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A NOVEL APPROACH TO SOLVING NON-STEADY REACTIVE GAS FLOWS
John Kurylo
Physics, Computer Sciences aﬁd'Mathematics
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720
- ABSTRACT
A novel numerlcal technique for the effi01ent solution of the
model equatlons describing reactlve gas flows is presented. This
technique models the combustion prqeess as a deflagration wofking
_inconjunction with a flame dictionary. The entries in the dictionary
constitute a compehdium of steady-state flame solutions under the
_gasdynamic‘and chemical conditions encountefed by the flame as it
progresses through the flow field. Each entry is the result of a
fine-scale numerical éalculatidﬁ. This technique overcomes the
numerical problems assoéiated with the multiple length aﬁd time séaleé
characteriétic of reacting gas flows. Numerical experiménts o

illustrate that the dictionary technique represents a significant

improvement over conventional finite-difference approaches.
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INTRODUCTION

Over the lastrfew decades, time-dependent.gas flows have : .
increasingly been analyzed by humerical methods. This dependence on
numerical mefhodé stems from: - the ever-incfeaéing cbsts and
complexity of physical experimentétion; the inability of'analytic
approaches.to handle the model's systems of nonlinear partial and
ordinary différential equations; the analyst's desire to incorporate
into the model the complete and latest details of the chemical and
transport processés; the advances in computer technology (memory and
speed); and the development of effiéient numerical techniques which
can account for irregular three-diﬁensional domains, turbulence, and
boundary layers in the model.[1-5]. As the capabilities of numerical
methods to serve as a design tool and/or as a means of.analyzing
current practical non-steady reactive gas flows continue to expand,
ﬁheir cost decreases.

There are. two distiﬁct,scales in reactive gas flows, one
associated with the combustion front and the other with the hydro-
dynamic flow. Although analytic solutions describe the evoiution of

the flow with infinite spatial and time resolution, numerical

solutions--due to practical limitations on computer memory, time, and o

overall expense--have tradiﬁionally been hin&éred by multiple iength
and time scales. |

Pollution formulation and the wave speed of the combustion process
depend on the structure of the'combustion wave. Accurate predictions

of combustion properties by the numerical scheme requife'a grid



spacing that can.repbesent the variation of temperature and species

-concentration throughout the combustion wave. For hydrodynamic waves,

however, wave épeed can be accurately predicted indépendent of com-

puted structure and only'the'Rankine-Hugoniot relations need be

safisfied across the wave.' Grid spacings can thus be several orders
of magnituae larger than the wave thickness.

The oonventional procedure fortmbdeling reacting gas flows has
theréforé been‘to integrate the cbmplex cheiical reaction equations

while accounting for the fluid motion, the effects of viscosity,

_and'the diffusion of heat and species at each point in the

. computational grid. With a sufficiéntly fine grid system, this

approach yields a computationally stable and accurate description of '

the chemical and gasdynamic states throughout the combustion wave.

 Since the typical flame thickness is 10"2 em [6] the restriction

imposed by stability and accuracy on the allowable time step used for
the advancement of the flame calculations is severe, on_the order of
10-7 seconds, making it extremely difficult to model practical
reactive gas flows using oohvenfional numerical methods. Attempts to
alleviate the problém of scales have centered éround variable grid
techniques. However, these ﬁethodslstill require the continual
evaluation of detailed chemistry, heat transfer, and fluid motioﬁ at
each step of the éalculations., Also, the time-step limitation, as:
noted above, applies at.each step of the calculations.

The numerical technique presented in this-péper recognizes the

combustion event as a small entity in a vast non-reacting flow field

which can thus be treated as a deflagration [7]. The novel concept is



that at each instant the deflagration characterizes oné entry in a
flame dictionary. Each entry in this dictionary‘contains detailed
inforﬁation about the combustionvproceSS's steady-state physical and
chemical strUcture,_flame burning speed, and flame thickness for a
particular set of gasdynamic and chemical conditions. The dictionary
proVidés thevlarge-scale hydrodyhamic calculations with the needed
small-scale influence.
The paper begins by defining a model fof non-steady laminar

flames; and proposing a model for the nonlinear dependence of heat

release rate on time. The difficulties arising from the nbnlinearity

and structure of the(model's'gbverning equations are discussed as are
problems associated with multiple scales occurring in the flow, their

effects on the modeling of practical reacting gas flows, and attempts

to alleviate these préblemé.. A discussion of the dictionary technique
follows. The section on RESULTS describes the numerical techniques
and conditions used to solve the model equations, and discusses the
dependence of flame thickness and burning Speed on the parameters in.
the model, the sensitivity of these properties on the grid spacing,
vand typical effects of insufficient flow field definition. Next, use‘
of the dictionary techniqﬁe, under conditions Simuléting practical
reactive gas flows, is demonstrated. This includes defining the flow
‘field and disturbance, establishing the entries for the dictionary,
and testing the response of thevdictionary technique to various size
disturbances. Dictionary results are compared to results computed by

finite-differences. The advantages and adaptability of the

-



dictionary technique to practical reactive gas flows are considered,
in light of conclusions drawn from the results of the numerical

experiments.



MODEL PROBLEM, ANALYSIS, AND METHOD OF SOLUTION
The essential features of the physical and chemical processes
governing the structure and progress of premixed non-steady laminar

flames are contained in the following set of model equations:

' 22
] ] °
(Energy) pe, gz, = A T2 - pARZ (1)
. %!
and
(Reaction) | _ 7 = d—(—t—'d-%—w = - KZ ’ ’ ' (2a)
where
K=0 it T'<T!
(2b)

K=K if T' > T! .
o - Q

Equation (1) describes the energy balance that exists at.each point in
‘the flame between (a) the rate of change of sensible heat content of
the medium, and (b) the twoveompeting processes of net influx of heat
by conduction and the rate of heat generation associated with con-
verting reaetants into_products. In Eq. (1), T represents the
dependent variable temperature, i the time rate of change of the
progress parameter (reactants: Z = 1; products: Z = 0), and t' and
x' the independent variables time and space, respectively. The

coefficients p, cp, A, and Ah denote the participating medium's

density, the specific heat at constant pressure, the coefficient of

thermal conductivity, and the heat of reaction, respectively, and are
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assumed to be constant. With consﬁant coéfficients; Eq. (1) models
combustion in a solid médium ﬁithout gas generation. it élso |
describes combustion in_a gaseous medium having a very low.heat of
reactionvand a greater ability-té diffuse heat than species
(Lewis-Semenov number >> 1).. In a typical gaseous combustive
reaction, the coefficients are ﬁonlinearly dependent on temperature
and the Lewis-Semenov number is approximately one [6]. vAssuming

temperature-dependent coefficients slightly modifies the form of

Eq.;(1) but also reduces our ability to.distihguish the role of each

coefficient in the solution. So, for the present study, we extend
Eq. (1) to gaseods reactions with large heat release. Equations (1),
(2a), and (2b) are meaht to model only the key features of typical

gaseous reactions.

Equation (2a) is the reaction rate equation which Z, the progress

‘parameter, satisfies. Equation (2b) restricts reaction to those

portions of the flow field that have attained a minimum temperature of

\ . 1
T . Here K represents the reaction rate, To the ignition

@

temperature, and t' (a dependent quantity) the instant the fluid
element attains the ignition temperature. The dependence of ‘the

reaction rate on the fraction of unburned medium remaining is typical

~ of phenomenological chemical kinetic e;pressions [8]. From Eqs. (2a)

and (2b) the time dependence of the progress parameter and specific

heat release rate, é, are found to be:

e-K(t'-T')

Z = Z(0) = 1 , : (3)



and

De
n

_bni = (ksn) TKEE'-TD | ) W

where

and S . ' | (2b)

K = K if  T' > T! .
0 . 0 :

Equations (3) and (45 indicate that the progress parameter and heat
release-rate decay éxponentially in time after the reacpion‘starts.
Conduction of heat from the highér temperature to the lower tempera-
ture portiohs of the flow field represents the only mechanism by which
the temperature of the combustible medium can increase to the value

' .
- T . During this induction period the reactants undergo the build

o
up of radicals.

Figure 1 displays the_time dependence of the heat release-~rate,
assuming adiabatic combustion, specified by Eq. (4), a well—stifred
reactor (WSR) [9], and a typical Arrhenius kinetic expression [10],

i.e., . _ -

. - 1
Q= ae B/RT"

P . iy

where E denotes the energy of activation, R the gas constant, and A
the pre-exponential factor. The heat release rate characteristies of

a WSR are typical of those observed_eXperimentally in reactive waves.

In a WSR, the heat release rate experiences a smooth but rapid



increase in time (ﬁotaliﬁg 25% of the total heat rele&sed) fqllowed by
a longer period during which the remaining 75% of.the heat is
releasé;. ‘In the case of the Arrhenius expression, the rate of heat
reiease.continually risés. Equation (4) simﬁlates the larger latter
.portion of the WSR's heat release—fate curve. In addition, the
results of numerical calculatibns can be compared to the analytic
solution of the steady state form of Eq. (1) fof the reactién model
éiven by Egs. (2a) and (2b). The problems faced by the modeler in
hahdling the'heat release portion of Eq. (1) are contained iﬁ

Eq. (4).“The modelbof non-steady laminaf flames defined by Eqs; (1),
(2a), and (2b) includes.many of the essential and important non- ‘
linearities and difficulties which confront the successful modeler. A
brief discussion of these difficulties follows.

To better understand the structure of Eq. (1), we nondimension-

alize the dépendent and independent variables as follows [11]:

T'
Ah g T! o
| S uieded - - ——
aTg = c ! T AT! ! To AT! !
P o} 0
] ' 1 1] ‘
X:f—-‘. y t:—%O ’ T:lz—O ’ (6)
L L
and
.
= ,
© p

'where L represents the characteristic length scale in the flow field.

From Egs. (1), (2a), (2b), and (6) we obtain
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. 2 : _ »
aT 3 T - . :
~— =z~ + N_ 2 , ‘ 7
ot axz Da _
and
=N _(t-T) - . : ’ _ ,
Z=¢e Da ’ . A (8a)
where
= i <
Ny, =0 if T<T
and . : (8p)
Npa = Npg if _ T>1, !
¢ :
where Ny = KL2/c is the Damkohler number, a ratio of the heat

release rate to the rate of heat conduction. Under typiéal combustion

conditions Nﬁa can vary as much as 10 orders of magnitude from one
side of the flame to the other side. In particdlar, for the model
under .consideration we will use K, = 92,103'secf1, o =

1.5 cmz/sec, and L = 1 em, yielding

N : =0 ,
Daupstream

and

N = 6.1“ X 10u ‘o

Dadownstream



YN

-1

This range of N

Da is difficult to model because: (1) the

character of the model equations change, and (2) large temperéture and
progreSs parameter gradients arise in the flow field. In the upstream

portion of the flame, Eq. (7) has a parabdlic character, while atvthe

~point in the flow field where T equals To’ the model equations are

dominated by the charaéter of ordinary differential equations

(ODE's). Further downstream, the rates of heat production and heat

transfer'decrease'rapidly. “In generél, the ODE's are best handled by
Gear-Hindmarsh's stiff ODE parkage [12,13]. There are many efficient
explicit and/or implicit solvers, such as Crank-Nickolson [14], for
parabolic equations. ‘Usihg either method alone to solve Eq. (7) omits
the contribution of thé other to the séldtion, and results in improper
modeling of the combustionAprocess. The‘oberator-sblitting technique

overcomes this difficulty. ‘Equation (7) is solved as a pair of

equations
(ODE) L=wz | (9a)
and
(Parabolic) %%_: QE% . | | : (9b)
3% '

The time and space accuracy of the numerical scheme fof the
combined spiit equations is the same order as that fbr the single
equation, Eq. (7). Aﬁtention must be paid to the‘proper matching of
the boundary conditions. The complete theory of operétor splitting

can be found in Yanenko [15]. Note that by accounting for chemical
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reactions and heat transfer in separate steps,vthe basic conservation .
laws may be violated at the end 6f each chemical step. This effect
mainfests itself in the form of shoft—lived transients resulting in
unwanted oscillations and waves. .The siﬁuation is remedied by taking
time~steps small enough so that all changes occur grédually. In the
computations, the maximum temperature change occurring ét any point in
the flow,field due tdzheat rélease is restricted to 5°K. This is a
costly remedy to the problem of‘operatob splitting.

The second\difficulty addresses the problem of obtaiqing
sufficient flow field definition using a difference grid. The region
over whiéh'significant changes in temperature and ppogressAparameten
ocecur defines the flame thickness. At 10 atmospheres, hydrqcarbon-air
flames have a flame thickness, 6 , on the order of 1072 cm [6].. |
Adequate definition of the pfeheating and heat liberation zones
requires a grid spacing, Ax',.at least an order of magnitude finer

than the flame thickness, i.e.,

_ Ax!
=5

R <0.1 .

Larger grid spadings reduce the maximum possible gradient within the

fiame, altering the flame's structure and structure-dependent

phenomena such as pollution formation and burning speed. The section

on RESULTS cléarly demonstrates the sensitivity of the numerical
solution on the grid spacing used.
This grid-spacing requirement imposes an intolerable restriction

on modeling practical reactive gas flows. With typical engine



13

cylinder dimensions being 9.53 cm in stroke.by 9.86 cm in bore
(compression ratio 8:1), and with a grid spacing of 0.18 cm (60 grid
points-in the cylinder axis.direction), approximafely 150,000 grid
points are required to describe the cylinder volume. Yet in this cése
R equals 18. Approximétely'8 x 1011 equally spaéed grid points are
required to adequately (@inimally) describe flame propagatioﬁ within
ﬁhis c&linder._ Stability, acouraéy,'and operator-splitting consider-

ations further worsen the situation by imposing a 10~7 second

maximum allowable cycle-to-cycle time step. Clearly, modeling

practical reactive gas flows using conventional numerical techniquesv
is hopeléss.

One Qf.the most succeséful techniques to alleviate this problem is
regriding [11], in which the distribution of grid.pointé within the
flow field is a dynamic process whosé distribution properties depend
directly on some specified quantity_withinithe flow field, such_as
temperature gradient. In this case more grid points are concentrated
in the regions of large,temperéture gradient than elsewhere. This
teghnique uses a uniform grid spacihg in thevﬁrénsformed space
coordinate and the flame overcomes grid points slowly, allowing the
modeler to use many efficient schemes for calculating parabolic
flows. Thé slowly varying»conditions‘at each grid point allow the
calculations to proceed in an approximéte steady-state manner.
However, at_each instant detailed calculations of chémistry, heat

transfer, and fluid mechanics must be carried out. In the extreme

case of a constant velocity flame propagating down an infinite tube,
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these calculations become redundant and repetitive. There is always a
continuous succession of grid points through the flame, and a grid

point continually changes from representing conditions upstream to

~ representing those downstream of the flame. The tremendous effort to

continually calculate the flame's future progress is uhnecessary once

its structure and burning speed are known, since these factors remain
invariant.
All this led to the idea of using a dictiocnary to solve problems

of modeling non-steady reactive gas flows. Each entry in the diction—

'ary cohtains detailed information on the combustion front's steady-

state physical and chemical structure, its propagation velocity, and
any other information desired for a particular set of gasdynamic and

chemical conditions. The dictionary accounts for the varying con-

ditions the flame encounters as it progresses through the flow field.

- BEach entry is a result of a fiﬁite-difference computation using a fine

grid spacing. All the difficulties associated with performing these
computations will of course be encountered, but only once. The
dictionary does not contain these computations, but only the results.

In conjunction with the use of a dictionary, the combustion front is

‘treated as a deflagration [7], that is, a discontinuity in the flow

field across which step changes in state occur. At each instant the

deflagration characterizes one entry in the dictionary.

L%
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The procedure for calculating the flow field using the dictionary

technique is:

® Calculate the fluid motion and heat transfer throughout the
flow field;
. Find -the entry in the dictiohary with conditions most similar

to those immediately,ahead of the déflagration;
® Transport the defiagration according ﬁo the flame burhihg
speed.
»In the extreme case of a constant velocity flame propagating down
"an infinite tube, the dictionary would consiét of oniy bne entry con-
taining the structure and flame burning speed of a steady flame
propagating into the gas medium in the tube.‘ At each cycle of the
humerical scheme, the same entry would be quizzed. With more compli-
céted flows, the number of entries increases; The actual number of
entries depends on the influence of the disturbance upstream of the
flame on the characteristics of interest, such as flame burning speed
and pollution.' An example sﬁowing how to use the dictionary and its
advantagés over a finite-difference approach in the case of a reactive

gas flow is presented in the last section of this paper.
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~ RESULTS
The model equations, Eqs; (7), (8a), and (8b), are solved for the -

following condition (typical of hydrocarbon-air combustion [9]):

o |
=

AT! = 2000% | o (10a)

kol

o= 1.5 cm2/sec o
N = 6.14E+0L (2=0.1 when t-T=0.75E-04) , (10b)

Da, K_= 92,103 sec”
and
Ts = 000% . | | | - (10¢)
Boundary Conditibns: %% =0 at x=0 , : (11a)
T =T at X = 4+ .

(11b)

In the calculations, the temperaturé boundary condition is satisfied
by ensuring that at least 3 grid points are at the unburned tempera-

ture Tu' The numerical schémé used to integrate the model equations

is
4 -Np. A" . “
(opE) TPt - R 4 gP (1 - e ° > T > 7T , (12a) _
. i Ti i _ ) _ : o
where
n
! -NDa (t -Ti) .
Z, = e T, =t when T =T1T ,
1 : (o]
AL L ‘ T<T o (12b)
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(At? | max 1247 - T§|<u>  2=0.0025 , - (12)
' i . . o
(Parabolic) T0*2 = p0*1 At [+l oonel | T?+1> , (124)
i i 2 i+l i i-1
' 2% _ o
and
At; = Ax%/2 L, a . - (12e)
where
e = min(At? , 0.9 Atg)"v . o (12f)

An explicit scheme is used to integrate the ODE. For the parabolic

' équation, an explicit finite-difference scheme is used because éf its
' simplicity and thé time‘festrictions imposed by Eq. (12e). 1If in Eq.
(12¢), the value choosen for‘a is too largé, the proper apportionment
of the heat released by the chemical reaction to the sensible internal
energy and heat transferred may not be carried out by the operator-
splitting procedure.

Table I contains calculated and predicted values of the flame
burning speed, S, and flame thickness, §, for a range of values of the -
parameters NDa’ To’ and Tu in the model. the flame thickness is
the width of the region within the flame in which the temperature
exceeds the undisturbed value Tu but is less than the burned

temperature T, by 0.01, where

b
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The initial condition for'all the computations was a step change in
vtemperature from Tu to Tg. tﬁe calculations, using a grid épacing

of 0.0005 (R = 0.015), were.carried out until the flame propagated at
a steady state. 1In Table I, only values of the parameters different
from those of the first entry are noted. The temberature distribution
Qithin the flame ahd the analytic dépendence of the flame burning

speed and thickness on the parameters of the model are given by [16]:

NDa X
L e S
T(x) =T + 1~ —=—— ¢ x<0 , (13a)
u _ . 2 _
N + S .
: iDa
NDao -Sx .
T(x) =T + e x=20 R (13b)
) u 2 .
N + S
Da
1 - A K
S = i NDa (= S'L/0) . | o (ju)
o -
and
6= [N, AC1 - 0172 10 [100 221 - AT = sy (15)
o .
where
A = T "T .
o u

These relations were obtained by using Green's functions to integrate
the model equations. By comparing the calculated and predictéd

values, given in Table I, we conclude that this numerical method does
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predict thé dependence of‘thejflame propertiés on tﬁe paraméters.
However, it is the effect 6f grid spaciﬂg on the calculated flame
structure andiburning speed which is of particular interest. Figure 2
displays these effects for the case of a steady flame ppopaéating
under the conditibns given by the first entry in Table I. Similar
results were bbtained for other operating conditions. The vertical
bars rebresent thé rangé of flame thickness the flame experiences in
its psuedo-stead&-State»mode of propagation. The effect of tﬁe gfiq
spacing on the flame burning speed is evident even approaching the
‘minimum grid spacingrﬁfYO.OOOS (R = 0.015). However, the flame thick-
- ness is insensitive to values of Ax less than 0.004 (R = 0.12). At
this critiéal grid spacing, only 8 grid points define the flame. At
larger values'of Ax; the temperature gradients which driQe the fiame
can no longer be.approximatéd with sufficient accuracy resulting in a
linear growth_ofvthe calculated flamébthickhess. The flame continues
to span 3 cells, irrespectiye of the grid spacing.

From Fig. 2 and Eqs. (14) and (155 we see that fhe.effects qf the
grid sbacing on the calculated flame pfoperties are phenomenologically
similar to those due to a variation in.the.inVerse‘square of the
reaction rate. Also, the maghitude of each'effgct'is comparable to
that resulting froﬁ a variatioh of any of the parameters in the model.

Temperature-space profilesrcorresponding to the various Ax in
Fig. 2 are presented in Fig. 3. The positions of the grid points are
indicated for>profiles with Ax > 0.004 (R > 0.12). As noted

previously, the flame structure remains unchanged for grid spacings
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less than 0.004., However, drastic changes in the temperature
‘distribution occur when Aklincreeses beyond 0.004 (R = 0.12). Most
noticeable is the appearance of a peak temperature. This bulge in the
temperature profile is mostly confined to the one celi in which the
temperature most recently exceeded To' Note the few number of grid
points whicﬁ define the fiame structure. The actual temperature
gradient is eo poorly represented by the computational grid that the
heat evolved due to combustion is all but constrained to remain at
that one node. This causes a temperature build up, which increases
the rate of heat transfer to the surrounding grid points. As Ai
increases, individual grid points begin to combust totally‘befone the
ignition of the next grid point. This causes an oscillation in the
flame fhickness. These oscillations are denoted by the verticle bars
in Fig. 2. 1In censtant pfessure non-steady laminar flame calcula-
tions, this effect manifests itself in the surging of the particle
velocity or, for the case of small but not sufficiently fine grid
spacing; an unrealistic overshoot in the maximum particle velocity
(dynamic pressure) prior to establishing steady-state flow condi-
vtions. Therefore, adequate-representatien of the fleme can be assured
only when the grid spacihg is a£ least an order of magnitude finer
than the flame thickness (R< 0.1).

Given the limitations of today's computers, this restriction on
the grid spacing in felation to flame‘thickness in conventional
numerical teehniques is an insurrmountable obstacle, imposing two

distinct characteristic space scales. By using the fiame dictionary
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in conjunction ﬁith a deflagration, the modeler can get fine-scale

resolution in only the small portion‘of the flow field where he needs

it, thus facilitating.calculations ih the remainder of the flow field.

To illustrate the pracﬁicality of the dictionary and to highlight
its.advantages over finite-difference procedures, both methods are
used to solve the following problem: An initially steady propagating
flame-encountefs a temﬁerature varying flow fieid. The problem is to
célgulate the subsequent flowvfield, and the flame's bubning speed

history and trajectory. The effect of varying the width of the dis-

- turbance relative to the flame thickness, Gu, is also examined. 'The

temperature disturbance has the followihg form:

' Tmax - Tu d2(x - xo) B
T(x) =T, +|{—5—]. |1 - cos | ———— X SXSK +E

where x is the space'coofdinate; € the width of the temperature
disturbance; and X Tu’ and Tmax’ the upstream location of the
disturbance, the undisturbed temperature ih the flow field, and the

maximum temperature in the disturbance, respectively. The flame and

- flow field properties used in the calculations are given by

Eqs. (10a)-(10c¢c), and

Tu = 0.15Q R 'I'max = 0.450 , T0 = 0.500 .

In the dictionary technique, the deflagration at each instant

characterizes one entry in the dictionary. Therefore, in assembling
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" the dictionary we must acéount for the varying conditions the flame
- encounters as it progresses through the flow field.

For the flow.field conditions specified above, 7 entries
vconstitute the dictionary. Table II shows the temperéture, Ti’
definihg each entry and the flame buhning speed and thickness associ-
ated with that eﬁtry. Figures 4a and 4b display the température and
/progfess parameter distributions, centered about a temperature
Ti'+ 1/2 and x = 0, which are also included in the entry.

The data for each entr§ were obtained by using Eqs. (12a)-(12f) to
calculate the steady state combustion wave arising from an initial
temﬁerature distribution corrésbonding to a step change in temperature
from Ti to Ti + 1. Theée calculations used a grid sbacing of
0.002 (R = 0.06).

These 7 entries were choosen to illustraté the solution of a
practical problem using the dictionafy technique, not to represent the
optimal number or set of conditions for this problem. In more com-
plicated f;ows, the actuai number of entries should depend on the
ipfluence of the disturbance upstream of the flame on the flame
characteristics of interest, such as flame trajectory or pollution
formation.

The finite-difference solution is obtained by applying
Egs. (12a)-(12f) to each grid ppint in the flow field. The dictionary
solution is obtained by applying Eqs. (12d)~(12f) at all grid points
followed by the transport of the deflagration through the flow field.

The deflagration progresses according to the flame burning speed
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obtained from the dictionary. Information for conditions other than

those exactly specified by the dictionary entry is obtained by linear

interpolation from the ehtries closest to the existing conditions.
Two cases are considered:

0.2 €8 =6

Case 1. X 0.0846 X, = 0.120 €

"4
o
o
.

Case 2. p'e 2.0 e/ 8

01450 x_ = 0.180 e

]
n

' Hehé xfbspecifies the initial flame‘location.

Figure 5 shows the temperature-space brofiles at various instants
for Case 1,’calculated by the finite-difference technique. Figures 6
and 7 display the_temperature distributions at various inStanées cal-
culated by the dictionary techhique. The results shown in Fig. 6
account for heat transfer in the flow field on either side of the
deflagration, while those shown in Fig. 7 do not. Neglecting heaﬁ
transfer eliminates the finite-difference portion of the dictionary
technique. This represents the most efficient (cost effective) method
for calculating the progress‘of the flamé. Included in each profile
in Fig. 5 is the location of the flame, denoted by an x, as.calculated
by the dictionary technique (o = 0). The extent of the flame about
this position as obtained from the dictionary is indicated by vertical
baré. Superimposed on each temperature profile in Figs. 6 and 7 is
the flame temperature distributioﬂ obtained from the dictionary.
These distributions, denoted by dashed lines, are centered about the

+ 1/2, where T_ is the

deflagration positioh and a temperature T I

I
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temperature immediately ahead of the déflagration. -Care was taken to
-ensure that these dictionary profilés merged smopthly.with the
remainder of the flow field. |

A summary of the flame trajectories énd burning speed profiies is
presented in Fig. 8. The continuous_lines represent the finite-
difference solution while qircles and dashes dénote results of the
dictionary technique, with o equal to 1.5 and 0, respectively.  We see
that the finite-differénce and dictionary (o = 1.5) solutions agree
extremely well. However, for the dictionary technique (o = 0), the
}flame trajectory lags slightly behind the othérSvdUring the initial
phase of the temperature distﬁrbance, preceeds them at the later
stages, and eventually becomes indistinguishable from the true tra-
Jjectory. The flame burning speed pﬁofile explains this behavior. Due
to the lack of heat transfer from the high-temperature regions of the
disturbance_to the low-temperature regions, the flame initially '
encounters ﬁhe»gas médium ét a temperatufe lower than in the other
.calculations. This_results in a iower flame burning épeed.: In the
high-temperature regions, the degredation of the heat content of the
medium by heat transfer does not occur. Hence, the deflagration --
experiences in higher reactant temperature resulting in a higher flame
burning speed. Then a condition similar to the initial phase occurs;

yielding a lower flame burning speed. This behavior is caused by the

exclusion of the heat transfer calculations in all but the flame.
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By»accounting for heat transfer, the peak temperature of the

disturbed medium drops approximately 0.04 before being overcomeiby the
combustion front. Such a 31gn1flcant change is due ‘to the large.
potential for heat transfer as determlned by 20 (T é - T )/e;

However, as 31gn1flcant as the effect of peak temperature drop would

appear to be, its effect on the flame burnlng speed 'is of short

duratlon as compared to the whole event, and therefore minimal in
terms of the trajectory error.

Therefore, we conclude that there ie no difference between the
finite—difference'solution andethe diotiOnary solution with or without
C. The finite- dlfference solution required a grld spacing of 0.002
and 35,806 cycles (15.8 seconds of execution on a CDC 7600) of com-
putation, whereas the dictionary»technique used a grid spacing of 0.02
and only 133 cycles (0.68 seconds) of computation, while retaining
every detail of the combustion procees.~.Perhaps even larger values of
grid spacing could be succeesfully ueed.

The finitefdifference technique recomputes flame structures at
every instant, while the dictionary technique refers only to the
results of previously calculated flame structures, representing an
enormous savings in effort. The detail to which the flame can be
represented is also greatly increased.

.Figure 9 shows the temperature-space profiles at various instances
for Caee 2, calculated by both the finite-difference and the diction-
ary technique.(o = 1.5). The.flame position calculated by the

dictionary (o = 0) is indicated by an x and the flame extent by
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-verticle bars. Figure 10 shows the flame trajectories and burning

o

speed profiles (symbols as in Fig. 8). Duelto the greatly increased
ﬁidth of the»disthrbance, the éffect of heat traﬁsfer on the peak
temperature is negligible (<0.01). As in Case 1, the finite- ©
difference and the dictionary (o = 1.5) results are_in ekcellent
agreement, but this time the difference between these solutions and
that of the dictiohary (0= 0) is completely negligible. Note that
the finite-difference solution again required a grid spacing of 0,002
(1006 gridvpoinﬁs define the temperaturé disturbance) and 111,530
cycles (U405.2 seconds) of computation, while the.dictionary technique
used a grid spacing of 0.10 (ZO.grid points) and only 84 cycles.
(0.20 seconds) of computation. Perhaps even larger grid spacings
could be used. The savings are tremendous. |
Another example similar to Case»2, but with o beihg’temperature

dependent, also produced very favorable results.

Av



i

27

CONCLUSION
Finite~difference calculations'ca?fiedﬁﬁﬁt on equally spaced grids
indicate that flame ﬁroperties are stfongl&.dependent on the grid
spacihg. _Calcplated flame burning speeds deviate from the exact value
by a leastv6% whenever gridvspaoings greater than the critical size,
one order of magnitude finer than the flame thickness, are uséd._
Flame thickness,von the'bther hand, is insensitive tovgfid,sbacings

less than the criticai»siie, but thereafter grows linearly with the

grid spacing. The flame burning speed depends to a much greater

degree on the ability of the numerical method to repfoduce the maxiﬁum‘
temperature gradient Qithin the flame. |

Deviations in flame propertiesAdue to grid spacing can be as large
and even exceed the effects of variation of any of the physical para-
meters of the flow field. Exceeding the critical grid spacing causes
bulges in the temperature profile, increases in the peak temperature,
a quasi-steady oscillation in'the flamé thickness, oscillation in the
upstream fluid velocity, and a greatly increased'predicted peak
particle velocity (dynamic pressure) during the iniﬁial non-steady
phase of the reactive gas flow calculations.

This dependence on grid spaciﬁg‘should prompt the modeler to
employ as fine a grid spacing as possible throughouf the coﬁrse of the
calculations. With conventional techniques the grid requirements for

accurately modeling non-steady combustion in practical devices far

exceeds the resources of todays computers.
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The most important feature of the'dictionary technique is its
ability to bridge the gap ‘between the'two.characteriStic spaCe'Ecales : ¢
existing in all reacting gés flow problems. The smaller scale émerges
from the modelers desire to accurately portray the structure within
the flame, while the larger scale is characteristic of tﬁe hemainder
of the'fIOW'field. " When the dictiénary'is coupled with a method for
transporting the deflagration through the flow field, the‘dictionary
technique becomes an extreémely efficientfnumericai tool for calcu-
lating’non-steady reactive gas flows (see Kurylo [17] for such a |
method.)

Once: the conditiohs into which the deflagration propagates afe
determined, one simply-locateé'which entries within the dictionary
most closely resemble these operating conditions, by interpolation
obtains the propégafion speed and any other desireable combustion
quantities, and advances the deflagration.  Sirice each entry
represents the results of a one-time-only calculation of the*steady
state propagation of é flame‘under a condition represeﬁtative of the
flow field under consideration, the details used iniacﬁieVing each =
entry can be as comprehensive as desired. No additional effort is
expended for such details once the dictionary:haS'been'compiléd. ‘The
dictionary'mptally'éliminates»the'need of continually performing the -
costly'and:arduous taskS‘of calculating the progress of the flamé and
the details of the flame structure at each inStant in time. -

Numerical experiments iﬁdicate that'the.iémperature-dié#ributiqns}
flame,burnins,Speeas, and flame trajectories calculated by the

dictionary technique agree extremely well with those obtained by the
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finite~difference technique. The méjor advantage of the dictionary
technique is_that grid spacings several orders of magnitude greater
than those requiréd by conventionél'finite-difference techniques can
be uséd and pro&ide exactly the same results. The progress of the
deflagration within thisucrude mesh is governed by'the details of the
flame process based_on calculations using a subcritical grid spacing.

Such a contraction'in grid—poinﬁ requirements makes the problem of

modeling combustion in devices of current interest feasible.

Numerical experiments also iﬁdicatéd thaﬁ the effects of
neglecting héat transfer’in the non-reacting portions of the flow
field are negligible. Eliminationlof heat trahsfer calculations
allows the.dictiOnary-technique to Be coupled to grid-free tech-
niques. Chorin's techniques account for the fluid behavior in the
boundary layer as well as in the inviscid core [2]. Accounting for
turbulence in the flow field and the extention to 2 or 3 dimensions
with irregular boundaries is a straightforward extension of the one
dimensional method [1,3,5]. The wrinkling of the flame front due to
turbulent mixing is handled by»Chorih's 4] flame advection and
propagationvalgdritms.

Two major premisés must be met to successfully apply the

'dictionary technique in reactive gas flows: (1) the combustion event

can be treated as a deflagration in the flow field, and (2) the
characteristiq time for flame adjustment to disturbances in the flow
field is shorter than the characteristic time between encountering

such disturbances. The latter restriction allows the instantaneous
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state of the flame to be approximated by its steady-state conditions.

Ty

Both these prémiseé are generally satisfied whenever the flow field-
and the disturbance within it are at léast én order~of magnitude
larger than the flame thickness. Combustion within the fluid boundary
layer of a wall does not saﬁisfy these two premises and so:Jheqﬁihes
either conventional techniques or the development of other techﬁiques
for their solution. The effectbof mutual interaction of flame frénts
which have been folded into a cusp on (a) the burning speed, and
(b) other flame properties also requires further study.

It is the author's hope that the dictionary technique will further
the use of numerical siﬁulation as a design toolrand/or‘as a means of

‘analysis of practical reactive gas flows of current interest.

v
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TABLE 11

Contents of the flame dictionary

- ———

entry T. S 8.
numper' 1 U !
1 .
] 0.150 313.7 0.0322
2 0.200 352.9  0.0349
3 0.250 .  398.0 0.0367
4  0.300 454.1  0.0398
5 0.350  535.3 0.0446
6 0.400 668.0  0.0530
7 0.450 939.5 0.0722




Fig.
Fig.
.Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Ya,.

4o,

36
FIGURE CAPTIONS
Heat rélease rates for a well-stirred reaétor'(WSR),

Arrhenius kinetic expression, and Eq. (4).

The effect of grid spacing on the flame burning speed and
 flame thickness.

Temperature distribution within the flame for various grid'

spacings.

Temperature‘diStribﬁtion within the flame for various.
upstream temperatures - Tu’

Progress parameter distribution Within>the flame for
various upstream ﬁemperafﬁres - Tu.

Flowifield temperature distributions calculated by‘the
finite-difference method [|x| - flame location and flame
width calculated by the.dictionary technique (o = 0)].
Flow field ﬁemperature distributions calculated by the
dictionary.technique (o = 1.5). |

Flow field temperéture distributions calculated by the
dictipnary technique (o = 0).

Flame burning speed-space profiles and flame trajectories

calculated by the finite difference method ( ) and the
dictionary techniques with 0 = 0 (- - =) and o = 1.5(0).

Flow field temperature distributions calculated by the

~ finite-difference method and the dictionary technique (0 =

1.5) [lx| - flame location and flame width calculated by the

dictionary technique (o = 0)].

%
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Fig. 10. Flame burning speed-space profiles and flame trajectories
calculated by the finite difference method (—) and the

dictionary technique with 0=0 (- - -) and ¢ = 1.5(0).
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