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ABSTRACT 

High intensity ultraviolet light of energy greater than the band 

gap was used to illuin.inate the evaporating surface of single crystals 
1}~;. 

of zinc oxide in an attempt to determine if an electron-transfer mechanism 

was the rate limiting step. The influen.ce of the oxygen content on 

the evaporation rate was studied by annealing the crystals in oxygen 

and observing the subsequent evaporation beha~ior. 

No influence of light was· found on the evaporation rate at 1365°K 

but excess oxygen caused the evaporation rate to drop sharply. The 

evaporation rate slowly increased to a constant rate as the oxygen 

diffused out. The activation enthalpy for the (1000} face, which is 

crystallographically stable during evaporation, was found to be 85 ± 8 

kcal/mole. 
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I. UITRODUCTIQN 

: A compound which. dissociates ·upon evaporation, i .• e., undergoes 

a reaction of the·type: 

AB(.si = A(- '"' + l/~B2 (. )-. gL g-

may have a rate limiting step involving surface re,actions ,. desorption 

of surface atoms or diffusion of a species to the surface. A specific 

type of surface reaction that may limit vaporization is electron transfel:' 

between the surface cations and anions. 
. 1 

Somorjai and Lester have 

re.viewed such phenomena. 
. 2 

Somorjai and Lester found that light of greater than band gap 

energy increased the evaporation rate of the (1000} face of high 

resistivity cadmium sulfide. Such illumination is believed to change 

. the free carrier concentration at the vaporizing surface by creation 

of hole-electron pairs. The rate of the hypothesized .charge transfer 

rate-limiting step would increase because of the increased free electron 

'concentration. 

This work was undertaken to determine whether the rate of evaporation 

of zinc oxide, which, like cadmium sulfide, is a II-VI semiconductor, 

is also.increased by high intensity ultraviolet light. 

. 3 
Anthrop and Searcy have reported that a mass spectrometer study 

of the vapor in equilibrium with zinc oxide revealed no·species other 

than zinc atoms and oxygen molecules. They observed no detectable 

change in the lattice parameters and no significant systematic change-

with composition in the equilibrium.constant for the dissociation of 

solid zinc oxide • 
. 4 

Hoenig measured K.rmdsen effusion pressures for 
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. . 
·zinc· oxide that agree with values calcUlated from thermochemical 

data but his· Langmuir studi.es· indi.cated that an upper ·limit to tbe 

evaporation coeffici.ent i'.s .10-2 to io- 3. He· calculated an enthalpy 

of activation (6H* = 93 :t 3 kcal/molei which. is approximately 23% 

higher than the equilibrium enthalpy. The (lOIO) prismatic faces 

used in Hoenig '·s Langmuir studi.es were found to be unstable during 

evaporation as evidenced by preferred evap.oration from other crystallo-

graphic planes. Hence it was deemed desirable in this work to determine 

the activation enthaJ;py of th~ (1000} basal face which was expected 
1' 

to be stable during evaporati'on. 

Brewer5 and Anthrop3 both report zi~c oxide to vaportze under 

neutral conditions at a composition that is close to stoichiometric. 

However, one can expect.to find small differences, usually less than 

10-4 mole/cm 3 , between the composition of a solid when it is evaporated 

under equilibrium and vacuum conditions. 6 These small differences 

are undetectable by ordinary analytical methods,7 ' 8 but can have a 

large influence on the evaporation rate and mechanism. Accordingly, 

crystals were anne.aled in oxygen in order to observe the effect of. a 

change in stoichiometry on the evaporation rate and hence to obtain 

additional insight into the evaporation mechanism. 

Zinc oxide crystallizes .in the hexagonal wurtzi te structure which 

has close packed oxygen ions with the zinc ions occupying one-half of 

the .tetrahedral interstitial s.ites. Comprehensive reviews have been 

bl . h d . th 1 t . 9 d f h t . t. 10 pu J.S e on e e ec ron1c processes an s·ur ace c arac er1·s 1cs 

of zinc oxide. 

, 

·~. •· 

• 
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: . ' 

Zinc oxide· is. known to be an n-type · semiconducto.r •ri th negligible 

hole conduction as i.ndi:cated, by the Hall effect and Seebeck emf .11 

The band gap is appro~imatel; 3. 2 ~V whi:ch corresponds to 3875A. 10 ,l2 ,l3 

The energy levels at 3.2 eV are ·usually considered to be due to singly 

ionized interstitial zinc atoms~- how~v~r, ·Thomas.7 has investigated 

interstitial zinc in single crystals· of zinc oxide grown by the 

Sharowsky method and has concluded that un1ess the crystals have 

undergone some special treatment such as rapid quenching from an atmosphere 

of nearly saturated Z:'tnc vapor they will contain little interstitial 
'l. 
'I 

zinc. He suggests that either oxygen vacancies or chemical impurities 

are the donors in ordinary zinc oxide. 

IT~ EXPERIMENTAL 

The single crystals that were used were g·rown by ·vapor deposition 

at the Electrical Products Divisi.on of the Minnesota l·1ining and 

Manufacturing Company. They were wafers 1 mm in thickness and approxi-

mately 6 mm in diameter and cut so that the flat face was the (1000) 

basal plane. The orientation was verified by means of back-reflection 

Laue x-rey photographs. A list of impurities found in the crystals 

by spectrographic means is included in the appendix. 

The evaporation cell was fabricated from 99.5% pure aluminum 

oxide, the design and dimensions of which are shmm in Fig. 1. A 

groove was cut around the cap so that the cell could be held securely 

by platinum· wire to a thermocouple tube. A platinum disc and w-asher 

separated the crystal from the cell during evaporations and the snugly 

fitting cap could be easily removed to permit weighi'ng of the crystal. 
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The thermocouple was .:ma4e. f.rorn • 5 .n;rg dia,meter platinum and platinum-

10%' rhodium wi.re and was cali~brated against f.reezing coppe.r ,.,.here it 

checked within l/2°C. 

Evaporations were carried out in a 38 ·m.m i.d. Morganite re-

crystallized alumina tube heated by a Burell high-temperature silicon 

carbide resistance furnace with a 35 mm zone in which the temperature 

was constant to l-l/2°C. 

High i-ntensity ultraviolet light was supplied by a PEK Labs. , Inc. , 

#110 high. pressure ·mercury arc lamp in conjunction with a· first-surface 

coated concave mirror. A spectrum of th.e lamp is e;i ven in Fig. 8. 

· Distilled water co11tained in a. ce11 with quartz wind.ows served as an 

infrared filter to ~revent he~ting of the crystal surface. This cell 

had an ultraviolet transmission coefficient of .98. The filtered beam 

of light was admitted into the furnace tube through a quartz window 

which was kept free from condensed zinc vapor by a series of tantalum 

shields in the cold zone. Even though no condensed zinc vapor was 

visible, the window was washed with hydrochloric acid between experiments 

in which light was used. The beam produced, at the sanple, a 1.25 em 

diameter spot of uniform high intensity light. Since the evaporating 

area was .55 em in diameter, the entire evaporating surface could be 

• 

bathed in.the light. The intensity of the filtered light was approximately"' 

one watt/cm2 as was determined by means of a thermopile calibrated 
• • 

at the Eppley Laboratory, Ne1vport, Rhode· Island C.see appendix 1. 
. . . 

In order to prepare sa~ples for! use in the assessment of the • 
influence of composition on evaporation kinetics, sor.1e crystals were 
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placed _in a platinQm basket and heated at 1365°K for 24 to 36 hours 

in a...11 oxygen stream. The oxygen was dried by. U-tubes· filled with 

Drierite (calciUlll sulfate I. The oxygen was stated to be 99. Mb 02, 

.3% Ar, and .1% N2. 

The crystals used for studi.es· SUlll!!larized in Fig. 3 were all from 

the same lot and batch., and all were sealed in an evacuated quartz 

tube and annealed at 11.90°C for 35 hours. This treatment changed the 

color of the crystals from a light gray to light yellmr but they 
., 

remained transparent i They retained the light yellow color during · . ·:r 

all subsequent evaporations. The crystal surfaces were not polished 

or disturbed in any way between evaporations because the physical and 

chemical changes produced by such treatment might drastically change 

th t . t 14 e evapora 2on ra e. 

Evaporations were carried out by withdrawing the thermocouple and 

the attached cell into the cold zone, pumping the system to 3 x 10-5 

1
torr and then quickly inserting the cell into the constant temperature 

zone •. Evaporation times of 240 minutes at the lowest temperature and 

15 minutes at the highest temperature were found to give convenient 

weight losses and yet permit a single crystal to be used for many 

evaporations. Crystals were quenched at the end of the runs by 

withdrawing them into the cold zone. Weight loss was determined by. 

using an Ainsworth semi-micro balance. Crystals used in the determination 

of 6H* were brought to steady-state evaporation rates at each temperature 

before data points were ta...1{en. 
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Fig. 1. Alumina evaporation cell. 
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. III.. RESULTS AND DISCUSSION 

Figure 3 shows the evaporation of three O,i.f.ferent crystal$ f.rom 
• 

the srune lot, after haying been annealed in the evac~ated quartz tube 

as explained in the experimental section. An anneal of this kind 

could not have changed the stoichi-ometry significantly from that of the 

unannealed cryst~ls sine~ the tube was sealed and was held in a uniform 

temperature region of the furnace. No cold zone existed in which 

vapor could condense. 

Crystal ~ was· brought to a constant evaporation .rate at 1365°K 

under illUinination. When the light was turned off, the crystal continued 

. to evaporate at the same rate. Crystal E_ vas annealed in oxygen 

before being brought to a constant evaporation rate at 1365°K under 

·illumination. Its behayior was similar to that of crystal ~ both 

before and after the light was turned off. Crystal b was then re-

annealed in oxygen, turned over and evaporated from the opposite 'side 

in the dark. Following the second oxygen anneal, the evaporation rate 

dropped sharply and then slowly .returned to a slightly higher constant 

rate. After annealing in oxygen, crystal £was brought to a constan~ 

evaporation rate at 1365°K in the dark. It was then re-annealed in 

oxygen and evaporated from the opposite side under illumination. Its 

evaporation rate dropped sharply and slowly returned to a slightly 

higher constant rate. -. 
Any effect of illurrli.nation would be ·most noticeable during the 

initial low evaporation rate since the ratio of incident photons to •• 
evaporating species would be highest. For the lowest evaporation 
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·. rates measured tn light the .. ratlo of incident photons to the nurnbe.r of 

• ·evaporating ZnO 'Units. exceed~q 100,. At steady state the ;ratio exceeded 

10. This contrasts· with findings of Somorjai for cadmium sulfide for 

which the ratio of photons to evaporating cadmium sulfide units was 

approximately one to one. We can conclude that the exci·tation of electrons 

above the band gap in zinc oxi·de does not limi"t the rate of vacuum 

sublimation. 

The ini"tial increase wi:t;h time of the evaporation rate must be 

due either to a change in impurity content or of the oxygen content 

with time. If it is due to an impurity effect, then once a constant 

evaporation rate has been reached the subsequent oxygen anneal would 

probably have no effect, but the sharp drop in evaporation rate following 

an oxygen anneal indicates that the evaporation kinetics depend upon 

the oxygen content and that the out-diffusion of the excess oxygen or 

escape of oxygen from the surface cont·rols the evaporation rate until 

the crystal reaches its steady state composition. Crystal ~' which was 

not annealed in oxygen, probably had a low initial evaporation rate 

because·the oxygen content of the as-received crystal was higher 

than for congruent free surface sublimation. 

Each crystal seemed to have some evaporation behavior peculiar 

l to itself such as the time needed to ·reach a constant evaporation rate 

and the value of this rate. Crystal~ reached a constant evaporation 

rate much faster tl:lan Q.ici crystal .£. both when initially evaporated and 

• 
when re-evaporated following its second oxygen anneal. Crystals that 

had an evaporation rate of .25 mg/cm2 - min Cc~ystals a and ~) or hizher 

~~ 
i' 
I"·. 

" 
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produced a surface that lookeq like J<:ig. 5. Th.is. sur.face was very even 

with no large pi:t;s. 
t1 II . 

'I·n~ orange peel appea:rance was proguced by pits 

of approximately 20 to ·:30 mi.cron di'ameter and similar depth with no 

planar surfaces· visiple. On the other hand, crystals that had constant ~' 

evaporation ·rates lower th.an .25 mg/cm2 - mln (crystal b} or crystals 

during their initial evaporation follmring an oxygen anneal exhibited 

surfaces that were deeply· pitted as· in Fig. 6. where the largest pit 

showing is about . 3 mm in diameter. Many areas of such surfaces sho·.{e<f, 

hexagonal pits of about 2 to 5 micron diamete-r. These ·various pits 

probably developed because of preferential evaporation from defects 

such as impuri':ties or di-slocations • 

. Two di"fferent crystals from the same lot were used in the determin'ation 

of the activation enthalpy. At 1350°K (104 /1350 = 7. 4 I the pressure 

of the oxygen from the zinc oxide becomes approximately equal to the 

background pressure in the system C4 x ·10 .. 8 atmL At this temperature 

and below all the data points fall slightly below the straight line 
. 

established by the higher temperature points. If one assumed that the 

background gas was air, then the background pressure of oxygen would be 

. -g 
approximately 8 x 10 atm. Ii' the evaporation kinetics do depend upon 

the concentration of oxygen at the vaporizing surface, then one would 

expect that the evaporation rate might be influenced by inpinging 

oxygen molecules. 

A ·least squares line i_ncluQ.ing all points giyes llH* = 89.44 Kcal/ 

mole, while if the six data points from temperatures lo•..rer than 1350°K 

are excluded,.then t.H* == 85.13 Kcal/mole. 

• • 

• 
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Fig. 3. Weight loss vs tim~ for (1000) face of three ZnO 
single crystals at 1365 K. 
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Fig. 4. Rate of evaporation of two ZnO single crystals from 
(1000} face as a function of reciprocal temperature. 
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ZN-6038 

Fig. 5. Surface of ( 1 000) face of zinc o~ide single crystal with a 
high evaporation rate (> .25 mg/cm -min) X88 . 
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ZN-6039 

Fig. 6. Surface of (1000) face of zinc oxide single crystal 
with a low evaporation rate ( < . 2 5 mg/ em 2 - min) X140. 

- ,. 

• 
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ZN-6040 

Fig. 7. Detail of evaporation pits of (1000) face of ZnO single 
crystal X250 . 
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Fig. 8. Spectrum of PEK #110 high-pressure mercury 
arc lamp. 
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APPENDIX 

Impurities as found by emission spectrographi.c ·means for the· 

crystals· used in ·Fig. 3. 

· Measurement Li:m:tt ·Aniount ·Detected · ·Measurement ·L:tmtt · ·ATJ16unt Detected 

Sr < 1.0 ppm Fe < l·.o: ppm < 1 

Co 3 Cr < f.o < 1 

Zr 3 Ni: .c: 1.0' 

Ag < 1..0 iF 
'l!l• 

..; 1 Si 5 < 5 

Cu < 1.0 8 Sb 10 

Cd 3 Mg ·~ 1.0 < 1 

Ti < 1.0 Pb 3 

v < 1.0 Mn -~ 1.0 

Ca <; 1.0 -~ 1 B .< 1·.0 15 

Sn < 1.0 " 1 Te 10 

Mo < 1.0 As· 10 

t··· Be < 1.0 Ba 3 

Al 3 ~ 3 Li < 1.0 ' < 1 

Bi < 1.0 K 3 < 3 
" 

In 3 Na .< 1.0 8 

Ge < 1.0 

.• 
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Calculation of th~ :Ratio of Pl.lotons to Evaporating Species 

.. 

The average A is· certainly greater than 'lo'ooX, so that v = 3 • tolS sec-1 
ave 

E = hv = 6.63 • l0- 34 joule 

1 
·watt ..:. · ·r ·Joule 

cm2 - sec - cm2 

sec • 3 • to15 s~c-1 = ~o.to-1 9 joule/photon 

· # photons = 
cm2 - min 

60 photons = .3 • 1019 photons_ 

20 • 10-19 cm2 -min cm2 -min 

I 
. I 

Molecular weight of zinc oxide = 81.37 -~ 
· mole 

- 5 6 cj3!!!olecules 
_2_._5 __ l_o __ .g_._._._o_2_·_·_.1 __ . _· ~m;;:..:.o:..;:;·l:.::e:....·- = 

2 
• 

101
7 ·zno ··molecules 

cm2 - min 
81.37 ___Ll mo e 

#photons = 3 • 1019 
- ~--=:.:::_- = 100 

# evaporating ZnO molecules 
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Iv!EA$URE}JENT OF L.IGHT INTENf:)ITY 

A bismuth:-s~·lyer surface type Eppley Thermopile (.Perial .#6142 )_ 

wi'th a 1 m.m LiF window was -used for light.intensitymeasurementso The 

thermopile was calibrated by the Eppley Laboratory, Inc o , Ne'\o.']?Ort, Rhode 

Island, using a standard la..-np which had been calibrated by the National 

Bureau of Standards-. The thermopile developed o 061 ·microvolts per 

microwatt per cm2 o 

The beam of li·gh:t was focused oh the thermopile and the voltage 

developed measured by a microvoltmeter. Neutral density filters of 
{i' . 

. . ·,ji- . . 

known absorbance were used so that the thermopile would not be overloaded 

by the high intensity light . 

. . . 

. . ..;~ 
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