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Abstract
Perivascular spaces (PVS), fluid-filled compartments surrounding brain vasculature, are an essential component of the 
glymphatic system responsible for transport of waste and nutrients. Glymphatic system impairment may underlie cogni-
tive deficits in Parkinson’s disease (PD). Studies have focused on the role of basal ganglia PVS with cognition in PD, but 
the role of white matter PVS is unknown. This study examined the relationship of white matter and basal ganglia PVS 
with domain-specific and global cognition in individuals with PD. Fifty individuals with PD underwent 3T T1w magnetic 
resonance imaging (MRI) to determine PVS volume fraction, defined as PVS volume normalized to total regional volume, 
within (i) centrum semiovale, (ii) prefrontal white matter (medial orbitofrontal, rostral middle frontal, superior frontal), 
and (iii) basal ganglia. A neuropsychological battery included assessment of global cognitive function (Montreal Cogni-
tive Assessment, and global cognitive composite score), and cognitive-specific domains (executive function, memory, 
visuospatial function, attention, and language). Higher white matter rostral middle frontal PVS was associated with lower 
scores in both global cognitive and visuospatial function. In the basal ganglia higher PVS was associated with lower 
scores for memory with a trend towards lower global cognitive composite score. While previous reports have shown that 
greater amount of PVS in the basal ganglia is associated with decline in global cognition in PD, our findings suggest that 
increased white matter PVS volume may also underlie changes in cognition.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder affecting both motor and nonmotor functions 
including cognition (Aarsland et al., 2017). Mild cognitive 
impairment (MCI) is common in PD, and can affect multiple 
cognitive domains, including executive function, attention, 
memory, and visuospatial function (Aarsland et al., 2021). 
MCI often progresses to dementia. Pathophysiological 
changes underlying cognitive changes remain poorly eluci-
dated one potential mechanism may be due to dysfunction 
of the glymphatic system, leading to decreased clearance of 
metabolic waste products and protein aggregates from the 
brain parenchyma (Debette et al., 2019; Ding et al., 2017; 
Zhu et al., 2010).

In the healthy brain the glymphatic system serves sev-
eral essential roles including (i) immune surveillance, (ii) 
transport of neurotransmitters and nutrients (e.g., glucose 
and lipids), and (iii) clearance of cellular debris, meta-
bolic waste products, and protein aggregates (Jessen et al., 
2015). A key component of the glymphatic system is the 
perivascular spaces (PVS), which are the fluid filled com-
partments surrounding perforating vasculature throughout 
the brain including the basal ganglia and white matter. PVS 
are bordered on one side by blood vessels and on the other 
side by astrocytic endfeet (Engelhardt & Ransohoff, 2012). 
Dysfunction of the glymphatic system has been reported 
as increased PVS volume or count, due to enlargement as 
determined by neuroimaging (Donahue et al., 2021).

Within the field of aging, studies have shown an associa-
tion between greater amount of PVS and cognitive decline 
in both white matter and basal ganglia (MacLullich et al., 
2004; Paradise et al., 2021). In PD, studies have also shown 
an association between increased basal ganglia PVS count 
and decreased cognitive performance. For example, higher 
PVS count is associated with worsening of global cognition 
as assessed by the Montreal Cognitive Assessment (MoCA). 
Additionally, in PD higher basal ganglia PVS count is asso-
ciated with conversion from normal cognition to MCI, and 
from MCI to dementia (Chen et al., 2022; Park et al., 2019). 
While general cognition is associated with PVS in PD, the 
relationship between changes in PVS and deficits in spe-
cific cognitive domains has not been explored. Additionally, 
while there is an association between increased basal gan-
glia PVS and cognition, less is known about the relationship 
between changes in white matter PVS volume and cognition 
in PD.

The primary goal of this study was to evaluate PVS vol-
ume, defined as volume fraction, within overall and regional 
frontal white matter and the basal ganglia and its association 
with global and domain-specific cognitive performance. 
PVS volume was determined from T1w magnetic resonance 

imaging (MRI) using an automated method that quantitates 
PVS volume relative to total white matter volume in the 
local volume-of-interest (volume fraction) (Sepehrband et 
al., 2019). This allowed assessment of PVS within the large 
centrum semiovale white matter region of interest, as well 
as in selective regions of the frontal white matter (medial 
orbitofrontal, rostral middle frontal, superior frontal white 
matter) and the basal ganglia. The centrum semiovale and 
basal ganglia are regions in which PVS has been routinely 
abundant in past studies. Frontal lobe regions were selected 
for analysis due to its known role in cognitive function in 
PD. A full neuropsychological assessment was collected on 
study participants, including global cognition (MoCA and 
global composite score) and executive function, episodic 
memory (memory) visuospatial function, attention, and lan-
guage scores, as well as assessment of cognitive status.

Methods

Study participants

For this cross-sectional analysis, data of 50 participants with 
idiopathic PD were obtained. Participants were evaluated 
as part of a multi-site (University of Southern California 
(USC) and Veterans Affairs San Diego Healthcare System 
(VASDHS) / University of California San Diego (UCSD) 
study. PD diagnosis was based on the UK Brain Bank cri-
teria (Hughes et al., 1992). Inclusion criteria included: (i) 
willing and able to provide informed consent; (ii) medically 
eligible/safe for MRI; and (iii) Hoehn and Yahr score ≤ 3. 
Exclusion criteria included (i) history of severe psychiat-
ric illness or other neurological disease, including prior 
stroke and (ii) dementia per criteria in Hoops et al., 2009 
with MOCA < 18. Institutional Review Boards from each 
site approved all study procedures. Demographic data were 
collected, including age, sex, years of education, years of 
Parkinson’s disease diagnosis, MDS-Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS) part III score (motor), 
body mass index (BMI; kg/m2), Levodopa Equivalent Dos-
age (LED; mg) (Parkinson’s Disease Measurement: PwP, 
Surveys, Trials, Analysis, n.d.), and cardiovascular risk 
score (calculated by summing 0 = no/1 = yes for smoking, 
hypertension, high cholesterol, diabetes). Assessments were 
conducted in the ‘ON’ medication state.

MRI acquisition

Structural MRI was acquired on a Siemens Prisma (USC) 
or a GE MR 750 3T MRI (UCSD) 3T MRI scanner. Whole-
brain T1w MRI was acquired with a magnetization-pre-
pared rapid gradient-echo pulse-sequence. On the Prisma 
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the acquisition parameters were: flip 8°, repetition-time/
echo-time/inversion-time = 2400/2.22/1000ms, voxels 
0.8 × 0.8 × 0.8 mm3; 1 NEX, acceleration factor 2, 6:38 min; 
on the MR 750 the acquisition parameters were: flip 8°, repe-
tition-time/echo-time/inversion-time = 2852/3.548/1000ms, 
voxels 0.8 × 0.8 × 0.8 mm3; 1 NEX, acceleration factor 2, 
7:58 min. Study site was included as a covariate to account 
for any differences due to slight parameter changes.

Perivascular space mapping

T1w MRI underwent preprocessing and regional parcella-
tion with FreeSurfer v5.3.0. Preprocessing included motion 
correction, non-uniform intensity normalization, Talairach 
transformation, and skull stripping. PVS was mapped from 
T1w MRI as previously described (Donahue et al., 2021). 
T1w MRI was enhanced using an adaptive nonlocal mean 
filtering technique applied only on high-frequency spatial 
noise using a moving patch with a radius of one voxel (Man-
jón et al., 2010). A Frangi filter was applied using the Quan-
titative Imaging Toolkit (Cabeen, 2020; Frangi et al., 1998). 
A ‘vesselness’ probability measure was estimated for each 
voxel from eigenvectors of the Hessian matrix (parameter c 
set to half the value of the maximum Hessian norm) of the 
image at different scales (0.1–5 voxels) to provide a maxi-
mum likelihood/maximize vessel inclusion. This results in 
a brain-wide quantitative map of vesselness. A vesselness 
threshold of 0.0002 was used to obtain the PVS mask.

All T1w MRI were manually checked for misalignment, 
post-processing failure, lacunes, white-matter hyperintensi-
ties, which were corrected on manual inspection (Sepeh-
rband et al., 2021; Benjamin et al., 2018). Brain volume 
and centrum semiovale, basal ganglia and frontal regional 
masks were derived using the Desikan-Killiany atlas (Desi-
kan et al., 2006), using the recon-all module of Freesurfer. 
Centrum semiovale PVS was calculated by summing cau-
dal middle frontal, inferior parietal, pars opercularis, pars 
orbitalis, pars triangularis, post central, precentral, rostral 
middle frontal, superior frontal, superior parietal, supra-
marginal, and unsegmented white matter not defined in the 
Desikan-Killiany atlas from both hemispheres. Because 
pathophysiological changes in the basal ganglia and frontal 
lobe are thought to be involved in early cognitive changes 
in PD, we also included these regions in our analysis (Farina 
et al., 2000; Lewis et al., 2003; Owen et al., 1995; Taylor et 
al., 1990). Frontal white matter regions included the medial 
orbitofrontal, the rostral middle frontal, and the superior 
frontal regions (note - rostral middle frontal and superior 
frontal are subregions of centrum semiovale). PVS volume 
measurements within each region were normalized to the 
total white matter volume (or total basal ganglia volume) of 
the same region to provide an internal control for possible 

PD-related changes in white matter volume. This produced 
a “volume fraction” that represents the fraction of the region 
of interest that is composed of PVS. All PVS results are 
expressed as volume fraction.

Neuropsychological assessment

The neuropsychological battery measured global cognitive 
performance and performance across cognitive domains 
including executive function, memory, visuospatial func-
tion, attention, and language. Executive function was mea-
sured by (i) Wisconsin Card Sorting Test-64 card version 
(WCST) perseverative responses, (ii) Inhibition (condition 
3) and Inhibition/Switching (condition 4) subtests from the 
Delis Kaplan Executive Function System (D-KEFS) Color 
Word Interference Test (CWIT), and (iii) D-KEFS Verbal 
Fluency Switching subtest. Memory was measured by (i) 
California Verbal Learning Test (2nd Edition; CVLT-II) 
Total Trials 1–5, Short-Delay Free Recall, and Long-Delay 
Free Recall, (ii) Brief Visuospatial Memory Test (BVMT) 
Immediate- and Delayed-Recall conditions. Visuospatial 
function was measured by the total scores on the (i) Judg-
ment of Line Orientation Test and (ii) Hooper Visual Orga-
nization Test. Attention was measured by (i) D-KEFS CWIT 
Color Naming (Condition 1) and Word Reading (Condition 
2) subtests and (ii) Adaptive Digit Ordering Test Forward 
Digit Span and Digit Sequencing conditions. Language was 
measured by (i) D-KEFS Verbal Fluency Letter Fluency and 
Category Fluency subtests and (ii) the Boston Naming Test. 
Domain scores were calculated by averaging the z-scores 
of all components. Global cognition was assessed using a 
mean of the five cognitive domain z-scores (Global Cog-
nition). The MoCA score was used as a general cognition 
screen.

Statistics

All statistical analyses were conducted using SPSS, Ver-
sion 28.0.1 (Armonk, NY: IBM Corp). To be retained as 
significant (p ≤ 0.05), potential relationships between cog-
nitive scores and regional PVS volume fraction had to sur-
vive both screening with a simple correlation analysis and a 
follow-up linear regression. A bivariate unadjusted Pearson 
correlation was performed between each cognitive domain 
score, and Global Cognition and MoCA scores, and the PVS 
volume fraction in each brain region (centrum semiovale, 
medial orbitofrontal, rostral middle frontal, superior frontal, 
and basal ganglia). If a correlation was significant, a hier-
archical linear regression analysis using backwards elimi-
nation was applied (Lilja & Linse, 2022) to increase the 
power of comparisons, using: age, sex, years of education, 
years of Parkinson’s disease diagnosis, MDS-UPDRS part 
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Rostral middle frontal PVS volume fraction was nega-
tively correlated with (i) MoCA (r(48) = -0.524, p < 0.001), 
(ii) global cognition z score (r(48) = -0.380, p = 0.007), 
(iii) visuospatial function (r(48) = -0.336, p = 0.017), and 
(iv) memory (r(48) = -0.490, p < 0.001) (Supplemen-
tary Table  2). After adjusting for covariates in the linear 
regression, rostral middle frontal PVS volume fraction 
remained significantly associated with (i) MoCA (age, BMI; 
unstandardized β= -318.40, 95% CI [-613.85, -22.95], 
ΔR2 = 0.061, p = 0.047), (ii) global cognition (MDS-
UPDRS part III score; unstandardized β= -112.22, 95% CI 
[-192.59, -31.84], ΔR2 = 0.119, p = 0.028), and (iii) visuo-
spatial function (MDS-UPDRS part III score; unstandard-
ized β= -124.79, 95% CI [-229.90, -19.67], ΔR2 = 0.092, 
p = 0.042), but not memory (age, sex, MDS-UPDRS part 
III score, site; unstandardized β= -51.43, 95% CI [-151.76, 
48.91], ΔR2 = 0.009, p = 0.307) (Table 2; Fig. 1).

Basal ganglia PVS volume fraction was negatively corre-
lated with (i) MoCA (r(47) = -0.313, p = 0.029), (ii) global 
cognition z-score (r(47) = -0.311, p = 0.029), and (iii) mem-
ory (r(47) = -0.308, p = 0.031) (Supplementary Table  2). 
After adjusting for covariates in the linear regression, basal 
ganglia PVS volume fraction remained significantly associ-
ated with global cognition z-score (age, sex, MDS-UPDRS 
part III score, years of education; unstandardized β= -84.65, 
95% CI [-147.55, -21.76], ΔR2 = 0.087, p = 0.030) but not 
memory (age, sex, MDS-UPDRS part III score, site; unstan-
dardized β= -57.99, 95% CI [-127.88, 11.90], ΔR2 = 0.021, 
p = 0.153) or MoCA (age, sex, BMI, site; unstandardized β= 
-109.02, 95% CI [-321.32, 103.28], ΔR2 = 0.012, p = 0.306) 
(Table 2; Fig. 1).

Centrum semiovale PVS volume fraction was negatively 
associated with MoCA (r(48) = -0.358, p = 0.011) and mem-
ory (r(48) = -0.374, p = 0.007). Associations did not remain 
significant after adjusting for covariates: centrum semiovale 

III score, BMI, LED, cardiovascular risk score, and study 
site (1 = USC/Siemens scanner, n = 21, and 2 = UCSD/GE 
scanner, n = 30). Regression p-values are Benjamini-Hoch-
berg False Discovery Rate corrected within each predictor 
variable, to account for multiple comparisons (False Dis-
covery Rate Online Calculator | Tools, n.d.). Any individual 
beyond three standard deviations in either the independent 
or dependent variable was considered an extreme outlier and 
was excluded from analyses for that comparison (3 removed 
from medial orbitofrontal, 1 removed from basal ganglia).

Results

Participants were on average 65.36 years of age (SD = 8.98) 
with 16.68 (SD = 2.20) years of education; 54% were male, 
with a mean MDS-UPDRS part III score (motor) of 20.84 
(SD = 9.08), mean Body Mass Index (BMI) of 25.89 kg/m2 
(SD = 4.75), and a mean cardiovascular risk score of 0.56 
(SD = 0.73) (Table 1). Mean scores for the individual cog-
nitive tests used to calculate domain-specific z scores and 
MOCA scores are shown in Supplementary Table 1.

Table 1  Study demographics
Mean (SD)

N (# of females) 50 (23)
Age 65.36 (8.98)
Education (years) 16.68 (2.20)
Body Mass Index (kg/m2) 25.89 (4.75)
MDS-UPDRS part III score 20.84 (9.08)
Years of Parkinson’s diagnosis 4.52 (5.34)
Cardiovascular Risk Score 0.56 (0.73)
Levodopa Equivalent Daily Dose (mg) 575.57 (394.01)
MDS-UPDRS: Movement Disorder Society-Unified Parkinson’s Dis-
ease Rating Scale

β 95% CI p
Lower, Upper

MoCA
centrum semiovale PVS -73.84 -288.02, 140.34 0.982
rostral middle frontal PVS -318.40* -613.85, -22.95 0.047
superior frontal PVS -80.33 -205.88, 45.22 0.408
basal ganglia PVS -109.02 -321.32, 103.28 0.306
Global Cognition
rostral middle frontal PVS -112.22* -192.59, -31.84 0.028
basal ganglia PVS -84.65* -147.55, -21.76 0.030
Visuospatial Function
rostral middle frontal PVS -124.79* -229.90, -19.67 0.042
Memory
centrum semiovale PVS -16.22 -88.46, 56.01 0.653
rostral middle frontal PVS -51.43 -151.76, 48.91 0.307
superior frontal PVS 1.26 -42.91, 45.42 0.954
basal ganglia PVS -57.99 -127.88, 11.90 0.153

Table 2  Adjusted associations 
between perivascular space 
volume fraction in centrum semi-
ovale, rostral middle frontal, and 
superior frontal white matter and 
the basal ganglia

PVS: perivascular space
Significant regressions in 
bold. *p < 0.05, **p < 0.01, 
***p < 0.001
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Discussion

The aim of this study was to investigate the association of 
increased PVS volume in white matter and basal ganglia 
with domain-specific and global cognitive performance in 
PD. This study identified a significant association between 
increased rostral middle frontal PVS volume and general 
cognition as measured by MoCA and a global cognitive 
composite score in individuals with PD. Given that our 
average MOCA score was 26.18 it is possible that our find-
ings were driven by individuals with mild cognitive impair-
ment and will be investigated in future studies with a larger 
cohort. In addition to rostral middle frontal volume, there 
was a significant association between basal ganglia PVS 
volume and a global cognitive composite score. The rostral 
middle frontal region is located within the prefrontal cortex, 
encompassing both the dorsolateral and anterior prefrontal 
cortex. While a few studies have demonstrated an associa-
tion between basal ganglia PVS and global cognition in PD, 
our study is the first to demonstrate a relationship between 

PVS volume fraction-MoCA (age, BMI, site; unstandard-
ized β= -73.84, 95% CI [-288.02, 140.34], ΔR2 = 0.006, 
p = 0.982), and centrum semiovale PVS volume fraction-
memory (age, sex, MDS-UPDRS part III score, site; unstan-
dardized β= -16.22, 95% CI [-88.46, 56.01], ΔR2 = 0.002, 
p = 0.653) (Table 2).

Superior frontal PVS volume fraction was negatively 
associated with MoCA (r(48) = -0.337 p = 0.017) and mem-
ory (r(48) = -0.293, p = 0.039). Associations did not remain 
significant after adjusting for covariates; superior frontal 
PVS volume fraction-MoCA (age, BMI, site; unstandard-
ized β= -85.33, 95% CI [-205.88, 45.22], ΔR2 = 0.021, 
p = 0.408), and superior frontal PVS volume fraction-mem-
ory (age, sex, MDS-UPDRS part III score, site; unstan-
dardized β = 1.26, 95% CI [-42.91, 45.42], ΔR2 = 0.000, 
p = 0.954) (Table 2).

No associations were observed between medial orbito-
frontal PVS volume fraction and cognitive function. No 
associations were observed in any region between PVS vol-
ume fraction and language, attention, or executive function.

Fig. 1  Significant adjusted associations between rostral middle frontal and basal ganglia perivascular space volume fraction and cognition. See 
Methods for covariates. PVS: perivascular space; VF: volume fraction
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alpha-synuclein, a pathophysiological protein hallmark of 
PD (Zou et al., 2019). Glymphatic flow may also be dis-
rupted by chronic inflammatory processes know to occur 
in many neurodegenerative disorders including PD (de 
Groot & Burgas, 2015; De Virgilio et al., 2016; Klein, 2000; 
Mogensen et al., 2021). Changes in PVS may also be associ-
ated with reduced integrity of the blood brain barrier (BBB) 
(Chen et al., 2021). For example, a recent study from our 
group showed an association between increased PVS vol-
ume in the frontal white matter and increased choline-con-
taining compounds a potential marker of astrocyte gliosis 
(Donahue et al., 2022). Since astrocytes are critical com-
ponent of BBB structure and function, these changes may 
reflect BBB breakdown or reduced neuroenergetic support 
by astrocytes, both impacting glymphatic integrity reflected 
by PVS pathology (Urenjak et al., 1993). Further studies 
are needed to identify the underlying mechanisms leading 
to increased PVS in disorders of the brain including PD and 
how such changes lead to disease state and progression.

Understanding the impact of changes in PVS in PD and 
its progression are important since studies have suggested a 
strong association between lifestyle factors (sleep, exercise) 
and glymphatic system function. Animal studies show that 
glymphatic flow increases during sleep (Xie et al., 2013). 
Clinical studies have demonstrated an association between 
increased PVS and obstructive sleep apnea and longer self-
reported time in bed (Jia et al., 2021; Ramirez et al., 2021). 
Furthermore, voluntary running has also been shown to 
increase glymphatic flow and clearance of amyloid-beta 
protein aggregates in rodents (He et al., 2017; von Holstein-
Rathlou et al., 2018). These reports highlight the potential 
targeting of the glymphatic systems through lifestyle that 
may impact disease progression in PD including cognitive 
decline.

Limitations and strengths

There are several limitations to this study. First, the absence 
of T2-weighted images precluded using the automated map-
ping pipeline to fully discern PVS from white matter hyper-
intensities and lacunes. Instead, all PVS masks were quality 
control checked to remove any white matter hyperintensities 
or lacune erroneously mapped as PVS. Second, the cross-
sectional design of the study prevents the determination of 
causality in the relationship between PVS and cognition. 
Third, this study did not examine the independent contribu-
tion of cerebrovascular burden to cognition. However, given 
that cardiovascular risk profile is related to cerebrovascular 
burden, and our participants have very low cardiovascular 
risk profiles (mean of ~ 0.5 score on 5 yes/no questions) and 
no history of stroke, supports that PVS may be an impor-
tant contributor to cognitive performance independent of 

white matter PVS volume and both global and domain spe-
cific cognitive performance in PD (Chen et al., 2022; Park 
et al., 2019). Our methodological approach assessed change 
in large diameter PVS (considered > 3  mm) and excluded 
lacunes (small PVS) (Ramirez et al., 2022). Future stud-
ies will examine if both small and large diamgter PVS are 
associated with cognition in PD (Ramirez et al., 2022). This 
association of global cognition with rostral middle frontal 
and basal ganglia PVS may be due to the known contri-
bution of both brain regions in early PD-related cognitive 
changes (Lewis et al., 2003). We also observed a relation-
ship between increased rostral middle frontal white matter 
PVS volume and worse visuospatial function. A previous 
study showed an association between centrum semoivale 
white matter PVS and changes in visuospatial function in 
healthy aging (MacLullich et al., 2004). Our study aligns 
with this finding in that PVS in the rostral middle frontal 
white matter, a segment of the centrum semiovale, was asso-
ciated with our visuospatial function composite. Further, 
studies have demonstrated a relationship between the ros-
tral middle frontal region and tests of visuospatial function. 
Specifically, fMRI studies have shown activation in rostral 
middle frontal areas, including the dorsolateral and ante-
rior prefrontal cortex, in individuals conducting the Hooper 
visual organization task (HVOT; Moritz et al., 2004), which 
is a visuospatial test with an executive function component.

While a few studies have previously reported an asso-
ciation between basal ganglia PVS and cognition in PD, to 
the best of our knowledge, our study is the first to report 
that white matter PVS may also contribute to cognitive per-
formance in PD (Chen et al., 2022; Park et al., 2019). One 
possible explanation for this discrepancy may be due to dif-
ferences in methodology for examining PVS burden. In our 
study, PVS was assessed as volume (volume fraction), as 
opposed to PVS counts or a ranking system, as reported in 
other studies (Chen et al., 2022; Park et al., 2019). Volumet-
ric quantification may capture a more complete picture of 
PVS involvement in disease pathophysiology given that a 
significant characteristic of PVS dysfunction is thought to 
be dilation (Zou et al., 2019). For example, PVS volume 
in white matter has been shown to be higher in PD relative 
to healthy controls (Donahue et al., 2021). Taken together, 
our results and previous studies suggest that PVS volume 
changes could contribute to PD pathophysiology, including 
cognitive performance.

Currently, the mechanisms leading to increased PVS 
amount, and cognitive decline are unknown. One sugges-
tion is that PVS volume may reflect decreased flow in the 
glymphatic system resulting in either increased accumu-
lation of metabolic waste products or failure to deliver 
needed metabolic substrates. For example, surgical block 
of glymphatic flow in rodents leads to the accumulation of 
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use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
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