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A new genomic framework to categorize 
pediatric acute myeloid leukemia

Masayuki Umeda1,10, Jing Ma1,10, Tamara Westover    1, Yonghui Ni2, 
Guangchun Song1, Jamie L. Maciaszek1, Michael Rusch    3, Delaram Rahbarinia3, 
Scott Foy3, Benjamin J. Huang    4, Michael P. Walsh1, Priyadarshini Kumar1, 
Yanling Liu3, Wenjian Yang    5, Yiping Fan6, Gang Wu    1,6, Sharyn D. Baker7, 
Xiaotu Ma    3, Lu Wang    1, Todd A. Alonzo8, Jeffrey E. Rubnitz    9, 
Stanley Pounds    2 & Jeffery M. Klco    1 

Recent studies on pediatric acute myeloid leukemia (pAML) have revealed 
pediatric-specific driver alterations, many of which are underrepresented 
in the current classification schemas. To comprehensively define the 
genomic landscape of pAML, we systematically categorized 887 pAML into 
23 mutually distinct molecular categories, including new major entities such 
as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories 
were associated with unique expression profiles and mutational patterns. 
For instance, molecular categories characterized by specific HOXA or HOXB 
expression signatures showed distinct mutation patterns of RAS pathway 
genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that 
molecular categories were strongly associated with clinical outcomes using 
two independent cohorts, leading to the establishment of a new prognostic 
framework for pAML based on these updated molecular categories and 
minimal residual disease. Together, this comprehensive diagnostic and 
prognostic framework forms the basis for future classification of pAML and 
treatment strategies.

Acute myeloid leukemia (AML) is characterized by aberrant clonal 
expansion of hematopoietic progenitors with differentiation defects1–3. 
Although pAML shares many clinical and pathological characteristics 
with adult AML, genetic differences have also been appreciated4,5. Nota-
bly, t(11;x), resulting in KMT2A rearrangements, are more common in 
pAML, and adult AML frequently harbors mutations in DNMT3A and 
splicing factor genes, whereas core binding factor (CBF) AMLs are 
common across the age spectrum4. In addition, progress in diagnos-
tic technologies has identified cryptic fusions of NUP98 (ref. 6) and 

GLIS family7 members and UBTF tandem duplications8 enriched in 
pAML. Recent updates in the World Health Organization classifica-
tion9 (WHO5th) and the International Consensus Classification10 (ICC) 
define AMLs with KMT2A and NUP98 rearrangements as distinct disease 
entities. However, recently discovered recurrent driver alterations 
in pAML remain categorized as ‘acute myeloid leukemia with other 
defined genetic alterations’ or ‘AML, not otherwise specified (NOS)’, 
confirming the need to understand both the biological and clinical 
features of pAMLs with these driver alterations.
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(13q14: 2.9%), ETV6 (12p13: 2.1%), NF1 (17q11: 2.0%) and TP53 (17p13: 
2.0%), and focal gains involving AKT3 and FH (1q43: 3.0%) or ABCA trans-
porters (17q24: 1.9%) were also identified. Genomic random interval 
(GRIN) analysis26 identified 142 altered genes with statistical signifi-
cance (Fig. 1e and Supplementary Table 10). Consistent with previous 
reports, RAS-related mutations or FLT3-ITD with variable variant allele 
frequencies (VAFs) were highly co-occurring with class-defining altera-
tions (Fig. 1e and Extended Data Fig. 2a,b). By contrast, mutations in 
UBTF or CBFB were exclusively found in cases without a defining altera-
tion, as previously shown8,27, suggesting that these alterations define 
subgroups with distinct molecular characteristics.

Based on these collective data, we classified pAMLs using cur-
rent WHO and ICC systems, and the frequencies of major classifica-
tions are consistent with cytogenetic profiles of European pAML 
cohorts28,29 (Fig. 1e,f, Extended Data Fig. 1g and Supplementary  
Fig. 1). In our pAML cohort, 68.5% of cases had specified genetic altera-
tions in WHO5th, 10.7% of cases were defined as ‘acute myeloid leukemia, 
myelodysplasia-related’ (AML-MR) and the remaining cases with rare 
fusions or no defining alteration were classified as ‘acute myeloid leuke-
mia with other defined genetic alterations’ (15.8%) or by differentiation 
stages (3.4%). By contrast, 95.0% of adult AMLs can be classified either 
by specific gene alteration (67.1%) or as AML-MR (27.8%)30, emphasizing 
the need for a more comprehensive classification of pAML based on 
its unique biology.

Molecular categories defined by unique gene alterations
We and others have shown that class-defining driver alterations are 
associated with specific expression patterns8,31 or that allele-specific 
and outlier expression of MECOM32,33, BCL11B (ref. 34) or MNX1 (ref. 35) 
by SVs can define subtypes. We then integrated the mutational land-
scape with expression profiling to define granular molecular categories 
for pAML (Supplementary Table 11). Uniform manifold approximation 
and projection (UMAP) analysis of transcriptional data revealed tight 
clustering of classes defined in WHO5th, including RUNX1::RUNX1T1, 
CBFB::MYH11 and CEBPA mutation, suggesting subtype-specific expres-
sion patterns (Fig. 2a and Extended Data Fig. 3a). We noted that clus-
tering is also driven in part by differentiation status represented by 
marker gene expression, French–American–British (FAB) classifica-
tion or cellular hierarchy36 (Extended Data Fig. 3c–e), contributing 
to heterogeneity within large categories such as KMT2Ar or NUP98r  
(Fig. 2a and Extended Data Figs. 3a and 4a). Diffusion maps37 confirmed 
similar patterns of clustering and differentiation status (Extended Data 
Fig. 3a–e). Cases with NPM1 fusions or indels outside the C terminus38 
clustered with canonical NPM1 mutations, and we assigned them to the 
NPM1 category (Extended Data Fig. 4a); similarly, we assigned a RAR 
family fusion, TBL1XR1::RARB, to the acute promyelocytic leukemia 
category based on expression similarities with PML::RARA cases. Among 
the remaining cases without class-defining alterations, we found that 
the following alterations were also mutually exclusive and thus defined 
them as independent molecular categories: UBTF tandem duplications8, 
GLIS family (GLIS2-3) fusions7, fusions of FET and ETS family genes39,40 
(for example, FUS::ERG), BCL11B SVs34 (Supplementary Table 12),  

Accumulation of clinical outcomes associated with gene altera-
tions enabled risk stratification of adult AML according to detailed 
mutational profiling, such as the 2022 European LeukemiaNet risk 
stratification11. By contrast, risk stratification for pAML is still devel-
oping, and various strategies are utilized in clinical trials12–15. This is 
partly due to genetic differences between adult and pAML4, the rarity 
of the disease and a shortage of clinical outcome studies related to 
genetic alterations. To clarify the genomic landscape of pAML and 
its association with clinical outcomes, we characterized 887 cases of 
pAML by transcriptome and genome profiling. These analyses resulted 
in 23 molecular categories, defined by mutually exclusive gene altera-
tions and specific expression profiles that show unique biological and 
mutational characteristics. These molecular categories have predictive 
value regarding clinical outcomes that can be leveraged to establish a 
framework for diagnosis and outcome prediction.

Results
Comprehensive genetic characterization of pAML
pAML samples were collected from previously published studies4,7,8,16–25 
or at St. Jude Children’s Research Hospital, resulting in a cohort of 
887 unique pAMLs either at diagnosis (n = 783, 88.3%) or at relapse 
(n = 104, 11.7%) (Fig. 1a, Extended Data Fig. 1a and Supplementary 
Table 1). This pAML cohort showed a wide age distribution at diagno-
sis (range 0–23.5 years; median 9.3) including young adults, with peaks 
in infancy and adolescence (Extended Data Fig. 1b). We first assessed 
the genetic landscape of these AMLs using RNA sequencing (RNA-seq) 
data to detect fusions, internal or partial tandem duplications (ITD/
PTD), copy-number variants (CNV), as well as single nucleotide vari-
ants (SNV) and insertions and deletions (indels) (Fig. 1a–e, Extended 
Data Fig. 1c–e and Supplementary Tables 2–9). For 665 cases (74.9%) 
with either whole-genome sequencing (WGS, 59.2%) or whole-exome 
sequencing (WES, 44.0%), we also collected processed data from pub-
lications or performed de novo calling for newly included samples, 
which validated 97.3% of calls from the RNA-seq pipeline8 (Fig. 1a and 
Extended Data Fig. 1f).

Pathogenic fusions or structural variants (SVs) were identified in 
627 patients (70.7%). Most of these are recurrent and class-defining in 
pAML (for example, KMT2Ar, 20.3%; RUNX1::RUNX1T1, 12.4%) (Fig. 1b 
and Supplementary Table 6), whereas we also found fusions recurrent 
in other leukemias, such as SET::NUP214 (n = 1) or SFPQ::ZFP36L2 (n = 1). 
Mutational profiling revealed 1,924 pathogenic or likely pathogenic 
somatic mutations in 749 (84.4%) patients, including class-defining 
NPM1 (67 patients, 7.6%) and CEBPA (49 patients, 5.5%) mutations  
(Fig. 1c and Supplementary Tables 7 and 8). Most mutations were in 
genes involved in signaling pathways (n = 865), epigenetics (n = 312) 
and transcription factors (n = 432). RAS pathway mutations were most 
frequent, with 37.5% (333 of 887) having at least one RAS-related muta-
tion and 21.3% of those (71 of 333) having mutations in multiple RAS 
pathway genes. Gains of chromosome 8 (7.3%) or chromosome 21 (6.2%) 
and loss of the long arm of chromosome 5 (5q-: 1.5%) or chromosome 7  
(4.8%) were commonly observed (Fig. 1d, Extended Data Fig. 1e and 
Supplementary Table 9). Enrichment of focal deletions involving RB1 

Fig. 1 | Comprehensive genetic characterization of pAML. a, Study cohort of 
pAML (n = 887) and study design. b, Recurrent pathogenic or likely pathogenic 
in-frame fusions (blue) and SVs (gray) detected in the entire cohort (n ≥ 3). 
Fusions included only in-frame fusions, and SVs included out-of-frame fusions 
resulting in loss of the C terminus of the protein and alterations detected 
from WGS data using CREST. c, Recurrent pathogenic or likely pathogenic 
somatic mutations (n ≥ 15). Colors represent types of mutations. Bars in b and 
c represent the total number of alterations in the cohort. d, Results of GISTIC 
analysis for focal chromosomal events (shorter than 90% of the chromosome 
arm). The left-hand panel shows the enrichment of focal gains (red) and the 
right-hand panel shows the enrichment of focal losses (blue). Green lines show 
a significance threshold for q values (0.25). Representative genes in enriched 

regions are highlighted. e, Genomic landscape and WHO classification of pAML. 
Representative genes from GRIN analysis or defining alterations are shown. 
Colors represent types of mutations. Numbers of gene alterations are shown 
next to gene names, and the lines of the box plot for VAFs represent the 25% 
quantile, median and 75% quantile. The upper whisker represents the higher 
value of maxima or 1.5× the interquartile range (i.q.r.), and the lower whisker 
represents the lower value of minima or 1.5× i.q.r. f, Summary of the WHO 
classification (WHO5th) of the entire cohort. A box with solid lines indicates 
categories with defining driver alterations. Boxes with dashed lines indicate 
subgroups with specified gene alterations, myelodysplasia-related or other 
defined genetic alterations. NA, Not available.
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PICALM::MLLT10, KAT6A rearrangements, MNX1 SVs41, RUNX1 fusion 
with CBFA2T2-3 (ref. 42) (RUNX1::RUNX1T1-like) and newly reported 
CBFB insertions (CBFB-GDXY)27 (Fig. 2a–c). GATA1 fusions (for exam-
ple, MYB::GATA1) or mutations, rearrangements involving HOX cluster 
genes and KMT2A-PTD could rarely co-occur with the above-mentioned 
category-defining alterations (Fig. 2b). However, they were still pre-
dominantly found in cases without category-defining alterations and 
assigned to these categories only with consistent expression patterns 
and without previously explained driver alterations. By contrast, defin-
ing mutations of AML-MR in WHO5th were overall rare (range 0.1–2.1%), 
frequently co-occurred with other defining alterations (for example, 
EZH2 in PICALM::MLLT10), and could be found in various clusters 
rather than as a distinct group (Extended Data Fig. 3a,f), leading to 
its exclusion as a defining category for pAML. In addition to 11 catego-
ries defined by WHO5th, this pAML classification system with 12 new 
molecular categories captures 91.4% of pAML cases, contrasting to 
68.5% by WHO5th (Fig. 3).

Biological characterization of the molecular categories
Establishing updated molecular categories for pAML allowed for 
the investigation of clinicopathological associations. Categories 
with acute megakaryoblastic leukemia (AMKL) or acute erythroid 
leukemia (AEL) phenotypes are clearly enriched in infants, whereas 
CBF leukemias and mutation-defined leukemias (for example, UBTF, 
NPM1, CEBPA) were enriched in adolescents and young adults (Fig. 4a 
and Extended Data Fig. 4b). Notably, among KMT2A fusion partners, 
MLLT3 and MLLT10 were found in both monocytic AML and AMKL; 
however, these fusions preferentially show AMKL phenotypes in 
infants, suggesting that AMKL phenotypes are defined both by driver 
alterations and by developmental stages as discussed previously43,44. 
Overall, however, each molecular category showed variable morpho-
logical features represented by FAB classification, except categories 
with acute promyelocytic leukemia (M3) or AMKL (M7) phenotypes. 
Likewise, complex karyotypes, which also define AML-MR9, were fre-
quently observed in MNX1, HOXr and PICALM::MLLT10 categories. In 
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Fig. 2 | Molecular categories defined by mutually exclusive gene alterations. 
a, UMAP plot of the entire pAML cohort (n = 887) and cord blood CD34+ cells  
(normal controls: n = 5) using the top 315 variable genes. The colors of each dot 
denote the molecular categories of the samples. Representative category names 
are shown, and large clusters enriching specific categories are high lighted in 
circles (pink: NUP98::NSD1, NPM1, UBTF, DEK::NUP214, KMT2A-PTD; green: KMT2Ar 
and KAT6Ar; yellow: categories with acute megakaryocytic or erythrocytic 

expression; blue: MECOM, MNX1, ETS family, PICALM::MLLT10, BCL11B).  
b, Heatmap showing frequencies of defining gene alterations represented by 
color. Statistical significance was assessed by two-sided Fisher’s exact test to 
calculate P values of co-occurrence, followed by Benjamini–Hochberg adjustment 
for multiple testing to calculate q values (*P < 0.05, **q < 0.05). c, Definition of 
molecular categories and diagnostic workflow. Molecular categories not defined 
in WHO5th are highlighted in red. APL, acute promyelocytic leukemia.
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addition, many of these category-defining alterations are cytogeneti-
cally cryptic (for example, NUP98::NSD1 or GLIS family) or somatic 
mutations (for example, CEBPA, UBTF or GATA1), highlighting the need 
for sequencing approaches for the appropriate molecular diagnosis 
of pAML.

We next explored the association between defining alterations 
and cooperating mutations, because some cooperating mutations 
co-occur and act synergistically with specific driver events4,45. Signal-
ing alterations were broadly found in 66.3% of patients, although each 
mutation showed distinct patterns among molecular categories with 
variable VAFs (Figs. 1e and 4b). Among RAS mutations, NRAS muta-
tions were broadly found and enriched in CBFB::MYH11 and NPM1, 
whereas KRAS mutations were enriched in KMT2Ar and DEK::NUP214. 
Similarly, FLT3-ITD showed strong enrichment in NUP98r, NPM1, UBTF, 
KMT2A-PTD and BCL11B, accounting for 66.2% of FLT3-ITD+ cases, 
whereas 75.5% of FLT3-TKD (tyrosine kinase domain) were found in 
KMT2Ar, NPM1 and CBF-AMLs. Similarly, WT1 mutations were specifi-
cally enriched in NUP98r, UBTF and BCL11B, and highly co-occurring 
with FLT3-ITD (Fig. 4b).

We further evaluated gene expression signatures among molecu-
lar categories. Top variably expressed genes across the cohort are 
involved in development, differentiation or inflammation (Extended 
Data Fig. 5a and Supplementary Table 13), consistent with previous 
reports that the heterogeneity of AML can be partly attributed to differ-
entiation status3,36,46. Gene set enrichment analysis (GSEA) confirmed 
known expression profiles of major categories (Fig. 4c and Supplemen-
tary Table 14), whereas the new categories proposed in this study show 
similarities and differences with canonical categories. For example, 
UBTF showed expression signatures similar to NPM1 and DEK::NUP214, 
whereas KAT6Ar was similar to KMT2Ar, suggesting shared biological 
mechanisms. In addition, genes involved in signaling pathways, immu-
nity or drug resistance showed unique enrichment across categories. 
Weighted gene coexpression network analysis (WGCNA)47 confirmed 
characteristic patterns of active gene networks associated with specific 
biological functions in each category (Extended Data Fig. 5b and Sup-
plementary Table 15).

Given recent adult AML-focused studies uncovering the associa-
tions of cellular stemness48,49 or hierarchy36,50 with prognosis or drug 
response, we investigated these features in our pAML dataset. We 
observed unique patterns of stemness and cellular hierarchy scores 
in each category. Molecular categories known to have a good progno-
sis (RUNX1::RUNX1T1, CBFB::MYH11 and CEBPA) tended to have high 
granulocyte–monocyte progenitor (GMP) scores (median >0.20)  
(Fig. 4d and Extended Data Fig. 5c), except for the low GMP scores 
(median 0.078) and mid-high stemness-related scores in NPM1. Also, 
KMT2Ar, associated with poor prognosis, showed low stemness-related 
scores and variable differentiation-related scores. Also, various prog-
nostic scores (for example, LSC17 (ref. 48), iScore46) correlated with 
molecular categories (Extended Data Fig. 5d), collectively demonstrat-
ing that molecular categories are associated with unique pathophysi-
ological characteristics.

Superfamilies defined by HOX gene expression profiles
These molecular categories also showed intercategorical similarities, 
forming large clusters of AMKL/AEL, immature AML, CBF leukemias, 
CEBPA and two clusters demarcated by HOXA and HOXB gene expres-
sion (Fig. 5a,b). The cluster with high HOXA gene expression and low 
HOXB gene expression consisted mainly of KMT2Ar and KAT6Ar (herein 
referred to as the HOXA group), and the other cluster characterized by 
high expression of both HOXA and HOXB genes included NPM1, NUP98r, 
UBTF, KMT2A-PTD and DEK::NUP214 (HOXB group), which are gener-
ally associated with poor prognosis except for NPM1 (Extended Data  
Fig. 6a). Overall, HOXA and HOXB groups, not including those with 
AMKL features, account for 18.5% and 23.3% of the cohort, respectively. 
Differential gene expression analyses revealed that HOXB pAMLs had 
high expression of stemness-related genes (PRDM16 and NKX2-3) or 
differentiation genes (CD96 and WT1) (Fig. 5c,d and Supplementary 
Table 16). By contrast, HOXA group cases showed high expression 
of monocyte or signaling-related genes. GRIN analysis also revealed 
striking differences in mutational patterns between HOXA and HOXB 
groups (Fig. 5e,f and Supplementary Table 17). FLT3 was significantly 
altered in both groups but with different mutation types; FLT3-TKD 
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was dominant in the HOXA group and FLT3-ITD was prevalent in the 
HOXB group, accounting for 67.5% of FLT3-ITD+ patients (Fig. 5f and 
Supplementary Fig. 6b). WT1 mutations were preferentially found in 
the HOXB group (57.6%). FLT3-ITD (ref. 51 and WT1 mutations16,52 have 
been associated with poor prognosis; however, these data suggest 
that FLT3-ITD and WT1 mutations highly confound with specific driver 
alterations that converge on a common expression signature. KRAS 
mutations were strongly associated with the HOXA group and were rare 
in the HOXB group (20.7% and 3.9%, respectively). In comparison, NRAS 
mutations were prevalent in both HOXA and HOXB groups (20.7% and 
17.4%) (Fig. 5f); however, p.G12 or p.G13 mutations were comparable in 
both categories, whereas p.Q61 mutations were more frequent in the 
HOXA group (Extended Data Fig. 6b). It is well-established that each 
RAS mutation has preferential distribution among cancer subtypes53. 
Expression levels or differences in the downstream signaling of RAS 
proteins are postulated as the possible mechanisms, and similarly, 
between FLT3-ITD and TKD54, whereas these genes were homogenously 
expressed at the RNA level (Extended Data Fig. 6b). Despite varied clini-
cal associations, these molecular category-dependent transcriptional 
and mutational patterns may reflect shared biology within each HOX 
group55, and the different signaling dependencies may suggest targeted 
therapies guided by these biological insights.

Along with the global distinction between HOXA and HOXB groups, 
we also noted heterogeneity within each HOX cluster. The HOXA cluster 
consisted of subclusters characterized by MECOM or LAMP5 expression 
(Extended Data Fig. 7a–c and Supplementary Table 18), harboring 
most KMT2Ar cases (136 of 180; 75.6%). Notably, the largest subcluster 
expressed XAGE1 family genes specifically (Extended Data Fig. 7b,c), 
which encode testis-specific proteins postulated as therapeutic targets 
in various tumors56. Also, the remaining KMT2Ar cases were clustered 
with other categories with HOXB expression or AMKL less frequently. 
These clustering patterns were associated with age or fusion partners 
(for example, KMT2A::ELL in the HOXB cluster), but the associations 
were not exclusive (Extended Data Fig. 7d,e). Among KMT2Ar, fusion 
partners and MECOM expression have been reported to be prognostic; 
however, our data suggest considerable heterogeneity in expression 
patterns not explained by only fusion partners or MECOM expression. 

The HOXB cluster showed similar heterogeneity represented by cellular 
hierarchies (Extended Data Fig. 7f–h). These heterogeneities were occa-
sionally associated with molecular categories or somatic mutations 
but were not exclusive, with possible factors, including cell-extrinsic 
factors46 to be investigated.

Molecular basis of AML without defining gene alterations
Seventy-six ‘Unclassified’ cases remained after assignment to these 23 
molecular categories. Twenty-one cases had recurrent driver altera-
tions previously reported in the literature (Fig. 6a and Supplementary 
Table 19), including rare in-frame RUNX1 fusions (n = 2: USP42; n = 1: 
EVX1 and ZEB2) and MLLT10 fusions (n = 1: DDX3X, TEC and MAP2K2), 
which require a larger cohort for further categorization. Also, in addi-
tion to high-allelic burden JAK2 p.V617F mutation (n = 1), we found 
candidate driver somatic mutations of MLLT1 p.C119SPAR (n = 1) and 
H3F3A p.K28M (n = 1) in cases in HOX clusters (Fig. 6a and Extended Data  
Fig. 8a). These mutations resemble recurrent mutations in other pedi-
atric cancer types with HOX gene expression and immature phenotypes 
(MLLT1 p.C118QPPG in Wilms tumor57 or H3F3A p.K28M in high-grade 
glioma58), postulating a shared mechanism of tumorigenesis among 
these pediatric neoplasms.

Pathogenic alterations were not identified in 9 of the remain-
ing 55 Unclassified cases, partly attributed to the lack of WGS data 
for 8 of these cases. The rest had at least one pathogenic, but not 
subtype-defining alteration enriched in ETV6, RUNX1, TP53 and 
myelodysplasia-related genes in addition to complex karyotypes or 
monosomy 7 (Fig. 6b,c and Supplementary Tables 19 and 20). Of note, 
AML-MR defining karyotypes (complex karyotypes or monosomy 7) or 
somatic mutations were found broadly in various clusters (Extended 
Data Fig. 8b–d), suggesting that these alterations do not define spe-
cific categories. By contrast, ETV6 and RUNX1 alterations not defining 
established categories were found preferentially in clusters associated 
with FAB M0/1 or immature or T cell-like signatures (Fig. 6d, Extended 
Data Fig. 8b–d and Supplementary Table 21), as previously described59. 
Although various ETV6 or RUNX1 alterations can be class-defining  
(for example, RUNX1::RUNX1T1) or co-occur with other defining altera-
tions, those in the Unclassified category are commonly loss-of-function 

Fig. 4 | Clinical and molecular profiles of molecular categories. a, Clinical 
background of molecular categories. (Upper) Violin plots showing age 
distribution within each molecular category. Colors show the molecular 
categories. Large dots and bars represent the median and the 2.5–97.5 percentile 
range, respectively. Small dots represent the ages of individuals (n = 887). 
(Lower) Frequency of FAB classification (blue bars) and karyotype (gray bars) 
in individual categories. b, Mutational heatmap showing mutation frequencies 
in each molecular category. The color of each panel represents the frequency 
of a mutation in each molecular category, and the statistical significance was 
assessed by two-sided Fisher’s exact test to calculate P values of co-occurrence 
followed by Benjamini–Hochberg adjustment for multiple testing to calculate q 
values (*P < 0.05, **q < 0.05 after adjustment). Bars in the upper panel show the 

frequency of mutations in the entire cohort, and the colors represent mutation 
types. Molecular categories are clustered according to Ward clustering using 
the Euclidean distance of the frequency matrix. Genes are grouped according 
to functional annotations. c, Heatmap showing normalized enrichment scores 
(NES) and FDR of GSEA for each molecular category. Colors denote NES and 
asterisks show FDR (*FDR < 0.05, **FDR < 0.01, ***FDR < 0.001). Detailed results 
are found in Supplementary Table 14. d, Violin plots showing cellular hierarchy 
scores in each molecular category inferred by CIBERSORT. The colors show 
molecular categories. The lines of the boxes represent the 25% quantile, median 
and 75% quantile. The upper whisker represents the higher value of maxima or 
1.5× i.q.r., and the lower whisker represents the lower value of minima or 1.5× i.q.r. 
Dots show outliers. LSPC, leukemic stem and progenitor cell.

Fig. 5 | Categories demarcated by HOXA and HOXB cluster expression.  
a, UMAP plot colored according to groups of molecular categories based on 
UMAP clustering and HOX cluster gene expression profiles. A gray circle indicates 
a cluster enriching categories with immature phenotypes (BCL11B, MECOM, 
MNX1, PICALM::MLLT10, ETS family). b, HOXA9 and HOXB5 expression on UMAP 
plots. Dot colors represent the relative expression of the genes. c, Volcano 
plot showing differentially expressed genes between HOXA and HOXB groups. 
Genes with absolute fold change >2 and FDR < 0.05 are considered differentially 
expressed. Red or blue dots show genes enriched only in either HOXA or HOXB 
groups, respectively, and representative gene names are shown. d, Gene 
Ontology term analyses of genes with significantly high expression in HOXA (red) 
and HOXB (blue) categories by DAVID (Database for Annotation, Visualization 
and Integrated Discovery). Bars represent logged FDR. e, Plots showing the 

results of GRIN analyses in the HOXA group (horizontal axis) and HOXB group 
(vertical axis). Genes with FDR < 0.05 in either the HOXA or HOXB group are 
shown. Red or blue dots show genes enriched only in either the HOXA or HOXB 
group, respectively. Dotted lines represent thresholds for statistical significance 
(FDR < 0.05). f, Mutational heatmap comparing patterns between the HOXA and 
HOXB groups. Colors represent mutation types, and molecular categories are 
annotated on the top. Bar plots on the right show frequencies of mutations in the 
HOXA and HOXB groups. Statistical significance of GRIN analysis in the HOXA and 
HOXB groups (*FDR < 0.05) and two-sided Fisher’s exact test between HOXA and 
HOXB groups (*P < 0.05, **q < 0.05 after Benjamini–Hochberg adjustment) are 
also shown. GRIN results for FLT3 are for the entire gene, whereas Fisher’s tests 
were performed separately for ITD, TKD and non-TKD mutations.
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(Fig. 6e). Given that germline mutations of RUNX1 or ETV6 are associ-
ated with leukemia with incomplete penetrance60,61, these data suggest 
somatic alterations of these genes also require additional mutations for 
leukemia development, which may cooperatively define the immature 
leukemic phenotypes. Further accumulation of genomic data and 
experimental models will be necessary to understand immature pAML 
with these mutations.

Clinical association of molecular categories
Although the association between KMT2Ar or NUP98r and poor out-
comes is well-appreciated, the clinical associations of new molecular 

categories have been discussed only in separate studies8,25. To address 
this deficiency and translate them into a clinical framework, we 
investigated the outcomes of these molecular categories using the  
COG AAML1031 study13 (n = 1,034; Supplementary Table 22). Analyses 
of the AAML1031 RNA-seq data using the same pipeline revealed similar 
clustering of molecular categories and the overall category frequen-
cies (Fig. 7a,b). The AAML1031 cohort confirmed the association of  
molecular categories with age and FLT3-ITD status, and showed variable 
minimal residual disease (MRD) positivity among molecular catego-
ries (Fig. 7c). Major categories with favorable outcomes aligned with  
previous reports (for example, RUNX1::RUNX1T1 (n = 141), CBFB::MYH11 
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(n = 102) and CEBPA (n = 63); Extended Data Fig. 9a). We also con-
firmed the known association of GLISr7 (n = 20), MECOM (n = 11), 
PICALM::MLLT10 (n = 8) and KAT6Ar (n = 7) with poor outcomes, except 
DEK::NUP214 (n = 17) which showed a favorable outcome in the AAML1031 
study29,62. New categories of MNX1 (n = 4), RUNX1::RUNX1T1-like (n = 4) 
and CBFB-GDXY (n = 4) showed favorable outcomes.

We also investigated the clinical association of molecular hetero-
geneities within major categories. Among KMT2Ar, fusion partners 
or MECOM expression63,64 also confounded in the AAML1031 cohort 
(Extended Data Fig. 9b). Cox hazard models showed that both fusion 
partners and expression clusters are prognostic (P = 0.00052 and 
0.0015, respectively), with fusions with SEPTIN family and MLLT11 or 
immature expression patterns associated with favorable outcomes 
(Extended Data Fig. 9c). The association of fusion partners or expres-
sion clusters with prognosis did not significantly differ (difference 
in C-index of 95% bootstrap interval for fusions and clusters: −0.025 
to 0.093). Although HOXB categories of NUP98r, NPM1 and UBTF also 
showed heterogeneity of expression patterns, their outcomes were 
not associated with UMAP clusters or fusion partners (Supplemen-
tary Fig. 2a).

Given these findings, we next applied recursive partitioning mod-
els65 for censored event time data of molecular categories and fusion 
partners of KMT2Ar, which revealed three groups with distinctive 
prognoses (Fig. 7d and Supplementary Fig. 2b–d). Univariate analy-
ses revealed that age and FLT3-ITD were not prognostic, which could 
reflect the sorafenib given to patients with high-allelic FLT3-ITD in the 
AAML1031 study13 (Fig. 7e). Contrarily, MRD positivity and a subset of 
cellular hierarchy scores were associated with overall survival (Fig. 7e 
and Extended Data Fig. 9d). A Cox proportional hazards model using 
risk groups and prognostic factors showed that hierarchy scores did 
not significantly contribute to prognosis, whereas risk groups and MRD 
positivity were independently prognostic (Supplementary Table 23). 
These data led us to establish a simple predictive framework solely 
based on molecular categories and MRD positivity, resulting in six risk 
strata with granular outcome prediction (Fig. 7f and Extended Data  
Fig. 9e). The prognostic values were validated using the separate 
AML08 trial12 cohort (n = 221; Extended Data Fig. 10a–c and Supple-
mentary Tables 24 and 25). Hematopoietic stem cell transplantation 
in the first remission showed a benefit for high-risk categories with 
MRD, whereas that for the remaining groups needs further assessment 
(Extended Data Fig. 10d). Also, the predictive value of this prognostic 
framework was comparable or superior to various risk stratifications 
currently used in clinical trials for pAML13–15 or ELN2022 (ref. 11) for 
adult AML (Supplementary Fig. 3). These data suggest that the pro-
posed framework could be a basis for future risk stratification and 
clinical decisions.

Discussion
In addition to known enrichment of chromosomal events like 
t(11,x) in pAML, sequencing technologies have identified additional 
pediatric-enriched driver alterations7,8,27. This prompted us to com-
prehensively investigate the increasingly complex genomic landscape 
of pAML in the context of the latest classification systems for hema-
tological malignancies (WHO5th (ref. 9) and ICC10) and to develop a 
pAML-focused categorization. In this study, we systematically cat-
egorized our pAML cohort of 887 patients using an approach based 
on RNA-seq, resulting in 23 molecular categories defined by mutually 
exclusive driver alterations, covering 91.4% of the entire cohort. Of 
these 23 categories, 12 are not currently defined by WHO5th. These 
include common categories like UBTF, GLISr and GATA1, otherwise 
categorized as ‘AML-MR’ or ‘acute myeloid leukemia with other 
defined gene alterations’ in the current WHO classification. Notably, 
myelodysplasia-related mutations or chromosomal alterations often 
co-occur with many pAML category-defining alterations and override 
them in WHO5th or do not drive consistent gene expression patterns 

even without category-defining alterations. Considering that the cur-
rent classification systems are mainly based on evidence from adult 
AML, we propose an alternative framework for pAML to better reflect 
its biology.

These molecular categories show unique expression and muta-
tional profiles, whereas some categories also show critical similarities, 
which can suggest common molecular mechanisms and potential 
therapeutics. In particular, we noticed two large clusters character-
ized by HOXA-B expression profiles. Molecular categories with HOXB 
signatures were strongly associated with FLT3-ITD and WT1 mutations, 
whereas those with HOXA signatures were associated with KRAS muta-
tions. Considering that AMLs with KMT2Ar, NUP98r and NPM1 are 
dependent on KMT2A/Menin66–68 and that several Menin inhibitors 
targeting KMT2Ar and NPM1 AML are in clinical trials69,70, our data 
suggest that other subtypes marked by HOX expression may also be 
candidates for Menin inhibitors. This is supported by our recent study 
showing that UBTF AMLs are sensitive to Menin inhibitors71. Also, the 
high frequency of FLT3-ITD in categories with HOXB expression implies 
that FLT3 signaling is closely related to biology and that treatment with 
FLT3 inhibitors for FLT3-ITD+ HOXB subtypes independent of the allelic 
ratio may be effective.

Some cases without category-defining alterations could be char-
acterized by rare fusion or mutations, which need further evidence 
to establish as a disease entity, including MLLT1 and H3F3A mutations 
that are frequent and class-defining in Wilms tumor57 and glioma58, 
respectively. Considering that AML and Ewing sarcoma also share ETS 
family fusions40 (for example, EWSR1::ERG), it would be intriguing to 
incorporate knowledge of these solid tumors to understand the biology 
behind pAML with these rare alterations. Also, enrichment of RUNX1 or 
ETV6 loss-of-function alterations in immature AML implies that these 
can be class-defining in the absence of other defining alterations and 
likely with specific cooperating mutations. These findings further 
suggest a continuum with other immature leukemias, such as early 
T cell precursor-ALL and mixed phenotype acute leukemias (T/My) 
with similar mutational features72,73.

We further investigated the clinical outcomes of these molecu-
lar categories using two independent cohorts: the COG AAML1031 
study and the AML08 study. Using both cohorts, we show a strong 
association of new molecular categories with outcomes (for example, 
PICALM::MLLT10, UBTF and KAT6Ar as high risk, and CBFB-GDXY as 
low risk). These analyses also revealed that molecular categories and 
known prognostic factors, such as FLT3-ITD status or cellular hierarchy 
scores, are confounding. With this comprehensive profiling recogniz-
ing new pAML subtypes, we established a simple risk stratification 
using molecular categories and MRD. This strategy, however, heavily 
relies on the analysis of next-generation sequencing data. Although the 
WHO classification requires targeted sequencing or WGS, we propose 
a diagnostic pipeline utilizing RNA-seq, which is highly sensitive for 
canonical and cryptic fusion calling, allows for categorization based 
on gene expression signatures, including outlier and allele-specific 
expression (MECOM, BCL11B and MNX1), and provides limited but 
sufficiently sensitive mutation calling to enable our comprehensive 
molecular categorization strategy to newly diagnosed pAML. This 
approach is favored over current commercial panels commonly used 
for pAML, which either lack coverage of all the defining genes (for 
example, UBTF) or are unsuitable for detecting complex structural vari-
ations that drive aberrant expression of MECOM or BCL11B. Given that 
clinical sequencing is not readily available globally and these molecular 
analyses require substantial expertise, robust and easy pipelines are 
needed for future and broad application of this framework for pAML 
in the general clinical setting.
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Methods
Subject cohorts and sample details
Tumor samples from patients with AML from the St. Jude Children’s 
Research Hospital tissue biorepository were obtained with writ-
ten informed consent from patient, parents or guardians using a 
protocol approved by the St. Jude Children’s Research Hospital 
institutional review board. Studies were conducted in accordance 
with the International Ethical Guidelines for Biomedical Research 
Involving Human Subjects. No patient received compensation for 
the enrollment to this study. Samples for RNA-seq (n = 221), WGS 
(n = 58) and WES (n = 7) are newly sequenced in this study, and the 
rest of the data were obtained from previous publications4,7,8,16–25 or 
public databases (see details in ‘Data availability’ and Supplemen-
tary Table 1). For samples with multiple available data points, we 
included one representative time point with a high tumor purity 
and good RNA-seq data quality. Cases were assigned to current 
WHO5th (ref. 9) and ICC10 by board-certified hematopathologists  
(P.K. and J.M.K.).

Genotype fingerprints
To make sure that the study cohort cases represent unique individu-
als, we performed a pairwise genotype concordance comparison 
among all the study cases using the estimated genotype from single 
nucleotide polymorphisms (SNPs) with ≥20 coverage in RNA-seq 
Binary Alignment Map (BAM) files. We set genotype concordance 
percentage cutoff at ≥90% of SNPs shared between two individuals to 
identify potential duplicates, confirming the uniqueness of the 887 
patients in the study cohort.

Sample processing, library preparation and sequencing
For newly sequenced samples with low tumor purity (<60%), the 
leukemic cell population was enriched either by flow cytometric 
sorting or T cell depletion by magnetic beads (EasySep Human CD3 
Positive Selection Kit II; StemCell Technologies, catalog no. 17851). 
For flow cytometric sorting, CD45dimCD33dim positive population was 
sorted using anti-CD45 PerCP-Cyanine5.5 (eBioscience, catalog no. 
8045-9459-120; 1:20 dilution), anti-CD33 APC (eBioscience, catalog 
no. 17-0338-42; 1:20 dilution) and DAPI (BD Biosciences, catalog no. 
564907) using FACS Aria III instrument and FACS Diva v.9.0 (both BD 
Biosciences) (Extended Data Fig. 1c). CD34 gating using anti-CD34 
PE (phycoerythrin) (Beckman, catalog no. IM1459U; 1:5 dilution) was 
added depending on the positivity of each patient sample. Enrich-
ment of the tumor population was confirmed by flow cytometric 
analysis of the postsorting samples (generally >90%). Libraries were 
constructed using the TruSeq Stranded Total RNA Kit, with Ribozero 
Gold (Illumina, catalog no. 20020598) for RNA-seq, the TruSeq DNA 
PCR-Free Library Prep Kit (Illumina, catalog no. 20015963) for WGS 
and the TruSeq Exome Kit v.1 (Illumina, catalog no. 20020614) for WES 
according to the manufacturer’s instructions. After library quality 
and quantity assessment, samples were sequenced on HiSeq2000 
or 2500 (Illumina, RRID:SCR_020132, RRID:SCR_016383) instru-
ments with paired-end (2 × 101 bp, 2 × 126 bp or 2 × 151 bp) sequenc-
ing using TruSeq SBS Kit v3-HS (Illumina, catalog no. FC-401-3001) 
or TruSeq Rapid SBS Kit (Illumina, catalog no. FC-402-4023) 
and HiSeq Control Software with most recent version at the time  
of sequencing.

RNA-seq mapping, fusion detection and large-scale  
CNV calling
RNA reads from newly sequenced samples and from publications were 
mapped to the GENCODE (RRID:SCR_014966) human genome assem-
bly release 19 gene annotation (GRCh37/hg19) using the StrongARM 
pipeline74. Chimeric fusion detection was carried out using CICERO75 
(v.0.3.0). For the cases with only RNA-seq data, RNAseqCNV76 (v.1.2.1) 
was used to call large-scale CNV.

Somatic mutation calling from RNA-seq
To detect SNV and indel from RNA-seq data, we applied the following 
approach to simultaneously account for germline polymorphisms 
(without germline control) and sequencing artifacts specific to RNA-seq 
on a panel of 87 predefined genes previously reported to be signifi-
cantly mutated in pAML4 and myelodysplastic syndrome (Supplemen-
tary Table 5). Briefly, candidate SNVs/indels were called by Bambino77 
(v.1.07) or RNAindel78,79 (v.3.0.4), annotated by VEP80 (v.95), filtered by 
excluding variants with gnomAD (v.2.1.1, RRID:SCR_014964)81 popula-
tion allele frequency >0.1% as possible germline variants, and in turn, 
classified for putative pathogenicity with PeCanPie/MedalCeremony82 
(not versioned). Candidate variants with putative pathogenicity were 
considered germline or artifacts if present in >5% of the cases. Candi-
date variants were further filtered if the number of supporting reads 
was ≤5 or if the VAF was ≤5%. UBTF tandem duplications were detected 
by CICERO focusing ITD or PTD with supporting reads ≥3 within exon 
13 of UBTF gene or adjacent introns and CICERO score <10, detection 
of indels on exon 13 of the UBTF gene, and counting reads with 10 or 
more soft-clipped nucleotide sequences and total reads on the 3′-end  
of exon 13 that contains a hotspot of ITD and PTD (GRCh37-lite, 
chr17:42288162-42288192; GRCh38, chr17: 44210794-44210824)8.

WGS and WES data analysis
The previous genomic lesion calls for the cases (WGS: n = 394; WES: 
n = 284) from published studies4,7,8,16,18–20,23,25 were collected from their 
respective publications. For the unpublished cases with DNA data 
(WGS: n = 136; WES: n = 107), DNA reads were mapped using BWA83,84 
(WGS: v0.7.15-r1140 and v0.5.9-r26-dev; WES: v0.5.9-r26-dev and v0.5.9, 
RRID:SCR_010910) to the GRCh37/hg19 human genome assembly. 
Aligned files were merged, sorted and de-duplicated using Picard tools 
1.65 (broadinstitute.github.io/picard/). SNVs and indels were called 
using Bambino. For cases paired with matched germline controls, ger-
mline variants were filtered out if present in the matched germline sam-
ple. For unpaired cases, possible germline variants were filtered and 
classified as for somatic mutation calling from RNA-seq. The counting 
of somatic mutations included all the pathogenic or likely pathogenic 
mutations detected by WGS, whereas mutation detection from cases 
with only RNA-seq data is limited to the 87 preselected genes. SVs were 
analyzed using CREST (Clipping REveals STructure)85 (v.1.0), and CNVs 
were analyzed using CONSERTING86 on the WGS data. CNVs were also 
called on cases with only WES DNA data using the following methods. 
Briefly, Samtools87 (v.1.16) mpileup command was used to generate a 
mpileup file from matched germline and tumor BAM files with dupli-
cates removed. If a matched germline was not available, a high-quality 
normal sample was used to pair with the tumor sample. VarScan88 
(v.2.3.5) was then used to take the mpileup file to call somatic CNVs 
after adjusting for normal/tumor sample read coverage depth and 
GC content. Circular Binary Segmentation algorithm89 implemented 
in the DNAcopy R package (v.1.52.0) was used to identify the candidate 
CNVs for each sample. B-allele frequency information was also used to 
assess allelic imbalance.

Validation of somatic alterations called by the RNA-seq pipeline
We focused on 243 cases (27.4%) with data from all three platforms 
(matched WGS, WES and RNA-seq) to cross-validate the accuracy 
of our RNA-seq based pipeline8. Of 374 SNV/indel variant calls from 
RNA-seq data, 329 variants (88%) were called from either WGS or WES, 
whose VAFs showed significant correlation with those of RNA-seq calls 
(Extended Data Fig. 1f). Of the remaining 45 calls, 35 have supporting 
reads in DNA data, which were not called, likely because of sequence 
noises and low VAF, validating in total 97.3% of the RNA-seq calls.

GRIN analysis for significantly mutated genes
For the 887 AML cases, the GRIN (v.2.0) model26 was used to evaluate 
the statistical significance of the number of subjects with each type of 
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lesion: fusions, CNVs (amplifications and deletions), copy-neutral loss 
of heterozygosity, SNV/indels and tandem duplications in each gene. 
For each type of lesion, robust false discovery estimates were computed 
from P values using Storey’s q value90 with the Pounds–Cheng estima-
tor of the proportion of hypothesis tests with a true null hypothesis91. 
A false discovery rate (FDR) cutoff of <0.05 was used to obtain sig-
nificantly mutated genes, where we focused on protein-coding genes 
and genes that are known or likely to be pathogenic in leukemia. We 
also excluded genes that are part of a large chromosomal gain, loss or 
copy-neutral loss of heterozygosity but not the target of the CNVs based 
on Genomic Identification of Significant Targets in Cancer (GISTIC) 
analysis. Subgroup GRIN analyses for HOXA categories (n = 164), HOXB 
categories (n = 207) categories and the Unclassified category (n = 76) 
were similarly performed.

GISTIC analysis for significant recurring copy-number 
alterations
We used GISTIC (v.2.0.23, RRID:SCR_000151)92,93 to identify genomic 
regions that are significantly amplified or deleted across our 895 sam-
ples. Each aberration was assigned a G-score that considered the ampli-
tude of the aberration as well as the frequency of its occurrence across 
samples. FDR q values were then calculated for the aberrant regions, 
and regions with q values ≤0.25 were considered significant. A ‘peak 
region’ was identified for each significant region with the greatest 
amplitude and frequency of alteration. In addition, a ‘wide peak’ was 
determined using a leave-one-out algorithm to allow for errors in the 
boundaries in a single sample. Each significantly aberrant region was 
also tested to determine whether it resulted primarily from broad or 
focal events (a broad event was set as >90% of the chromosome arm, 
whereas a focal event was ≤90%).

Allele-specific expression estimation for MNX1, BCL11B and 
MECOM categories
For cases with both WGS and RNA-seq available, SNP markers in the 
respective gene locus with ≥10x coverage that are heterozygous 
(defined as 0.2 ≤ VAF ≤ 0.8) in WGS and present in RNA-seq were 
extracted, and a two-sided binomial test (with probability of suc-
cess P = 0.5) was performed on each marker for allelic imbalance in 
RNA expression. The median of binomial P values was used to assess 
allele-specific expression. For RNA-seq only cases, SNP markers in 
the respective gene locus with ≥10x coverage and allelic imbalance 
(VAF ≤ 0.2 or VAF ≥ 0.8) support allele-specific expression.

Germline variant curation methods
We focused on 15 candidate genes relevant to AML that define spe-
cific categories in WHO5th (Supplementary Table 26) and scanned 
for germline mutations in the cases with WGS or WES germline BAM 
files available (WGS: n = 367; WES: n = 354). For cases with germline 
mutation called in previously published studies8,21, we collected calls 
from the studies. For the remaining cases, the putative germline vari-
ants were called using Bambino, annotated by VEP, and classified for 
putative pathogenicity with PeCanPie/MedalCeremony. We then used 
the following criteria to obtain the candidate germline variants: gno-
mAD population allele frequency ≤0.001; read coverage SNV ≥ 20 
and indel ≥ 15; for SNV, VAF between 0.2 and 0.8; for indel, ≥3 reads 
supporting the alternative allele. All candidate germline variants were 
comprehensively reviewed and classified based on recommendations 
from the American College of Medical Genetics and Genomics and 
the Association for Molecular Pathology94 and the Clinical Genome 
Resource95–98 by a variant scientist ( J.L.M.).

Inference of genetic ancestry
For each individual, the admixture fraction was estimated using the iAd-
mix program99 and allele frequencies from the 1000 Genomes Project 
reference populations (European (EUR), African (AFR), Native American 

(NA), East Asian (EAS), South Asian (SAS)) were used as a reference100. 
Overall, the genetic ancestral composition for each single individual 
was derived based on a comparison of allele frequencies between each 
individual and reference genome. The sum of coefficients from the five 
populations was assumed to sum to 100%. An RNA-seq BAM file was 
used as input directly to iAdmix program, where allele frequencies 
for the coding SNPs from the 656,129 SNPs were used in the ancestry 
estimation. The categorization of individuals into ancestral groups 
was performed based on the composition of genetic ancestry esti-
mated from iAdmix program (Black: AFR > 70%; East Asian: EAS > 90%; 
Hispanic: NA > 10% and NA greater than AFR; South Asian: SAS > 70%; 
White: EUR > 90%). The remaining patients with majority EAS or SAS 
were categorized into ‘Other-Asian’, and the rest of patients with major-
ity EUR or AFR or NA > 10% with NA less than AFR, were categorized into 
‘Other-US’101 (Supplementary Table 1).

Gene expression data summarization, batch correction, 
dimension reduction and clustering
Reads from aligned BAM files were assigned to genes and counted 
using HTSeq102 (v.0.11.2, RRID:SCR_005514) with the GRCh37/hg19 
GTF file. For a gene to be considered as expressed, we required 
that at least five samples should have ≥10 read counts per mil-
lion (cpm) reads sequenced. The count data were transformed to 
log2(cpm) using Voom103 available from R package Limma104 (v.3.50.3, 
RRID:SCR_010943). We corrected for library strand (stranded total 
RNA versus unstranded messenger RNA) and batch effect between 
the TARGET and the rest of cohorts using the ComBat method avail-
able from R package SVA105 (v.3.42.0, RRID:SCR_012836). The R pack-
age Seurat106–109 (v.4.1.0, RRID:SCR_016341) was used for dimension 
reduction and sample clustering. Briefly, the top 315 variable genes 
were selected using the ‘vst’ method. The expression data were then 
scaled and used for principal component analysis, and the top 100 
principal components were used for dimension reduction using 
UMAP110,111 (RRID:SCR_018217) (n_neighbors = 12 and min_dist = 0.2). 
Samples were clustered using the top 100 principal components by 
first constructing a K nearest-neighbor graph and then iteratively 
optimizing the modularity using Louvain algorithm (resolution = 3.5). 
Dimension reduction was also performed by Diffusion maps37,112 algo-
rithm available in the R package destiny113 (v.3.10.0) using the same 
315 genes with the default setting except for number of principal 
components (n_pcs = 50).

Differential gene expression analysis was performed by Limma104, 
and we set log2(cpm) = 0 if it is <0 based on the log2(cpm) data distribu-
tion. P values were adjusted by the Benjamini–Hochberg method to cal-
culate the FDR using the R function p.adjust. Genes with absolute fold 
change >2 and FDR <0.05 were regarded as significantly differentially 
expressed. GSEA114 was performed by GSEA v.4.2.3 (RRID:SCR_003199) 
using MSigDB gene sets c2.all (v.7.5.1), comparing each category with 
the rest of the categories. Permutations were done 1,000 times among 
gene sets with sizes between 15 and 1,500 genes. Normalized enrich-
ment scores and FDR for arbitrary gene sets representing hematopoie-
sis, leukemia phenotype, biological processes and drug responses 
were shown. WGCNA was carried out by R package WGCNA47 (v.1.70-3, 
RRID:SCR_003302) using the top 2,000 variable genes and default 
setting with the exception of block-wide module calculation with reas-
signThreshold = 0 and mergeCutHeight = 0.25. Functional annota-
tions of the top 315 variable genes, differentially expressed genes and 
genes in WGCNA modules were performed with DAVID115 (v.6.8), and 
results for the Gene Ontology term, biological process (GOTERM_BP_
DIRECT) were exported. Inference of cellular hierarchy by CIBERSORT116 
(RRID:SCR_016955) was performed by the web interface of CIBERSORTx 
in absolute mode with S-mode batch correction without a permuta-
tion36. Transcript per million values and Malignant Signature Matrix 
and Malignant Single Cell Reference Samples from a publication36 were 
used as input files, and the malignant cell populations were normalized 
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to 1 to calculate the relative fraction scores, which were shown in UMAP 
space or violin plots. Prognostic scores of LSC1748, pLSC6 (ref. 49), 
ADE-RS117 and iScore46 were calculated as reported. Hierarchical cluster-
ing (RRID:SCR_014673) of expression data, mutual-exclusivity matrix 
and GSEA scores was performed using the Euclidian distance and Ward 
method with pheatmap (v.1.0.12, RRID:SCR_016418).

Statistics and reproducibility
No sample size, power calculation or randomization of patients was 
performed in this study utilizing retrospective profiling of patients with 
available materials or sequence data. No analysis depending on patient 
background was performed in this study. No blinding was performed 
in the enrollment of patients or data collection of public data, and 
blinding in group allocation was not possible because the grouping 
is based on the molecular characteristics of individual patients. For 
discrete values of the molecular category and the mutation frequency 
in cohorts, statistical significance and mutual exclusivity were assessed 
by two-sided Fisher’s exact test and Pearson’s correlation. Adjustment 
of multiple testing was performed by the Benjamini–Hochberg method 
using the p.adjust function in R when appropriate. For survival data, 
decision trees were established by a recursive partitioning method 
using R library rpart65 (v.4.1.19, RRID:SCR_021777). Kaplan–Meier curves 
for the probability of overall survival and event-free survival were con-
structed using the R package survival (v.3.3-1, RRID:SCR_021137). Events 
in the probability of event-free survival calculations were defined as 
relapse, death in remission by any cause and nonresponse, which was 
included as an event at the date of diagnosis. The Cox proportional 
hazards model was used to calculate the hazard ratio. The log-rank test 
(two-sided) was used to calculate the statistical significance of indi-
vidual prognostic factors by univariate analyses first, and significant 
factors were included in a multivariate analysis. Clinical association 
of the molecular categories was first assessed using the AAML1031 
study (NCT01371981, n = 1,034), and the results were validated using 
the AML08 cohort (NCT00703820, n = 221, independent from the 
AAML1031, a part of this study cohort). We quantified the predictive-
ness of recursive partitioning survival tree models and risk classifi-
cation systems with Harrel’s concordance index for Cox models118 
using a bootstrap procedure. We generated 1,000 bootstrap datasets 
by sampling patients with replacement and computed concordance 
index values for each bootstrap dataset. The 2.5 and 97.5 percentiles 
were used to define the bootstrap confidence interval endpoints. 
Concordance index values of a pair of risk classification systems were 
similarly computed similarly. Regression tree models were refit to 
each bootstrap dataset in the model development analysis on the 
AAML1031 cohort. For all other analyses, the risk classification was 
defined externally from the cohort and thus risk-group definitions 
for individual patients remained constant across bootstrap datasets. 
R statistical environment (R v.4.0.2, RRID:SCR_001905) was used for 
statistical tests.

Visualization. Mutational heatmaps and mutations on individual 
genes were visualized using ProteinPaint (proteinpaint.stjude.org/). 
Heatmaps of expression data, mutual-exclusivity matrix and GSEA 
scores were created by pheatmap function. Other data visualiza-
tions were performed by ggplot function of R library ggplot2 (v.3.3.6, 
RRID:SCR_014601), survminer (v.0.4.9) and base plot function in R 
statistical environment. Figures are incorporated and edited using 
Adobe Illustrator (2021, RRID:SCR_010279). Annotation of genes in 
mutational heatmaps depends on common knowledge, and the defi-
nition of RAS pathway genes included causative genes of Noonan or 
Noonan-like syndrome119.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genomic analyses in this study are based on the GENCODE GRCh37/
hg19, and gnomAD v.2.1.1 was used for classification for germline and 
somatic mutations. The genomic data and expression data newly gen-
erated in this study (RNA-seq: n = 221, WGS: n = 58, WES: n = 7) have 
been deposited in the European Genome-Phenome Archive (EGA, 
RRID:SCR_004944), which is hosted by the European Bioinformatics 
Institute (EBI), under accession EGAS00001005760. Subsets of the 
new data (RNA-seq: n = 221, WGS: n = 53, WES: n = 5) have been also 
deposited to St. Jude Cloud under Pan-AML study (https://permalinks.
stjude.cloud/panaml). Details are found in Supplementary Table 1. 
For previously published RNA-seq data (n = 393), 266 are available 
either on EGA or St. Jude Cloud7,8,17,19–23,25 or from the original pub-
lication24. For the other 127 published cases18, we downloaded the 
BAM files from EGA (EGAS00001004701). For previously published 
WGS data (n = 198), 106 from the original publications7,8,19,20,23,25 are 
available on either EGA or St. Jude Cloud, and the other 92 published 
BAM files18 were downloaded from EGA (EGAS00001004701). For 
the previously published WES data (n = 273), 153 with data from the 
original publications7,8,17,19–23,25 are available either on St. Jude Cloud 
or EGA, and the BAM files for the other 120 published cases18 were 
downloaded from EGA (EGAS00001004701). We also downloaded 
data for publicly available but previously unpublished RNA-seq data 
(n = 86) on St. Jude Cloud under the PCGP study (https://permalinks.
stjude.cloud/permalinks/PCGP, n = 8) and the RTCG study (https://
platform.stjude.cloud/data/cohorts?dataset_accession=SJC-DS-1007, 
n = 78). Similarly, we obtained unpublished WGS data (n = 82: RTCG) 
and WES data (n = 2: PCGP, n = 99: RTCG study). The data generated by 
the TARGET initiative4,16 (n = 187), including additional samples from 
the AAML1031 trial13 (n = 1,034), are also available under accession 
phs000218 (TARGET-AML) and phs000465 (TARGET substudy, data 
is available as a part of phs000218), managed by the NCI, and were 
obtained through GDC Portal managed by NCI under the TARGET-AML 
study (https://portal.gdc.cancer.gov/projects/TARGET-AML). Informa-
tion about TARGET can be found at http://ocg.cancer.gov/programs/
target. These sequencing data are available through controlled access 
as part of the NIH Genomic Data Sharing Policy (https://grants.nih.
gov/grants/guide/notice-files/NOT-OD-14-124.html) and data access is 
restricted for academic use. Source data are provided with this paper.

Code availability
We did not use custom code or software for this study.
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Extended Data Fig. 1 | Cohort details. a. Data source of each patient with  
acute myeloid leukemia (AML), including publications and clinical trials.  
b. Age distribution of patients at diagnosis (red: age<3, blue: 3<age<10, gray: 
10<age). Lines of the box represent 25% quantile, median, and 75% quantile. 
The upper whisker represents the higher value of maxima or 1.5 x interquartile 
range (IQR), and the lower whisker represents the lower value of minima or 1.5 
x IQR. NA: not available. c. Representative gating strategy for sorting of the 
myeloid cell population. Vertical and horizontal axes are linear for FSC (forward 
scatter) and SSC (side scatter) and log-scaled for fluorescence-conjugated 
antibodies. CD34 gating was adjusted for individual patients depending on the 
positivity. d. A Venn diagram showing data platforms available for each patient. 
WGS: whole-genome sequencing, WES: whole-exome sequencing, RNA-Seq: 
RNA-sequencing. e. Results of GISTIC (Genomic Identification of Significant 

Targets in Cancer) analysis for arm-level chromosomal events. The left panel 
shows the enrichment of chromosomal gains (red), and the right panel shows 
the enrichment of chromosomal losses (blue). Green lines show a significance 
threshold for q values (0.25). f. Cross-validation of single nucleotide variant (SNV) 
and insertion/deletion (indel) calls from the RNA pipeline using whole-genome/
exome sequencing (WGS/WES) data. The bar graph shows mutation calls and the 
validation status. For those also called from DNA data, a comparison of variant 
allele frequency (VAF) and Pearson’s correlation are shown in the bottom left, and 
the statistical test was performed as two-sided. A regression line is shown in red. 
For unvalidated calls, details are shown in the bottom right. g. A comparison of 
major classes of the World Health Organization (WHO) classification in the study 
cohort with karyotyping in previous large pediatric AML cohorts.
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Extended Data Fig. 2 | Mutational correlation. Pair-wise correlation among 
most frequent 97 genetic alterations (n ≥ 5 in the entire cohort) from GRIN 
analysis and chromosomal changes (complex karyotype and monosomy 7) 
(a) and category-defining gene alterations (b). KMT2A-PTD (partial tandem 
duplication) is independently included from other KMT2A alterations, and FLT3 
alterations are classified into ITD (internal tandem duplication), TKD (tyrosine 

kinase domain) mutations, and non-TKD mutations due to the known functional 
difference. Colors correspond to Pearson correlation. Statistical significance 
was assessed by two-sided Fisher’s exact test to calculate P values followed by 
the Benjamini-Hochberg adjustment for multiple testing to calculate q values 
(*P < 0.05, **q < 0.05).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Transcriptional and mutational characterization of 
the study cohort. a. UMAP (Uniform Manifold Approximation and Projection) 
plots and diffusion maps colored according to the WHO classification. b. A 
diffusion map colored according to molecular categories of the samples. DC: 
diffusion component, APL: acute promyelocytic leukemia. c. Expression of 
marker genes on UMAP plots and diffusion maps. Colors represent scaled 
expression levels. d. Cellular hierarchy scores inferred by CIBERSORT on UMAP 
plots and diffusion maps. Colors represent scaled scores. LSPC: leukemia 
stem and progenitor cell, GMP: granulocyte and macrophage projenitor, cDC: 

classic dendritic cell, ProMono: promonocyte, Mono: monocyte. e. UMAP plots 
and diffusion maps colored according to the French-American-British (FAB) 
classification f. A heatmap showing frequencies of defining gene alterations 
of AML, myelodysplasia-related in the WHO classification in each category. 
Colors denote the frequencies. Statistical significance was assessed by two-
sided Fisher’s exact test to calculate P values of co-occurrence followed by the 
Benjamini-Hochberg adjustment for multiple testing to calculate q values. No 
pair remained significant (q < 0.05) after adjustment, and P values (<0.05) are 
shown instead.
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Extended Data Fig. 4 | Details of molecular categories. a. Details of molecular 
categories with multiple category-defining alterations. The distribution on 
the UMAP plot according to fusion partners (KMT2Ar, NUP98r, ETS family, 
and APL categories) or mutation and fusions (NPM1 and GATA1 categories) 
are shown with colors representing the types of alterations. Age distributions 
according to fusion partners are also shown for KMT2Ar and NUP98r. Acute 

megakaryocytic/erythoid leukemia (AMKL/AEL) cases are shown separately in 
red. b. Proportion of molecular categories among different age groups (left: 
age<3, middle: 3<age<10, right: 10<age). Each column is colored according to 
the molecular categories, and categories associated with AMKL/AEL phenotypes 
are highlighted in a red square. Representative category names are shown in the 
columns.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Transcriptional analysis of the study cohort. a. Plots 
showing averaged log2 CPM (count per million) values and standardized variance 
in the entire cohort (left). The top 315 variable genes used for the UMAP analysis 
were colored red, and representative variable gene names are shown in the right 
enlarged plot. The top results of the Gene Ontology (GO) term analysis by DAVID 
(Database for Annotation, Visualization and Integrated Discovery) are shown 
in the right panel. Bars represent logged FDR (false discovery rate<0.1). b. A 
heatmap colored according to scaled module intensities of WGCNA (weighed-
gene correlation network analysis) in each molecular category. Representative 
genes and results of GO term analysis of genes in each module are shown on 

the right. Blue module enriched no GO term with FDR < 0.1. c. Distribution of 
differentiated cell-related hierarchy scores inferred by CIBERSORT among 
molecular categories. d. Distribution of prognostic scores among molecular 
categories. LSC17: leukemia stem cell 17 score, pLSC6: pediatric leukemia 
stem cell 6 score, iScore: inflammation-associated gene score, ADE-RS: Ara-C, 
Daunorubicin and Etoposide Drug Response Score. In c and d, lines of the box 
represent 25% quantile, median, and 75% quantile. The upper whisker represents 
the higher value of maxima or 1.5 x IQR, and the lower whisker represents the 
lower value of minima or 1.5 x IQR. Dots represent outliers. The colors of plots 
show molecular categories.
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Extended Data Fig. 6 | Transcriptional and mutational characterization of 
clusters demarcated by HOXA-B expression. a. A heatmap showing expression 
patterns of HOXA and HOXB cluster genes among molecular categories. Each 
panel color shows the expression level (log2CPM) of genes. Molecular categories 
are clustered using the Euclidean distance of the expression levels and the Ward 
method. b. Expression (left) and ProteinPaint of mutation patterns (right) 
of FLT3 (top), NRAS (middle), and KRAS (bottom) in the HOXA-B categories. 
The distribution of log2CPM values among molecular categories is shown 
for the expression level, and the colors represent molecular categories. For 

the mutation plots, mutation types and frequencies in the HOXA and HOXB 
categories are shown separately, and the colors represent mutations types. 
Statistical significances of mutation distribution and frequency of each mutation 
were assessed by two-sided Fisher’s exact test (P value), and no adjustment for 
multiple testing was applied. For each type of NRAS and KRAS mutations, variant 
allele frequencies (VAFs) are also shown. The lines of the box represent 25% 
quantile, median, and 75% quantile. The upper whisker represents the higher 
value of maxima or 1.5 x IQR, and the lower whisker represents the lower value of 
minima or 1.5 x IQR. Dots represent outliers.
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Extended Data Fig. 7 | Molecular heterogeneity among HOXA and HOXB 
groups. a. UMAP plot showing the distribution of fusion partners of KMT2Ar 
among different clusters. The dot colors denote fusion partners. b. A volcano 
plot showing differentially expressed genes (DEG) between the HOXA-main1-2 
clusters. Genes with absolute fold change > 2 and FDR < 0.05 are considered DEGs 
(red: HOXA-main2 cluster high, blue: HOXA-main1 cluster high). Representative 
gene names are shown. c. Expression of representative DEGs on UMAP plot. The 
dot colors represent the relative expression of the genes. d. The association of 
fusion partners of KMT2Ar among different clusters. The statistical significance 
of the enrichment and exclusivity were assessed by two-sided Fisher’s exact test 
followed by the Benjamini-Hochberg adjustment (*P < 0.05, **q < 0.05, blue: 
exclusive, red: enriched). e. Distribution of age at diagnosis among KMT2Ar 

different clusters. The colors of violin plots represent clusters and lines of the box 
represent 25% quantile, median, and 75% quantile. The upper whisker represents 
the higher value of maxima or 1.5 x IQR, and the lower whisker represents 
the lower value of minima or 1.5 x IQR. Dots represent outliers. f. UMAP plot 
highlighting molecular categories in the HOXB cluster. The dot colors denote 
molecular categories. g. Cellular hierarchy scores represented by the color 
(top) and patterns of frequent mutations (bottom) in the HOXB cluster. Circles 
in the top highlight clusters with high hierarchy scores. Blue and red dots in the 
bottom show mutational status. HSPC: hematopoietic stem and progenitor cell. 
h. The association of molecular categories and HOXB subclusters. The statistical 
significance of the enrichment and exclusivity were calculated and shown as in d.
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Extended Data Fig. 8 | Characterization of cases without category-defining 
alterations. a. ProteinPaint of rare somatic mutation in the study cohort. As 
comparisons, data from the COSMIC (Catalogue of Somatic Mutations in Cancer) 
database. Wilms tumor cohort for MLLT1 mutation and glioma cohort for H3F3A 
are shown at the bottom. The colors represent mutation types. b. Design of 
GSEA (gene set enrichment analysis) comparing immature clusters with cluster 
membership 6, 9, and 16 with the rest of AML samples (left) and representative 
results for gene sets involved in hematopoietic stem cells or lymphocytes (right). 
Colors of dots of UMAP show clusters. Representative enrichment score plots are 
also shown. c. Distribution of the WHO classification (left) and myelodysplasia-

related karyotypes and genetic alterations (right) in the Unclassified cases 
on UMAP plots. The dot colors of the right panel represent mutational status 
(red-positive, blue-negative), while black dots represent excluded Unclassified 
cases with recurrent alterations and gray dots represents other categories. The 
statistical significance of the enrichment and exclusivity of WHO classification 
and clusters were assessed by two-sided Fisher’s exact test, and P values of 
cluster-wise comparison and overall distribution are shown in a table (bottom). 
d. Distribution of other recurrent genetic alterations in the Unclassified cases on 
UMAP plots. The dots are colored as in c.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Clinical association of molecular categories and known 
prognostic factors in the AAML1031 cohort. a. Kaplan-Meier curves of overall 
survival of patients in each molecular category. Category names and curves 
are colored according to outcomes (blue: favorable, black: intermediate, red: 
unfavorable). b. Details of KMT2Ar category in the AAML1031 cohort showing 
the distribution of KMT2Ar cases among transcriptional clusters colored by 
fusion partners (left) and by XAGE1A and MECOM expression (top-right) on 
UMAP plot, and the association of fusion partners of KMT2Ar among different 
clusters (bottom-right). Circles on the UMAP highlight clusters (white: XAGE1A 
high, orange: MECOM high, purple: both low, pink: HOXB, yellow: AMKL, blue: 
immature). The statistical significance of the enrichment and exclusivity were 
assessed by two-sided Fisher’s exact test followed by the Benjamini-Hochberg 

adjustment (*P < 0.05, **q < 0.05, blue: exclusive, red: enriched). c. Kaplan-Meier 
curves of overall survival of patients of KMT2Ar with each fusion (left), in each 
cluster (middle), and Low and High-risk fusion groups by recursive partitioning 
(right). For the validity of prediction by KMT2Ar fusion partners and clusters, 
c-index scores assessed by bootstrapping (1,000 times) were shown below the 
plots. d. Cellular hierarchy scores on UMAP plots (top) and Kaplan-Meier curves 
and statistical significance of overall survival (bottom). Significant scores in 
univariate analysis are highlighted with asterisks (Cycling, GMP-like, and cDC-like 
scores). For survival curves in c-d, statistical significance was assessed by the 
log-rank test, and P values are shown in the plots. e. Frequency of risk assignment 
by bootstrapping (1,000 times). Molecular categories are sorted according to the 
frequency within each risk group.
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Extended Data Fig. 10 | Validation of the prognostic model. a. Grouping of 
molecular categories into Low, Intermediate, and High-risk groups (top) and 
Kaplan-Meier curves of overall survival of patients in each risk group (bottom) in 
the AML08 cohort. b. Kaplan-Meier curves and statistical significance of overall 
survival of patients with known prognostic factors (FLT3-ITD status: top-left, 
age: bottom-left, MRD (minimal residual disease) positivity at the end of the 
induction I: top-right) in the AML08 cohort. C. Kaplan-Meier curves of overall 
survival of patients in six risk strata using risk groups (Low-Intermediate-High) 
and MRD (measurable residual disease) positivity in the AML08 cohort. d. 
Outcomes in each risk group depending on MRD and HSCT (hematopoietic stem 

cell transplant) status in the AAML1031 cohort. left-Hazard ratio (dot) and 95% 
confidence intervals (lines) in each group. right-Kaplan-Meier curves of overall 
survival. Survival curves start from the earliest transplant day within the cohort 
(day 96) and exclude patients who died before that timepoint. For survival curves 
in a-c, statistical significance was assessed by the log-rank test, and P values are 
shown in the plots. For d, the statistical significance of HSCT in each risk group 
was assessed by incorporating HSCT status as time-dependent variables and 
shown next to the hazard ratio plot. For survival analysis involving MRD status, 
patients with available MRD status (MRD+:n = 273, MRD-: n = 703) are included.
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cells (CD45 and CD33) or KG1A cells (CD34). For each experiment, gating for tumor population (CD45dim x CD33dim~positive x CD34 
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Methodology

Sample preparation For patients with less than 60% blasts, cryopreserved patient samples (bone marrow, peripheral blood) were thawed in 
IMDM media containing 20% FBS and subjected to flow-sorting for the tumor population before sequencing.

Instrument Cell sorting was performed  using a FACSAria III instrument (BD Biosciences)

Software FACSDiva 9.0 software (BD Biosciences) was used for data collection and gating for sorting.

Cell population abundance Enrichment of the tumor population was confirmed flow cytometric analysis of the post-sorting samples (generally > 90%).

Gating strategy Live cells were first gated using FSC-A and DAPI (BD cat# 564907) gating, followed by singlet gating (SSC-W x FSC-A). The 
myeloid population was further gated as CD45 dim x FSC variable population. CD34 gating for the blast population was 
considered depending on the positivity of the tumor population in each patient.
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