fail. This is especially significant when dealing with imbalanced data

such that the variable you are classifying is split, for example, 20% obese and 80%

not obese. If the data were to be imbalanced to this degree, a model could classify

every single observation to be not obese and it would have an accuracy of 80% which

is high, but misleading. Although our data is balanced we will still look at both

precision, recall, and F1 score in addition to accuracy.

Precision =
Number of True Positives

Number of True Positives + Number of False Positives
(4.2)

Recall =
Number of True Positives

Number of True Positives + Number of False Negatives
(4.3)

F1 Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(4.4)

Furthermore, the models that reference the mean decrease Gini and mean de-

crease accuracy plots of our baseline model will be assessing the variables using the

following hierarchy:

1. CAEC

2. FAVC

3. NCP
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4. MTRANS

5. FCVC

6. CALC

7. FAF

8. SCC

9. TUE

10. CH2O

11. SMOKE

4.1 Logistic Regression

In constructing our logistic regression model we firstly begin by creating a baseline

model that includes every single variable and then removing variables one by one with

respect to the importance plots from our random forest baseline model that was part

of the exploratory data analysis. Furthermore, the training accuracy and testing

accuracy were logged for each iteration to determine the best model on the basis of

accuracy. From this we found that the best performing model was the original one

that included every single variable which hoists an accuracy of 75.6% for both the

training and the test data. The close proximity in training and test accuracy signifies

that overfitting is likely not an issue for our model. Once this model was selected,

several thresholds were tested in regard to prediction classification. As mentioned

earlier, logistic regression gives the probability that an observation belongs to a class
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and by default the threshold is set to 50%. We next re-ran our prediction for every

whole number threshold from 20% to 80%. Predictions using values less than 50%

would be more conservative in labeling observations as obese and predictions using

values greater than 50% would be more aggressive in labeling observations as obese.

This process confirmed that the standard 50% yielded the highest test accuracy while

still having a high precision, recall, and the top F1 score with respect to the other

thresholds.

Figure 4.1: Logistic Regression Confusion Matrix (0 = Not Obese, 1 = Obese)
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The final results of our logistic regression model are:

• Training Accuracy: 75.6%

• Testing Accuracy: 75.6%

• Precision: 70.7%

• Recall: 86.1%

• F1 Score: 77.6%

• AUC Score: 0.7576

Table 4.1: Odds-Ratio of Significant Predictors (p-value ≤ 0.05)

Variable Odds-Ratio

1 FAVC1 10.61

2 NCP1 2.05

3 NCP2 0.25

4 CAEC1 14.29

5 CH2O2 1.96

6 SCC1 0.05

7 FAF3 0.24

8 TUE1 0.74

9 TUE2 0.43

10 CALC2 0.38

11 MTRANS1 5.59

12 MTRANS2 7.30
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In Table 4.1 above, we see the Odds-Ratios of our significant predictors. Their

interpretations are as followed:

• FAVC1 - Individuals that frequently consume high caloric food have 10.61 times

the odds of being obese than those who do not

• NCP1 - Individuals that consume 2-3 meals per day have 2.05 times the odds

of being obese than those who consume 1

• NCP2 - Individuals that consume 3+ meals per day have 4 times lower odds

of being obese than those who consume 1

• CAEC1 - Individuals that sometimes consume food between their meals have

14.29 times the odds of being obese than those who do not

• CH2O2 - Individuals that drink over 2 liters of water a day have 1.96 times the

odds of being obese than those who drink less than 1 liter

• SCC1 - Individuals that monitor their daily calorie consumption have 20 times

lower odds of being obese than those who do not

• FAF3 - Individuals that are physically active 4-5 times per week have approxi-

mately 4.17 lower odds of being obese than those who are not physically active

• TUE1 - Individuals that spend 3 to 5 hours a day using technology devices

have 1.35 lower odds of being obese than those who spend 0 to 2 hours

• TUE2 - Individuals that spend 5+ hours a day using technology devices have

2.33 lower odds of being obese than those who spend 0 to 2 hours
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• CALC2 - Individuals that frequently consume alcohol have 2.63 lower odds of

being obese than those who do not consume any

• MTRANS1 - Individuals that usually take an automobile as transportation

have 5.59 times the odds of being obese than those who walk or bike

• MTRANS2 - Individuals that usually take public transportation have 7.30

times the odds of being obese than those who walk or bike

4.2 Random Forest

Similar to our logistic regression model, we begin fitting our random forest model

by referencing the random forest baseline model created during our exploratory data

analysis. Using the mean decrease Gini and mean decrease accuracy variables will be

removed one by one and the training and testing accuracy will be logged for model

comparison. In comparison to the logistic regression model, the random forest model

showed improvement when removing the least important variable SMOKE from the

model. Using a baseline of 1200 trees, once SMOKE was removed the training

accuracy improved from 87.7% to 87.8% and the testing accuracy increased from

82.1% acccuracy to to 82.9% accuracy. Due to the 0.8% increase in testing accuracy

and marginal increase in training accuracy as well as model simplification, we opt to

omit SMOKE from the random forest model.

In the next step the parameters ntree, mtry, and nodesize were tuned. In the

process of tuning these, for loops were created for ntree, mtry, and nodesize in that

order where several for each parameter were run to find which produces the best

combination of training and test accuracy. This process found the 800 trees that
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were used for our baseline model to provide the best combination of training and

test accuracy. It found that the second best mtry value, 10, increased the training

accuracy from 87.8% to 90.0%, but decreased the testing accuracy from 82.9% to

82.6% meaning it is likely to be a victim of overfitting due to the large increase in

training accuracy and a roughly stagnant testing accuracy. As a result, we will stand

with the default value for mtry set by the random forest function. Lastly, the process

was repeated for nodesize to which the default nodesize was shown to be the most

promising, leaving the training and testing accuracy unchanged. Our final random

forest model includes all variables except SMOKE, uses an ntree of 1200, and the

remaining tuning factors are untouched.

Figure 4.2: Mean Decrease Gini of Final Random Forest Model
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Figure 4.3: Mean Decrease Accuracy of Final Random Forest Mode

Figure 4.4: Random Forest Confusion Matrix (0 = Not Obese, 1 = Obese)
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The final results of our random forest model are:

• Training Accuracy: 87.8%

• Testing Accuracy: 82.9%

• Precision: 78.1%

• Recall: 90.8%

• F1 Score: 84.0%

• AUC Score: 0.8307

4.3 Gradient Boosting

The first step in creating the Gradient Boosting model was to set up a well-performing

baseline model including all variables in order to get an output of the importance

plot to understand how the model uses the variables available. After that, like all

the other models, variables were redacted from the model one by one and accuracies

were logged in order to choose a viable variable subset for our model. From the

importance plots it was evident that SCC and SMOKE had the least relative influence

of all variables so those were the first investigated, but upon removal of variables the

model only digressed and never showed improvement so we stuck with the original

model. With the variables now selected, the next order of business was to tune the

parameters: shrinkage, n.trees, and interaction.depth to which it was found that a

shrinkage of 0.1, interaction.depth of 10, and n.trees of 1,500 yielded the best model.

The final model has a training accuracy of 90.2% and a testing accuracy of 83.6%.

The final results of our gradient boosting model are:
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Figure 4.5: Importance Plot of Final Gradient Boosting Model

Figure 4.6: Gradient Boosting Confusion Matrix (0 = Not Obese, 1 = Obese)
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• Training Accuracy: 90.2%

• Testing Accuracy: 83.6%

• Precision: 81.2%

• Recall: 86.7%

• F1 Score: 83.9%

• AUC Score: 0.8366

4.4 XGBoost

Our process of model selection for the XGBoost model falls in line with the process

utilized for the random forest model except we created an importance plot from a

baseline XGBoost model as a reference for variable selection rather than using the

random forest baseline mean decrease plots. With this it was found that the model

with every single variable was the best performer out of all subsets. After that was

found, focus was then shifted toward tuning the hyperparameters eta, iterations, and

maximum tree depth in order to find the absolute best model. In order to find the

best subset of hyperparameters several models were created and tested. The final

XGBoost model selected uses an eta of 0.11, max depth of 8, and 1,000 rounds.
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Figure 4.7: Importance Plot of Final XGBoost Model

Figure 4.8: XGBoost Confusion Matrix (0 = Not Obese, 1 = Obese)
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The final results of our XGBoost model are:

• Training Accuracy: 90.3%

• Testing Accuracy: 83.9%

• Precision: 81.7%

• Recall: 86.7%

• F1 Score: 84.2%

• AUC Score: 0.8399

4.5 Model Comparison

Table 4.2: Model Summary

Model Training Acc. Testing Acc. Precision Recall F1 Score AUC Score

Logistic Regression 75.6% 75.6% 70.7% 86.1% 77.7% 0.7576

Random Forest 87.8% 82.9% 78.1% 90.8% 84.0% 0.8307

Gradient Boosting 90.2% 83.6% 81.2% 86.7% 83.9% 0.8366

XGBoost 90.3% 83.9% 81.7% 86.7% 84.2% 0.8399

The models ranked by testing accuracy are XGBoost (83.9%), Gradient Boosting

(83.6%), Random Forest (82.9%), and Logistic Regression (75.6%). In regard to

using the models for actual prediction, it is evident that there is a clear disparity

between logistic regression and the other models as logistic regression trails 7.3%

behind the third best model random forest. On the other hand, the top three models

are all separated from each other by 1% or less meaning they all performed vert close.
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When it comes to precision, XGBoost ranks first at 81.7% ahead of gradient boosting,

81.2% and random forest 78.1%. However, random forest tanks first in recall at 90.8%

with gradient boosting and XGBoost tied at 86.7%. When you take into account F1

score which is a form of combination of precision and recall XGBoost is at the top

again with 84.2%, trailed by random forest at 84.0%, and gradient boosting at 83.9%.

Needless to say all three of the models perform fairly close outside of recall. The

major difference seen between the top three models would be the training accuracy

which is what stands out for random forest. All three of the models perform roughly

on par in regard to F1 score and testing accuracy, but random forest’s training

accuracy is 87.8% in comparison to gradient boosting’s 90.2% and XGBoost’s 90.3%

allowing us to assume that although random forest performs marginally worse on

the testing data, it is likely to be me less susceptible to overfitting due to the lower

training accuracy percentage.

Although our logistic regression did not perform on par with the other models, it

still provided plentiful information and context to our main objective of investigating

predictors of obesity. For instance, from the odds-ratio of the model, it was found

that individuals that frequently consume high caloric food have 10.61 times the

odds of being obese than those who do not and individuals that sometimes consume

food between their meals have 14.29 times the odds of being obese than those who

do not. In contrast, what stood out the most was individuals that monitor their

daily calories consumption have 20 times lower odds of being obese than those who

do not. Ultimately, logistic regression did not perform the best, but in regard to

interpretability and adding context to our data rather than predictability it was far

more powerful.

In regard to predictability, the other three models were all similar, but had slightly
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different importance values and rankings for the variables. Random forest had CAEC

and FAVC at the top with SCC, CH2O, and TUE at the bottom. Of these, CAEC

or consumption of food between meals and FAVC or frequent consumption of high

caloric food were ranked at the top of importance with CAEC in particular sticking

out the most. When looking at the gradient boosting model FAF or physical activity

frequency is the most important with CH2O being the second most important. For

reference, CH2O or daily water consumption was one of the least important variables

for random forest. In addition, FAVC is also ranked third to last in the gradient

boosting model with SCC (calories consumption monitoring) and SMOKE (smoker

or not) being ranked almost identical at last. Similar to random forest, XGBOOST

ranks CAEC at the top of importants by a large margin as well with SCC and

SMOKE falling at the bottom. Note that SMOKE was also at the bottom of random

forest, but was removed since that helped improve the model.
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CHAPTER 5

Limitations and Conclusion

5.1 Limitations

When conducting a study centered around a subject such as obesity and its predic-

tion, it is essential to understand the limitations, shortcomings, and disclaimers in

regard to the overall study. One of the major parts that should be recognized, is

that due to the nature of the study and its primary focus of predictability it does not

establish any causal claims or relationships between any of the predictors and obe-

sity. The predictive models generated within our research seeks to find and identify

patterns based on the data available from the UCI Machine Learning Repository and

by no means is intended to demonstrate or showcase causation. On the topic of the

data, the models are reliant on the data set that is provided and is built around that

particular sample of data. In the case of our data set, the data is centered around

individuals from Colombia, Peru, and Mexico and the models created with respect

to this data set have not been tested against different regions of the world, so we are

unaware of how much diversity the models cover. In addition, as mentioned early

in the study, obesity is a multifaceted condition that is impacted by both genetics

and one’s environment and it is important to note that the environment changes.

As time progresses societal norms will change, technology will advance, lifestyles will
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change and with that in mind the model is only as relevant as the data.

One of the major shortcomings of the study is the use of BMI to identify obesity.

There are cases regarding people who weightlift where a person may have a BMI over

30, but may not actually be obese due to muscle being the reason for their weight

and not actual fat. In the future, using a study that uses body fat percentage instead

of BMI to assess obesity would be interesting in order to compare the most robust

model of each and see how the predictors shift overall and which one works best on

average.

5.2 Conclusion

Machine learning and its models continually allow for a deeper understanding in top-

ics regardless of the subject. In this paper, the application of machine learning was

leveraged to determine the predictability of obesity given various lifestyle factors of

people and investigate the variables affiliated. The study began with an exploratory

data analysis to reveal potential patterns or relations between the variables present

and the classification of obesity. With the process of exploratory data analysis com-

pleted a simple random forest model was fit with every variable available in order to

establish a baseline understanding of what to expect the importance of variables to

look like.

The analysis then fully shifted toward the supervised learning methods logistic

regression, random forest, gradient boosting, and XGBoost with all models aside

from logistic regression fully focused on predictability rather than interpretability

and variable understanding. Logistic regression does not have the predicting power

of ensemble methods, but the odds-ratio from it provided essential knowledge as
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to how the category the predictors fall in impact obesity prediction. For instance,

the log odds from the logistic regression tells that individuals that usually take an

automobile as transportation have 5.59 times the odds of being obese than those

who walk or bike and individuals that take public transport have 7.30 times the

odds than those who walk or bike. Without interpretability in mind, the models

in the study were found to be well at predicting obesity with one model, XGBoost,

predicting obesity at an accuracy of 83.9%. Bare in mind that for reference the issue

of obesity is multifaceted as 50% of the variance in weight is explained by genetics

and the other half by their environment meaning that prior to conducting the study

the main objective was to get as close to 50% accuracy as possible whereas the actual

model exceeded expectations by about 34% [BLM15].
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