Lawrence Berkeley National Laboratory

 Recent WorkTitle
THE PRODUCTION OF CASCADE PARTICLES BY 5-5-Bev/c PIONS

Permalink

https://escholarship.org/uc/item/7qp973kg

Authors

Fowler, William B.
Powell, Wilson M.
Shonle, John I.

Publication Date

1958-11-24

UNIVERSITY OF CALIFORNIA

TWO -WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
(Publication in Il Nưovo Cimento)

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

THE PRODUCTION OF CASCADE PARTICLES BY 5.5-BOV/C PIONS William E. Fowler, Wilson M. Powell, and John 1. Shone November 24, 1958

THE PRODUCTION OF CASCADE PARTICLES BY 5.5-Bev/c PIONS William B. Fovier, Wilson M. Powell, and John I. Shonle
 Lawrence Radiation Laboratory
 Universlty of Calfornia
 Berkeley, California
 November 24, 1958

ABSTRACT
The first observed production of negative cascade particles at an accelerator is reported. A 30 -inch propane bubble chamber was exposed to a beam of negative pions of $5.5 \mathrm{Bev} / \mathrm{c}$. Two cascades were identified, indicating production crose section of $2.3_{-1.6}^{+3.1} \mu$. The Q values found were $49.5 \neq 7.9 \mathrm{Mev}$ and 53.6 * 11.3 Mev . The lifetimes were $1.9 \pm 0.1 \times 10^{-10} \mathrm{gec}$ and $5.2 \pm 0.4 \times 10^{-10}$ sec. Both 荡e were produced backwards in the center-of-momentum syatem. The identification process and beckground is diactussed.

THE PRODUCTION OF CASCADE FARTICLES BY 5.5-Bev/C RIONS* William B. Fowler, Wilson M. Powell and John I. Shonle

Lawrence Radiation Laboratory
University of California Eerkeley, California

November 24, 1958

1. INTRODUCTION

The cascade particle way firist observed in a cloud chamber by the Manchenter group. ${ }^{1}$ However, at that time there was considerable uncertainty as to the nature of this new particla, since they were unable to identify the V^{0}. Anderson et al. ${ }^{2}$ eatablished that the V^{0} was a A. Later Armenteros et al. ${ }^{3}$ were able to Cofinitely identify the negative secondary 28 a pion. Most of the subsequent date have also come from cloud chamber observations of cosmic-ray events. There have been some data reported from emulaion atacks expesed to cosmic rays, but the evidence is less concluaive, since the A can not usually be found. Because so fow cascades have been observed, very little is known about the particle other than the existence of the one decay mode; which has been woll established. A good summary of our knowledge of cascades is reported in es gencral atrange-particle review articie by Franzinetti and Morpurgo. ${ }^{4}$

The production of cascade particles by $5.5-\mathrm{Bev} / \mathrm{c}$ pions in propane is reported here as the firat observation of cascade production by an accelerator.

II. EXPERIMENTAL ARRANGEMENT

A 30-inch propane bubble chamber operated in a 13-kilogauss magnetic field ${ }^{5}$ was exposed to a 5.5-Bev/c beam of aegative plons from a beryllium terget located 14° upstream from the weat otraight section of the Bevatron.

[^0]Negative pions at 0° from the beam were deflected by the Bevatron field through a thin window in the vacuum tank. Two 8 -inch quadrupole magnets were used for focualing, adjugted to give an image at the chamber of che target 1 inch high and 2.8 in . wide. An analyming magnet deflected the beam 7.2 2° that $5.5-\mathrm{Bev} / \mathrm{c}$ pione arrived at the center of the chamber. The dispersion $80 \mathrm{Mev} / \mathrm{c}$ per inch, and the uncertainfy at any point due to the target size was $\pm 125 \mathrm{Mev} / \mathrm{c}$. The total distance from the target to the center of the chamber was 56 feet. Figure 1 shows the experimental arrangement.

All together, 31,500 atereo pairs of pictures were taken on $\mathbf{7 0 - m m}$ film. The film was acanned for all $\mathrm{V}^{\mathbf{0}} \mathrm{g}_{\mathrm{g}}$ with origing viaible in the chamber. The ecan cardo were examined for possible cascade decaya, and the ee events were then examined by a physiciat. Those events in which the V^{0} could have possibly come from a kink In a aecondary track and which lay on the opposite alde of the secondary track from the deflected track were measured. The possible cascade decays were not reetricted to negative particles. Fifteen evente matisfied the visual-appearance criterion, two of them positive.

Two methods of measuring were used, and most events were measured by both. One method was to reproject through an optical oystem sifnilar to that used on the chamber but with air replacing the propane. A correction for the index of refraction of propane was made. The tracks in the two viewa were recombined on a ground-glass screen, and angles and curvatures were measured. The curvatures were measured by fitting templates to the tracks in opace. The other method of measuring was by the use of a digitized microscoper measuring directly on the two negatives. The locations of aeries of points along a track in each view were punched directly onto IBM cards. These cards were then processed by an IBM 650 calculator which gave an output of momeata and anglos, with errore based on the tnternal consistency. Allowance was made
for the errors in curvature caused by multiple scattering in the propane. The agreement between the two methods of measuring was compatible with the errors given in each case.

IIL. IDENTIFICATION

Of the fifteen events eubrnitted for measurement, only two were found to be consistent with the known properties of a cascade. They are shown in Fige. 2 and 3. The other events are discussed in alater section. For an event to be considered a cancade the following criferia had to be satisfied.
(a) The V ? had to be dentified as a Λ.
(b) The plane of the Λ had to contain the cascade decay point.
(c) The plane of the cascade and its decay plon had to contain the decay. point of the A.
(d) Transverse momentum of the Λ had to balance about its line of flight.
(e) Transverse momenta of the pion and the Λ at the cascade decay point had to balance.
(f) The relative ioniztion had to be consistent with the assumption of a cascade decay.
(g) The kinematics had to be compatible with the assumption of

$$
\Xi^{-} \rightarrow \Lambda^{0}+\pi^{-}+\sim 66 \mathrm{Mev} .
$$

Criterion (a) rules out the ldentification of possible $\boldsymbol{m}^{-} \rightarrow n+\pi^{-}$modes. Criteria (c), (e), and (g) would eliminate possible leptonic decay modes of cascades.

In general it is not always possible to distinguish a Λ from a θ^{0}. No event was rejected solely because the V^{0} could not be positively identified as a A. However, in both the Identified cascades, the V^{0} was definitely established as a Λ. In one case (17776) the Λ was identified readily because the positive
prong was a stoppiag proton, and the measured Q value was 35 ± 6 Mev. In Che other case (49837) the measured on the asoumphon of a was $31 \pm 7 \mathrm{Mev}$ and on the aseumption of a θ^{0} was $180 \neq 21$ Mev, so that the fit to a Λ on Q value alone was better than to a θ°. Ionization estimates from gap counting were decisive for the positive prong's being a proton racher than a postive pion.

Both events agtisfied the two cuplanarity requirements. within the orrors. Coplanarity was checked visually on the apace reprojector by actually fitting the planes in question, and by apatial reconstruction from the microscope measurements. Both events satisfled transverne momentum balance to within 1.3 standard deviations or lesa from the unadjusted values. Table 1 shoms the amount of unbalance and the orrorg. Later an adjuatment was made to give exece transverse momenturn balance.

In both evente the ionization of the tracko was consistent with the particle identitieg of a cascade decay. Ionization was estimated from comparison with tracks of known ionization in each picture. The pooflive tracks of the A'e could be idencified as heavier than pions, and the cascade track in 49837 was definitely heavier that a K^{*}.

Finally, the 0 velued calculated for the two events agreed eatisfactorily with the present value of 66 ± 3 Mev. ${ }^{6}$

The only reasonable posaiblealtermative daterpretation of both events is $\Sigma^{-}+n \rightarrow n^{-}+A+a_{0}$ where the outgoing neutron and carbon recoll mut have their resultant momentum in esgentially the forward direction. Because of the Fermi momentum of the neutron tefore the reaction and the two unknown outgoing momenta of the neutron and carbon recoil, the problem does not lend itself readily to calculation. If the asoumption of an asseatiolly frec neutron is made, then a E^{-}of $815 \mathrm{Mev} / \mathrm{c}$ would satisfy the visible kinematics for 17776. This hnterpretation canoot be erchiced on the grounds of meagured momentum, (ince the track in question was too short to measure, or on the $5:$

Table 1
The measured momenta and angles and the constrained values for the various tracks of the two eventa are given. The track numbers are the same as in Figs. 2 and 3. $\phi_{i j}$ refers to the angle between Track i and Track j. The adjustment parameter 7 is the adjustment in a variable divided by the measurement error for in that variable. The value listed in brackets under measured mornentum for Track 5 is the value calculated from the constrained ariables. The transver momentum unbalance at the four decay points is given. The sum of the sguares of the adjustment parameter, $E\left(r_{i}\right)^{2}$. Which indicaten the reliability of the adjustment, is giver.

Event	rack No.	Measared momentum ($\mathrm{Bev} / \mathrm{c}$)	Constrained momentum ($1 \mathrm{Bev} / \mathrm{c}$)	7	Angle No.	Measured value (degrees)	$\begin{gathered} \text { Conetrained } \\ \text { value } \\ \text { (degrees) } \end{gathered}$

grounde of lonimation, bince gaturation was reached in thia picture at a Folative ionization of about two. In 49837, an incoming z^{*} of $1180 \mathrm{Mev} / \mathrm{c}$ could satisfy the viaible idnematice. This aituation is close enough to the observed momentum and ionization that it may not be excluded. However, it is improbeble that two evente would occur with their charged pronge satisfying all the identification criteria for cascades. Thus it is concluded chat the ovents in question are cascade decaya.

IV. RESULTS

The following constraints were applied to reduce the errors due to the meanurement uncertaintien in ealcuiatiag the Q velues of the cascade decays. The momenta and angles of the 1 -decay producte were adjuted to give O for the A of exactly 37.4 Mev and to satisfy transverse momeatum belance and coplanarity with respect to the cascade decay point. These adjuatmente were made with the requirement that the aum of the squaree of the adjugtmenta in a variable divided by the meagurement error for that variable bo a minimum. The A momentum wes calculated from the adjusted valuee. At the cascada decry point tho adjustrnent required transvesse momentum belance and coplanarity for the A and " with reapect to the cascade-particle $^{\prime \prime}$ line of fifght. The amounts of the adjustmenta are shown in Table d. The C values of the cascades were then calculated from these adjusted values. Derivatives of the Q value with respect to ito parameters werc taken. These derivatives were then multiplied by the uncertainties in the variables, and a oquare root of the oum of the squares was taken to give the error in the o value.

The C values thus obtained were 49.5 4. 7.5 Mev for event 17776, and 53.6 * 11.3 Mev for 49837. The errors are approximately one standard deviation. The times for each particle's life in its own reat aygem were
$1.9 \pm 0.1 \times 10^{-10} \mathrm{sec}$ for 17776 and $5.2 \neq 0.4 \times 10^{-10} \mathrm{eec}$ for 49837 .
A production cross section for cascades was found in the following manner. The number of beam-pion tracke entering the scanning region In every hundredth picture way recorded, as woll as the aumber of ubable pictures. A plature was conofdered unueable if there were too meny tracks in it for efficient scanniag. In sorne pictures perts of the chamber were not visible, owiag cither to pertial fallure of the lights or to a residual bubble. In these cases a \quad uitable correction was made. Not all the tracke entering the acanaing region traverse its entire length, aince parts of aome tracke are removed by iateraction. A 10% correction for this effect was made, bised on a mean free path of $206 \approx 30 \mathrm{~cm}$ for all beam-pion interactions in propane. A 6% correction was made for the muon contamination due to decays In flight of the piona. From these figures the path lefigth traversed by the pions was determined.

The scanning efficiency for cascades was eatimated as follows. Scanners were instructed to aetrch for V^{0} particlea and to indicate whether the V^{0} particle appeared to be produced in the wall of the chamber or in the propane. The combined efficiency for finding V^{0} particles from visible beam interactions. as determined from two or more succeagive acans by different scennere, was $85 \pm 5 \%$. It was felt that the efficiency for asacciating a V^{0} wfth a kink in a secondary track would be lege then for aseociatigg it with a beaminteraction. A check of one-elghth of the pictures scanned revealed no cases in which a V^{0} ghould have been aseociated with a kinked secondary track and wae not. This check indicated that the scanning efficiency for cascades was not much lower than for V^{0} e. A lower limit of 50% was chosen to be conservative. Accordingly, the efficiency for finding cascades was estimated to be $70+10 \%$.

Since cascades in which the a particles decay via the neutral mode would not be detected by the procedure used, a correction based on the branching ratio for A decay wn made.

From these figures the mean free path for the production of a cascade in propane was found to be $3.2 \times 10^{6} \mathrm{~cm}$.

An $A^{2 / 3}$ law was assumed for the ohielding of the nucleons in carbon, and a crose section per nucleon of $2.3^{+3.1}$ microbarns was obtained. Almost all the error is due to the poor gtatistics of the small aumber of events, and repregents a confidence coefficient of 8.84 .

Since indicatione are that the lifetime of the ${ }^{(x}$ is on the order of 1 to 10×10^{-10} sec; a lifetime correction to the cross section is probably not large for a chamber of this size. A lifetime much diferent from this would require considerably correction. No correction was made for possible alternative decay modea. A decay mode with a strangenoss change of two,
 used. Any leptonic decay modes would have been rejected by the fdentification criteria used. This last correction might be on the order of a fector of two, aiace the leptonic decay rate based on a universal Fermi interaction has beea calculated to be possibly of the same order as that for pionic decays. 7

Both production events were known to have occurred in carbon, since the net outgoing charge was different from zero in both cases. In one event (17776), there were elx outgoing charged prongs, two positive and four negative. Only one particle was identifiable by ionization, and that was a negative pion. There were no visible neutral or charged decays associated with the event. Event 49837 had only one outgoing charged prong, that of the cascade itself. There was a θ_{1}^{θ} decay associated with the production origin. An analyaia for the missing momentum and energy indicated that the kinematics were consistent
with there being another particle of a mass. Thus tho observatione reported here do not contradict the asagnment of $8=-2$ for the cascade. Both particles were produced gtrongly bacikwazde in the conter-of-momentum syotem. One (17776) was at c.m. angle of about 170 degrees, and the other was at an angle of about 160 degroes.

In addition to the above two events, there was another (46709) that may be interpreted as cascsde, although a K^{-}or Σ^{-}decay cannot be ruled ous., It la shown in Fig. 4. The production event had aix charged pronga with zero net charge. The decay event ohowed a heavily jonizing negasive perticle. emitting a π^{*} which then came to rest, allowing en accurate momentidihn determination to be made. The momentum found was 131 a $4 \mathrm{Mev} / \mathrm{c}$, and the decay angle; $99^{\circ} \pm 2^{\circ}$ in the laboratory system. If it is aseumed that the decaying particle ceme to rest or nearly to rest, then these figures are compatible only with a cascade decay. The track was too ehert for moasarement of its momentum, and was at an angle of 43° from tho horizontal, so that ionization is difficult to estimate. If the momentura at the decay point is considered a veriable, then the decay ininematics are also conelstent with both \& $\mathrm{K}^{\prime \prime}{ }^{2}$ and a. K^{-}. A $K_{\mu}^{*} 2$ decay can be ruled out because the ionization of a $K_{\mu} 2$ would not have been consistent with that observed. The other five tracks from the production event were long enough for good momentura measurement, to that a kinematical analysis of the production event was feasible. The kiaked positive track was adentified by lonization as a a^{+}. There were no risible associated decays. Visible transverse momentum was out of balance by about $750 \mathrm{Mev} / \mathrm{c}$, implying at least one neutral particle. Uader the assumption that the production event was in hydrogen, energy and momentum conservation could be satisfied only by aretching the measured values oomewhat beyond
the experimental errorg, and then only for the assumption of a K^{*} z decey. If the production event io acoumed to be in carbon, then the kinematics become far less definitive bocaues of the unknown carbon recoll, and they are consfatent with all three of the poseible identities of the decaying particie. The $\mathbb{K}_{\pi} 2$ aseumption is unlikely on grounds of lifetime, aince the particle would have traveled only 6.015 of a mean life. It Is tot believed that thie event io definitely detemmined to be a cascade, but it is interesting to opeciatate that with two cascades found with charged A decaye, one whth a neutral A decay should be present The evidencetox the iaterpretation of this decay as a cascade is of such a neture that it has not been incl uded in any of the statistics.

V. BACKGROUND

Most of the background avents could be rejected for faflure to comply with two or three of the requirements demanded for cascado identification. Table II lists the backgrouad events and indicates which of the ifentification criteria were not satigfied. The identity of the V^{0} is given whenever pooable. Tho proper classification of these background events is difficule. In both the posinve cases the evente are probably K^{+}charge exchange: $\mathrm{B}^{+}+\mathrm{n}-\mathrm{p}+0^{0}$. In two of the events the V^{0} particles could be icentified as $A^{\prime} s$, and in five of them as $\theta_{1}{ }^{0_{1}}$. In the other aix cases no definite identification wa poselble. In one eveaf the incoming track appeared to be a Σ^{*}. by fonization. Most of the ovent $/$ progitibeth strange-particle interactione of various sorts ("strangeness exchange"), alchough the wo with identified A's might ponibly be deptonic decaye of cescades. Some of the events could be interactions of gecondary pions producing strange particies.

Table 11
Liating of the background events. The agn of the supposed cascado and the
identification criteria not satisfied are indicatea. The identify of tho V^{0} is
given in those cages in which identification could be made.

Event number	$\begin{gathered} \text { Sign } \\ \text { of } \\ \text { particle } \\ \hline \end{gathered}$	$\begin{aligned} & V^{0} \text { not } \\ & a \mathrm{~A} \end{aligned}$	Not coplanar	Tranaverse momentuin unbalance	$\begin{aligned} & \text { Loaization } \\ & \text { not } \\ & \text { consistent } \end{aligned}$	```Kinematica not gatisfied```	$\begin{gathered} \mathrm{v}^{0} \\ \text { identity } \end{gathered}$
07529	+	*			*	*	0^{0}
27777	*	3				x	θ^{0}
28242	*		x	x		(a)	A
28774	-					*	$?$
30343	-	*	*	*	\times	(a)	θ^{0}
33270	-	x				x	$?$
39057	-	**		*		(a)	$?$
39915	-	x				*	8^{0}
42072	*			*		*	?
45502	*			3		(a)	?
45781	+	*			x	(a)	θ^{0}
46155	*			*		(a)	A
49697	-			*		x	?

$(a)_{\text {No kinematical calculation was made aince it was already apparent that the }}$ event was not a 家。

V1. GCKNOWLEDGMENTS

The authors wish to acknowledge the assistance of Dr. Edward Lofgren and the Bevatron etaff and thank them for their cooperation during the run. The assistance of all the members of the Cloud Chamber group has been indi.gpensable. Special mention should be made of Dr. Robert Birge for aetting up the beam, Howard Whte for the IRM programming and data reduction, and David Hotz for the cross-section normalization and acanning evalution.

REFERENCES

1. R. Armenteros, K. H. Barker, C. C. Butler, A. Cachon, and C. M. York, Mil. Mag. 43. 597 (1952).
2. C. D. Anderbon, E. W. Cowan, R.B. Leighton, and V.A.J. ven Liat, Phys. Rev. 92.1089 (19531.
3. R. Armenteros, B. Gregory, A. Lagarrigue, L. Leprince-Riaguet,
F. Muller, and C. Peyrou, Suppl. 響uovo cimento 12. 327 (1954).
4. C. Franzinetti and G. Morpurgo, Suppl. 畒uovo cimento 6, 563 (1957).
5. W. M. Powell, W. B. Fowler, and L. O. Oswald, Rev, Eci. Inetr., in press.
6. G. H. Trilling and G. Neugebauer, Fhyp. Rev. 104, 1688 (1956).
7. G. Morpurgo, Proceedings of the Turin Confereace, 1956.

CAPTIONS

Fig．1．Experimental arrangemeat for directing a＂beam（from Be target in Bevatron）into propane bubble chamber．A and B are 8－inch quadrupole magnetz．C is a 5 －foot deflecting magnet．The magnet ourrounding the bubble chamber is not shown．

Fig．2．Eveat 17776．Track 0 is the beam＂．Track 1 is the 登 and 2 is the decay ＊* ．Track 3 is the proton from the A decay which stops in the chamber．Track 4 ib the π^{*} from the A decay and leavos the chamber at the top glass．Lane 5 is the Λ line of fight．

Fig．3．Event 49837．Track 0 1s the beamm＂．Track 1 is the 烒 end 2 is the decay m：．Track 3 is the proton from the A decay，and 4 is its π^{-}which leavos at the bettom glams．Line 5 is the Λ liae of flight．Tracks A and B are the π^{+}and ${ }^{*}$ iroma θ_{1}^{0} decay．
Fig．4．Event 46709，a possible ${ }^{2}$ decay without a visible A decay．Track 0 is the beam 业．Track 1 is the posable ${ }^{2}$ ．Track 2 ia a stoppitien Erom Track 1．Track A is probably a π^{*} by ionizacion．Tracke B and C are positive and could be protons，$n^{+}{ }_{1}{ }_{j}$ or $K^{+}{ }^{\prime}$ ．Track Dis a n^{+}which scatters and which wes identified by ionization．Track tis an＂which leaves the chamber．Is an electron pair associated with the production origin．

Fig. 2a.

2 (b)

$51,369-1$

Fig. 3a

$51370-1$

Fig. La

领
$F: 14 b$
51, 368-1

[^0]: This work ves done under the auspices of the U.S. Atomic Energy Commission.

