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Abstract

Human asthma can be subcategorized in several ways, but one powerful
approach is to subtype asthma on the basis of underlying cellular and
molecular mechanisms. Groups of patients with a disease that share
a common underlying biology are termed an “endotype.” Endotypes
of asthma have been studied at both the cellular level (by cytological
examination of induced sputum) and, increasingly, at the molecular
level. Genome-wide analyses of mRNA expression within the lung

have been useful in the identification of molecular endotypes of asthma
and point to protein biomarkers of those endotypes that can bemeasured
in the blood. More recently, studies of microRNA expression in airway
epithelial cells in asthma have identified additional candidate biomarkers
of asthma endotypes. One potentially valuable property of microRNAs
is that they can also be measured in extracellular fluids and therefore
have thepotential to servedirectly asnoninvasivelymeasuredbiomarkers.
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A disease endotype is defined as a “subtype
of disease defined functionally and
pathologically by a molecular mechanism
or by treatment response” (1). Endotypes,
therefore, differ from phenotypes in that
endotypes refer to specific groups of people
(rather than their characteristics) and
demand that these groups share some
common underlying biology. One great
value of identifying endotypes of diseases is
that these endotypes point to specific
therapeutic approaches. There are, of
course, several challenges in implementing
these therapeutic approaches even after
endotyping, including the development of
effective and specific therapeutic blockers
for the pathways of interest, and developing
noninvasive biomarkers that identify people
who comprise the endotype.

In asthma, inflammation and airway
obstruction are triggered by allergen
exposure (2) through several intermediary

steps that have been extensively studied in
murine models. These steps include the
production of “epithelial-derived
cytokines,” including thymic stromal
lymphopoietin, IL-33, and IL-25. Thymic
stromal lymphopoietin promotes the influx
of dendritic cells, which present antigen to
T cells, and IL-33 and IL-25 promote IL-13
and IL-5 release from group 2 innate
lymphoid cells in the airway (3). Ultimately,
these processes lead to helper T type 2
(Th2) cell differentiation and further
production of the Th2 cytokines IL-4, IL-
5, and IL-13 (4–6), and memory T and B
cells are generated that can lead to chronic
inflammation. Much of the remodeling and
dysfunction in resident lung cells that are
associated with asthma can be reproduced
by IL-13 exposure, including goblet cell
metaplasia (7), subepithelial fibrosis (8),
and airway hyperresponsiveness (9–12).
IL-4 can mimic many of the effects of IL-13

and is thought particularly important in
IgE class switching by B cells. IL-5 is
an important mediator of
eosinophil recruitment.

Although mouse models of asthma
have allowed significant progress in
understanding the molecular and cellular
underpinnings of allergic airway disease,
human asthma is a clinically heterogeneous
disease (13, 14), and this clinical
heterogeneity may reflect differences in
underlying biology and point to specific
endotypes (14, 15). Specifically, the Th2-
driven pathways observed in these murine
models of asthma reflect the molecular
events occurring in only a subset of patients
with asthma. Other subsets of patients
with asthma seem to have no or relatively
low-level activation of these biological
pathways. This biological heterogeneity has
been observed for many years and one
classification system involves the
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cytological analysis of induced sputum,
dividing subjects as having (1) eosinophilic,
(2) neutrophilic, (3) mixed eosinophilic
and neutrophilic, and (4) paucigranulocytic
asthma (16–18). Importantly,
noneosinophilic asthma has a poor
response to inhaled corticosteroids (19, 20)
and is pathologically distinct with fewer
mast cells, and less subepithelial fibrosis
(21). Sputum eosinophilia has also guided
the use of mepolizumab, a monoclonal
antibody that blocks IL-5, a key mediator in
the differentiation, recruitment, and
activation of eosinophils (22). Although
early clinical trials of mepolizumab in
relatively unselected patients with asthma
were unsuccessful, the results of clinical
trials of mepolizumab improved with
patient selection based on the presence of
sputum eosinophilia (23, 24). Similarly, one
early clinical study of a therapeutic that
targets the IL-4 receptor (thereby blocking
the effects of both IL-4 and IL-13) did
not show clinical efficacy in unselected
patients with asthma (25). However,
a phase 2 trial of a monoclonal antibody
targeting the IL-4 receptor now reports
efficacy in patients with asthma who were
selected on the basis of peripheral blood
or sputum eosinophilia (26). These data
highlight the great value of classifying
subjects with asthma into cytological
endotypes when targeted therapies are
employed. These data also highlight the
need for a better understanding of
patients with asthma who have a paucity
of Th2 inflammation and the need to
identify appropriate therapeutic
approaches in this subgroup if
conventional antiinflammatory therapies
are ultimately shown to be ineffective
or significantly less effective in this
patient population.

Airway Epithelial mRNAs as
Endotypic Markers

Given the success in endotyping based on
induced sputum cytology, and the
observation that emerging biological
therapies in asthma typically target single
cytokines or inflammatory pathways, one
can expect some advantages to
characterizing asthma endotypes at the
molecular level, based on the activity of
specific cytokine pathways. Because accurate
measurement of cytokines in lung samples
can be challenging, we have taken the

approach of studying airway epithelial
brushings obtained bronchoscopically as
a “sensor” for inflammatory events in the
airway (27, 28). Among the most highly
induced genes in patients with mild asthma
as compared with healthy control subjects,
we found three IL-13– and IL-4–regulated
genes: chloride channel, calcium-activated,
family member 1 (CLCA1); periostin; and
serine peptidase inhibitor, clade B
(ovalbumin), member 2 (serpinB2, also
known as plasminogen activator
inhibitor-2). This set of three genes was
induced in a subset of our subjects with
asthma, and those subjects had increased
expression of IL-13 and IL-4 by
quantitative PCR in accompanying
bronchial biopsies, and increased
eosinophilia in bronchoalveolar lavage
fluid. Therefore, we considered these
three genes to be markers of a “Th2-high”
endotype of asthma (14, 28), which is
highly overlapping with “eosinophilic
asthma” as described by cytological
analyses of sputum.

In subsequent analyses, we found that
subjects with Th2-high asthma, based on the
expression levels of these genes, differed
from subjects with Th2-low asthma with
respect to physiology, lung inflammation,
pathology, and response to inhaled
corticosteroid therapy (28). For example,
although both Th2-high and Th2-low
subjects had airway hyperresponsiveness
(as measured by the PC20 methacholine,
i.e., the concentration of methacholine
required to effect a 20% decline in FEV1),
Th2-high subjects had, on average, greater
airway hyperresponsiveness. Significant
bronchoalveolar lavage eosinophilia was
restricted to subjects in the Th2-high group.
Th2-high subjects also had increased
numbers of intraepithelial mast cells (29)
and increased subepithelial fibrosis (28).
Finally, in a randomized placebo-controlled
trial of inhaled corticosteroids, subjects
with Th2-high asthma showed
improvements in FEV1 to inhaled
corticosteroids, whereas the Th2-low
subgroup did not (28).

Ultimately, the measurement of these
three marker genes in bronchoscopically
obtained airway epithelial brushings is
a valuable research tool, but is not useful for
stratification of patients in the clinic. On
the basis of these data, and the observation
that periostin is secreted by airway epithelial
cells (30), blood levels of periostin have
been studied as a surrogate marker for

airway eosinophilia (31) and as a method
for predicting response to pharmacologic
IL-13 blockade with lebrikizumab, and
anti–IL-13 antibody (32).

Airway Epithelial MicroRNAs
as Endotypic Markers

More recently we have observed that
microRNAs (miRNAs) are also highly
differentially expressed in the airway
epithelium of subjects with asthma as
compared with healthy control subjects (33).
miRNAs are approximately 22-nucleotide
RNAs that promote mRNA degradation
(34) or inhibit translation (35), by binding
with at least partial complementarity to the
39 untranslated region of target mRNAs.
miRNAs have been implicated in the
regulation of fundamental biological
processes in epithelial cells such as cell
proliferation, differentiation, and apoptosis
(36–38). One focus of our ongoing work is
to study whether these miRNAs regulate
asthma-relevant biological functions of
these epithelial cells. However, one might
also ask whether these miRNAs can serve as
biomarkers of asthma endotypes. Using
a similar approach to that which we
employed for assessment of mRNA
expression in airway epithelial cells, we
performed companion experiments with
bronchial epithelial cells in vitro and found
that IL-13 had significant effects on
bronchial epithelial miRNA expression and
that several of these changes recapitulated
the differences between asthma and health
that we observed in our human
studies (33). One finding that we have
focused on in subsequent work is
consistent repression of four members of
the miR-34/449 family (miR-34c-5p, miR-
34c-5p, miR-449a, and miR-449b-5p)
both in vivo in asthma and in vitro by
IL-13. One study found that miR-449
regulates the differentiation of ciliated
epithelial cells, in part by targeting
NOTCH1 mRNA (39). These data provide
some clues as the potential biological role
of the miR-34/449 family in airway
epithelial cells.

Whether these miRNAs, or others
that are regulated by IL-13, can serve as
markers of a Th2-high asthma endotype
is uncertain; however, miRNAs have
a relatively unique property that renders
them valuable as biomarkers. That is,
miRNAs can exist in extracellular fluids in
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forms that are resistant to degradation by
RNases, and therefore can be measured in
sputum, bronchoalveolar lavage fluid, and
blood using PCR, microarrays, and
sequencing methods. There are at least three
ways that miRNAs are protected from
RNases. First, miRNAs can be contained
within membrane-bound vesicles termed
“exosomes” (40). Second, miRNAs can be
bound by proteins such as Argonaute (41).
Finally, miRNAs can be protected by
residence within high-density lipoproteins
(42). Consequently, if specific miRNAs are
differentially expressed by airway epithelial
cells under the influence of specific
cytokines (as in the data described
previously) or by disease-relevant
inflammatory cells, and are then secreted
into the airway surface liquid or into the
blood, these miRNAs could themselves be
used as biomarkers of asthma endotypes
related to these specific cytokines and
inflammatory cells. Other potential
applications of these extracellular miRNAs
as biomarkers could be to mark the type or
degree of epithelial cell (or T-cell)
differentiation that is occurring in any
specific patient.

A series of mouse studies have been
performed that identify miRNAs that
regulate various aspects of allergic
inflammatory responses and that could,
therefore, serve both as biomarkers in
human asthma and as therapeutic targets.

For example, miR-126 suppresses the
effector function of Th2 cells and the
development of allergic airway disease in
a mouse model of house dust mite–induced
allergic airway disease (43). The same
mouse–house dust mite exposure model is
associated with increased expression of
miR-145, miR-21, and let-7b in the airways
(44). miR-21 is up-regulated in mouse
models of allergic airway inflammation and
regulates expression of IL-12p35 (45), an
important Th1 cytokine. miR-181a, miR-
146a, and miR-146b are expressed in spleen
CD41 T lymphocytes and appear to play
proinflammatory roles in a murine model
of asthma (46). miR-375 was found to
be down-regulated in IL-13 transgenic mice
and repressed in human bronchial (and
esophageal) epithelial cells by IL-13 (47).
let-7 has a complicated but
proinflammatory role in a murine model of
asthma (48). Finally, broad-based miRNA
profiling has been performed in murine
models of acute and chronic asthma,
identifying additional possible biomarkers
(49). To date there have been few studies
that relate blood miRNAs in human
subjects to findings made in mouse models,
but one study found that miR-221 and
miR-485-3p are up-regulated in the blood
of asthmatic compared with healthy
children and are also up-regulated in an
ovalbumin-induced mouse model of
asthma (50).

Conclusions

The classification of patients with asthma
into specific endotypes has the potential to
improve asthma therapy by guiding the
targeted use of specific novel therapies such
as those that block specific cytokines. In
addition, it is possible that endotyping will
be useful in the application of widely used
existing antiinflammatory therapies such
as inhaled corticosteroids and leukotriene
pathway inhibitors. However, all of these
applications will require the development
and refinement of noninvasively measured
biomarkers that can accurately mark the
underlying lung endotype, and appropriate
clinical studies. One such candidate
biomarker is periostin, which was developed
on the basis of mRNA studies of
bronchoscopically obtained airway
epithelial brushings. Similar data now exist
for miRNAs that are abnormally expressed
in the airway epithelium in asthma and
that have the potential to mark specific
endotypes. One interesting property
of miRNAs is that they are protected from
RNases and can be measured in extracellular
fluids. Therefore, one approach to the
development of biomarkers is the
measurement of these miRNAs directly in
blood and/or sputum. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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