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Key Points:10

• We introduce several methods of covariance matrix estimation that adaptively se-11

lect regularization parameters based on estimates of sampling error.12

• One method, Noise-Informed Covariance Estimation (NICE), stands out because13

it guarantees a positive semi-definite estimator at a low computational cost.14

• All new covariance estimation methods perform well on a large variety of test prob-15

lems.16
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Abstract17

We synthesize knowledge from numerical weather prediction, inverse theory, and statis-18

tics to address the problem of estimating a high-dimensional covariance matrix from a19

small number of samples. This problem is fundamental in statistics, machine learning/20

artificial intelligence, and in modern Earth science. We create several new adaptive meth-21

ods for high-dimensional covariance estimation, but one method, which we call NICE (noise-22

informed covariance estimation), stands out because it has three important properties:23

(i) NICE is conceptually simple and computationally efficient; (ii) NICE guarantees sym-24

metric positive semi-definite covariance estimates; and (iii) NICE is largely tuning-free.25

We illustrate the use of NICE on a large set of Earth science–inspired numerical exam-26

ples, including cycling data assimilation, inversion of geophysical field data, and train-27

ing of feed-forward neural networks with time-averaged data from a chaotic dynamical28

system. Our theory, heuristics and numerical tests suggest that NICE may indeed be a29

viable option for high-dimensional covariance estimation in many Earth science prob-30

lems.31

Plain Language Summary32

Models of physical processes must be fitted to real-world data before they are use-33

ful for prediction. In some cases, the most practical way to fit models to data is to run34

a set—or ensemble—of simulations with different physics or initial conditions. One then35

uses the covariances among the inputs and outputs to modify the simulations so that they36

fit the data better. To reduce noise in the covariances, one ideally uses an ensemble size37

that is larger than the number of unknown variables, but this becomes impractical when38

the number of unknowns is large. To improve the performance of this fitting process when39

the ensemble size is small, one can discount covariances between variables that are likely40

due to noise. We introduce several methods of covariance estimation that determine the41

degree to which covariances are discounted based on expected levels of noise. All new42

methods perform well on a series of Earth science–inspired problems, but we highlight43

one method that preserves a key property of covariance matrices at a low computational44

cost.45

1 Introduction46

We consider the problem of estimating the covariance matrix P of an nx-dimensional47

random variable x, based on a set of ne � nx independent samples xi, i = 1, . . . , ne.48

Estimating a covariance matrix from scarce samples is a fundamental challenge in sci-49

ence, engineering, statistics, and in the sub-fields of machine learning and artificial in-50

telligence (Wainwright, 2019). Our interest in covariance estimation is motivated by the51

problem of fitting models of Earth processes to data. As an example, consider numer-52

ical weather prediction (NWP), where the xi represent an ensemble of global weather53

forecasts. The dimension nx corresponds to the number of unknowns in a global atmo-54

spheric model, and it is on the order of 108. The number of forecasts (the ensemble size55

ne) is small because each forecast requires a simulation of Earth’s atmosphere, which is56

expensive. A commonly used ensemble size in NWP is on the order of 102—six orders57

of magnitude smaller than the number of unknowns. A common approach to update the58

forecast with atmospheric data is the ensemble Kalman filter (EnKF, Evensen (1994, 2009)).59

The EnKF updates rely on the covariance matrix associated with the ensemble, but the60

empirical covariance matrix61

P̂ =
1

ne − 1

ne∑
i=1

(xi − µ̂)(xi − µ̂)T , µ̂ =
1

ne

ne∑
i=1

xi, (1)62
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is generally inaccurate if ne � nx (Bickel & Levina, 2008; Wainwright, 2019). Various63

strategies for improving the accuracy of the empirical estimate have been developed over64

the years, and we review the relevant literature below.65

The prevailing method of covariance estimation in NWP is called localization (Houtekamer66

& Mitchell, 1998, 2001; Ott et al., 2004). Localization enforces on the empirical covari-67

ance matrix the assumption that covariances decay with spatial distance (although the68

terminology has also been used in other contexts and to refer to covariance corrections69

that are not spatial, see, e.g., Morzfeld et al. (2019)). To execute the localization, one70

defines an nx×nx, symmetric positive semi-definite (PSD) localization matrix L, which71

encodes the spatial decay pattern of correlations (Gaspari & Cohn, 1999; Gilpin et al.,72

2023). One then obtains the localized covariance estimator73

P̂loc = L ◦ P̂, (2)74

where the open circle denotes the Hadamard (element-wise) product. Localization has75

proven successful for estimating high-dimensional covariance matrices from a small set76

of samples in NWP and, for that reason, localization is a standard component in oper-77

ational weather forecasting systems (Hamill et al., 2009; Bannister, 2017).78

We present a new covariance estimation method that is more broadly applicable79

than classical localization because it does not require a priori assumptions about the cor-80

relation structure (e.g., the spatial decay in covariance localization). We call our method81

Noise-Informed Covariance Estimation (NICE). NICE replaces assumptions about the82

correlation structure with the assumption that small to medium correlations are likely83

caused by sampling error and, therefore, should be damped or deleted. This assumption84

is not universally true (it is easy to come up with counter examples), but it is rooted in85

rigorous sampling error theory (Ménétrier et al., 2015; Morzfeld & Hodyss, 2023; Flow-86

erdew, 2015; Lee, 2021b; Anderson, 2012). NICE achieves three main objectives:87

1. Adaptivity. NICE ensures that differences between sampled and corrected cor-88

relations are within an expected noise level. The noise level is determined by the89

sample size and the distribution of empirical correlations so that the entire covari-90

ance estimation process is adaptive and largely tuning-free.91

2. Positive semi-definiteness. NICE guarantees a symmetric positive semi-definite92

(PSD) covariance estimator. Symmetry and positive semi-definiteness are defin-93

ing properties of covariance matrices, but some competing methods do not guar-94

antee PSD estimates.95

3. Computational efficiency. NICE is computationally efficient and easy to im-96

plement because it avoids solving optimization problems over PSD matrices.97

We put NICE to the test in a variety of problems with different and unknown cor-98

relation structures: (i) estimation of covariance matrices from Gaussian samples; (ii) cy-99

cling data assimilation problems with ensemble Kalman filters (Evensen, 2009); (iii) in-100

version of geophysical data with regularized ensemble Kalman inversion (EKI, Chada101

et al. (2020)); and (iv) training of a feed-forward neural network with EKI (Iglesias et102

al., 2013; Kovachki & Stuart, 2019; Cleary et al., 2021). Various error metrics are used103

to evaluate performance in these problems. Across all examples and all error metrics,104

we find that NICE works out-of-the-box with minimal tuning.105

Estimated noise levels can also be used to make other covariance estimation meth-106

ods adaptive and largely tuning-free. We introduce new adaptive versions of power law107

corrections (Ad.-PLC, see Lee (2021b) and Section 3.4.1), adaptive (spatial) localization108

(Ad.-Loc., Section 3.4.2), adaptive soft-thresholding (Ad.-ST, see Wainwright (2019) and109

Section 3.4.3) and adaptive sparse covariance estimation (ASCE, see Xue et al. (2012)110

and Section 3.4.4). All new methods fall under the umbrella of noise-informed covari-111

ance estimation because all of them leverage an understanding of noise in empirical cor-112
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relations. However, some do not guarantee a PSD estimator and others are more com-113

putationally involved. The specific method we refer to as NICE is the only method that114

satisfies all three of our objectives: adaptivity, PSD guarantees and computational ef-115

ficiency.116

It is important to be specific about the terms “high-dimensional” and about com-117

putational efficiency. In this paper, we focus on covariance estimation methods that con-118

struct the entire covariance matrix. As such, the methods are limited in their use to ma-119

trices of dimension 104×104 or smaller. Higher-dimensional problems, e.g., of the ex-120

treme size of NWP (108 or more unknowns), require that we perform computations with-121

out constructing the whole covariance matrix. The methods we describe here could po-122

tentially be adapted to such problems, but these adaptations are beyond the scope of123

this paper. The computational efficiency of covariance estimation depends on the algo-124

rithms used. We focus on algorithms that perform simple element-wise operations on the125

empirical covariance matrix. Many methods in the statistical literature, however, per-126

form covariance estimation by solving optimization problems over PSD matrices, which127

is computationally expensive.128

The rest of this paper is organized as follows. Section 2 reviews background ma-129

terials. We first explain why covariance estimation from a small number of samples is130

important in Earth science, specifically in EnKF and in EKI. We further emphasize the131

importance of PSD covariance estimates in the context of EnKF or EKI. We then re-132

view covariance localization in NWP and several covariance estimation methods from133

the statistical literature. Finally, we briefly describe Morozov’s discrepancy principle, a134

classical concept in inverse theory. The discrepancy principle is the tool we use to make135

covariance estimation methods adaptive. Section 3 describes our new methodology (NICE),136

and other new adaptive covariance estimation methods. We apply NICE and a large num-137

ber of competing methods (new and old) in a wide variety of problems in Section 4, be-138

fore ending the paper with a summary and conclusions in Section 5.139

2 Background140

2.1 Ensemble Kalman Filters and their Localization141

The goal of ensemble Kalman filtering (EnKF) is to use data to update a forecast142

generated by a computational model. An important example is numerical weather pre-143

diction (NWP), where the forecast describes atmospheric states in the form of ne vec-144

tors xi, i = 1, . . . , ne, each of dimension nx. The vectors xi are referred to as “ensem-145

ble members.” Typically, the ensemble size ne is smaller than the dimension of the en-146

semble members (ne � nx). The reason is that each ensemble member is the result of147

a simulation with a computationally expensive atmospheric model, so that ne must be148

small, or else the computations are infeasible. In NWP, ne is usually a few hundred, and149

nx is in the billions.150

The forecast is updated by an observation (data), which is an ny-dimensional vec-151

tor y, where, often but not always, ne � ny � nx. For ease of presentation, we as-152

sume that the observation is a linear function of the forecasted variables so that153

y = Hx + ε, (3)154

where H is an ny×nx matrix and ε is a Gaussian random variable with mean zero and155

covariance matrix R, which we write as ε ∼ N (0,R) The assumption of a linear ob-156

servation is commonly violated; nevertheless, we demonstrate in our numerical exper-157

iments that the intuition and conclusions from the linear analysis extend to the nonlin-158

ear case.159

Ensemble Kalman filtering (EnKF) is a catch-all term for a whole suite of meth-160

ods that merge the observation and the forecast within a Bayesian framework. The up-161
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date step of a stochastic EnKF (Evensen, 1994; Burgers et al., 1998; Evensen, 2009) is162

xai = xi + K̂(y − (Hxi + εi)), (4)163

where εi is a sample drawn from N (0,R). The Kalman gain K̂ is computed from the164

ensemble as165

K̂ = P̂HT (HP̂HT + R)−1, (5)166

where P̂ is the empirical covariance in (1). The Kalman gain defines how to update each167

ensemble member in view of the observation. Since the Kalman gain depends critically168

on the forecast covariance P̂, the EnKF update is only useful if the covariance estimate169

is accurate, which usually requires that ne is larger than nx (although the situation can170

be more complex, e.g., with ne directly depending on the number of observations and171

their independence (Chorin & Morzfeld, 2013; Agapiou et al., 2017; Al Ghattas & Sanz-172

Alonso, 2022; Hodyss & Morzfeld, 2023)).173

Localization is a technique that enables the use of EnKF when ne � nx. A com-174

mon version of localization in the EnKF is to use Hadamard products as in (2) and to175

define the localization matrix by the Gaspari–Cohn covariance function (Gaspari & Cohn,176

1999) or its anisotropic extensions (Gilpin et al., 2023). The localization matrix imple-177

ments a spatial decay of correlation and the rate of decay can be controlled via a length178

scale. Different methods for adaptively selecting this length scale, or localizing in a flow-179

dependent manner to account for temporal variations in the correlation structure, have180

been proposed (Zhen & Zhang, 2014; Chevrotiére & Harlim, 2017; Anderson, 2012; Bishop181

& Hodyss, 2009a, 2009b, 2007, 2011; Luk et al., 2024).182

Other implementations of the EnKF include the ensemble adjustment Kalman fil-183

ter (EAKF) (Anderson, 2001) and ensemble transform filters (ETKF) (Ott et al., 2004;184

Tippett et al., 2003). Localization in an EAKF is achieved by working directly with the185

Kalman gain, reducing the effects of an observation on elements of the Kalman gain that186

are far from the observation (Morzfeld & Hodyss, 2023; Hodyss & Morzfeld, 2023). Lo-187

calization in an ETKF is implemented by performing a “local” analysis, so that each grid188

point is updated by a set of nearby observations (domain localization). Variational/hybrid189

data assimilation (DA) algorithms combine a classical minimization (variational) approach190

(Talagrand & Courtier, 1987) with an ensemble to approximate uncertainties (Hamill191

& Snyder, 2000; Lorenc, 2003; Zhang et al., 2009; Buehner et al., 2013; Kuhl et al., 2013;192

Poterjoy & Zhang, 2015). Hybrid DA also requires localization, which is usually applied193

using Hadamard products, but without explicitly forming the covariance matrix (Buehner,194

2005). Multi-scale extensions of localization are available for hybrid DA and/or EnKFs195

(Buehner, 2012; Miyoshi & Kondo, 2013; Buehner & Shlyaeva, 2015; Lorenc, 2017; Harty196

et al., 2021).197

Finally, we note that all conventional localization methods require tuning. The tun-198

ing process usually amounts to picking a length scale that defines the localization and199

then running a cycling EnKF over a set of training observations. This process is repeated200

with various length scales until one encounters a length scale that leads to an accept-201

able error metric.202

2.2 Ensemble Kalman Inversion203

The goal in ensemble Kalman inversion (EKI, Iglesias et al. (2013)) is to minimize204

the cost function205

J(x) =
∥∥∥R−1/2(y − G(x))

∥∥∥2
2
, (6)206

where vertical bars denote the two-norm (i.e., ‖b‖2 =
√

bTb), y are data, x are un-207

known model parameters, and G(·) is a nonlinear model that maps the model param-208

eters to the data; the symmetric positive definite matrix R defines expected errors in the209
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data, represented by a mean-zero Gaussian random variable with covariance matrix R;210

R−1/2 is the inverse of a matrix square root of R = R1/2
(
R1/2

)T
.211

EKI performs the optimization by iteratively updating an ensemble as follows. The212

ensemble at iteration k are the ne vectors xki and we define ne corresponding vectors gki =213

G(xki ). Each ensemble member is updated according to214

xk+1
i = xki + Ĉk

xg(Ĉ
k
gg + R)−1

(
y − (gki + ηi)

)
, (7)215

where Ĉk
gg is the covariance matrix associated with the vectors gki , Ĉk

xg is the covariance216

between the vectors xki and gki and where ηi is a draw from the Gaussian with mean zero217

and covariance matrix R. More specifically, if we define the matrices (ensemble pertur-218

bations)219

Xk =
1√

ne − 1

(
xn1 − x̄k xk2 − x̄k · · · xkne

− x̄k
)
, x̄k =

1

ne

ne∑
j=1

xkj , (8)220

Gk =
1√

ne − 1

(
gn1 − ḡk gk2 − ḡk · · · gkne

− ḡk
)
, ḡk =

1

ne

ne∑
j=1

gkj , (9)221

then the covariances are222

Ĉk
xg = Xk ⊗Gk, (10)223

Ĉk
gg = Gk ⊗Gk, (11)224

where the symbol ⊗ denotes the outer product A ⊗ B = ABT , where A and B are225

vectors or matrices of compatible sizes. Note that the EKI update equation (7) is equiv-226

alent to an EnKF update in (4) because Ĉk
xg = P̂HT and Ĉk

gg = HP̂HT when G(x) =227

Hx is linear. The theory around EKI tells us that the iteration (7) converges, in the sense228

that the ensemble collapses onto the minimizer of the cost function, under typical as-229

sumptions (Schillings & Stuart, 2018, 2017; Chada & Tong, 2022). As with EnKF, there230

are several variants of EKI (Huang et al., 2022; Lee, 2021a).231

Convergence of the EKI iteration requires that the covariance estimates Ĉk
xg and232

Ĉk
gg are sufficiently accurate, which usually means that the ensemble size is large. Lo-233

calization can be used within an EKI to keep the ensemble size small (Tong & Morzfeld,234

2023; Al Ghattas & Sanz-Alonso, 2022; Lee, 2021b).235

EKI has found application in climate sciences (Cleary et al., 2021; Bieli et al., 2022;236

Schneider et al., 2021; Dunbar et al., 2022), and Julia code for it is available (Dunbar237

et al., 2022). In a climate science context, model parameters appear in sub-gridscale clo-238

sures of climate models (e.g., physical constants or weights of neural networks). A promis-239

ing approach to optimizing sub-gridscale closures is to formulate the cost function based240

on the misfit between modeled and observed climate statistics (Schneider et al., 2024).241

In this scenario, derivatives of the cost function with respect to the model parameters242

are difficult or impossible to compute, making derivative-free optimization via EKI at-243

tractive.244

Ensemble algorithms that are related to EKI, and which in fact pre-date EKI, are245

known as iterative ensemble Kalman filters/smoothers (Chen & Oliver, 2013, 2010, 2017;246

Emerick & Reynolds, 2011; Luo et al., 2018; Bocquet & Sakov, 2014; Bocquet, 2016; Hodyss,247

Bishop, & Morzfeld, 2016) or multiple data assimilation (Emerick & Reynolds, 2013).248

These methods are popular in reservoir modeling, but also find applications in atmospheric249

sciences. A recent, mathematical overview of how some of the methods are related is given250

by Chada et al. (2021) and an NWP-focused overview is provided by Hodyss, Bishop,251

and Morzfeld (2016).252
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2.3 Positive Semi-Definite Covariance Estimators253

A fundamental property of covariance matrices is that they are symmetric posi-254

tive semi-definite (PSD, Horn and Johnson (1991)). The practical relevance of PSD es-255

timates of P̂ is apparent in the EnKF, where the Kalman gain (5) requires that the ma-256

trix257

HP̂HT + R, (12)258

is well-conditioned. Since the observation error covariance matrix R is usually positive259

definite, a PSD estimate P̂ guarantees that (12) is positive definite, invertible and well-260

conditioned. One can run into numerical trouble if P̂ is not PSD, because the matrix261

in (12) may be singular or ill-conditioned. Localization via Hadamard products, as used262

in NWP, guarantees a PSD covariance estimate by the Schur product theorem when the263

localization matrix L is PSD (Schur, 1911).264

In general, however, the PSD constraint is not easy to satisfy during covariance es-265

timation, and many covariance estimation methods do not guarantee a PSD estimate266

(Khare et al., 2019; Xue et al., 2012). When we review covariance estimation methods,267

we comment on their PSD guarantees.268

2.4 Beyond Localization269

It has long been recognized that the assumption of a spatial decay of correlation,270

which is at the core of localization, is not universally applicable. Adaptive localization271

methods (Anderson, 2012; Lee, 2021b; Bishop & Hodyss, 2009a, 2009b, 2007) are well272

established in Earth science, and recent theoretical works (Ménétrier et al., 2015; Morzfeld273

& Hodyss, 2023; Flowerdew, 2015) address this issue as well.274

Covariance estimation is also a fundamental problem in statistics. Theoretical as-275

pects of localization in NWP, for example, are described by Furrer and Bengtsson (2007)276

and Bickel and Levina (2008), and a review of various covariance estimation methods277

is provided by Pourahmadi (2011). The textbook by Wainwright (2019) emphasizes the278

difficulty of estimating a covariance matrix when the ensemble size is small. As repre-279

sentatives of the many statistical techniques that have been created over the years, we280

consider a soft-thresholding method (Wainwright, 2019), the graphical Lasso (G-Lasso,281

Friedman et al. (2007)), convex sparse Cholesky selection (CSCS, Khare et al. (2019)),282

and sparse covariance estimation (Xue et al., 2012).283

2.4.1 Prior Optimal Localization284

The idea of optimal localization is to find a Hadamard product estimator, defined285

by the matrix L, that minimizes the cost function286

FPOLO(L) =
∥∥∥〈L ◦ P̂−Pne→∞〉

∥∥∥
Fro

, (13)287

where Pne→∞ is the “true” covariance matrix one would obtain from an infinite ensem-288

ble and where the brackets 〈·〉 denote an expected value over ensemble draws (Ménétrier289

et al., 2015; Morzfeld & Hodyss, 2023; Flowerdew, 2015); ‖·‖Fro is the Frobenius norm,290

i.e., the square root of the sum of the squares of all elements of a matrix. Under Gaus-291

sian assumptions, one can solve this optimization analytically to obtain292

[L]ij =
ρ2ij(ne − 1)

1 + ρ2ijne
, (14)293

which we refer to as prior optimal localization (POLO). Here, ρij is the true correlation294

between the variables with indices i and j. While POLO does not rely on a spatial de-295

cay of correlations, it assumes that the correlations are known. POLO is, therefore, not296

–7–
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a viable algorithm but it can be used as a benchmark for practical algorithms. Empir-297

ical localization functions (ELF) are closely related to optimal localization and are im-298

plemented based on the idea of learning a localization matrix from training/simulation299

data (Anderson & Lei, 2013).300

POLO does not guarantee a PSD estimator. To see why, consider a theorem in lin-301

ear algebra: If one applies a function element-wise to a PSD matrix whose elements are302

in (0, 1), the only functions that always preserve semi-definiteness have a power series303

representation with non-negative coefficients (Schoenberg, 1942; Guillot & Rajaratnam,304

2015). The POLO matrix in (14) does not satisfy this theorem and, hence, the matrix305

L is not guaranteed to be PSD, which in turn implies that the POLO covariance esti-306

mator is not guaranteed to be PSD. Indeed, we routinely observe non-PSD POLO es-307

timates in the numerical examples in Section 4.308

2.4.2 Sampling Error Corrections and Power Law Corrections309

Anderson (2012) introduces the terminology and methodology of sampling error310

correction (SEC). SEC constructs covariance corrections quite similarly to POLO, but311

the SEC corrections are based on numerical experiments with “training data” and groups312

of ensembles, so that the correction depends on the sample correlation, rather than on313

the true correlation (compare Figure 1(b) of this paper with Figure 1 of Anderson (2012)).314

Lee (2021b) subsequently noticed that the corrections may be efficiently approx-315

imated by a power law. Specifically, let ρ̂ be the empirical estimate of the ensemble cor-316

relations and define the PLC estimator of the correlations by317

ρ̂PLC = L(β) ◦ ρ̂, (15)318

where the elements of the matrix L(β) are given by319

[L(β)]ij = |[ρ̂]ij |β , (16)320

i.e., we raise the absolute values of the empirical correlations element-wise to the power321

β. The exponent β is a tunable parameter. Once we have selected a suitable β, we ob-322

tain the covariance estimator323

P̂PLC = V̂ρ̂PLCV̂, (17)324

where V̂ is a n×n diagonal matrix whose diagonal elements are the ensemble standard325

deviations. For the rest of this paper, we refer to this algorithm as “power law correc-326

tions” (PLC).327

PLC does not guarantee a PSD covariance estimator: one can apply the same the-328

orems and logic as outlined above when discussing the PSD property in the context of329

POLO. The PLC correlation estimate, however, is positive semi-definite if the exponent330

is “large enough.” To understand why, we derive lower bounds for the eigenvalues of L(β)331

using Gershgorin’s circle theorem. The theorem implies that an eigenvalue, λ, of L(β)332

satisfies the inequalities333

1− Zi ≤ λ ≤ 1 + Zi, (18)334

where Zi is the sum of the absolute values of the off-diagonal elements of a row (or col-335

umn) of L(β):336

Zi =
∑
i 6=j

|ρ̂ij |β . (19)337

If we pick the exponent β to guarantee that Zi ≤ 1 for all i (all rows of L(β)), then Ger-338

shgorin’s theorem implies positive semi-definiteness of the matrix L(β) and, via the Schur339

product theorem, positive semi-definiteness of the PLC estimator. In our examples, and340

with our adaptive strategy for choosing the exponent β (see Section 3.4.1), we never ran341

into trouble with definiteness of the estimators, but we cannot guarantee that this is gen-342

erally the case.343
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Covariance estimation using powers of ensemble correlations is also at the core of344

a method called ECO-RAP (ensemble correlations raised to a power, Bishop and Hodyss345

(2009a, 2009b, 2007)). In ECO-RAP, only positive, even exponents are considered, which346

ensures that the ECO-RAP estimator is PSD, and that ECO-RAP, embedded within an347

ensemble transform approach, is scalable to high-dimensional problems.348

2.4.3 Soft-Thresholding349

The idea of thresholding is to set small covariances to zero. This can be achieved350

by applying the soft-thresholding function351

Tλ(s) =

{
s− λ sign(s) if |s| > λ

0 otherwise
, (20)352

element-wise to the sampling covariance matrix, so that the soft-thresholding covariance353

estimate is354

[P̂ST]ij = Tλ

(
[P̂]ij

)
. (21)355

Here, λ is a positive scalar. Soft-thresholding has favorable asymptotic properties (Wainwright,356

2019) and is computationally simple to implement, but the soft-thresholding covariance357

estimator is not always PSD (Khare et al., 2019). The parameter λ is usually determined358

via a tuning process. In Section 3.4.3, we describe how to find this parameter adaptively.359

2.4.4 Sparse Covariance Estimation360

Xue et al. (2012) note that soft-thresholding corresponds to the minimizer of the361

cost function362

FSoft Thres.(P) =
1

2
‖P− P̂‖2Fro + λ

∑
j 6=k

|Pjk|, (22)363

where P̂ is the empirical covariance matrix. The authors then describe an algorithm to364

minimize the cost function (22) subject to the constraint that P ≥ εI (i.e., the matrix365

P− εI is PSD), where I is the identity matrix and where ε > 0 is a nuisance parame-366

ter that can be set to a small number (10−5 is suggested). The constraint guarantees that367

the covariance estimator is symmetric positive definite. Moreover, the estimator is sparse368

because large off-diagonal elements are penalized and the 1-norm drives small covariances369

to zero. This means that this technique, which we call sparse covariance estimation, is370

most applicable in situations where one expects that most covariances should be zero.371

We note that sparse covariance estimation requires tuning to find an appropriate reg-372

ularization strength λ. In Section 3.4.4, we explain how to find the regularization strength373

adaptively.374

2.4.5 Graphical Lasso375

Soft-thresholding and sparse covariance estimation find sparse estimates of the co-376

variance matrix, i.e., the underlying assumption is that the majority of the covariances377

are equal to zero. One can also search for a covariance matrix whose inverse is sparse.378

The inverse of the covariance matrix is called the precision matrix, Θ = P−1. The graph-379

ical Lasso (G-Lasso, Friedman et al. (2007)) finds an estimator of the precision matrix380

Θ by minimizing the cost function381

FG-Lasso(Θ) = tr(P̂Θ)− log det (Θ) + λ
∑
j,k

|Θjk|, (23)382

over all PSD matrices Θ. Here, P̂ is the empirical covariance matrix and λ is a regular-383

ization strength, so that large λ promote sparsity of the precision matrix estimate. Note384

that minimizing (23) over all PSD matrices guarantees that the precision matrix esti-385

mate is PSD, which in turn guarantees that the covariance matrix estimate is PSD. On386
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the other hand, a sparse precision matrix does not, in general, guarantee a sparse covari-387

ance matrix, so the underlying assumptions of the G-Lasso and sparse covariance esti-388

mation or soft-thresholding are quite different (Bickel & Lindner, 2012; Morzfeld et al.,389

2019). The G-Lasso can be computationally expensive because (i) the optimization prob-390

lem (23) is non-trivial; (ii) the method requires tuning to find an appropriate λ.391

2.4.6 Convex Sparse Cholesky Selection392

Khare et al. (2019) describe a method called convex sparse Cholesky selection (CSCS),393

which works with the triangular Cholesky factor A of the precision matrix Θ = ATA.394

Specifically, the goal is to find a sparse Cholesky factor by minimizing the cost function395

FCSCS(A) = tr(ATAP̂)− 2 log det(A) + λ
∑

1≤j<i

|Aij |, (24)396

where λ > 0. Due to the Cholesky factorization, the CSCS method guarantees that the397

resulting estimators of the precision or covariance matrices are PSD.398

2.5 Morozov’s Discrepancy Principle399

Morozov’s discrepancy principle is a technique to adjust regularization parameters400

in inverse problems (Morozov, 1984; Anzengruber & Ramlau, 2009). Suppose that we401

are interested in solving the inverse problem whose cost function is402

Fα(x) =
1

2
‖y − f(x)‖22 +

α

2
‖x‖22, (25)403

where y are the data, x is a vector of unknowns, f(·) is a nonlinear function (forward404

model) and α is a regularization parameter. Solving the inverse problems amounts to405

minimizing the cost function. We denote the solution of the inverse problem for a given406

α as x∗α. The discrepancy principle determines the regularization parameter to be the407

largest value of α such that408

‖y − f(x∗α)‖2 ≤ S, (26)409

where the scalar S describes the “noise level” in the problem. For example, if the errors410

in the data are described by Gaussian noise, then S is derived from the variances of that411

noise. Application of Morozov’s discrepancy principle in practice requires that we solve412

a sequence of inverse problems, parameterized by α, to find the regularization param-413

eter that leads to a solution that is compatible with the assumed noise level. These ideas414

can also be used to obtain “regularized” covariance estimates, as we will explain below.415

3 New Methods for Noise-Informed Covariance Estimation416

Our goal is to design a Hadamard product estimator as in (2), which means that417

we must build a correction matrix L. Our design must go beyond assuming a spatial de-418

cay of correlations, because this assumption is not reasonable in many cases. The de-419

sign must also adapt itself to diverse situations in order to minimize tuning. We focus420

on correcting correlations, and we estimate variances directly from the ensemble. This421

is common in NWP (Whitaker & Hamill, 2012; Hodyss, Campbell, & Whitaker, 2016;422

Gharamti et al., 2019) and perhaps intuitive because correlations are naturally scaled423

to the interval [−1, 1].424

3.1 Motivation: Damp Small Correlations More Heavily than Larger425

Ones426

We base the design of our new method on a basic fact about estimating correla-427

tions: estimating small correlations is notoriously difficult, and estimating large corre-428

lations is, by comparison, easy. One way to understand this fact is to generate ensem-429

bles of bivariate Gaussian random variables with varying degrees of correlation and then430
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Figure 1. (a) Standard deviation of ensemble correlation as a function of correlation (adapted

from Figure 1 of Lee (2021b)). (b) POLO inspired correction factor, shown as a function of cor-

relation for different ensemble sizes. (c) Power law correction factor, as proposed by Lee (2021b),

shown as a function of correlation for different choices of the exponent β.

compute the ensemble correlation. Repeating this process many times allows us to com-431

pute the standard deviation in the correlation estimate as a proxy for the error we should432

expect in the correlation estimate (Lee, 2021b; Anderson, 2012). The average standard433

deviation (averaged over independent ensemble draws) as a function of the “true” cor-434

relation is shown in Figure 1(a), for several ensemble sizes. We note that the standard435

deviation, or expected error, in the correlation estimate is large if the “true” correlation436

is small. This means that small correlations are usually not trustworthy, unless the en-437

semble size is huge. Consequently, it is natural to damp small correlations because it is438

nearly impossible to distinguish “true” small correlations from sampling error. Large cor-439

relations, on the other hand, are usually trustworthy, even if the ensemble size is small.440

In fact a correlation equal to one should always be trusted—the standard deviation goes441

to zero as the correlation goes to one. This simple numerical experiment thus tells us442

that a reasonable correlation correction should damp small correlations more heavily than443

large correlations. The larger error in estimating small correlations is a known feature444

of the sampling distribution of the correlation coefficient between Gaussian random vari-445

ables (Flowerdew, 2015).446

POLO reiterates the idea that one can usually “trust” large correlations and that447

small correlations should be damped. To see why, note that if we re-scale the POLO cor-448

rection (14) so that correlations equal to one are uncorrected, we obtain449

[L]ij =
(ne + 1)ρ2ij
1 + ρ2ijne

. (27)450

This re-scaled correction factor is shown as a function of correlation in Figure 1(b), and451

we see that it mimics the ideas described just above. At any ensemble size, small cor-452

relations are subject to a stronger correction than large ones.453

Power law corrections (PLC, Lee (2021b)) and “ensemble correlation raised to a454

power” (ECO-RAP, Bishop and Hodyss (2009a, 2009b, 2007)) are also based on the sim-455

ple fact that one should damp small correlations more severely than larger ones. This456

is illustrated in Figure 1(c), where we show PLC correction factors (|ρ|β) for a few choices457

of β. Moreover, PLC nicely resembles the SEC of Anderson (2012) (compare Figures 1(b),(c)458

with Figure 1 of Anderson (2012)).459

3.2 Noise-Informed Covariance Estimation460

Our new covariance estimator is based on the simple idea that small correlations461

should be reduced more heavily than large correlations, which we implement by adapt-462
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ing ideas from power law corrections. Additionally, we make use of an understanding of463

sampling error (noise) in empirical correlations to make the method adaptive. The use464

of uncertainties leads to the name of the method, “noise-informed covariance estimation”465

(NICE).466

NICE requires some a priori work that will be used to define the noise level within467

the correlation estimates. Following the ideas described in Figure 1(a), we use (offline)468

numerical experiments to determine a standard deviation associated with a “grid” of em-469

pirical correlations (using bivariate Gaussian random variables, see Section 3.1). We then470

form a lookup table so that we can assign a standard deviation to any empirical corre-471

lation via interpolation.472

After the offline work, the first actual step of NICE is to compute the n empirical473

ensemble standard deviations, and the n(n−1)/2 empirical ensemble correlations, which474

we compile in a symmetric n×n correlation matrix ρ̂ (with ones on the diagonal). The475

sum total noise level, which we call Sρ, is defined as follows. Using the lookup table, we476

can assign a standard deviation σρij to each correlation ρ̂ij in the matrix ρ̂, with the un-477

derstanding that the standard deviation is zero if the correlation is one. The noise level478

Sρ is a sum of all noises in the empirical estimate of the correlations:479

Sρ =

√√√√ n∑
i=1

n∑
j=1

(σρij )2. (28)480

In the second step, we use Morozov’s discrepancy principle, applied to the estima-481

tion of correlation matrices. The “data” are the empirical estimates of the correlations482

ρ̂, and the preliminary correlation estimate is483

ρ̂γ = ρ̂◦γ ◦ ρ̂, (29)484

where γ is a positive, even integer. The elements of the matrix ρ̂◦γ are [ρ̂◦γ ]ij = ([ρ̂]ij)
γ ,485

i.e., we raise the empirical correlations element-wise to an even, positive power γ. Mo-486

rozov’s discrepancy principle suggests to pick γ such that487 ∥∥ρ̂− ρ̂γ∥∥Fro ≤ δSρ, (30)488

where the scalar δ is a tunable factor which we usually set to be equal to one (see nu-489

merical examples in Section 4, for cross-covariances in EKI we set δ = 0.5). Specifically,490

we pick the smallest even, positive integer γ∗ that violates the discrepancy principle so491

that492 ∥∥ρ̂− ρ̂γ∗

∥∥
Fro
≥ δSρ, (31)493

This procedure determines an exponent γ∗ that leads to a correlation matrix estimate494

that is PSD (γ∗ is positive and even) and too strongly regularized according to the dis-495

crepancy principle.496

The third and final step linearly interpolates between a correction matrix that is497

too strong (power γ∗) and a correction with a smaller even integer (power γ∗−2), which498

is ostensibly “too weak”:499

L(α) = αρ̂◦γ
∗

+ (1− α)ρ̂◦(γ
∗−2). (32)500

The associated correlation estimate is501

ρ̂α = L(α) ◦ ρ̂. (33)502

The discrepancy principle then determines the interpolation factor α. Specifically, we503

find α∗ to be the largest α ∈ [0, 1] such that504

‖ρ̂− ρ̂α∗‖Fro ≤ δSρ, (34)505
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(a) True covariance (b) Ens. estimate (c) NICE (d) PANIC

Figure 2. (a) The true covariance matrix. (b) Empirical estimate of the covariance matrix.

(c) NICE approximation of the covariance matrix (Section 3.2). (d) PANIC approximation of the

covariance matrix (Section 3.3). All estimation methods use ne = 20 samples. The colormap is

red for −1, white for 0 and blue for 1.

i.e., we determine the largest PSD correction that satisfies the discrepancy principle. The506

resulting, corrected correlation estimate is507

ρ̂nice = L(α∗) ◦ ρ̂, (35)508

which in turn leads to the covariance estimate509

P̂nice = V̂ρ̂niceV̂, (36)510

where V̂ is a n×n diagonal matrix whose diagonal elements are the ensemble standard511

deviations.512

We can summarize NICE in the following steps.513

1. Compute the empirical correlations ρ̂ and empirical standard deviations.514

2. Determine the noise level Sρ via a lookup table and equation (28).515

3. Determine the smallest positive, even integer γ∗ that violates the discrepancy prin-516

ciple (31).517

4. Determine the largest interpolation factor α∗ that satisfies the discrepancy prin-518

ciple (34).519

5. Perform the element-wise correction of the correlation matrix in (35).520

6. Use the corrected correlation matrix along with the empirical variances to com-521

pute the covariance estimate via (36)522

The effects of NICE are illustrated in Figure 2, where it is applied to estimate a523

100× 100 covariance matrix, used by Bishop et al. (2017) to study localization in the524

context of satellite data assimilation (compare our Figure 2(a) to Figure 2 in Bishop et525

al. (2017)). We show the true covariance in Figure 2(a), the empirical estimate in Fig-526

ure 2(b), and the NICE estimator in Figure 2(c). All approximations use the same en-527

semble of size ne = 20. The empirical estimate is noisy (large off-diagonal elements rep-528

resent spurious covariances) and NICE improves on the empirical estimate by damping529

small correlations.530

3.2.1 Implementation Details and Positive Semi-Definiteness531

Step 1 limits the applicability of NICE in extremely high dimensions because we532

assume that all empirical correlations can be computed. As is, NICE can be applied to533

problems with thousands of unknowns (which we demonstrate in numerical experiments),534

but it may be computationally expensive if the dimension is 105 or larger. When used535

in EnKF or EKI, one may be able to push these limitations further if the number of ob-536
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servations is relatively small (see Section 4.3), or if NICE is incorporated within an en-537

semble transform framework (as in ECORAP, Bishop and Hodyss (2009a, 2009b)), or538

serial filters (Anderson, 2001), or hybrid DA.539

Step 2 is trivial, unless the dimension is huge (see comments above about Step 1).540

For Step 3, we first try γ = 2 and check the discrepancy principle. If it is violated, we541

have found γ∗ and move to Step 3. If not, we try γ = 4 and so on. In the examples be-542

low, a correction with γ∗ = 6 (or less) was always sufficient, meaning that we need about543

three (or less) simple iterations to determine γ∗. Moreover, note that if γ∗ = 2 is se-544

lected, then step four interpolates between the element-wise power two and the power545

zero (no correction). For Step 4, we try a small α and gradually increase it (line search)546

until we violate the discrepancy principle, which then defines the “optimal” α∗ to be the547

previous α we just tried. Alternatively, a root-finding algorithm (e.g., the bisection method)548

could be used.549

We note that instead of a lookup table, one can also directly estimate the noise level550

Sρ in (28) using the Fisher transformation. The distribution of the sample correlation551

coefficient ρ̂ij between normally distributed variables is such that, when the Fisher trans-552

formation is taken,553

zij = arctanh(ρ̂ij) =
1

2
log

(
1 + ρ̂ij
1− ρ̂ij

)
, (37)554

we have that for ne > 3,555

zij
approx∼ N

(
arctanh(ρij),

1

ne − 3

)
, (38)556

where ρij is the true correlation (see, e.g., Flowerdew (2015)). Thus, we can estimate557

the standard deviation of ρ̂ij as follows. Taking ρ̂ij as an estimate of ρij , we draw m sam-558

ples zij from the above Gaussian distribution, but replacing arctanh(ρij) with arctanh(ρ̂ij)559

in the mean. Second, we apply the inverse Fisher transformation tanh(zij) to each of the560

samples and compute their standard deviation. This strategy of computing the noise level561

in the correlations is attractive because it is (i) easy; and (ii) it avoids having to pre-compute562

lookup tables. The lookup tables, however, have a slight edge over the Fisher transfor-563

mation approach in terms of their online cost.564

Finally, the positive semi-definiteness of the correlation estimator, ρ̂nice, follows from565

basic facts about Hadamard products. Specifically, raising the elements of a PSD ma-566

trix to an even power preserves definiteness, and the sum of two PSD matrices is PSD.567

The positive semi-definiteness of the covariance estimator Pnice follows from the fact that568

a PSD correlation matrix leads to a PSD covariance matrix.569

3.3 Partially Adaptive Noise-Informed Covariance (PANIC)570

In some problems, e.g., in NWP, one may be in the situation where details of the571

correlation structure are not well-understood, but one may be quite certain that corre-572

lations should decay at far distances. For example, Bishop and Hodyss (2011) use a “par-573

tially adaptive” method which combines an adaptive localization matrix with a tuned574

(non-adaptive) localization matrix that eliminates correlations in the far-field. If the prob-575

lem indeed has this structure (far-field being uncorrelated), then adding this informa-576

tion should increase the accuracy of the estimator because small sampling errors in the577

far-field accumulate to large errors in high-dimensions (Hodyss & Morzfeld, 2023; Morzfeld578

& Hodyss, 2023).579

One can easily combine these ideas with NICE. Since the resulting method requires580

some tuning, it is “partially adaptive” (using the language in Bishop and Hodyss (2011))581

and we call the method PANIC (partially adaptive noise informed covariance). PANIC582

amounts to localizing the NICE estimator. Specifically, we use a localization matrix L(`),583
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that depends on a length scale `, to obtain584

ρ̂panic = L(`) ◦ ρ̂nice. (39)585

Here, the length scale ` is chosen a priori to be “large enough” to be certain that cor-586

relations beyond that length scale are physically implausible. With the correlation es-587

timate we obtain the covariance matrix in the usual way via588

P̂panic = V̂ρ̂panicV̂, (40)589

where V̂ is a n×n diagonal matrix whose diagonal elements are the ensemble standard590

deviations. Figure 2(d) illustrates PANIC and compares it to NICE. We note that the591

PANIC estimator reduces spurious correlations in the far field, but in the near field, PANIC592

and NICE are quite similar by construction. Moreover, the PANIC estimator is PSD be-593

cause NICE generates a PSD covariance estimate which is subsequently localized (Schur594

product with a PSD localization matrix); both steps preserve symmetry and definite-595

ness.596

3.4 Other New Adaptive Covariance Estimation Methods597

Within NICE, we combine an understanding of the noise in empirical correlations598

with Morozov’s discrepancy principle and, for that reason, the method is adaptive and599

tuning-free. This idea extends to other covariance estimation methods as well, and we600

now describe how to make some existing covariance estimation methods adaptive.601

3.4.1 Adaptive Power Law Correction602

PLC requires that one determines the exponent β. In adaptive PLC (Ad.-PLC),603

we use the largest (but not necessarily integer) β that satisfies the discrepancy princi-604

ple605

‖ρ̂− L(β) ◦ ρ̂‖Fro ≤ Sρ. (41)606

Recall that L(β) is a matrix whose elements are the absolute values of the empirical cor-607

relations raised to the power β: [L(β)]ij = |[ρ̂]ij |β . For that reason, Ad.-PLC does not608

guarantee positive semi-definiteness of the covariance estimator (just as PLC). In our609

numerical examples, however Ad.-PLC always leads to PSD covariance estimators, be-610

cause the adaptive strategy picks out exponents that are large enough to ensure that the611

matrix is PSD (see Section 2.4.2).612

3.4.2 Adaptive Localization613

In “traditional” localization, we define a localization matrix by a length scale ` that614

controls the decay of correlations. In adaptive localization (Ad.-Loc), we determine ` to615

be the largest length scale that satisfies the discrepancy principle616

‖ρ̂− L(`) ◦ ρ̂‖Fro ≤ Sρ. (42)617

In our numerical experiments below we use a simple line search over the length scale `618

to find an optimal length scale.619

3.4.3 Adaptive Soft-Thresholding620

Soft-thresholding requires that we determine the thresholding parameter λ in (20).621

In adaptive soft-thresholding (Ad.-ST), we correct correlations and determine the thresh-622

olding parameter λ∗ to be the largest λ that satisfies the discrepancy principle623

‖ρ̂− ρ̂λ‖Fro ≤ Sρ, (43)624
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where ρ̂λ is the empirical correlation matrix thresholded with parameter λ, i.e.,625

[ρ̂λ]ij = Tλ([ρ̂]ij), (44)626

where Tλ(·) is the soft-thresholding function in (20). With λ∗ defined in this way, we ob-627

tain the Ad.-ST covariance estimator by628

PAd.-ST = V̂ρ̂(λ∗)V̂, (45)629

where V is a diagonal matrix whose diagonal elements are the ensemble standard de-630

viations (as in NICE). Note that Ad.-ST, just like soft-thresholding, does not guaran-631

tee a PSD estimate.632

3.4.4 Adaptive Sparse Covariance Estimation633

The sparse covariance estimation algorithm (Xue et al., 2012), which we briefly de-634

scribe in Section 2.4, finds a covariance estimate by minimizing the cost function (22)635

subject to the constraint that the estimator satisfies PASC ≥ εI, which guarantees that636

the covariance estimator is PSD. The optimization problem can be solved efficiently, but637

the optimization problem depends on the regularization parameter λ, which defines the638

amount of sparsity in the estimate.639

Adaptive sparse covariance estimation (ASCE) determines the regularization pa-640

rameter automatically. As noted by Xue et al. (2012), sparse covariance estimation and641

soft-thresholding are closely related, because sparse covariance estimation solves the same642

optimization problem as soft thresholding does, except with an added PSD constraint.643

Thus, we first perform adaptive soft-thresholding to find an optimal λ∗, and then per-644

form a single optimization with this λ∗ to find a sparse correlation estimator ρ̂ASCE (note645

that we work exclusively with correlations, not covariances). The ASCE correlation es-646

timator defines the ASCE covariance estimator by647

PASCE = Vρ̂ASCEV, (46)648

where V is, as before, a diagonal matrix whose diagonal elements are the ensemble stan-649

dard deviations.650

4 Numerical Illustrations651

We compare NICE to a variety of competing methods, some new and some old. Specif-652

ically, we consider the following 13 methods for covariance estimation. We introduce ab-653

breviations for all methods that will be used in the numerical illustrations and in the Fig-654

ures.655

New adaptive methods656

1. Noise informed covariance estimation (NICE, Section 3.2)657

2. Partially adaptive noise informed covariance (PANIC, Section 3.3).658

3. Adaptive power law corrections (Ad.-PLC, Section 3.4.1).659

4. Adaptive localization (Ad.-Loc, Section 3.4.2).660

5. Adaptive soft-thresholding (Ad.-ST, Section 3.4.3).661

6. Adaptive sparse covariance estimation (ASCE, Section 3.4.4).662

Methods for comparision663

7. The uncorrected, empirical estimate (Ens.) serves as the baseline for the improve-664

ment a more sophisticated covariance estimation can achieve.665
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8. POLO uses the correction matrix defined in Equation (14) with the “true” cor-666

relations (see Section 2.4.1). Using POLO in this way describes a best-case sce-667

nario, but we remind the reader that POLO is not a practical algorithm because668

the true correlations are typically unknown (except in some of our synthetic nu-669

merical illustrations).670

9. POLO with ensemble correlations (Ens.-POLO) uses the correction matrix L in (14),671

but the correlations ρij are uncorrected empirical correlations. This is perhaps672

the simplest method of increasing the accuracy of the empirical covariance ma-673

trix, but we will see that NICE and other methods are superior.674

10. Localization (Loc) is implemented via a Gaussian localization whose elements are675

[L]ij = exp(−(dij/`)
2), (47)676

where dij is the distance between grid points i and j and where the length scale677

` is tuned (see below for details). This is an example of the commonly used Hadamard678

product localization in NWP, which relies on the assumption of a spatial decay679

of correlation.680

11. Power law corrections (PLC, Section 2.4.2), with tuned (non-integer) exponent β.681

12. The Graphical Lasso (G-Lasso, Section 2.4) is implemented in Matlab code that682

is available on GitHub (we downloaded the code at https://gist.github.com/samwhitehall/6422598).683

The code yields the G-Lasso estimate of the precision matrix and we subsequently684

compute its inverse to obtain an estimate of the covariance matrix. We tune the685

regularization parameter of the G-Lasso in the same way as we tune localization686

and PLC.687

13. Convex sparse Cholesky selection (CSCS, Khare et al. (2019), see also Section 2.4)688

gives a Cholesky factor of the inverse of the covariance matrix. As in the G-Lasso,689

we use matrix inversion to find the covariance matrix. We tune the regularization690

parameter in CSCS in the same way as we tune localization, PLC or G-Lasso.691

The various covariance estimation techniques and some of their properties are sum-692

marized in Table 1. All techniques, except G-Lasso, CSCS and ASCE can be used on693

non-square correlation matrices (and cross-covariance matrices), which will become im-694

portant in examples with EKI and in the geomagnetic data assimilation example.695

We tune the localization (length scale `), PLC (exponent β), G-Lasso and CSCS696

(regularization parameter) as follows. We perform a (large) number of training exper-697

iments in which we vary the tunable parameter (line search). We then compute an av-698

erage error and declare the parameter that leads to the smallest error as optimal. The699

optimal parameter is used in subsequent experiments. We repeat the tuning for each nu-700

merical example because the optimal tunable parameters are problem-dependent.701

We use all 13 methods in our first set of numerical experiments with simple Gaus-702

sians. Subsequently, we do not use methods that are computationally expensive and that703

do not yield good results in simple experiments. G-Lasso and CSCS, for example, are704

quite slow and do not perform well on our first set of simple tests. Other methods, e.g.,705

PANIC, may not be applicable in subsequent examples because they presume a spatial706

decay of correlation. Finally, POLO (with true correlations) can only be used in synthetic707

scenarios where the correlations are known a priori, which is only true for our first set708

of very simple experiments.709

4.1 Simple Gaussian Tests710

We define a 100 × 100 covariance matrix P and draw ne = 20 ensemble mem-711

bers from the corresponding Gaussian with mean zero. We then use NICE to estimate712
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(a) Gaussian (b) Multiscale (c) Satellite (d) Pressure-Wind

Figure 3. The covariance matrices used in Section 4.1. (a) Gaussian kernel. (b) Multi-scale

kernel. (c) Covariance inspired by satellite data assimilation. (d) Covariance of two spatial fields

(pressure and wind). Color indicates the matrix elements with blue corresponding to one, white

to zero, and red to minus one.

the covariance matrix and measure the error in the estimate by713

Error =

∥∥∥P̂nice −P
∥∥∥
Fro

‖P‖Fro
. (48)714

Since the error is random, we average over ensemble draws, and the average error indi-715

cates an error we should typically expect. We use the same procedure to compute the716

error of other covariance estimation methods.717

We consider four different covariance matrices, illustrated in Figure 3.718

1. Gaussian kernel. A covariance matrix P with a Gaussian kernel is defined by the
elements

[P]ij = exp

(
−1

2

(
dij
`

)2
)
,

where the length scale is ` = 5 and where dij is a periodic distance between the719

grid points i and j. Note that this covariance has the same kernel function as the720

localization matrix used during classical covariance localization (Loc).721

2. Multi-scale kernel. A multi-scale covariance P is defined by the superposition of
two covariance matrices with Gaussian kernels and different length scales:

[P]ij = 0.7 exp

(
−1

2

(
dij
`1

)2
)

+ 0.3 exp

(
−1

2

(
dij
`2

)2
)
.

We chose the length scales to be `1 = 2 and `2 = 20 (Morzfeld & Hodyss, 2023;722

Flowerdew, 2015).723

3. Satellite data assimilation covariance. Bishop et al. (2017) consider the covariance
matrix

[P]ij =

√
ij

n2
exp

(
−1

2

(
i− j
`1

)2
)

+

√(
1− i

n

)(
1− j

n

)
exp

(
−1

2

(
i− j
`2

)2
)
.

as a toy problem for satellite data assimilation. Following Bishop et al. (2017), we724

chose the length scales to be `1 = 1 and `2 = 8. Note that this covariance ma-725

trix is “nonstationary” covariance because the elements of P depend on i and j,726

not just of i− j.727

4. Pressure-wind covariance. We consider two spatially extended fields u (pressure)728

and w (wind), related by a derivative such that w = du/dx. We assume that the729

pressure variable has a Gaussian covariance kernel with length scale ` = 5 and730
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Figure 4. Error (mean and one standard deviation error bars) in covariance matrix estimates

for various covariance types with dimension nx = 100. The ensemble size is ne = 20. (a) Gaus-

sian covariance kernel. (b) Multi-scale covariance kernel. (c) Satellite data assimilation covariance

matrix. (d) Pressure-wind covariance matrix. The bar chart is color coded so that the vanilla

method (Ens.) appears in blue, tuning-free/adaptive methods (Ens.-POLO, NICE, PANIC, Ad.-

PLC, Ad.-ST, ASCE, Ad.-Loc) appear in green, tuned methods (PLC, CSCS, G-Lasso, Loc)

appear in orange, and the infeasible method (POLO) appears in pink (rightmost bar in each

panel).

we construct the covariance of w, as well as the cross covariances between u and731

w, using a finite difference operator (see Morzfeld and Hodyss (2023) for more de-732

tails). We note that if both u and w have 100 components, the overall dimension733

of the problem is nx = 200.734

We apply all 13 covariance estimation techniques listed above for all but the pressure-735

wind covariance, for which we do not apply G-Lasso because the code runs very slowly736

on this 200-dimensional problem. Note that all four covariance matrices we consider here737

have exponentially small correlations in the far field (away from the diagonal), so that738

the use of a localization and PANIC are appropriate. Results are summarized in Figure 4,739

which shows the average error (103 trials) for each method and covariance type along740

with one standard deviation error bars. The numerical experiments support the follow-741

ing conclusions.742

1. For all four covariance types, all covariance estimation techniques are more ac-743

curate than the sample covariance matrix, which always has the largest error.744

2. POLO with ensemble correlations (Ens.-POLO) improves the covariance estimates745

in all four cases, but not to the extent of the other methods we tried.746
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3. NICE, Ad.-PLC, Ad.-ST and ASCE lead to similar errors which are in turn com-747

parable to the errors of a finely tuned PLC. The fact that all four adaptive meth-748

ods perform as well as a related finely tuned method suggests that the discrep-749

ancy principle and the pre-computed noise level are robustly applicable to adap-750

tive covariance estimation.751

4. The adaptive localization (Ad.-Loc) leads to errors almost as small as the errors752

obtained by a finely tuned localization (Loc). This reiterates our previous point,753

i.e., that adapting localization/covariance estimation parameters via a discrepancy754

principle is a robust idea.755

5. The errors of PANIC are slightly smaller than the errors of NICE, which suggests756

that reducing the (non-adaptive) far-field correlations has a positive effect.757

6. Localization (Loc) comes close to the optimal errors obtained by POLO and Loc758

and POLO lead to the smallest errors in all four examples.759

7. G-Lasso and CSCS lead to smaller errors than Ens.-POLO, but the errors are larger760

than for the new adaptive methods. G-Lasso and CSCS also require significantly761

more computations than the competing methods, and we conclude that G-Lasso762

and CSCS are not competitive in these examples. Recall, however that G-Lasso763

and CSCS are designed to estimate the precision matrix (not the covariance ma-764

trix as we do here). CSCS further targets applications with a natural ordering of765

the data.766

During the trials of our experiments we monitored if a covariance matrix estimate767

was PSD or not. When the exponent in PLC was chosen adaptively (Ad.-PLC) or via768

tuning, we encountered no negative eigenvalues, while POLO, Ens. POLO, and Ad.-ST769

often produced non-PSD estimates. This is an interesting result because POLO is the770

estimator with the lowest errors and yet it is not always PSD. Our error metric here, how-771

ever, does not account for this deficiency, violating the PSD property may cause insta-772

bility within EnKFs or EKI (see Section 2.3).773

When we increase the dimension of the problem, the decrease in errors is more dra-774

matic (Hodyss & Morzfeld, 2023). Figure 5 summarizes results obtained for problems775

of dimension n = 1000. We note qualitatively the same results as in the n = 100 di-776

mensional example: NICE, Ad.-PLC, Ad.-ST and ASCE are comparable and, even though777

these methods do not require tuning, they are as good as a tuned PLC. These four meth-778

ods, however, do not lead to errors as small as those obtained by localization (tuned or779

adaptive) or an optimal correction (POLO).780

Finally, note that the correlations decay with distance in all above examples, which781

is exploited by classical (or adaptive) localization, but this correlation structure is dis-782

covered by the adaptive methods (NICE, Ad.-PLC, Ad.-ST and ASCE). Our first set783

of simple tests thus suggests that NICE, Ad.-PLC, Ad.-ST and ASCE can be viable op-784

tions in problems where assumptions about the underlying correlation structure are un-785

available or in problems where one wishes to reduce the tuning costs.786

4.2 Cycling Data Assimilation Experiments with the Lorenz ’96 model787

We perform cycling data assimilation (DA) experiments with the Lorenz’96 model788

(L’96, Lorenz (1996)) and an ensemble Kalman filter (stochastic EnKF implementation,789

Burgers et al. (1998); Evensen (2009, 1994)). Specifically, we apply, within the EnKF,790

the covariance estimation methods NICE, PANIC, Ad.-PLC, ASCE, PLC, Ad.-Loc, lo-791

calization, and a version of POLO that indicates a best-case scenario at the expense of792

requiring a very large ensemble (hence being infeasible in practice). As is common in DA,793

we apply the covariance estimation (NICE, etc.) in conjunction with a covariance infla-794

tion. For the inflation, we simply set795

P← (1 + κ)P, (49)796
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Figure 5. Same as Figure 4, but with n = 1000. Error (mean and one standard deviation

error bars) in covariance matrix estimates for various covariance types with dimension n = 1000.

(a) Gaussian covariance kernel. (b) Multi-scale covariance kernel. (c) Satellite data assimilation

covariance matrix. (d) Pressure-wind covariance matrix. The bar chart is color coded so that the

vanilla method (Ens.) appears in blue, tuning-free methods (Ens.-POLO, NICE, PANIC, Ad.-

PLC, Ad.-ST, ASCE, Ad.-Loc) appear in green, tuned methods (PLC, Loc) appear in orange,

and the infeasible method (POLO) appears in pink (rightmost bars of each panel).

where κ > 0 is an inflation parameter (tuned, see below).797

The tuning of covariance estimation and/or the inflation is as follows. For the adap-798

tive methods (NICE, Ad.-PLC, ASCE and Ad.-Loc), we only need to tune the inflation799

parameter κ. For PANIC, we also only tune the inflation and set the length scale for the800

spatial localization to ` = 10, which is wide enough to expect that correlations beyond801

that length scale are unreasonable. For localization, we tune the length scale jointly with802

the inflation parameter κ. Similarly, for PLC we tune the exponent β jointly with the803

inflation parameter κ. In all cases, the tuning is done by running 2,000 DA cycles, dis-804

regarding the first 200 cycles as “spin-up,” and recording the associated, time-averaged805

root mean square error (RMSE) for each inflation parameter and, if needed, additional806

covariance estimation parameters. The parameters that lead to the smallest time-averaged807

RMSE in the training experiment are subsequently used in another, independent exper-808

iment in which we perform 1,000 DA cycles, disregard the first 100 cycles as spin-up, and809

average RMSE after the spin-up period. Throughout the experiments, we hold the en-810

semble size constant at ne = 20. The state dimension is n = 40 and we observe every811

other variable, i.e., the number of observations is equal to 20. All observation error vari-812

ances are equal to one. Observations are collected every 0.4 (dimensionless) time units813

and the time step of the numerical integrator (a 4th order forward Runge-Kutta method)814

is set to ∆t = 0.05 (this is the same setup as in Hodyss and Morzfeld (2023)).815
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Figure 6. Time-averaged analysis RMSE after spin up along with one standard deviation

error bars in EnKF with various covariance estimation techniques. The bar chart is color coded

so that tuning-free methods (NICE, PANIC, Ad.-PLC, ASCE, Ad.-Loc) appear in green, tuned

methods (PLC, Loc) appear in orange, and infeasible methods (POLO and the large ensemble

EnKF) appear in pink (two bars on the right).

To establish a best-case scenario, we use an EnKF without inflation or localization/816

covariance estimation but with a large ensemble size ne = 500. We further apply POLO817

to an EnKF with ne = 20 (with tuned inflation), but run, in parallel, the large ensem-818

ble size EnKF (ne = 500) to obtain the correlation information. These latter experi-819

ments can indicate what a near-optimal localization may achieve (assuming the large en-820

semble size EnKF reveals the main features of the “true” correlation).821

The results of our numerical experiments are summarized in Figure 6, which shows822

the time average of the analysis RMSE of EnKFs with various covariance estimation/823

localization techniques. The results of the cycling DA experiments follow a similar pat-824

tern as the simpler tests with “static” covariances of the previous section.825

1. NICE, Ad.-PLC, ASCE and the tuned PLC lead to nearly identical errors, and826

the adaptive localization (Ad.-Loc) comes fairly close to the tuned localization (Loc),827

reiterating that the discrepancy principle is robustly applicable to adaptive covari-828

ance estimation.829

2. PANIC reduces the error as compared to NICE, because the assumption of zero830

(or near-zero) correlations in the far-field is valid for L’96. The additional error831

reduction that PANIC achieves over NICE, however, is minor (as in the previous,832

non-cycling examples).833

3. Localization leads to smaller errors than NICE, PANIC, Ad.-PLC or PLC, but834

the errors are still larger than what can be achieved with a large ensemble size or835

a nearly optimal localization (POLO).836

4. POLO based on correlations extracted from a large ensemble leads to smaller er-837

rors than all other techniques, but still cannot reach the low error achieved by a838

large ensemble size. This could be due to the Gaussian assumption underpinning839

POLO, which is not satisfied in cycling DA experiments with L’96, or it could in-840

dicate more general limitations of correlation-based covariance corrections.841

5. We encountered no negative eigenvalues during the cycling DA experiments with842

PLC or Ad.-PLC.843
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We further note that all covariance estimation methods (NICE, PANIC, Ad.-PLC, PLC,844

ASCE, Ad.-Loc, Loc, POLO) lead to much smaller errors than a vanilla EnKF without845

inflation or localization/covariance estimation. The vanilla EnKF diverges and, there-846

fore, leads to macroscopic error.847

Our test with the L’96 model re-iterates our conclusions based on the simpler ex-848

periments of the previous section: NICE, Ad.-PLC and ASCE reduce the error in co-849

variance estimates and, therefore, in a cycling EnKF without making any assumptions850

about the underlying correlation structure and without tuning (only inflation is tuned851

for these methods). The fact that localization leads to smaller errors than NICE, Ad.-852

PLC or ASCE stems from the heavy tuning and, perhaps more importantly, from the853

fact that the underlying correlation structure here is consistent with the assumptions of854

classical localization.855

4.3 Cycling Data Assimilation Experiments with a Geomagnetic Proxy856

Model857

We consider cycling DA experiments with an EnKF on a proxy model for geomag-858

netic data assimilation, described in detail by Gwirtz et al. (2021). The model consists859

of a (chaotic) Kuramoto-Sivashinsky (KS) equation coupled to an induction equation,860

and describes the spatial and temporal variations of a velocity field coupled, via induc-861

tion, to a magnetic field. We consider the model in a 2D configuration on a square and862

discretize the partial differential equations (PDE) by a spectral method (Fourier series),863

which leads to a state dimension of n = 1920 Fourier coefficients. Following Gwirtz et864

al. (2021), we collect observations of Fourier modes of the magnetic field with wavenum-865

bers in the x- and y-directions that are less than or equal to three (for a sum total of866

48 Fourier coefficients). The time interval between two consecutive observations is about867

7% of the model’s e-folding time. Note that the velocity field is entirely unobserved. This868

setup is somewhat indicative of what to expect in a larger numerical dynamo model for869

decadal-scale forecasts of the geomagnetic field (Gwirtz et al., 2021).870

We assimilate the spectral observations using a stochastic EnKF with ensemble size871

ne = 100, essentially repeating the DA experiment reported in Section 4.2 of Gwirtz872

et al. (2021). Since we observe Fourier coefficients, we have no natural notion of a “spa-873

tial” distance, and we therefore resort to NICE and Ad.-PLC to correct the covariances874

within the EnKF. We have tried hard, but failed to find a localization based on a spa-875

tial decay of correlation that reduces errors, see also Gwirtz et al. (2021). Note that the876

state dimension is large (nx = 1920), but the number of observations is small (ny =877

48), so that it is natural to estimate the matrices HP̂HT (48×48) and P̂HT (1920×878

48), rather than the ensemble covariance P̂ (1920×1920). The results reported below,879

however, do not change much if we estimate the ensemble covariance P̂ using the same880

methods. A more detailed discussion of the differences between these two approaches in881

the context of localization can be found in Campbell et al. (2010).882

The apparent absence of correlation structure in covariance matrices within an EnKF883

is described in detail in Gwirtz et al. (2021) (see, e.g., Figures 5a, 5b and 10 of Gwirtz884

et al. (2021)), and is also illustrated in Figure 7, where we plot correlation matrices as-885

sociated with PHT and HPHT during one cycle of an EnKF with a large ensemble size886

ne = 1000. It is clear from the figure that correlations are strong throughout the sys-887

tem, but also that there is no coherent pattern. The lack of discernible correlation pat-888

terns makes estimating covariances from a small ensemble difficult, but, as we will see,889

NICE and Ad.-PLC handle this problem well. Moreover, the correlations change from890

one DA cycle to the next (see Fig. 10 in Gwirtz et al. (2021)), but since NICE and Ad.-891

PLC are adaptive, these methods can capture the time-varying correlation structure within892

this cycling EnKF.893
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Figure 7. Correlations in a cycling EnKF for the geomagnetic model (large ensemble size).

(a) The 48 × 48 correlation matrix associated with HPHT during one cycle (post spin-up) of an

EnKF with ensemble size ne = 1, 000. (b) The correlation matrix associated with PHT , during

one cycle (post spin-up) of an EnKF with ensemble size ne = 1, 000. The correlation matrix asso-

ciated with PHT is truncated at wave number five so that its size is 240 × 48.To make the figure

easier to read, we transpose the correlation matrix associated with PHT . What is important to

note from this figure is that (i) there are strong correlations across various variables represented

in HPHT and PHT ; and (ii) the correlations follow no discernible pattern and, what’s worse,

large and small correlations switch places across various assimilation cycles (not shown, but see

Gwirtz et al. (2021)). Color indicates the matrix elements with blue corresponding to one, white

to zero, and red to minus one.

For our numerical tests, we set the ensemble size to ne = 100 and use NICE and894

Ad.-PLC, along with a 6% covariance inflation of both HPHT and PHT (Gwirtz et al.,895

2021). For each EnKF, we perform 600 DA cycles, with the first 300 cycles being dis-896

carded as “spin-up.” Figure 8 illustrates the results of our numerical experiments for NICE897

(results for Ad.-PLC are similar). Panels (a) and (b) show errors (truth minus a one-898

cycle forecast) as a function of the DA cycle for the velocity field and magnetic field for899

EnKFs with NICE (green). We note the spin-up period and the subsequent stable DA900

phase. The errors in the figure are normalized by the macroscopic error, which is the er-901

ror one would expect without any data assimilation. Panels (c) - (e) illustrate a forecast902

based on an EnKF using NICE for covariance estimation. Shown is the vorticity of the903

velocity field approximately 4.7 e-folding times after the last assimilation cycle (panel (c)),904

along with the NICE-EnKF forecast (panel (d)) and the difference of the two (panel (e)).905

It is notable that the EnKF with a NICE covariance estimation can be used to create906

forecasts that are accurate on practically relevant time scales.907

We compare the performance of an EnKF with a small ensemble size (ne = 100)908

using NICE and Ad.-PLC, to an EnKF with a large ensemble (ne = 1, 000) but with-909

out covariance corrections. In this context, it is important to note that Gwirtz et al. (2021)910

showed that an EnKF without covariance corrections stabilized on this problem with an911

ensemble size of ne = 800. We further consider an EnKF with ne = 100, and with co-912

variance estimation based on a shrinkage estimator, which decreases the magnitude of913

all off-diagonal elements of a covariance matrix. The shrinkage estimator is taken from914

Gwirtz et al. (2021), where it was heavily tuned, and was found to be “the best” covari-915

ance estimation method for this problem.916

The results of our numerical experiments and relevant results reported in Gwirtz917

et al. (2021) are summarized in Table 2, which lists errors in magnetic (observed) and918

velocity (unobserved) fields. We note a similar pattern as in our earlier experiments: NICE919

and Ad.-PLC are as good or better than a finely tuned estimator (Shrinkage) and the920

adaptive covariance estimation methods indeed come quite close to the performance of921

an EnKF with a much larger ensemble size. Moreover, both methods succeed in prop-922

agating information from the observed magnetic field to the unobserved velocity field,923

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Cycling geomag

Spin-up Spin-up

(c) Vorticity of velocity 
Truth

(d)Vorticity of velocity 
NICE forecast

(e) Vorticity of velocity
Forecast error

(a)     Normalized velocity field error (b)     Normalized magnetic field error

Figure 8. Illustration of covariance estimation within a cycling EnKF for a geomagnetic

proxy model. (a) Normalized error in the unobserved velocity field as a function of assimilation

cycle for two covariance estimation methods (NICE and shrinkage). (b) Normalized error in the

partially observed magnetic field as a function of assimilation cycle for two covariance estimation

methods (NICE and shrinkage). (c) Vorticity of the velocity field. (d) Forecast of the vorticity

of the velocity field based on data assimilation with NICE. (e) Forecast error (difference between

panels (c) and (d)).

Error in mag. field Error in vel. field

Shrinkage (tuned) 1.2 2.0
Ad.-PLC 1.2 2.5
NICE 1.0 1.8
Large ens. 0.7 1.1

Table 2. Normalized errors scaled by the respective macroscopic errors and multiplied by 103

for three covariance estimation methods and for an EnKF with a large ensemble applied to a

geomagnetic proxy model.

as indicated by the small errors in the unobserved velocity field. In this example, NICE924

leads to smaller errors than Ad.-PLC (in both fields). Nonetheless, the fact that both925

adaptive methods succeed with essentially no tuning on a problem that is much harder926

and much more high-dimensional than the previous test problems is reassuring and speaks927

to the robustness of the proposed techniques. Moreover, NICE leads to smaller errors928

than the best method thus far reported in the literature (the heavily tuned shrinkage es-929

timator of Gwirtz et al. (2021)).930

Finally, we report (again) that even though Ad.-PLC does not guarantee positive931

semi-definite covariance estimates, all covariances (HPHT ) that were estimated with this932

method in this example turned out to be positive semi-definite.933
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4.4 Inversion of Electromagnetic Data934

We now apply ensemble Kalman inversion (EKI) to a marine electromagnetic (EM)935

inverse problem. The goal of the inversion is to compute resistivity as a function of depth936

from measurements of apparent resistivity and phase, both as a function of period. The937

seafloor magnetotelluric (MT) data (ten apparent resistivities along with ten phases, see938

Figure 10(d)) are collected off-shore of New Jersey (Gustafson et al., 2019; Blatter et al.,939

2019). The data are equipped with error estimates in the form of standard deviations.940

The MT model uses a standard recursion relationship (Ward and Hohmann (2012), see941

also Blatter et al. (2022b, 2022a)), and is discretized with 60 layers, each 20m thick,942

As is common in geophysical inversion, we use a quadratic regularization, i.e., we943

minimize the cost function944

F (x) =
∥∥∥R− 1

2

d (d−M(x))
∥∥∥2
2

+ µ
∥∥∥B− 1

2 x
∥∥∥2
2
, (50)945

where d are the data, x are the unknown resistivities, M is the MT model, Rd is a di-946

agonal matrix that contains the variances associated with the data on its diagonal, and947

where B is a regularization matrix, which we chose to be a covariance matrix with a Gaus-948

sian kernel and length scale ` = 200m. The regularization parameter µ was obtained949

via an Occam inversion (Constable et al., 1987). We note that discovering an appropri-950

ate regularization strength µ in EM inversions is an interesting subject in itself, but for951

the purposes of this numerical demonstration, it is sufficient to think of µ as being given.952

A similar EM inverse problem was considered by Tong and Morzfeld (2023), also in the953

context of localizing EKI.954

To apply EKI to this regularized problem, we recast the cost function as955

f(x) =
∥∥∥R− 1

2 (y − G(x))
∥∥∥2
2
, (51)956

where957

R−
1
2 =

(
R
− 1

2

d 0

0
√
µB−

1
2

)
, y =

(
d
0

)
, G(x) =

(
M(x)

x

)
. (52)958

This “trick” is explained in detail in Chada et al. (2020) where the resulting method is959

called Tikhonov regularized ensemble Kalman inversion (TEKI). Note that the EKI frame-960

work (see Section 2.2) can now be directly applied, but at the expense that the “data-961

data” correlations in Ĉgg are stacks of an ensemble of model outputs and the ensemble962

itself.963

Recall that the EKI iteration requires that we repeatedly estimate the covariances964

Ĉgg and Ĉxg from the ensemble. We correct these covariances using NICE, Ad.-PLC and965

ASCE. For all three methods, our numerical experiments indicate that the tunable pa-966

rameter δ in the discrepancy principle needs to be decreased when we correct the data-967

to-unknown covariances Ĉxg. A factor of δ = 0.5 leads to good results, whereas δ =968

1 leads to TEKI iterations that do not reduce the error as low as with δ = 0.5. The rea-969

son for reducing δ is that a smaller δ leads to a softer correction, which is needed because970

several of the “true” data-to-unknown covariances are small, and it is advantageous to971

keep them, rather than to remove them, in order to propagate information from the data972

to the unknown variables. This effect is illustrated in Figure 9: NICE with a “strong”973

correction (δ = 1) is adequate for the data-data correlations (top row), but inadequate974

for the cross correlations (bottom row).975

Implementing a spatial localization is neither intuitive nor easy in this example,976

but we tried it nonetheless. First, we apply a localization to Ĉgg, although this has lit-977

tle physical motivation. We chose a localization matrix with a Gaussian kernel and a length978

scale ` = 200m after some initial tries (no careful tuning). Performing a localization979

on Ĉxg (60×80) is more tricky. We apply no localization to the first 20 columns of Ĉxg,980
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Figure 9. Correlation matrices corresponding to Cgg (top row) and Cxg (bottom row) during

one step of a TEKI. Panels (a) and (e) show estimates of the correlations for a large ensemble

size. Panels (b) and (f) show estimates of the correlations for a small ensemble size. Panels (c)

and (g) show the NICE estimator with δ = 0.5. Panels (d) and (h) show the NICE estimator

with δ = 1. In panel (a), green squares highlight areas in which correlations are weak, which

NICE with δ = 1 (panel (d)) dampens, but NICE with δ = 0.5 keeps. In panel (e), a green square

highlights an area in which correlations are present, but which are dampened too strongly by

NICE with δ = 1, as in panel (h), whereas NICE with δ = 0.5 “keeps” these correlations. Color

indicates the matrix elements with blue corresponding to one, white to zero, and red to minus

one.

which corresponds to the covariances computed from the ensemble of model outputs. We981

apply a Gaussian localization with length scale ` = 200m to the remaining 60 columns.982

With this same setup, we can also apply an adaptive localization (Ad.-Loc).983

We now run TEKIs with various covariance estimation schemes and covariance in-984

flation (see equation (49)). The inflation depends on the root mean square error (RMSE),985

defined by986

RMSE =

√√√√ 1

nd

nd∑
i=1

(
di − d̂i
σi

)2

, (53)987

where di, i = 1, . . . , nd, are the nd data points, σi are the corresponding observation988

error standard deviations (given as part of the MT data set as the diagonal elements of989

R
1/2
d ); d̂ =M(x̂) are model predictions based on the mean of the TEKI ensemble, x̂.990

The inflation is κ = 15% when RMSE > 1.2, κ = 10% when 1.1 ≤ RMSE ≤ 1.2,991

and we turn the inflation off (κ = 0) when RMSE < 1.1. We did not tune the infla-992

tion systematically.993

We use TEKIs with ensemble size ne = 30 and 200 iterations. For each TEKI,994

we perform 100 independent experiments, each with a different random initial ensem-995

ble and then average the results. Our findings are summarized in Figure 10. Panel (a)996

shows the averaged RMSE for each TEKI. Note that an RMSE of approximately one is997

good because then the TEKI estimate fits the data to within the assumed error level (stan-998

dard deviation of the data). First, we note as before that all covariance estimation meth-999

ods (NICE, Ad.-PLC, PLC, ASCE, Ad.-Loc, Loc) lead to TEKIs which can achieve an1000

acceptably low RMSE and that the adaptive methods are nearly as good as the tuned1001

methods or a TEKI with a larger ensemble (ne = 200). Second, we note that the in-1002

flation already has a large effect on the RMSE: An inflated TEKI reaches an RMSE that1003

is lower than a “vanilla” TEKI without any covariance estimation or inflation.1004
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Figure 10. Summary of results for the electromagnetic inversion. (a) RMSE (see (53)) of var-

ious TEKI implementations. (b) Error with respect to a reference model, obtained via gradient-

based optimization (see (54)) of various TEKI implementations. In panels (a) and (b), the bars

are averages over results obtained by randomizing the initial TEKI ensemble and the error bars

denote one standard deviation. The bars are color coded so that blue labels a “vanilla” TEKI,

green labels a TEKI with an adaptive covariance estimation, orange labels a TEKI with a tuned

covariance estimation, and pink (furthest to the right) labels a large ensemble result. Panel (c)

shows (log) resistivity as a function of depth obtained via Gauss-Newton optimization (blue) and

TEKI with NICE (green). Panel (d) shows the EM data and the model output resulting from

TEKI with NICE (green) and Gauss-Newton method (purple). Averages and standard deviations

are computed from 100 independent numerical experiments.

We further assess the “quality” of our TEKI inversions by comparing the TEKI1005

results to a gradient-based optimization (Gauss-Newton). We measure the difference be-1006

tween the TEKI result and the Gauss-Newton result by the error1007

Ref. Error =
‖res.GN − res.teki‖22

‖res.GN‖22
(54)1008

where res. refers to the (log) resistivity and the subscript GN refers to the Gauss-Newton1009

method and subscript teki refers to a TEKI result. The error with respect to a reference1010

model is shown in Figure 10(b). We see that the reference error behaves very similarly1011

to the RMSE (not surprisingly): The covariance estimation methods all lead to a small1012

reference error and all methods perform similarly. The inflated TEKI (no additional co-1013

variance estimation) leads to a significantly larger reference error than the other TEKIs,1014

although the RMSE is comparable. The two errors can be different here because many1015

different models fit the MT data similarly well. The large reference error indicates that1016

the model obtained with an inflated TEKI is quite different from the reference model.1017

Thus, the covariance estimation is helpful here to “smooth” the models so that they are1018

similar to the reference model, obtained by Gauss-Newton (see also Figure 10(c)).1019
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Finally, Figures 10(c) and (d) show a typical result obtained with TEKI and NICE.1020

Panel (c) shows the (log) resistivity as a function of depth and panel (d) shows the as-1021

sociated fit to the data. For comparison, we also show the resistivity and data fit we ob-1022

tain via Gauss-Newton. The TEKI approximation with NICE is very similar to the Gauss-1023

Newton result for depths up to about 600m, where the data are most informative (small1024

error with respect to the reference model in Figure 10(b)) and the fit to the data for TEKI1025

and Gauss-Newton is nearly identical (small RMSE in Figure 10(a)).1026

4.5 Training Feed-Forward Neural Networks with Time-Averaged Data1027

Our last example is a simplification of a climate sciences problem in which sub-grid1028

parameterizations of a climate model are represented by neural networks (NN). The train-1029

ing strategy for the neural network is to define a loss function in terms of time-averaged1030

data of the climate model and to adjust the weights and biases of the NN to minimize1031

the loss function. The usual back propagation (gradient descent) cannot be used in this1032

context because the “map” from the NN weights and biases to the time-averaged data1033

of the climate model may not be differentiable, or derivatives may be difficult to obtain1034

(Schneider et al., 2024).1035

As a “cartoon” for this difficult problem, we consider a modified Lorenz model (mL’96)1036

as a stand-in for a climate model and we parameterize the forcing of mL’96 by a sim-1037

ple feed-forward neural network. Specifically, the mL’96 model is1038

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + Fi, (55)1039

where x−1 = xnx−1, x0 = xnx
, xnx+1 = x1 (periodicity) and where1040

Fi = 8 + 6 sin

(
4π

nx
i

)
, (56)1041

is a coordinate-dependent forcing. Note that the forcing is the only modification we make,1042

and our modification is inspired by the storm-track model of Bishop et al. (2017). We1043

choose the state dimension to be nx = 100. Figure 11(a) shows a Hovmöller diagram1044

of the mL’96 model and illustrates the time evolution of all nx = 100 coordinates as1045

a function of time. Due to the sinusoidal forcing, we can identify regions of chaotic dy-1046

namics (larger Fi) and regions with more predictable characteristics (smaller Fi).1047

Our goal is to recover the forcing Fi, i = 1, . . . , nx from time-averaged data, which1048

are the means and standard deviations of all nx coordinates over a period of T = 5001049

time units (2nx = 200 data points). The noise in the data are independent mean-zero1050

Gaussians with standard deviations equal to 10% of that of the data points. The neu-1051

ral network that parameterizes the forcing is a feed-forward neural net with one input1052

layer, one hidden layer and one output layer (Goodfellow et al., 2016). The total num-1053

ber of weights and biases in the network is 91, largely due to the size of the hidden layer,1054

which we adjusted so that the neural network is expressive enough to capture the sinu-1055

soidal forcing.1056

EKI requires an initial ensemble which we generate using ideas from transfer learn-1057

ing. We draw ne realizations of a smooth Gaussian process (Gaussian kernel, length scale1058

is ` = 5, (Rasmussen & Williams, 2005)) and then train a NN on each random func-1059

tion draw. Here, we use back-propagation, as is standard in simple function approxima-1060

tion tasks, because the NN is differentiable – the time-averaged data are not. The weights1061

and biases of the NNs we obtain from training on random smooth functions represent1062

the initial ensemble for our EKIs. This simple strategy works well for small ensembles1063

(up to ne = 60), but it leads to instabilities with EKIs with larger ensemble sizes. More1064

sophisticated initialization may make it possible to run EKI with large ne on this prob-1065

lem, but since our focus is on EKI and small ensemble sizes, we do not pursue initial-1066

ization of NNs in EKI further.1067
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Figure 11. (a) Hovmöller diagram of the mL’96 model, showing the time evolution of all nx

coordinates as a function of time. (b) Average RMSE (bars) and standard deviations (error bars)

of several EKI variants, computed over ten independent experiments, each using a different set

of perturbations within the various EKIs. (c)-(e) Results of a typical EKI inversion with NICE

covariance estimation. (c) Recovered forcing, parameterized by an NN, trained with EKI (purple)

and true forcing (orange). (d) Averages of the nx = 100 mL’96 coordinates (error bars) and EKI-

NN reconstructions (purple). (e) Standard deviations of the nx = 100 mL’96 coordinates (error

bars) and EKI-NN reconstructions (purple).

A typical result we obtain with EKI and NICE is illustrated in Figure 11(c)-(e),1068

which shows the recovered forcing (panel (c)) and data fits (panels (d) and (e)). The EKI1069

can train the NN so that the mL’96 model with the NN parameterization fits the data1070

to within the assumed errors. Moreover, the recovered NN captures the sinusoidal vari-1071

ation of the forcing.1072

We now follow our usual procedure and compare EKIs of various flavors: (i) EKI1073

with NICE; (ii) EKI with ASCE; and (iii) EKI with Ad.-PLC. All EKIs apply covari-1074

ance estimation to Ĉgg and Ĉxg, and we again adjust the tuning factor δ to be equal to1075

0.5 when estimating Ĉxg. The EKIs with NICE, ASCE or Ad.-PLC further inflate the1076

covariance matrices with the same strategy as described in Section 4.4. We compare the1077

above EKIs to a vanilla EKI, as well as to an EKI with inflation.1078

The results of our comparison are illustrated in Figure 11(b), which shows the av-1079

erage RMSE of the various EKIs, computed over ten independent experiments, each us-1080

ing different random perturbations during 30 iterations. The EKIs with NICE, ASCE1081

or Ad.-PLC use an ensemble size ne = 40 and we compare their performance to EKIs1082

with or without inflation and ensemble sizes 40 and 60. The results we obtain in this ex-1083

ample are in line with our earlier findings: NICE, ASCE and Ad.-PLC perform very sim-1084

ilarly, reduce the error compared to inflated or vanilla EKIs and lead to a good fit to the1085

data. Moreover, NICE, ASCE or Ad.-PLC result in similar errors as an inflated EKI with1086
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a larger ensemble size (ne = 60). In summary, we can apply EKI to train a neural net-1087

work that parameterizes a chaotic dynamical system, and covariance estimation meth-1088

ods such as NICE, ASCE or Ad.-PLC help with the computational efficiency of the in-1089

version because they enable us to run the EKI with a small ensemble size.1090

5 Summary and Conclusions1091

We consider the problem of estimating a covariance matrix from a small number1092

of samples in the context of Earth science applications. Our focus is on problems in which1093

the correlation structure is unknown, because the problem of high-dimensional covari-1094

ance estimation with a priori assumptions about the correlation structure is essentially1095

solved (i.e. covariance localization in numerical weather prediction).1096

A new method for covariance estimation, called NICE (noise-informed covariance1097

estimation), is built on a single fundamental fact we know about estimating correlations:1098

Small correlations are notoriously hard to compute, while it is relatively easy to com-1099

pute large correlations. We translate this simple idea into an efficient and adaptive co-1100

variance estimation method that guarantees a symmetric positive semi-definite covari-1101

ance estimate.1102

Adaptivity of NICE is achieved by (i) estimating a noise level for the correlation1103

matrix; and (ii) adjusting the correlation corrections so that the resulting correlation es-1104

timate is compatible with the noise level. We also used these ideas to design a few other1105

adaptive covariance estimation methods: adaptive power law corrections (Ad.-PLC), adap-1106

tive localization (Ad.-Loc), adaptive soft-thresholding (Ad.-ST), and adaptive sparse co-1107

variance estimation (ASCE).1108

We compared our new covariance estimation methods to several other methods on1109

a large set of numerical experiments with correlation structures that are not easy to an-1110

ticipate or decipher. Our tests include cycling data assimilation with a geomagnetic proxy1111

model, geophysical inversion of field data, and the training of a feed-forward neural net-1112

work with time-averaged data from a chaotic dynamical system. All new covariance es-1113

timation methods we created perform well on this diverse set of numerical tests and are1114

similar in accuracy to related tuned methods, which speaks for the robustness of our ap-1115

proach to adaptive covariance estimation. NICE, however, has the advantage of guar-1116

anteeing a positive semi-definite covariance estimator at a low computational cost.1117
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