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THE PHI-COEFFICIENT, THE TETRACHORIC CORRELATION

COEFFICIENT, AND THE PEARSON-YULE DEBATE

JOAKIM EKSTRÖM

Abstract. Two measures of association for dichotomous variables, the phi-coefficient

and the tetrachoric correlation coefficient, are reviewed and differences between the two

are discussed in the context of the famous so-called Pearson-Yule debate, that took

place in the early 20th century. The two measures of association are given mathemat-

ically rigorous definitions, their underlying assumptions are formalized, and some key

properties are derived. Furthermore, existence of a continuous bijection between the

phi-coefficient and the tetrachoric correlation coefficient under given marginal proba-

bilities is shown. As a consequence, the tetrachoric correlation coefficient can be com-

puted using the assumptions of the phi-coefficient construction, and the phi-coefficient

can be computed using the assumptions of the tetrachoric correlation construction.

The efforts lead to an attempt to reconcile the Pearson-Yule debate, showing that the

two measures of association are in fact more similar than different and that between

the two, the choice of measure of association does not carry a substantial impact on

the conclusions of the association analysis.

Key words and phrases. Phi-coefficient, Tetrachoric Correlation Coefficient, 2×2 Contingency Tables,

Measures of Association, Dichotomous Variables.
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2 JOAKIM EKSTRÖM

(a) Karl Pearson (1857-1936) (b) George Udny Yule (1871-1951)

Figure 1. Pearson portrait is from Pearson (1938), and is in the public

domain. Yule portrait is from Yule et al. (1971), reproduced with the

kind permission of Hodder & Stoughton.

1. Introduction

The phi -coefficient and the tetrachoric correlation coefficient are two measures of as-

sociation for dichotomous variables. The association between variables is of fundamental

interest in most scientific disciplines, and dichotomous variables occur in a wide range of

applications. Consequently, measures of association for dichotomous variables are useful

in many situations. For example in medicine, many phenomena can only be reliably

measured in terms of dichotomous variables. Another example is psychology, where

many conditions only can be reliably measured in terms of, for instance, diagnosed or

not diagnosed . Data is often presented in the form of 2 × 2 contingency tables. A his-

torically prominent example is Pearson’s smallpox recovery data, see Table 1, studying

possible association between vaccination against, and recovery from, smallpox infection.

Another interesting data set is Pearson’s diphtheria recovery data, Table 2, studying

possible association between antitoxin serum treatment and recovery from diphtheria.

Measures of association for dichotomous variables is an area that has been studied

from the very infancy of modern statistics. One of the first scholars to treat the subject

was Karl Pearson, one of the fathers of modern statistics. In the 7th article in the seminal

series Mathematical contributions to the theory of evolution, Pearson (1900) proposed

what later became known as the tetrachoric correlation coefficient, as well as, Pearson

would later argue, the phi -coefficient. The fundamental idea of the tetrachoric correlation

coefficient is to consider the 2 × 2 contingency table as a double dichotomization of a

bivariate standard normal distribution, and then to solve for the parameter such that

the volumes of the dichotomized bivariate standard normal distribution equal the joint
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Figure 2. Care at the Hampstead fever hospital, London 1872. One of

many hospitals opened for the sick poor by the Metropolitan Asylums

Board in the late 19th century. With the kind permission of work-

houses.org.uk.

probabilities of the contingency table. The tetrachoric correlation coefficient is then

defined as that parameter, which, of course, corresponds to the linear correlation of the

bivariate normal distribution.

According to Pearson’s colleague Burton H. Camp (1933), Pearson considered the

tetrachoric correlation coefficient as being one of his most important contributions to

the theory of statistics, right besides his system of continuous curves, the chi-square test

and his contributions to small sample statistics. However, the tetrachoric correlation

coefficient suffered in popularity because of the difficulty in its computation. Throughout

his career, Pearson published statistical tables aimed at reducing that difficulty (Camp,

Table 1. Karl Pearson’s smallpox recovery data.

Recovery Death

Vaccinated 1562 42 1604

Unvaccinated 383 94 477

1945 136 2081

Pearson’s chi-square test for independence

χ2
obs = 176 p-value < 0.0001

Measures of association

rphi = 0.3 rtc = 0.6

Source: Metropolitan Asylums Board: Small-pox

epidemic 1893. (Pearson, 1900)
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Table 2. Karl Pearson’s diphtheria recovery data.

Recovery Death

With antitoxin 319 143 462

Without antitoxin 177 289 466

496 432 928

Pearson’s chi-square test for independence

χ2
obs = 90 p-value < 0.0001

Measures of association

rphi = 0.3 rtc = 0.5

Source: Metropolitan Asylums Board: Use of Antitoxin

Serum 1896. (Pearson, 1900)

1933), reflecting an interest in promoting a wider adoption of the tetrachoric correlation

coefficient among practitioners.

While the tetrachoric correlation coefficient is the linear correlation of a so-called

underlying bivariate normal distribution, the phi -coefficient is the linear correlation of an

underlying bivariate discrete distribution. This measure of association was independently

proposed by Boas (1909), Pearson (1900), Yule (1912), and possibly others.

The question of whether the underlying bivariate distribution should be considered

continuous or discrete is at the core of the so-called Pearson-Yule debate. In the historical

context of the Pearson-Yule debate, though, it is important to understand that no one

at the time looked upon these two measures of association as the linear correlations

of different underlying distributions, the framework in which both were presented in

the preceding paragraph. On the contrary, according to Yule (1912) the tetrachoric

correlation coefficient is founded upon ideas entirely different from those of which the

phi -coefficient is founded upon. The sentiment is echoed by Pearson & Heron (1913),

which even claims that the phi -coefficient is not based on a reasoned theory, while at

the same time arguing for the soundness of the tetrachoric correlation coefficient. In

fact, the point of view that both measures of association are the linear correlations of

underlying distributions is one of the contributions of the present article.

1.1. The Pearson-Yule debate. George Udny Yule, a former student of Pearson,

favored the approach of an inherently discrete underlying distribution. Yule (1912) is a

comprehensive review of the area of measures of association for dichotomous variables, as

well as a response to Heron (1911), and contains blunt criticism of Pearson’s tetrachoric

correlation coefficient. Regarding the tetrachoric correlation coefficient’s assumptions of

underlying continuous variables, Yule (1912) reads:

Here, I am concerned rather with the assumptions and their applicability.

[...] Those who are unvaccinated are all equally non-vaccinated, and sim-

ilarly, all those who have died of small-pox are all equally dead. [...] From
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this standpoint Professor Pearson’s assumptions are quite inapplicable,

and do not lead to the true correlation between the attributes. But this

is not, apparently, the standpoint taken by Professor Pearson himself.

The example that Yule (1912) referes to is the smallpox recovery data which was promi-

nently featured in Pearson (1900), see Table 1.

Yule (1912) also contains a bibliographical discussion which could be interpreted as a

questioning of whether Pearson really is the originator of some of the ideas that Pearson

claimed credit for. In all, Pearson quite evidently felt offended by some of Yule’s wordings

and was upset by his former student’s publicly expressed, and in Pearson’s opinion

uninformed, misgivings about the tetrachoric correlation coefficient. And from there on,

it is by most accounts fair to say that the debate lost all proportions.

Pearson & Heron (1913) is a scathing, almost 200 pages long reply. The introduction

reads:

The recent paper by Mr Yule calls for an early reply on two grounds, first

because of its singularly acrimonious tone [...], and secondly because we

believe that if Mr Yule’s views are accepted, irreparable damage will be

done to the growth of modern statistical theory. Mr Yule has invented

a series of methods which are in no case based on a reasoned theory,

but which possess the dangerous fascination of easy application [...], and

therefore are seized upon by those who are without adequate training in

statistical theory.

With regards to the smallpox recovery example, Pearson & Heron (1913) replies:

Recovery and death in cases of small-pox were used to measure a con-

tinuous variable - the severity of the attack. [ Moreover, ] vaccination

regarded as conferring immunity is an essentially continuous variable.

With respect to Yule’s contrasting view of the dichotomous variables as inherently dis-

crete, while still unidimensional, Pearson & Heron (1913) rhetorically counter-asks:

Does Mr Yule look upon death as the addition of one unit to recovery?

Pearson may also have taken offense at the fact that Yule wrote a review on one of the

regarded Professor’s favorite topics. Pearson & Heron (1913) mentions Yule’s statistical

textbook on several occasions.

It may be said that a vigorous protest against Mr Yule’s coefficient is

unnecessary. We believe on the contrary that, if not made now and made

strongly, there will be great set-back to both modern statistical theory

and practice. The publication of Mr Yule’s text-book has resuscitated

the use of his coefficient of association; it is now being used in all sorts

of quarters on all sorts of unsuitable data. The coefficient of association

is in our opinion wholly fallacious, it represents no true properties of the

actual distribution, and it has no adequate physical interpretation.
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The exchange became known as the Pearson-Yule debate. The tone was indeed caustic,

many readers likely felt intimidated by the gravity of the accusations, and Camp (1933)

acknowledges that it may have contributed to Pearson’s reputation of being unkind.

Though in the end, it is important to point out, Yule wrote Pearson’s obituary for the

Royal Society (Yule & Filon, 1936) and according to Kendall (1952), Yule was deeply

affected by Pearson’s death.

The unresolved nature of the debate must also have had the negative effect that

practitioners and fellow statisticians alike were left in doubt about what measure of

association to use in different situations. The tone of the debate leaves the reader with

the impression that the choice of measure of association almost is a matter of life and

death. And that is, of course, not quite the case. In fact, one of the conclusions of the

present article is that between the two, the choice does not carry a substantial impact

on the conclusions of the association analysis. So quite on the contrary, as it will be

seen, practitioners have no reason to be anxious. And neither Pearson nor Yule, as will

also be seen, had really any reason to fear for the future of modern statistics.

1.2. Outline of the present article. The core of the Pearson-Yule debate is about

the assumptions implied by the two measures of association. In this article, a close

look at the two measures of association will be taken and the implied assumptions

will be pinpointed and formalized. Pearson & Heron (1913) argued that dichotomous

variables should be considered dichotomizations of continuous underlying variables, while

Yule (1912) argued that they should be considered inherently discrete. In this article,

however, it is shown that under given marginal probabilities there exists a continuous

bijection between the two, which moreover has a fixed point at zero for all marginal

probabilities. Consequently, both measures of association can be computed equally well

no matter whether the variables are considered dichotomizations of continuous variables

or not. As long as one of the assumptions is deemed appropriate, it does not make a

difference which one it is. As a consequence, it turns out, whether to use the tetrachoric

correlation coefficient or the phi -coefficient is in principle a matter of preference only.

The main result of this article, that there exists a continuous bijection between the phi -

coefficient and the tetrachoric correlation coefficient under given marginal probabilities,

has not been found in the literature. Guilford & Perry (1951) and Perry & Michael (1952)

use series expansion of the integral equation of the tetrachoric correlation coefficient to

find an approximate formula of the tetrachoric correlation coefficient as a function of

the phi -coefficient whose errors, according to Perry & Michael, “are negligible for values

of [the approximate tetrachoric correlation coefficient] less than |0.35| and probably

relatively small for values of [the approximate tetrachoric correlation coefficient] between

|0.35| and |0.6|”. Though Guilford & Perry and Perry &Michael consider the relationship

phi -coefficient - tetrachoric correlation coefficient, their result does, however, not imply

a continuous bijection.

In Section 2, the phi -coefficient and the tetrachoric correlation coefficient are intro-

duced, necessary assumptions formalized, and a proof that the tetrachoric correlation
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coefficient is well defined is given. In Section 3, the main theorem of this article is stated

and proved, and its implications are briefly discussed. Thereafter, in Section 4, some

numerical examples and graphs of the relation phi -coefficient - tetrachoric correlation

coefficient are considered. And finally, the article is concluded with Section 5.

2. The two measures of association

2.1. Dichotomous variables. Let X and Y be two dichotomous variables. In the most

general setting, the values of a dichotomous variable cannot be added, multiplied, or-

dered, or otherwise acted on by any binary operator, save projection. The algebraically

most stringent way to model a dichotomous variable is to define it as a random element

X : Ω → C, where the sample space C is an abstract set {c1, c2} with no binary opera-

tions defined. Label the values of the two dichotomous variables positive and negative,

respectively, and let pX and pY denote the probabilities of positive values of X and Y ,

respectively.

One basic question in multivariate statistics is whether the random variables are

statistically independent. For this purpose a new random variable Z : Ω → C2 is

defined by Z = (X,Y ). Let pa, pb, pc, and pd denote the probabilities of Z taking

values (pos., pos.), (pos., neg.), (neg., pos.), and (neg., neg.), respectively. Hence, pa
is the joint probability of positive values of X and Y . The random variable Z is often

illustrated with a 2× 2 contingency table, see Table 3.

As always, Kolmogorov’s axioms imply that the joint probabilities are elements of the

unit interval, I = [0, 1], and that they sum to one. For 2 × 2 contingency tables, this,

together with the identities pX = pa + pb and pY = pa + pc, implies the inequalities

max(pX + pY − 1, 0) ≤ pa ≤ min(pX , pY ).

Moreover, the contingency table is fully determined by the triple

(pX , pY , pa) ∈ I2 × [max(pX + pY − 1, 0),min(pX , pY )]. It is often necessary to sepa-

rate the cases where the marginal probabilities, (pX , pY ), are elements of the boundary

and the interior of the unit square, I2, respectively. Because it is closed, the unit square

is the disjoint union of its boundary and its interior, I2 = ∂I2 ∪ Int(I2).

If X and Y are statistically independent, then the joint probabilities are the products

of the marginal probabilities. Given a sample, independence can be tested with, e.g.,

the Pearson chi-square test. If X and Y are found to be statistically dependent, then

it may be of interest to estimate some measure of association. The linear correlation

is often a first choice of measure of association, but because the sample space of Z has

no additive notion, expected values cannot be computed. The phi -coefficient and the

tetrachoric correlation coefficient, on the other hand, are two measures of association

defined especially for dichotomous variables.

2.2. The phi-coefficient. The phi -coefficient is the linear correlation between postu-

lated underlying discrete univariate distributions of X and Y . Formally, let TX and
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Table 3. Elements of the 2× 2 contingency table.

Y

Pos. Neg.

X
Pos. pa pb pX
Neg. pc pd 1− pX

pY 1− pY

TY be two mappings such that TXX(Ω) and TY Y (Ω) are both subsets of R. For ex-

ample, TX could be a + b1{pos.}, for some real constants a and b, 1 being the indica-

tor function. Furthermore, denote TX(pos.) = α, TX(neg.) = β, TY (pos.) = γ and

TY (neg.) = δ. The technical conditions α ̸= β, γ ̸= δ and sign(α − β) = sign(γ − δ)

are also needed. The phi -coefficient is then defined as the linear correlation of TXX and

TY Y , i.e. rphi = Corr(TXX,TY Y ).

Proposition 1. The phi-coefficient is given by

rphi =
pa − pXpY

(pXpY (1− pX) (1− pY ))1/2
(1)

if 0 < pX , pY < 1, and rphi = 0 otherwise.

Proof. For (pX , pY ) ∈ Int(I2), the result is an easy exercise in algebraic manipulation.

For (pX , pY ) ∈ ∂I2, it follows that pa = pX or pa = pY . Suppose pX = 1, then

pa = pY and pc + pd = 0, and calculations yield Cov(TXX,TY Y ) = 0. If pX = 0, then

pa = pX and a similar calculation yields Cov(TXX,TY Y ) = 0. The same holds if pY = 1

or pY = 0, by symmetry. And so, because random variables with covariance zero are

uncorrelated, it is concluded that rphi = 0. �

Note that without the requirement sign(α−β) = sign(γ−δ) in the definition, a factor

sign((α − β)(γ − δ)) would appear in the right hand side of Equation (1). However, if

the sign equality does not hold, then the two values of one dichotomous variable might

as well have their labels switched, since the labeling of the values of the dichotomous

variable was arbitrary to begin with, and then the sign equality holds. So the condition

is really no restriction. The next result follows.

Corollary 2. Except for its sign, the phi-coefficient does not depend on the choice of

mappings TX and TY .

An implication of Corollary 2 is that proliferation of phi -coefficients is avoided, and

the amount of subjectivism inserted into the phi -coefficient construction is limited. Also,

the phi -coefficient can be considered scale and origin free. The only assumption needed

is that it is possible to, without loss (or distortion) of information, map the values of X

and Y into R. The assumption is formalized as follows.

Assumption A1. The values of the dichotomous variables can without loss of informa-

tion be mapped into the real ordered field, R.
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One possible interpretation of Assumption A1 is that the dichotomous variables X

and Y are inherently discrete and that both values of X and Y , respectively, represent

the same thing but of different magnitudes. Note that Assumption A1 implies an order

relation between the values of X and Y , respectively, i.e. that the variables are ordinal.

Assumption A1 is not appropriate if a dichotomous variable is strictly nominal, e.g.

if the values are Male and Female, Cross and Self-Fertilization, or Treatment A and

Treatment B . Pearson & Heron (1913) call these cases Mendelian.

Another consequence of Corollary 2 is the well known result that for dichotomous

variables, the rank correlation equals the phi -coefficient. This follows since observations

from a dichotomous variable can have at most two distinct (average) ranks, and the rank

correlation is, of course, the linear correlation of the ranks.

It seems as if Yule (1912) thought of the dichotomous variables as Bernoulli dis-

tributed, and that the linear correlation therefore could be computed without any as-

sumptions whatsoever. In the present framework, however, such a random variable

would be given by 1{pos.} ◦ X = 1{pos.}(X), which demonstrates that Assumption A1

is indeed implicit in Yule’s construction. A general word of caution is that the labeling

of the values of a categorical variable by numbers can lead to a range of unnecessary

complications and errors.

For given marginal probabilities 0 < pX , pY < 1, rphi is a polynomial of degree one, so

rphi is a continuous and monotonic function of pa. By the intermediate value theorem,

the range of the phi -coefficient rphi is the closed interval with endpoints given by the

two inequalities

rphi ≥ max

(
−
(

pXpY
(1−pX)(1−pY )

)1/2
,−

(
(1−pX)(1−pY )

pXpY

)1/2
)

rphi ≤ min

((
pX(1−pY )
pY (1−pX)

)1/2
,
(
pY (1−pX)
pX(1−pY )

)1/2
)
.

(2)

A special case is if pX = pY = 0.5, then −1 ≤ rphi ≤ 1. Other examples are if

pX = pY = 0.2 then−0.25 ≤ rphi ≤ 1, or if pX = 0.2 and pY = 0.8 then−1 ≤ rphi ≤ 0.25.

See Figures 3, 4 and 5.

2.3. The tetrachoric correlation coefficient. The tetrachoric correlation coefficient

is the linear correlation between postulated underlying normal distributions of X and Y .

The 2×2 contingency table is thought of as a double dichotomy of a bivariate normal dis-

tribution. One can visualize the bell-shaped bivariate normal density function standing

atop the contingency table. Since the dichotomous variables are both scale and origin

free, and the family of normal distributions is closed under linear transformations, the

normal distribution can without loss of generality be set to standard normal. Changing

the parameter value of the bivariate standard normal distribution will change the shape

of the bell-shaped bivariate normal density function, and hence the probability masses

over the four rectangles that results from the double dichotomization. The tetrachoric

correlation coefficient is the parameter value for which the volumes of the double di-

chotomized bivariate standard normal distribution equal the joint probabilities of the
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contingency table. The parameter value of the bivariate standard normal distribution

equals, of course, the linear correlation of the postulated joint normal distributuion.

Since the contingency table is fully determined by the marginal probabilities and one

joint probability, it suffices to choose parameter value such that, under given marginal

probabilities, one joint probability equals the corresponding volume. Conventionally,

that joint probability is chosen to be the probability pa, corresponding to positive values

of both dichotomous variables. Since a volume of a normal distribution cannot be

expressed in closed form, computing the tetrachoric correlation coefficient amounts to

solving an integral equation.

For marginal probabilities that satisfy 0 < pX , pY < 1, and for joint probabilities pa
such that max(pX+pY −1, 0) < pa < min(pX , pY ), the tetrachoric correlation coefficient

is defined as the solution rtc to the integral equation

pa =

∫ ∞

Φ−1(1−pX)

∫ ∞

Φ−1(1−pY )
ϕ2(x1, x2, rtc)dx2dx1 , (3)

where Φ(x) is the standard normal distribution function and ϕ2(x1, x2, ρ) is the bivariate

standard normal density function. If pa = max(pX + pY − 1, 0) or pa = min(pX , pY ),

then the tetrachoric correlation coefficient, rtc, is defined to be −1 or 1 respectively. If

the inequality 0 < pX , pY < 1 does not hold, then any value of rtc will satisfy Equation

(3). However, from the perspective of presuming statistical independence until evidence

of dependence is found, the tetrachoric correlation coefficient is here defined to be zero.

The integral in Equation (3) is sometimes called the bivariate standard normal sur-

vival function, and denoted Φ̄2(k, l, ρ). Therefore, Equation (3) can be written pa =

Φ̄2(Φ
−1(1− pX),Φ−1(1− pY ), rtc).

There are several theories why Pearson (1900) for the purpose of the above definition

chose the parametric family of bivariate normal distributions. At the time, the nor-

mal distribution was prevalent, and according to Pearson & Heron (1913) there were

no other bivariate distribution that up until the time had been discussed effectively.

Furthermore, Pearson (1900) was primarily interested in applications in the fields of

evolution and natural selection, which is evident from the article’s title, and such vari-

ables were generally assumed to be normally distributed. Pearson’s friend and mentor

Francis Galton even had a philosophical argument why all variables in nature ought to be

normally distributed. Also, the parameter of the parametric family of bivariate normal

distributions happens to be a measure of association, and this in combination with other

nice properties makes the choice of the bivariate normal distribution most convenient.

Ekström (2009) has generalized the definition so that a large class of parametric families

of bivariate distributions can be assumed.

The assumption on which the tetrachoric correlation coefficient rests is formalized as

follows.

Assumption A2. The dichotomous variables are dichotomized jointly normally dis-

tributed random variables.
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In particular, Assumption A2 implies that the values of the dichotomous variables

have an ordering, i.e. that the variables are ordinal. In many of the examples of Pearson

(1900), the dichotomous variables are actual dichotomizations of continuous variables

such as the stature of fathers and sons. In practice, however, such variables are most

often measured with greater precision than two categories, and for dichotomous variables

which cannot be measured with greater precision it is in general not easy to make an

assertion about the distribution of a postulated underlying continuous variable.

If a tetrachoric correlation coefficient exists and is unique for every contingency table,

then the tetrachoric correlation coefficient is said to be well defined. The following theo-

rem is of theoretical and practical importance, and has not been found in the literature.

Theorem 3. The tetrachoric correlation coefficient is well defined.

For the proof of the Theorem 3 the following lemma is needed.

Lemma 4. Let Φ̄2(k, l, ρ) be the bivariate standard normal survival function

Φ̄2(k, l, ρ) =

∫ ∞

k

∫ ∞

l

1

2π(1− ρ2)1/2
exp

{
−x2 + y2 − 2ρxy

2(1− ρ2)

}
dydx

and let Φ(x) be the univariate standard normal distribution function. Then it holds that

lim
ρ↘−1

Φ̄2(k, l, ρ) = max(1− Φ(k)− Φ(l), 0) (4)

lim
ρ↗1

Φ̄2(k, l, ρ) = 1−max(Φ(k),Φ(l)) . (5)

Proof. With the change of variable w = (y − ρx)/(1 − ρ2)1/2 and writing the limits of

integration using indicator functions, it follows that

Φ̄2(k, l, ρ) =

∫ ∞

−∞

∫ ∞

−∞
1{x>k}1

{
w> l−ρx

(1−ρ2)1/2

}ϕ(x)ϕ(w)dwdx ,
where ϕ is the standard normal density function.

First, it is shown that limρ↘−1 1{w>(l−ρx)/(1−ρ2)1/2} = 1{x<−l} almost everywhere.

This is because (l − ρx)/((1− ρ2)1/2) → sign(l + x) · ∞ as ρ ↘ −1, except for the case

l + x = 0. So the equality holds almost everywhere.

Now, because the bivariate standard normal density function is dominated (by 1), it

follows by dominated convergence

lim
ρ↘−1

Φ̄2(k, l, ρ) =

∫ ∞

−∞

∫ ∞

−∞
1{x>k}1{x<−l}ϕ(x)ϕ(w)dwdx .

Since the integral over w equals one, (4) follows. Equation (5) is shown similarly, with

the difference that limρ↗1 1{w>(l−ρx)/(1−ρ2)1/2} = 1{x>l} almost everywhere. �

Now comes the proof of Theorem 3.
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Proof of Theorem 3. If pX = 1, then pa = pY , so the right hand side of Equation (3),

as a function of rtc, has a one-point range, pa = pY , and by the definition a one-point

domain. For pX = 1, pa = pY and rtc = 0, (3) is clearly satisfied. The same holds if

pY = 1, by symmetry. If pX = 0 then pa = 0, and thus the right hand side of Equation

(3), as a function of rtc, has a one-point range and a one-point domain. And the same

holds if pY = 0, by symmetry. So the tetrachoric correlation coefficient is well defined

when (pX , pY ) ∈ ∂I2.

Suppose now that (pX , pY ) ∈ Int(I2). The result that ∂
∂ρ Φ̄2(k, l, ρ) = ϕ2(k, l), see,

e.g., Tallis (1962), is used. Thus, the right hand side of Equation (3) is continuous and

strictly increasing in ρ for all (k, l, ρ) ∈ R2 × (−1, 1). By Lemma 4, Φ̄2(k, l, ρ) is also

continuous at the limit points ρ = ±1.

By the mean value theorem, for fixed values of k and l, Φ̄2(k, l, ρ) is a continuous

bijection from [−1, 1] to the closed interval with endpoints given by inserting the limits

of integration of the right hand side of Equation (3) into expressions (4) and (5), i.e. the

closed interval [max(pX+pY −1, 0),min(pX , pY )]. Since the left hand side of Equation (3)

is an element of the same interval, a unique solution rtc of Equation (3) is guaranteed. �

3. The relation between the two

The following result is the main theorem of this article, by which the function defined

f : rphi 7→ rtc exists and is a continuous bijection under given marginal probabilities.

3.1. Main theorem.

Theorem 5. Under given marginal probabilities, there exists a continuous bijection

f : U → [−1, 1] between the phi-coefficient and the tetrachoric correlation coefficient. U

is the closed interval with endpoints given by (2).

Proof. If (pX , pY ) ∈ ∂I2, the definitions are such that rphi = rtc = 0. So in this case, f

has domain and range equal to {0}, and f(0) = 0. Thus, by the definitions of continuity,

injectivity and surjectivity, f is a continuous bijection.

Suppose now that (pX , pY ) ∈ Int(I2). For convenience, it will be shown that the

inverse, f−1 : rtc 7→ rphi is a continuous bijection. The continuous bijection is treated

as a composition f−1 = g ◦ h, where h is the function h : rtc 7→ pa and g is the function

g : pa 7→ rphi. The function h is given by Equation (3) and g is given by Equation (1).

First, continuity is shown. The function h is continuous on the domain [−1, 1] by the

proof of Theorem 3. Under given marginal probabilities pX and pY , Equation (1) shows

that rphi is a polynomial of degree one, so g is also continuous. Thus f−1 is continuous.

Moreover, the function h is strictly monotonic on the domain [−1, 1] by the proof of

Theorem 3. Since g is a polynomial of degree one, g is also strictly monotonic. Thus,

f−1 is strictly monotonic and thus injective.

To show surjectivity, note first that because f−1 is continuous and the domain is an

interval, by the intermediate value theorem the range f−1[−1, 1] is an interval. The range

is closed since R is Hausdorff and the continuous image of a compact space is compact.
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And because f−1 is monotonic, the endpoints of the interval f−1[−1, 1] are f−1(−1)

and f−1(1), respectively. By the definition of the tetrachoric correlation coefficient,

h(−1) = max(pX +pY −1, 0) and h(1) = min(pX , pY ). So the endpoints of the range are

f−1(−1) = g ◦ h(−1) = g(max(pX + pY − 1, 0)) and f−1(1) = g ◦ h(1) = g(min(pX , pY ))

which equal the endpoints of (2). Thus, it is established that the range f−1[−1, 1] is a

closed interval with endpoints given by (2) which proves surjectiveness and this completes

the proof. �

An expression for the continuous bijection can be found by solving Equation (1) for the

joint probability, pa, and equating with Equation (3), yielding the phi -coefficient, rphi,

as an integral-expression of the marginal probabilities, pX and pY , and the tetrachoric

correlation coefficient, rtc. Furthermore, by a result from Kendall (1941), the integral of

Equation (3) can be written as a so-called tetrachoric series. This expression was also

discussed in Guilford & Perry (1951). Thus, inserting pX , pY and rtc in the so obtained

integral-expression yields rphi.

The use of tetrachoric series for approximating the integral of Equation (3) is, in

all likelihood, the origin of the tetrachoric correlation coefficient’s name. However, the

name is probably of later date since neither Pearson & Heron (1913) nor Yule (1912) used

it. Nowadays the integral of Equation (3) is quite effortlessly computed with computer

assisted numerical optimization, but the name lingers on nevertheless.

The continuous bijection f has an interesting property. For all marginal probabilities,

it has a fixed point at zero, which moreover corresponds to statistical independence of

the dichotomous variables.

Proposition 6. The following statements are equivalent.

(a) The dichotomous variables are statistically independent.

(b) The phi-coefficient is zero.

(c) The tetrachoric correlation coefficient is zero.

Proof. (a) =⇒ (b). Assume that the dichotomous variables X and Y are statistically

independent. Since a 2×2 contingency table is fully determined by the triple (pX , pY , pa),

the statement is equivalent to pa = pXpY . By Proposition 1, it follows immediately that

pa = pXpY implies that the phi -coefficient is zero.

(b) =⇒ (c). Assume rphi = 0. If (pX , pY ) ∈ ∂I2, then rtc = 0 by definition. Otherwise,

if (pX , pY ) ∈ Int(I2), then it follows from Equation (1) that pa = pXpY . Since rtc = 0

is a solution of the integral equation (3) with pa = pXpY , which moreover is unique by

Theorem 3, the tetrachoric correlation coefficient is zero.

(c) =⇒ (a). Assume rtc = 0. If (pX , pY ) ∈ ∂I2, then pa = pXpY follows from the

inequalities max(pX + pY − 1, 0) ≤ pa ≤ min(pX , pY ). Otherwise, if (pX , pY ) ∈ Int(I2),

then pa = pXpY follows from Equation (3). And since a 2 × 2 contingency table is

fully determined by the triple (pX , pY , pa), pa = pXpY is equivalent to the dichotomous

variables being statistically independent. �
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A further consequence of Theorem 5 and Proposition 6 is that the phi -coefficient is

positive if and only if the tetrachoric correlation coefficient is positive, and that the

phi -coefficient is negative if and only if the tetrachoric correlation coefficient is negative.

Proposition 7. The phi-coefficient is positive (negative) if and only if the tetrachoric

correlation coefficient is positive (negative).

Proof. Assume that the phi -coefficient is positive (negative). Then, by Proposition 6 the

tetrachoric correlation coefficient is non-zero and by Proposition 1, (pX , pY ) ∈ Int(I2).

Consequently, the continuous bijection defined f : rphi 7→ rtc, whose existence is guar-

anteed by Theorem 5, can be decomposed into f−1 = g ◦ h, where h is the function

h : rtc 7→ pa, given by Equation (1), and g is the function g : pa 7→ rphi, given by Equa-

tion (3). The function h is increasing in rtc by the proof of Theorem 3 and the function

g is clearly increasing in pa. Thus, the continuous bijection f : rphi 7→ rtc is increas-

ing. And since the bijection has a fixed point at zero for all marginal probabilities, by

Proposition 6, it follows that the tetrachoric correlation coefficient is positive (negative).

Because f : rphi 7→ rtc is a bijection, the converse implication holds as well. �

3.2. Implications. An implication of Theorem 5 is that under given marginal probabil-

ities, whenever the phi -coefficient is known, the tetrachoric correlation coefficient is also

known, and vice versa. Thus, the phi -coefficient can be computed under Assumption

A2 and the tetrachoric correlation coefficient can be computed under Assumption A1.

In that sense neither assumption is more restrictive than the other, at least not in this

particular setup.

In fact, one can argue that Assumptions A1 and A2 are quite similar. Both as-

sumptions imply order relations on the values of the two dichotomous variables. And

both assumptions imply underlying joint probability distributions on the real plane, R2.

Assumption A2 implies the Gaussian probability measure on R2, while Assumption A1

implies a probability measure on R2 which is zero everywhere except on the four point set

{(α, γ), (α, δ), (β, γ), (β, δ)}. And moreover, both the phi -coefficient and the tetrachoric

correlation coefficient are the linear correlations of the postulated underlying bivariate

distributions, and as such both are scale and origin free. The only difference between

the phi -coefficient and the tetrachoric correlation coefficient is the joint probability dis-

tribution postulated.

Furthermore, in the case one of the two assumptions is correct but the other is er-

roneously made nonetheless, the conclusions of the association analysis will not change

appreciably. Both measures of association equal zero if and only if the dichotomous

variables are statistically independent, and the phi -coefficient is positive if and only if

the tetrachoric correlation coefficient is positive. Since there exists a continuous bijec-

tion f : rphi 7→ rtc, the only difference between the two measures of association is that

individual values can be somewhat different, see Figures 3, 4 and 5. But since individual

values of measures of association on the interior of the unit interval, (0, 1), do not carry
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any particular meaning other than that they are in between zero and one, the conclusions

of the association analysis will not appreciably change.

The greatest difference in value between the phi -coefficient and the tetrachoric cor-

relation coefficient occurs for contingency tables where the marginal probabilities are

near zero or one. For example, consider a contingency table (pX , pY , pa) where the joint

probability pa is zero while the marginal probabilities, pX and pY , are small but still

non-zero. For these contingency tables, the tetrachoric correlation coefficient is identi-

cally minus one, while the phi -coefficient may be near zero. In fact, the limit of the

phi -coefficient, as the vector of marginal probabilities (both positive) goes to the zero

vector, is zero. For fixed positive marginal probabilities, however, the phi -coefficient is

strictly negative, in accordance with Proposition 7. For the smallpox recovery data, Ta-

ble 1, the marginal probabilities are approximately pX = 0.8 and pY = 0.9, which in this

setting can be considered relatively near one. The phi -coefficient is rphi = 0.3, and hence

smaller than the tetrachoric correlation coefficient which is rtc = 0.6, see Figure 6. For

the diphtheria recovery data, Table 2, the marginal probabilities are both approximately

pX = pY = 0.5 and therefore Figure 3 illustrates the relation between the two measures

of association.

The limitation in range has sometimes been interpreted as a weakness of the phi -

coefficient in comparison with the tetrachoric correlation coefficient, see, e.g., Guilford

(1956). This point was also made by Pearson & Heron (1913). However, from some

perspectives this interpretation is questionable. For example, consider a sample of fixed

size from two independent dichotomous variables with marginal probabilities that are

small but non-zero. Then the expected value of the number of observations in the cell

(pos.,pos.) may be near zero, and if the number of observations indeed is zero, the

tetrachoric correlation coefficient equals negative unity. The phi -coefficient, while also

negative, is near zero and is therefore better reflecting the population association which

is zero in this example. At the core of this matter is whether zero observations in a cell,

given fixed sample sizes, should be interpreted as evidence of perfect association. The

value of the tetrachoric correlation coefficient implies precisely that, while the value of

the phi -coefficient does not.

4. Numerical examples

Using for example MATLAB, it is possible to compute phi -coefficients and tetra-

choric correlation coefficients for a number of contingency tables. For fixed marginal

probabilities, contingency tables can be generated by choosing some values of the joint

probability pa from max(pX + pY − 1, 0) up to min(pX , pY ). In Figures 3, 4 and 5,

tetrachoric correlation coefficients are plotted against phi -coefficients for marginal prob-

abilities pX = pY = 0.5, pX = pY = 0.2 and pX = 0.2, pY = 0.8 respectively. Using

linear interpolation, an approximation of the continuous bijection f , whose existence is

guaranteed by Theorem 5, is seen.
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Figure 3. Numerical computation of the bijection graph given marginal

probabilities pX = pY = 0.5.
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Figure 4. Numerical computation of the bijection graph given marginal

probabilities pX = pY = 0.2.

In Figure 6, the continuous bijection given the marginal probabilities of Pearson’s

smallpox recovery data, Table 1, is seen. Also, the two measures of association for the

same data set are plotted in dotted lines. In the figure, it is clearly seen that the phi -

coefficient is limited in range given marginal probabilities that are close to zero or one,

and consequently, the phi -coefficient is smaller than the tetrachoric correlation coefficient

for this data set.
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Figure 5. Numerical computation of the bijection graph given marginal

probabilities pX = 0.2 and pY = 0.8.
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Figure 6. Numerical computation of the bijection graph given the mar-

ginal probabilities of the smallpox recovery data (solid line) and the two

measures of association for the same data set (dotted lines), see Table 1.

Numbers are rounded off to one decimal.

In all figures, the continuous bijection is increasing and has a fixed point at zero, as is

stated in Propositions 6 and 7. By Theorem 5, the bijection domain is the interval with

endpoints given by Equation (2) and the range is the interval [−1, 1], something that is

also clearly seen in the figures.
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5. Conclusions

Two measures of association for dichotomous variables, the phi -coefficient and the

tetrachoric correlation coefficient, have been rigorously defined, their assumptions for-

malized, and some key properties derived. The phi -coefficient is the linear correlation

between postulated underlying discrete variables, while the tetrachoric correlation co-

efficient is the linear correlation between postulated underlying normally distributed

variables. Both measures of association imply ordinality of values of the the two di-

chotomous variables.

The assumptions on which the two measures of association rest are quite similar in the

sense that both imply underlying joint probability distributions on the real plane. The

difference is that the tetrachoric correlation coefficient assumption implies the bivariate

normal distribution, while the phi -coefficient implies an inherently discrete distribution

with a four point support.

By the main theorem of this article, Theorem 5, there exists a continuous bijection

between the phi -coefficient and the tetrachoric correlation coefficient under given mar-

ginal probabilities. Thus, the phi -coefficient can be computed using the assumptions of

the tetrachoric correlation coefficient construction and vice versa. Hence, between the

two the choice of measure of association is in principle a matter of preference only.

The reasoning carries over in an attempt to reconcile the famous Pearson-Yule debate.

Because both measures of association can be computed under either assumption, and

since differences in values resulting from making the erroneous assumption will not in

general appreciably change the conclusions of the association analysis, the choice of

measure of association is not crucial. Whether the underlying joint distribution is normal

or discrete does not have a substantial impact on the conclusions of the association

analysis.

Lastly, despite the caustic tone of the Pearson-Yule debate, there is no reason for

practitioners to feel anxious about the choice between the two measures of association.

The two measures of association are in principle similar theoretical constructions and

whatever the choice is, it will not not carry a substantial impact on the conclusions of

the association analysis. And despite Karl Pearson’s fears, the use of any of the two

measures of association will not put the future of modern statistics in peril.
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