
Lawrence Berkeley National Laboratory
Recent Work

Title
A NOVEL APPROACH TO SOLVING NON-STEADY REACTIVE GAS FLOWS

Permalink
https://escholarship.org/uc/item/7qn9g58d

Author
Kurylo, J.

Publication Date
1979-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qn9g58d
https://escholarship.org
http://www.cdlib.org/


LBL-9136 	;L 
Prepri nt 

Lawrence  Ni F rIr1  laboratory 

I 	Physics, Computer Science & 
j 	Mathematics Division 

Submitted for publication 

A NOVEL APPROACH TO SOLVING NON-STEADY REACTIVE GAS FLOWS 

John Kurylo 	 FflZCIVED 
LAWRE\10E 

8ERKEV LABORATORY 

September 1979 	 JAN31 1980 

UBRARY AND 

p°1 

TWO-WEEK LOAN COPY 
This is a Library Circulating Copy 

which maybe borrowed for two weeks. 

For a personal retention copy, call 	. 	 O' 

Tech. Info. Division,,Ext. 6782. 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



:i 

A NOVEL APPROACH TO SOLVING NON-STEADY REACTIVE GAS FLOWS 

Number of pages: 33 + Figure Captions +v 

Number of figures: 11 (number 1 through 10) 

Number of tables: 2 

Running head: A Novel Approach-Reacting Gas Flows 

Send proofs to: John Kurylo 
Physics, Computer Science and Mathematics Division 
Building 50A, Room 2117 
Lawrence Berkeley Laboratory. 

TABLE OF CONTENTS 

Abstract ...............................1 

Introduction ............................2 

Model Problem, Analysis, and Method of Solution ...........6 

Results ................................16 

Conclusion ..............................27 

References ..................................32 



:ii 

LIST OF SYMBOLS 

b lower case latin "bee" 

c lower case latin "cee" subscript lower case latin "pee" 

f lower case latin "eff" 

h lower case latin "aytch" 

i lower case latin "eye" 

n lower case latin "enn" 

o lower case latin "oh" 

p lower case latin "pee" 

r lower case latin "arr" 

t lower case latin "tee" 

t' lower case latin "tee" superscript prime 

u lower.case.latin "eu" 

x lower case latin "x" 

x' lower case latin "x" superscript prime 

Xf  lower case latin eff "x" subscript lower case latin " 	" 

A upper case latin " Ay "  

AA upper case latin "Ay" superscript upper case latin "Ay" 

E upper case latin "E" 

K upper case latin"Kay" 

upper case latin "Kay" subscript lower case latin "oh" 

L upper case latin "eli" 

N upper case latin "enn" 

ND 	upper case latin "enn" subscript upper case latin "Dee" lower 
0 

case latin "ay" subscripted by lower case latin "oh" 



'- 'S 

L11 

Q upper case latin "que'! 

Q upper case latin "que" with dot over center of "que" 

R upper case latin "arr" 

S upper case latin "ess" 

S' upper case latin "ess" superscript prime 

T upper case latin "Tee" 

T 0  upper case latin "Tee" superscript prime subscript lower case 

latin "oh" 

T' upper case latin "Tee" superscript lower case latin 

"enn" plus one, subscript lower case latin "eye" 

T(x) upper case latin "Tee", open paren, lower case latin "x", 

close paren 

T upper case latin "tee" subscript "max" max 

Z upper case latin "Zee" 

Z upper case latin "Zee" with dot over center of "Zee" 

Z upper case latin "Zee" superscript lower case "enn", subscript 

I lower case latin "eye" 

a lower case greek "alpha" 

lower case greek "delta" 

lower case greek "delta" superscript prime 

lower case greek "epsilon" 

A lower case greek "lamda" 

lower case greek "pi" 

p lower case greek "rho" 

lower case greek "sigma" 

'U lower case greek "tau" 



iv 

lower case greek "tau" superscript prime 

T. lower case greek "tau" subscript lower case latin "eye" 

A upper case greek "delta" 

Ah upper case greek "delta," lower case latin "aytch" 

Ax' upper case greek "delta," lower case latin "x" with 

superscript prime - 

At upper case greek "delta," lower case latin "tee" with 

superscript lower case latin "enn" and subscript lower case 

latin "pee" 

1st partial derivative symbol 

2 
2nd partial deviation symbol 

1st ordinary derivative symbol 

e exponential symbol ex. e -E/RT 

o zero 

1/2 one half 

1 one 

less than and equal to symbol 

> greater than symbol 

= equal to symbol 

( 	) 	- paren symbol 

/ divide symbol ex. w/2 lower case latin "double-eu" divided by 

two 

+00 plus infinity symbol - 

•0 

['1 



V 

I 	absolute value symbol 

r 	square root symbol 

in 	natural logarithm symbol 

i-I. 



1 

4 

A NOVEL APPROACH TO SOLVING NON-STEADY REACI'IVE GAS FLOWS 

4- 

	 John Kurylo 

Physics, Computer Sciences and Mathematics 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 914720 

ABSTRACT 

A novel numerical technique for the efficient solution of the 

model equations describing reactive gas flows is presented. This 

technique models the combustion process as a deflagration working 

inconjunction with a flame dictionary. The entries in the dictionary 

constitute a compendium of steady-state flame solutions under the 

gasdynamic and chemical conditions encountered by the flame as it 

progresses through the flow field. Each entry is the result of a 

fine-scale numerical calculation. This technique overcomes the 

numerical problems associated with the multiple length and time scales 

characteristic of reacting gas flows. Numerical experiments 

illustrate that the dictionary technique represents a significant 

improvement over conventional finite-difference approaches. 
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INTRODUCI'ION 

Over the last few decades, time-dependent gas flows have 

increasingly been analyzed by numerical methods. This dependence on 

numerical methods stems from: the ever-increasing costs and 

complexity of physical experimentation; the inability of analytic 

approaches to handle the model's systems of nonlinear partial and 

ordinary differential equations; the analyst's desire to incorporate 

into the model the complete and latest details of the chemical and 

transport processes; the advances in computer technology (memory and 

speed); and the development of efficient numerical techniques which 

can account for irregular three-dimensional domains, turbulence, and 

boundary layers in the model [1-5]. As the capabilities of numerical 

methods to serve as a design tool and/or as a means of analyzing 

current practical non-steady reactive gas, flows continue to expand, 

their cost decreases. 

There are two distinct scales in reactive gas flows, one 

associated with the combustion front and the other with the hydro-

dynamic flow. Although analytic solutions describe the evolution of 

the flow with infinite spatial and time resolution, numerical 

solutions--due to practical limitations on computer memory, time, and 

overall expense--have traditionally been hindered by multiple length 
,t.  

and time scales. 

Pollution formulation and the wave speed of the combustion process 

depend on the structure of the combustion wave. Accurate predictions 

of combustion properties by the numerical scheme require a grid 
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spacing that can represent the variation of temperature and species 

concentration throughout the combustion wave. For hydrodynamic waves, 

however, wave speed can be accurately predicted independent of com-

puted structure and only the Rankine-Hugoniot relations need be 

satisfied across the wave. Grid spacings can thus be several orders 

of magnitude larger than the wave thickness. 

The conventional procedure for modeling reacting gas flows has 

therefore been to integrate the complex chemical reaction equations 

while accounting for the fluid motion, the effects of viscosity, 

and the diffusion of heat and species at each point in the 

computational grid. With a sufficiently fine grid system, this 

approach yields a computationally stable and accurate description of 

the chemical and gasdynamic states throughout the combustion wave. 

Since the typical flame thickness is 10 2  cm [6] the restriction 

imposed by stability and accuracy on the allowable time step used for 

the advancement of the flame calculations is severe, on the order of 

10 	seconds, making it extremely difficult to model practical 

reactive gas flows using conventional numerical methods. Attempts to 

alleviate the problem of scales have centered around variable grid 

techniques. However, these methods still require the continual 

evaluation of detailed chemistry, heat transfer, and fluid motion at 

each step of the calculations. Also, the time-step limitation, as 

noted above, applies at each step of the calculations. 

The numerical technique presented in this paper recognizes the 

combustion event as a small entity in a vast non-reacting flow field 

which can thus be treated as a deflagration [7].  The novel concept is 
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that at each instant the deflagration characterizes one entry in a 

flame dictionary. Each entry in this dictionary contains detailed 

information about the combustion process's steady-state physical and 

chemical structure, flame burning speed, and flame thickness for a 

particular set of gasdynamic and chemical conditions. The dictionary 

provides the large-scale hydrodynamic calculations with the needed 

small-scale influence. 

The paper begins by defining a model for non-steady laminar 

flames, and proposing a model for the nonlinear dependence of heat 

release rate on time. The difficulties arising from the nonlinearity 

and structure of the model's governing equations are discussed as are 

problems associated with multiple scales occurring in the flow, their 

effects on the modeling of practical reacting gas flows, and attempts 

to alleviate these problems. A discussion of the dictionary technique 

follows. The section on RESULTS describes the numerical techniques 

and conditions used to solve the model equations, and discusses the 

dependence of flame thickness and burning speed on the parameters in 

the model, the sensitivity of these properties on the grid spacing, 

and typical effects of insufficient flow field definition. Next, use 

of the dictionary technique, under conditions simulating practical 

reactive gas flows, is demonstrated. This includes defining the flow 

field and disturbance, establishing the entries for the dictionary, 

and testing the response of the dictionary technique to various size 

disturbances. Dictionary results are compared to results computed by 

finite-differences. The advantages and adaptability of the 
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dictionary technique to practical reactive gas flows are considered, 

in light of conclusions drawn from the results of the numerical 

experiments. 



MODEL PROBLEM, ANALYSIS, AND METHOD OF SOLUTION 

The essential features of the physical and chemical processes 

governing the structure and progress of premixed non-steady laminar 

flames are contained in the following set of model equations: 

(Energy) pc --- 	X 	- pAhZ 	, 	 (1) 

and 

(Reaction) 	Z = d(t 
dZ 
 T') 

= - KZ 	, 	 (2a) 

where 

K=O if 

K=K if T'>T' 
0 

Equation (1) describes the energy balance that exists at each point in 

the flame between (a) the rate of change of sensible heat content of 

the medium, and (b) the two competing processes of net influx of heat 

by conduction and the rate of heat generation associated with con-

verting reactants into products. In Eq. (1), T' represents the 

dependent variable temperature, Z the time rate of change of the 

progress parameter (reactants: Z = 1; products: Z = 0), and t' and 

x' the independent variables time and space, respectively. The 

coefficients p, c, A, and Ah denote the participating medium's 

density, the specific heat at constant pressure, the coefficient of 

thermal conductivity, and the heat of reaction, respectively, and are 

(2b) 
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assumed to be constant. With constant coefficients, Eq. (1) models 

combustion in a solid medium without gas generation. It also 

describes combustion in a gaseous medium having a very low heat of 

reaction and a greater ability to diffuse heat than species 

(Lewis-Semenov number >> 1). In a typical gaseous combustive 

reaction, the coefficients are nonlinearly dependent on temperature 

and the Lewis-Semenov number is approximately one [6]. Assuming 

temperature-dependent coefficients slightly modifies the form of 

Eq. (1) but also reduces our ability to distinguish the role of each 

coefficient in the solution. So, for the present study, we extend 

Eq. (1) to gaseous reactions with large heat release. Equations (1), 

(2a), and (2b) are meant to model only the key features of typical 

gaseous reactions. 

Equation (2a) is the reaction rate equation which Z, the progress 

parameter, satisfies. Equation (2b) restricts reaction to those 

portions of the flow field that have attained a minimum temperature of 

T 0 . Here K represents the reaction rate, T 0  the ignition 

temperature, and T' (a dependent quantity) the instant the fluid 

element attains the ignition temperature. The dependence of the 

reaction rate on the fraction of unburned medium remaining is typical 

of phenomenological chemical kinetic expressions [8]. From Eqs. (2a) 

and (2b) the time dependence of the progress parameter and specific 

heat release rate, Q, are found to be: 

z = e_t'_T7) 	 Z(0) = 1 	 (3) 
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and 

Q = -AhZ = (KAh) et'_T') 
	

(14) 

where• 

K=O 	if 	T'T' 
0 

and 	 (2b) 

K=K 	if 	T'>T' 
0 	 0 

Equations (3) and (24) indicate that the progress parameter and heat 

release-rate decay exponentially in time after the reaction starts. 

Conduction of heat from the higher temperature to the lower tempera-

ture portions of the flow field represents the only mechanism by which 

the temperature of the combustible medium can increase to the value 

T. During this induction period the reactants undergo the build 

up of radicals. 

Figure 1 displays the time dependence of the heat release-rate, 

assuming adiabatic combustion, specified by Eq. (14), a well-stirred 

reactor (WSR) [9], and a typical Arrhenius kinetic expression [ 10 ], 

i.e., 

Q = Ae RT 

where E denotes the energy of activation, B the gas constant, and A 

the pre-exponential factor. The heat release rate characteristics of 

a WSR are typical of those observed experimentally in reactive waves. 

In a WSR, the heat release rate experiences a smooth but rapid 
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increase in time (totaling 25% of the total heat released) followed by 

a longer period during which the remaining 75% of the heat is 

released. In the case of the Arrhenius expression, the rate of heat 

release continually rises. Equation () simulates the larger latter 

portion of the WSR's heat release-rate curve. In addition, the 

results of numerical calculations can be compared to the analytic 

solution of the steady state form of Eq. (1) for the reaction model 

given by Eqs. (2a) and (2b). The problems faced by the modeler in 

handling the heat release portion of Eq. (1) are contained in 

Eq. (k). The model of non-steady laminar flames defined by Eqs. (1), 

(2a), and (2b) includes many of the essential and important non-

linearities and difficulties which confront the successful modeler. A 

brief discussion of these difficulties follows. 

To better understand the structure of Eq. (1), we nondimension-

alize the dependent and independent variables as follows [ii]: 

	

A 	 , 	 T' 

	

AT! - T ---- 	T 

	

oc 	' 	AT' 	' 
p 	 0 	 0 

X• 	, 	t-G 	T 	 , 	 ( 6) 

and 

I 
PC 

p 

where L represents the characteristic length scale in the flow field. 

From Eqs. (1), (2a), (2b), and (6) we obtain 
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T 
(7) 

and 

Z=e 
...ND(t_T) 	

(8a) 

where 

N =0 	if 	TT Da 	 o 

and 	 (8b) 

N =N 	if 	T > T Da 	Da 	 o 
0 

where N Da = KL2/a is the Damkh1er number, a ratio of the heat 

release rate to the rate of heat conduction. Under typical combustion 

conditions NDa  can vary as much as 10 orders of magnitude from one 

side of the flame to the other side. In particular, for the model 

under consideration we will use K0  = 92,103 sec, o = 

1.5 cm /sec, and L = 1 cm, yielding 

ND 	=0 
upstream 

and 

N 	 =6.1tx10 Da downstream 

-4 
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This range of NDa  is difficult to model because: (1) the 

character of the model equations change, and (2) large temperature and 

progress parameter gradients arise in the flow field. In the upstream 
4 

portion of the flame, Eq. (7) has a parabolic character, while at the 

point in the flow field where T equals T 0 , the model equations are 

dominated by the character of ordinary differential equations 

(ODE's). Further downstream, the rates of heat production and heat 

transfer decrease rapidly. In general, the ODE's are best handled by 

Gear-Hindmarsh's stiff ODE parkage [12,13]. There are many efficient 

explicit and/or implicit solvers, such as Crank-Nickolson [11],  for 

parabolic equations. Using either method alone to solve Eq. (7) omits 

the contribution of the other to the solution, and results in improper 

modeling of the combustion process. The operator-splitting technique 

overcomes this difficulty. Equation (7) is solved as a pair of 

equations 

(ODE) 	 =NDaZ 	 (9a) 

and 

(Parabolic) 	
•= 
	

(9b) 

The time and space accuracy of the numericalscheme for the 

combined split equations is the same order as that for the single 

equation, Eq. (7). Attention must be paid to the proper matching of 

the boundary conditions. The complete theory of operator splitting 

can be found in Yanenko [15].  Note that by accounting for chemical 
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reactions and heat transfer in separate steps, the basic conservation 

laws may be violated at the end of each chemical step. This effect 

mainfests itself in the form of short-lived transients resulting in 

unwanted oscillations and waves. The situation is remedied by taking 

time-steps small enough so that all changes occur gradually. In the 

computations, the maximum temperature change occurring at any point in 

the flow field due to heat release is restricted to 50K. This is a 

costly remedy to the problem of operator splitting. 

The second difficulty addresses the problem of obtaining 

sufficient flow field .definition using a difference grid. The region 

over which significant changes in temperature and progress parameter 

occur defines the flame thickness. At 10 atmospheres, hydrocarbon-air 

-2 
flames have a flame thickness, CS , on the order of 10 	cm [6 ]. 

Adequate definition of the preheating and heat liberation zones 

requires a grid spacing, Ax', at least an order of magnitude finer 

than the'flame thickness, i.e., 

6 1 

Larger grid spacings reduce the maximum possible gradient within the 

flame, altering the flame's structure and structure-dependent 

phenomena such as pollution formation and burning speed. The section 

on RESULTS clearly demonstrates the sensitivity of the numerical 

solution on the. grid spacing used. 

This grid-spacing requirement imposes an intolerable restriction 

on modeling practical reactive gas flows. With typical engine 

4 

S 
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cylinder dimensions being 9.53 cm in stroke by 9.86 cm in bore 

(compression ratio 8:1), and with a grid spacing of 0.18 cm (60 grid 

points in the cylinder axis direction), approximately 150,000 grid 

points are required to describe the cylinder volume. Yet in this case 

R equals 18. Approximately 8 x 1011  equally spaced grid points are 

required to adequately (minimally) describe flame propagation within 

this cylinder. Stability, accuracy, and operator-splitting consider-

ations further worsen the situation by imposing a 10 '  second 

maximum allowable cycle-to-cycle time step. Clearly, modeling 

practical reactive gas flows using conventional numerical techniques 

is hopeless. 

One of the most successful techniques to alleviate this problem is 

regriding [11], in which the distribution of grid points within the 

flow field is a dynamic process whose distribution properties depend 

directly on some specified quantity within the flow field, such as 

temperature gradient. In this case more grid points are concentrated 

in the regions of large temperature gradient than elsewhere. This 

technique uses a uniform grid spacing in the transformed space 

coordinate and the flame overcomes grid points slowly, allowing the 

modeler to use many efficient schemes for calculating parabolic 

flows. The slowly varyingconditions at each grid point allow the 

calculations to proceed in an approximate steady-state manner. 

However, at each instant detailed calculations of chemistry, heat 

transfer, and fluid mechanics must be carried out. In the extreme 

case of a constant velocity flame propagating down an infinite tube, 
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these calculations become redundant and repetitive. There is always a 

continuous succession of grid points through the flame, and a grid 

point continually changes from representing conditions upstream to 

- representing those downstream of the flame. The tremendous effort to 

continually calculate the flame's future progress is unnecessary once 

its structure and burning speed are known, since these factors remain 

invariant. 

All this led to the idea of using a dictionary to solve problems 

of modeling non-steady reactive gas flows. Each entry in the diction-

ary contains detailed information on the combustion front's steady-

state physical and chemical structure, its propagation velocity, and 

any other information desired for a particular set of gasdynamic and 

chemical conditions. The dictionary accountsfor the varying con- 

• • 	ditions the flame encounters as it progresses through the flow field. 

Each entry is a result of a finite-difference computation using a fine 

grid spacing. All the difficulties associated with performing these 

computations will of course be encountered, but only once. The 

dictionary does not contain these computations, but only the results. 

In conjunction with the use of a dictionary, the combustion front is 

treated as a deflagration [7], that is, a discontinuity in the flow 

field across which step changes in state occur. At each instant the 

deflagration characterizes one entry in the dictionary. 
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The procedure for calculating the flow field using the dictionary 

technique is: 

Calculate the fluid motion and heat transfer throughout the 

flow field; 

• 	Find the entry in the dictionary with conditions most similar 

to those immediately ahead of the deflagration; 

• 	Transport the deflagration according to the flame burning 

speed. 

• 	 • In the extreme case of a constant velocity flame propagating down 

an infinite tube, the dictionary would consist of only one entry con-

taining the structure and flame burning speed of a steady flame 

propagating into the gas medium in the tube. At each cycle of the 

numerical scheme, the same entry would be quizzed. With more compli-

cated flows, the number of entries increases. The actual number of 

entries depends on the influence of the disturbance upstream of the 

flame on the characteristics of interest, such as flame burning speed 

and pollution. An example showing how to use the dictionary and its 

advantages over a finite-difference approach in the case of a reactive 

gas flow is presented in the last section of this paper. 
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RESULT S 

The model equations, Eqs. (7), (8a), and (8b), are solved for the 

following condition (typical of hydrocarbon-air combustion [91): 

AT' 	20000K 	, 	 . 	 (lOa) 

a = 1.5 cm2/sec 
NDa = 6.14E+0 1 	 1 (Z=0.1 when t-i=0.75E-0) , (lOb) 

o 	 K= 92,103 sec 

and 

10000K 	. 	 (lOc) 
0 

Boundary Conditions: 	= 0 	at 	x = 0 	, 	 (ha) 

	

T=T 
U 	

at 	x=+co 	. 	. 	(lib) 

In the calculations, the temperature boundary condition is satisfied 

by ensuring that at least 3 grid points are at the unburned tempera-

ture T.  The numerical scheme used to integrate the model equations 

is 

/ 	-N At Da 
(ODE) 	T" 	= T + Z'(1 - .e 	 T > T 

where 

(12a) 

J 

-N Da (t-T.) 
.  

Z = e 
n 	'0 
. 

1 

T 1  =T"  

T. =t when p 
1 	 0 	0 

 

U 

TT 
0 

(12b) 
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At 	 I maxIT? - T ' I <c) c= 0.0025 	,  

(Parabolic) 	T 2  T1 + 	A 	(T1 - 
2T?1 + T1)  

and 

At n AX2/2 
,  

where 

= min(At' , 0.9 At!) 	. 	 (12f) 

An explicit scheme is used to integrate the ODE. For the parabolic 

equation, an explicit finite-difference scheme is used because of its 

simplicity and the time restrictions imposed by Eq. (12c). If in Eq. 

(12c), the value choosen for a is too large, the proper apportionment 

of the heat released by the chemical reaction to the sensible internal 

energy and heat transferred may not be carried out by the operator-

splitting procedure. 

Table I contains calculated and predicted values of the flame 

burning speed, S, and flame thickness, 5, for a range of values of the 

parameters NDa T 0 , and T u in the model. the flame thickness is 

the width of the region within the flame in which the temperature 

exceeds the undisturbed value T but is less than the burned 
u 

temperature Tb  by 0.01, where 

Tb=T+1 
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The initial condition for all the computations was a step change in 

temperature from T u to Tb.  the calculations, using a grid spacing 
	

Pr 

of 0.0005 (R = 0.015), were carried out until the flame propagated at 

a steady state. In Table I, only values of the parameters different 

from those of the first entry are noted. The temperature distribution 

within the flame and the analytic dependence of the flame burning 

speed and thickness on the parameters of the model are given by [ 16 ]: 

N x Da 
2 

T(x) = T + 1 - 	2 e 	 x < 0 
N 	+S Da 

0 

N Da o 	-Sx T(x)=T + 	 e 	 x0 
U 	N-i-S2 Da 

0 

s = 	A
ND 	(= S'L/a) 

and 

= [NAi - A)] '2  in [ioo AA(l - A)] (= 	'/L) 

(1 3a) 

(13b) 

(1J4) 

(15) 

where 

A = T -T 
0 	u 

These relations were obtained by using Green's functions to integrate 

the model equations. By comparing the calculated and predicted 

values, given in Table I, we conclude that this numerical method does 
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predict the dependence of the flame properties on the parameters. 

However, it is the effect of grid spacing on the calculated flame 

structure and burning speed which is of particular interest. Figure 2 

displays these effects for the case of a steady flame propagating 

under the conditions given by the first entry in Table I. Similar 

results were obtained for other operating conditions. The vertical 

bars represent the range of flame thickness the flame experiences in 

its psuedo-steady-state mode of propagation. The effect of the grid 

spacing on the flame burning speed is evident even approaching the 

minimum grid spacing of 0.0005 (R = 0.015). However, the flame thick-

ness is insensitive to values of Ax less than 0.00I (B = 0.12). At 

this critical grid spacing, only 8 grid points define the, flame. At 

larger values of Ax, the temperature gradients which drive the flame 

can no longer be approximated with sufficient accuracy resulting in a 

linear growth of the calculated flame thickness. The flame continues 

to span 3 cells, irrespective of the grid spacing. 

From Fig. 2 and Eqs. (1 14) and (15) we see that the effects of the 

grid spacing on the calculated flame properties are phenomenologically 

similar to those due to a variation in the inverse square of the 

reaction rate. Also, the magnitude of each effect is comparable to 

that resulting from a variation of any of the parameters in the model. 

Temperature-space profiles corresponding to the various Ax in 

Fig. 2 are presented in Fig. 3. The positions of the grid points are 

indicated for profiles with Ax > 0.0014 (R > 0.12). As noted 

previously, the flame structure remains unchanged for grid spacings 
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less than 0.00 14. However, drastic changes in the temperature 

distribution occur when Ax increases beyond 0.0014 (R = 0.12). Most 

noticeable is the appearance of a peak temperature. This bulge in the 

temperature profile is mostly confined to the one cell in which the 

temperature most recently exceeded T 0 . Note the few number of grid 

points which define the flame structure. The actual temperature 

gradient is so poorly represented by the computational grid that the 

heat evolved due to combustion is all but constrained to remain at 

that one node. This causes a temperature build up, which increases 

the rate of heat transfer to the surrounding grid points. As Ax 

increases, individual grid points begin to combust totally before the 

ignition of the next grid point. This causes an oscillation in the 

flame thickness. These oscillations are denoted by the verticle bars 

in Fig. 2. In constant pressure non-steady laminar flame calcula-

tions, this effect manifests itself in the surging of the particle 

velocity or, for the case of small but not sufficiently fine grid 

spacing, an unrealistic overshoot in the maximum particle velocity 

(dynamic pressure) prior to establishing steady-state flow condi-

tions. Therefore, adequate representation of the flame can be assured 

only when the grid spacing is at least an order of magnitude finer 

than the flame thickness (R 	0.1). 

Given the limitations of today's computers, this restriction on 

the grid spacing in relation to flame thickness in conventional 

numerical techniques is an insurrmountable obstacle, imposing two 

distinct characteristic space scales. By using the flame dictionary 
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in conjunction with a deflagration, the modeler can get fine-scale 

resolution in only the small portion of the flow field where he needs 

it, thus facilitating calculations in the remainder of the flow field. 

To illustrate the practicality of the dictionary and to highlight 

its advantages over finite-difference procedures, both methods are 

used to solve the following problem: An initially steady propagating 

flame encounters a temperature varying flow field. The problem is to 

calculate the subsequent flow field, and the flame's burning speed 

history and trajectory. The effect of varying the width of the dis-

turbance relative to the flame thickness, ó, is also examined. •The 

temperature disturbance has the following form: 

T(x) = Tu + (Tmax2_Tu) . ( - cos [2(x : x) 

where x is the space coordinate; E the width of the temperature 

disturbance; and x o , T u , and T max , the upstream location of the 

disturbance, the undisturbed temperature in the flow field, and the 

maximum temperature in the disturbance, respectively. The flame and 

flow field properties used in the calculations are given by 

Eqs. (lOa)-(lOc), and 

Tu = 0.150 	 T max = 0.450 	, 	T = 0.500 

In the dictionary technique, the deflagration at each instant 

characterizes one entry in the dictionary. Therefore, in assembling 
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the dictionary we must account for the varying conditions the flame 

encounters as it progresses through the flow field. 

For the flow.field conditions specified above, 7 entries 

constitute the dictionary. Table II shows the temperature, T 1 , 

defining each entry and the flame burning speed and thickness associ-

ated with that entry. Figures 14a and 14b display the temperature and 

' progress parameter distributions, centered about a temperature 

T. + 1/2 and x = 0, which are also included in the entry. 

The data for each entry were obtained by using Eqs. (12a)-(12f) to 

calculate the steady state combustion wave arising from an initial 

temperature distribution corresponding to a step change in temperature 

from T 1  to T. + 1. These calculations used a grid spacing of 

0.002 (R = 0.06). 

These 7 entries were choosen to illustrate the solution of a 

practical problem using the dictionary technique, not to represent the 

optimal number or set of conditions for this problem. In more com-

plicated flows, the actual number of entries should depend on the 

influence of the disturbance upstream of the flame on the flame 

characteristics of interest, such as flame trajectory or pollution 

formation. 

The finite-difference solution is obtained by applying 

Eqs. (12a)-(12f) to each grid point in the flow field. The dictionary 

solution is obtained by applying Eqs. (12d)-(12f) at all grid points 

followed by the transport of the deflagration through the flow field. 

The deflagration progresses according to the flame burning speed 



23 

obtained from the dictionary. Information for conditions other than 

those exactly specified by the dictionary entry is obtained by linear 

interpolation from the entries closest to the existing conditions. 

Two cases are considered: 

Case 1. 	x0.08 1 6 	x 	0.120 	S = 0.2 	C/cS = 6 f 	 o 	 u 
Case 2. 	xf  = 0.1450 	xo 	 u 

= 0.180 	e = 2.0 	c/cS 	60 

Here xf  specifies the initial flame location. 

Figure 5 shows the temperature-space profiles at various instants 

for Case 1, calculated by the finite-difference technique. Figures 6 

and 7 display the temperature distributions at various instances cal-

culated by the dictionary technique. The results shown in Fig. 6 

account for heat transfer in the flow field on either side of the 

deflagration, while those shown in Fig. 7 do not. Neglecting heat 

transfer eliminates the finite-difference portion of the dictionary 

technique. This represents the most efficient (cost effective) method 

for calculating the progress of the flame. Included in each profile 

in Fig. 5 is the location of the flame, denoted by an x, as calculated 

by the dictionary technique (y 	0). The extent of the flame about 

this position as obtained from the dictionary is indicated by vertical 

bars. Superimposed on each temperature profile in Figs. 6 and 7 is 

the flame temperature distribution obtained from the dictionary. 

These distributions, denoted by dashed lines, are centered about the 

deflagration position and a temperature T 1  + 1/2, where T 1  is the 
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temperature immediately ahead of the deflagration. Care was taken to 

ensure that these dictionary profiles merged smoothly with the 

remainder of the flow field. 

A summary of the flame trajectories and burning speed profiles is 

presented in Fig. 8. The continuous lines represent the finite-

difference solution while circles and dashes denote results of the 

dictionary technique, with a equal to 1.5 and 0, respectively. We see 

that the finite-difference and dictionary (a = 1.5) solutions agree 

extremely well. However, for the dictionary technique (a = 0), the 

flame trajectory lags slightly behind the others during the initial 

phase of the temperature disturbance, preceeds them at the later 

stages, and eventually becomes indistinguishable from the true tra-

jectory. The flame burning speed profile explains this behavior. Due 

to the lack of heat transfer from the high-temperature regions of the 

disturbance to the low-temperature regions, the flame initially 

encounters the gas medium at a temperature lower than in the other 

calculations. This results in a lower flame burning speed. In the 

high-temperature regions, the degredation of the heat content of the 

medium by heat transfer does not occur. Hence, the defiagration 

experiences in higher reactant temperature resulting in a higher flame 

burning speed. Then a condition similar to the initial phase occurs, 

yielding a lower flame burning speed. This behavior is caused by the 

exclusion of the heat transfer calculations in all but the flame. 
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By accounting for heat transfer, the peak temperature of the 

disturbed medium drops approximately 0.04 before being overcome by the 

combustion front. . Such a significant change is due to the large. 

potential for heat transfer as determined by 2a ( Tmax  - Tu )/E• 

However, as significant as the effect of peak temperature drop would 

appear to be, its effect on the flame burning speed is of short 

duration as compared to the whole event, and therefore minimal in 

terms of the trajectory error. 

Therefore, we conclude that there is no difference between the 

finite-difference solution and the dictionary solution with or without 

c. The finite-difference solution required a grid spacing of 0.002 

1,11 	 and 35,806 cycles (15.8 seconds of execution on a CDC 7600) of com- 

putation, whereas the dictionary technique used a grid spacing of 0.02 

and only 133 cycles (0.68 seconds) of computation, while retaining 

every detail of the combustion process. Perhaps even larger values of 

grid spacing could be successfully used. 

The finite-difference technique recomputes flame structures at 

every instant, while the dictionary technique refers only to the 

results of previously calculated flame structures, representing an 

enormous savings in effort. The detail to which the flame can be 

represented is also greatly inàreased. 

Figure 9 shows the temperature-space profiles at various instances 

for Case 2, calculated by both the finite-difference and the diction-

ary technique (o = 1.5). The flame position calculated by the 

dictionary ((j = 0) is indicated by an x and the flame extent by 
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verticle bars. Figure 10 shows the flame trajectories and burning 

speed profiles (symbols as in Fig. 8). Due to the greatly increased 

width of the disturbance, the effect of heat transfer on the peak 

temperature is negligible (0.01). As in Case 1, the finite-

difference and the dictionary (a = 1.5) results are in excellent 

agreement, but this time the difference between these solutions and 

that of the dictionary (a = 0) is completely negligible. Note that 

the finite-difference solution again required a grid spacing of 0.002 

(1000 grid points define the temperature disturbance) and 111,530 

cycles (405.2 seconds) of computation, while the dictionary technique 

used a grid spacing of 0.10 (20 grid points) and only .84 cycles. 

(0.20 seconds) of computation. Perhaps even larger grid spacings 

could be used. The savings are tremendous. 

Another example similar to Case 2, but with a being temperature 

dependent, also produced very favorable results. 
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CONCLUSION 

Finite-difference calculations carried out on equally spaced grids 

indicate that flame properties are strongly dependent on the grid 

spacing. Calculated flame burning speeds deviate from the exact value 

by a least 6% whenever grid spacings greater than the critical size, 

one order of magnitude finer than the flame thickness, are used. 

Flame thickness, on the other hand, is insensitive to grid spacings 

less than the critical size, but thereafter grows linearly with the 

grid spacing. The flame burning speed depends to a much greater 

degree on the ability of the numerical method to reproduce the maximum 

temperature gradient within the flame. 

Deviations in flame properties due to grid spacing can be as large 

and even exceed the effects of variation of any of the physical para-

meters of the flow field. Exceeding the critical grid spacing causes 

bulges in the temperature profile, increases in the peak temperature, 

a quasi-steady oscillation in the flame thickness, oscillation in the 

upstream fluid velocity, and a greatly increased predicted peak 

particle velocity (dynamic pressure) during the initial non-steady 

phase of the reactive gas flow calculations. 

This dependence on grid spacing should prompt the modeler to 

employ as fine a grid spacing as possible throughout the course of the 

calculations. With conventional techniques the grid requirements for 

accurately modeling non-steady combustion in practical devices far 

exceeds the resources of todays computers. 
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The most important feature of the dictionary technique is its 

ability to •bridge the gap between the two characteristic space scales 

existing in all reacting gas flow problems. Thesmaller scale emerges 

from the modelers desire to accurately portray the structure within 

the flame, while the larger scale is characteristic of the remainder 

of the flow field. When the dictionary is coupled with a method for 

transporting the deflagration through the flow field, the dictionary 

technique becomes an extremely efficient numerical tool for calcu-

lating non-steady reactive gas flows (see Kurylo [17] for such a 

method.) 

Once the conditions into which the deflagration propagates are 

determined, one simply locates which entries within the dictionary 

most closely resemble these operating conditions, by interpolation 

obtains the propagation speed and any other desireable combustion 

quantities, and advances the deflagration. Since each entry 

represents the results of a one-time-only calculation of the steady 

state propagation of a flame under a condition representative of the 

flow field under consideration, the details used inachieving each 

entry can be as comprehensive as desired. No additional effort is 

expended for such details once the dictionary has beencompiled. The 

dictionary totallyeliminates the need of continually performing the 

costly and arduous tasks of calculating the progress of the flame and 

the details of the flame structure at each instant in time. 

Numerical experiments indicate that •the temperature distributions, 

flame, burning speeds, and flame trajectories calculated by the 

dictionary technique agree extremely well with those obtained by the 
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finite-difference technique. The major advantage of the dictionary 

technique is that grid spacings several orders of magnitude greater 

than those required by conventional finite-difference techniques can 

be used and provide exactly the same results. The progress of the 

deflagration within this crude mesh is governed by the details of the 

flame process based on calculations using a subcritical grid spacing. 

Such a contraction in grid-point requirements makes the problem of 

modeling combustion in devices of current interest feasible. 

Numerical experiments also indicated that the effects of 

neglecting heat transfer in the non-reacting portions of the flow 

field are negligible. Elimination of heat transfer calculations 

allows the dictionary technique to be coupled to grid-free tech-

niques. Chorin's techniques account for the fluid behavior in the 

boundary layer as well as in the inviscid core [2 ]. Accounting for 

turbulence in the flow field and the extention to 2 or 3 dimensions 

with irregular boundaries is a straightforward extension of the one 

dimensional method [1,3,5]. The wrinkling of the flame front due to 

turbulent mixing is handled by Chorin's [] flame advection and 

propagation algoritms. 

IF 	 Two major premises must be met to successfully apply the 

dictionary technique in reactive gas flows: (1) the combustion event 

can be treated as a deflagration in the flow field, and (2) the 

characteristic time for flame adjustment to disturbances in the flow 

field is shorter than the characteristic time between encountering 

such disturbances. The latter restriction allows the instantaneous 
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state of the flame to be approximated by its steady-state conditions. 

Both these premises are generally satisfied whenever the flow field 

and the disturbance within it are at least an order of magnitude 

larger than the flame thickness. Combustion within the fluid boundary 

layer of a wall does not satisfy these two premises and so, requires 

either conventional techniques or the development of other techniques 

for their solution. The effect of mutual interaction of flame fronts 

which have been folded into a cusp on (a) the burning speed, and 

(b) other flame properties also requires further study. 

It is the author's hope that the dictionary technique will further 

the use of numerical simulation as a design tool and/or as a means of 

analysis of practical reactive gas flows of current interest. 
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TABLE II 

Contents of the flame dictionary 

entry 
number 

T. 
1 

S 
U i  

S. 
1 

1 0.150 313.7 0.0322 

2 0.200 352.9 0.0349 

3 0.250 398.0 0.0367 

4 0.300 454.1 0.0398 

• 	5 0.350 535.3 0.0446 

6 0.400 668.0 0.0530 

7 0.450 939.5 0.0722 

Ir 
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FIGURE CAPTIONS 

Fig. 1. Heat release rates for a well-stirred reactor (WSR), 

Arrhenius kinetic expression, and Eq. (14). 

Fig. 2. The effect of grid spacing on the flame burning speed and 

flame thickness. 

Fig. 3. Temperature distribution within the flame for various grid 

spacings. 

Fig. 14a. Temperature distribution within the flame for various 

upstream temperatures - T. 

Fig. 4b. Progress parameter distribution within the flame for 

various upstream temperatures - T. 

Fig. 5. Flow field temperature distributions calculated by the 

finite-difference method [Ix I - flame location and flame 
width calculated by the dictionary technique (a = 0)]. 

Fig. 6. Flow field temperature distributions calculated by the 

dictionary technique (a = 1.5). 

Fig. 7. Flow field temperature distributions calculated by the 

dictionary technique (a 0). 

Fig. 8. Flame burning speed-space profiles and flame trajectories 

calculated by the finite difference method ( ) and the 

dictionary techniques with a,= 0 (- - -) and a = 1.5(o). 

Fig. 9. Flow field temperature distributions calculated by the 

finite-difference method and the dictionary technique (a 

1.5) [IxI - flame location and flame width calculated by the 

dictionary technique (a 0)]. 
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Fig. 10. Flame burning speed-space profiles and flame trajectories 

calculated by the finite difference method (-) and the 

dictionary technique with a0 (- - -) and a = 1.5(o). 
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