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ABSTRACT

The mammalian cell cycle is a complex system of molecular interactions that dictates

cellular growth, proliferation and, by extension, a wide range of biological processes. The cell

cycle may be temporarily or permanently halted by increased expression of the cyclin-dependent

kinase inhibitors p16, p21 and p53 in response to DNA damage stress, as well as disrupted

expression of BMAL1, a circadian rhythm protein responsible for regulation of the sleep-wake

cycle and maintenance of homeostasis. Such impediments to cell cycle function contribute to the

pathology of an extensive variety of severe aging-associated diseases. As such, there is

significant incentive to understand the interactions among the key regulators of the mammalian

cell cycle in order to better inform future treatment options. Prior research has yielded a plethora

of computational models that have attempted to model the cell cycle; however, these models lack

key molecular signaling events, are modeled over non-representative time scales, and are limited

in terms of the methods of senescence inductance that are studied. Further, a decisive knowledge

gap exists in that no successful attempts have been made to model the interactivity of BMAL1

and cyclin-dependent kinase inhibitors. This work features the novel integration of a BMAL1

circadian rhythm module and individual p16, p21, and p53 protein DNA damage modules into an

established computational model of a cell cycle system, with preliminary demonstration of the

impact of varying levels of DNA damage and circadian rhythm variation on the functionality of

the cell cycle. Future expansion of this model is projected to enable advanced study of

aging-associated diseases such as glaucoma in cooperation with data obtained from in vitro

experimentation.
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INTRODUCTION

The mammalian cell cycle is characterized by a series of stages that regulate cell growth

and division and is dependent on a broad range of intercellular and extracellular factors.1,2 An

aging cell is considered to be senescent when it has fully exited the cell cycle in response to

stress, biochemical interactions or other environmental stimuli and is no longer capable of

division. This halt of cell cycle activity is induced by increased expression of the

tumor-suppressor proteins p53, p21 and p16, and is closely associated with pathological

progression of aging-associated diseases including cancers and the deterioration of bone, cardiac

and neurological tissue and other vital biological structures.3 Similarly, mammalian cells may

also enter into quiescence, a state of cellular dormancy that is comparable to the concept of

“reversible” senescence.4

Circadian rhythm proteins are biochemical feedback loop molecules that generate the

characteristic 24-hour oscillatory rhythm of the mammalian sleep-wake cycle and maintain

homeostasis of temperature and metabolism.5,6,7 In addition to the aforementioned regulatory

roles, circadian rhythm proteins, particularly Brain and Muscle ARNT-Like 1 (BMAL1), have

also been shown to regulate in vivo senescence in mammalian cells, though this concept is not as

thoroughly studied in in vitro settings.8

In recent years, numerous computational models have been constructed to gain a deeper

understanding of the interactions among regulatory molecules that govern this cycle and entrance

into senescence and quiescence; however, these models are often oversimplified, do not exhibit

reliable cyclical behavior over biologically relevant time intervals, or rely on DNA damage as a

singular method of stress inductance.9,10,11,12 Notably, no current systems exist to model the

complex interactions between regulators of the cell cycle and circadian rhythm proteins.
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To address these deficiencies, this project aims to serve as a preliminary attempt at

construction of a reliable, improved computational model of the mammalian cell cycle that

considers both DNA damage and circadian rhythm variation as factors contributing to cycle

regulation and inductance of senescence and quiescence. Through the incorporation of p53, p16,

p21 and BMAL1 into an existing model of cell cycle behavior, the groundwork has been laid for

expansion of this in silico model to provide valuable insight into the cooperative roles of

circadian rhythm proteins, DNA damage signals, growth factors and cell cycle regulators in the

mammalian aging process. In the future, this hybrid model may be applied as a foundation of

drug discovery advancements in treating aging-associated diseases that display molecular

overlap with circadian rhythm dysfunction, including endocrine disorders, various cancers, and

glaucoma, the leading cause of irreversible blindness in the United States.13,14,15,16 In particular,

this model is intended to be supplemented with future experimental in vitro data obtained from

trabecular meshwork (TM) cells of the human eye to aid in validation of the previously

unstudied hypothesis that the corticosteroid dexamethasone (DEX) reliably induces a

glaucomatous phenotype characterized by TM cell population loss in a BMAL1/p53-dependent

fashion.17,18,19,20
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METHODOLOGY

Literature Review

A thorough literature search was conducted for online research articles and studies

pertaining to the mammalian cell cycle, DNA damage, circadian rhythm and computational

models of the aforementioned topics. Relevant literature published in English were selected from

PubMed, MEDLINE and various scientific journals and applied to the development of signaling

pathway diagrams and a cohesive MATLAB ordinary differential equation (ODE) solver-based

computational model.

Cell Cycle Model Reconstruction and Optimization

Five mammalian cell cycle and circadian rhythm models of varying complexity were

identified from a comprehensive literature search and individually replicated in separate scripts

using MATLAB Version 2020b computational modeling software. All models were rendered

with the ode45 solver for nonstiff differential equations, and will hereafter be referred to as the

Abroudi, Conradie, Iwamoto, Weis and Geier models. After replication, the Weis model was not

determined to be necessary for this project and was not utilized in the further development of a

comprehensive cell cycle script.12 The Iwamoto model, meanwhile, was found to be the

equivalent of an early iteration of the Abroudi model, and was therefore only used for

comparison purposes during the optimization phase.11 The Abroudi model, the most complex

system replicated in this project, contained 64 ODEs and 145 constants representing distinct

molecular reactions implicated in both the mammalian cell cycle and the DNA damage stress

response as it relates to the p53 tumor suppressor gene.9 However, the cyclical behavior of the

cell cycle components of this model were found to be unreliable and only the DNA damage
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module was utilized in the synthesis of the final model. The original Conradie model,

meanwhile, comprised 78 constants, 9 algebraic equations, 52 rate equations and 24 ODEs and

provided the basic framework of the cell cycle from which the final model was synthesized.10

The original Geier model consisted of 24 constants and 7 ODEs, and was partially replicated and

expanded upon by laboratory colleagues Himani Thakkar and Brittany Gilbert.21 For the purposes

of this project, only the BMAL1 module was incorporated into the final model.

Tables 1, 2, 3, and 4 contain the 134 constants, 12 algebraic equations, 89 rate equations,

and 39 ODE equations, respectively, that comprise the completed computational model. The

construction of this model may be divided into a sequence of four critical components. The first

of these was the reconstruction of the Conradie model in its entirety to obtain a functional

representation of a mammalian cell cycle system that was cyclically responsive to initial system

inputs over an interval of 50 hours. One significant deviation from the functional units supplied

by the Conradie model was made to facilitate upstream troubleshooting and separate modeling of

the G1 phase, or growth phase of the cell, from the S, G2 and M phases that are characterized by

DNA replication and division of the cell (Figure 1).22 To accomplish this, the FLAG variable of

the Conradie model was replaced with a coded loop that solved the ODE in two solution steps:

the ODE was solved for the G1 and S/G2/M parts of the cell cycle separately. After completion

of the M-phase the cell was computationally “split” by division of the MASS and GM variables

representing cellular mass and general machinery. Each ODE passed final values as initial

conditions to the next ODE to ensure seamless transition from each integration to subsequent

timesteps.

Next, two novel modules were formulated and integrated into the optimized Conradie

model to incorporate the influence of p21 and p16, two proteins associated with the DNA
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damage stress response. From literature review, it was determined that p21 may be incorporated

into the framework of the Conradie model by its upstream inhibitory influence on the Cyclin

E/Cdk2 and Cyclin A/Cdk2 complexes, key regulators of cell cycle progression; likewise, p16

may be similarly integrated by its upstream inhibitory influence on the regulatory Cyclin A/Cdk2

and Cyclin B/Cdk 2 complexes, as well as its tendency to promote synthesis of Rb, the

retinoblastoma protein that binds to the transcriptional factor E2F to prevent advancement of the

cell cycle (Figure 2).23,24 To successfully integrate these components, two ODE equations for p21

and p16 were generated from the formulation of six new rate equations (labeled v66 through v71

in Table 3) encompassing the signaling behavior previously described and six corresponding

new constants (labeled k100 through k105 in Table 1). The Conradie ODEs representing the

Cyclin A/Cdk2, Cyclin B/Cdk2, Cyclin E/Cdk2 and E2F/Rb complexes were also altered to

include the newly integrated parameters. Constant values were optimized by systematic variation

and plotting of corresponding ODEs until desirable behavior was obtained.

Following integration of p16 and p21, a module containing p53, an additional DNA

damage stress response protein, was transferred from the Abroudi model and integrated into the

updated Conradie model. From literature review, it was determined that this protein may be

integrated into the existing framework of the existing hybrid model via the upstream promotion

of p21 expression (previously incorporated into the model as explained above) by p53 (Figure

2).25 To integrate this module, 21 constants (highlighted in orange in Table 1) and 3 algebraic

equations (labeled DDS, DSB and DEG in Table 2 to represent DNA damage events) were

added to the master model, with 13 new rate equations (labeled v53 through v65 in Table 3)

formed from the compartmentalized ODE equations provided in the Abroudi model. These rate

equations formed the basis of 7 additional ODE equations (labeled ATMp, iChk2p, aChk2p,
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p53p, Mdm2p, IFp, and Gadd45ap in Table 4) reconstructed in the format of the Conradie hybrid

model. As the Abroudi model employed axes scales that differed from those of the Conradie

model, a multiplicative time factor of 187 was applied to all integrated Abroudi constants and the

numerator terms of rate equations v60 and v62 to ensure homogeneity of plots.

Finally, the Geier BMAL1 module was integrated into the comprehensive model. From

literature review, it was determined that this protein may be incorporated into the framework of

the hybrid model through the upstream inhibition of p53 (previously incorporated into the model

as explained above) by BMAL1 (Figure 2).26 To integrate this module, 24 constants (highlighted

in red in Table 1) were added to the master model, with 18 new rate equations (labeled v72

through v89 in Table 3) formed from the ODE equations provided in the Geier model. These rate

equations formed the basis of 7 additional ODE equations (labeled BeWe1p - BeWe7p in Table

4) reconstructed in the format of the Conradie hybrid model.
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Table 1. Completed model constants. Constants taken from the Conradie model are shown in

pink, while unscaled constants taken from the Abroudi model and novel empirically generated

constants are shown in orange and yellow, respectively.
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Table 2. Completed model algebraic equations. Equations taken from the Conradie model are

shown in pink, while equations taken from the Abroudi model and adapted to the Conradie

model are shown in orange.
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Table 3. Completed model rate equations. Equations taken from the Conradie model are shown

in pink, and novel empirically generated equations are shown in yellow.
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Table 4. Completed model ODE equations. Equations taken from the Conradie model are shown

in pink, while altered Conradie model equations and novel empirically generations are shown in

blue and yellow, respectively.

Figure 1. Mammalian cell division schematic accompanied by the corresponding MATLAB

code segment.
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Figure 2. Proposed molecular signaling pathway combining integral DNA damage molecules

from the Abroudi cell cycle model with the BMAL1 circadian rhythm module, omitted DNA

damage proteins and key factors of the Conradie cell cycle model.
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RESULTS

Cell Cycle Model Reconstruction and Optimization

The replication of the original Conradie model demonstrated reliable cyclical behavior

over a period of 50 hours that is consistent with the molecular signaling pathways dominating the

mammalian cell cycle, as shown in Figure 3. However, the absence of any modules accounting

for the DNA damage stress response or circadian rhythm variation necessitated their integration

for a comprehensive overview of the mammalian cell cycle as it pertains to quiescence and

senescence.

Figure 3. MATLAB-generated plot of the time course of the mammalian cell cycle, as replicated

and optimized from the Conradie model.

Behavior of the novel integrated p53 DNA damage module was tested over a broad range

of DNA damage input values, as shown in Figure 4. From these plots, it was observed that p53
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expression rose exponentially before reaching a plateau phase under low (DDS = 0.002) and

medium (DDS = 0.004) levels of input DNA damage. At high (DDS = 0.008) and excessive

(DDS = 0.016) levels of DNA damage, the exponential growth phase was no longer observed

and was replaced by rapid, repetitive cyclical behavior. These phenomena extend to the Mdm2

and IF molecules, both of which are key factors of the reconstructed and optimized p53 DNA

damage module. These findings are in accordance with literary documentation of p53 behavior in

Figure 4. MATLAB-generated plots of the cyclical components of the optimized Abroudi DNA

damage module under varying input levels of DNA damage stress (DDS), including a) low

damage (DDS = 0.002); b) medium damage (DDS = 0.004); c) high damage (DDS = 0.008); and

d) excess damage (DDS = 0.016).
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response to DNA damage stress: under low stress conditions, DNA is capable of repair and the

corresponding output is consistent with a faint pulse as observed in the figure. At higher levels of

stress, the observed steady oscillations represent a combination of DNA damage repair and arrest

of the cell cycle.27

Integration of the novel p16 module at a high (DDS = 0.008) level of input DNA damage

is shown in Figure 5. The prolonged intervals between the cyclical events characterizing p16

behavior at this stage are consistent with literary documentation; however, there is no significant

deviation from this pattern observed at lower levels of input DNA damage.28 This inconsistency,

in conjunction with a lack of significant impact of p16 protein on the behavior of the Cyclin

A/Cdk2 and Cyclin B/Cdk2 complexes at such a high level of DNA damage, suggest

insufficiency of one or more current constant values to model the delayed response of p16 and its

Figure 5. MATLAB-generated plot of the novel integration of p16 into the optimized

Conradie-Abroudi cell cycle model.
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effect on cell cycle function. In future iterations of this model, a systematic parameter variation

will be conducted to refine these constant values.

The integration of the new p21 module over a broad range of DNA damage input values

is shown in Figure 6. While exponential plot behavior was observed at low (DDS = 0.002) and

medium (DDS = 0.004) levels of DNA damage, the exponential response was dampened and

assumed a progressive embodiment of cyclical behavior at a high (DDS = 0.008) DNA damage

level before stabilizing to a sustained, rapid cyclical pattern under excessive (DDS = 0.016)

DNA damage. This model is consistent with experimental data of p21 protein behavior.29 Figure

Figure 6. MATLAB-generated plot of the p21 molecule behavior under varying input levels of

DNA damage stress (DDS), including a) low damage (DDS = 0.002); b) medium damage (DDS

= 0.004); c) high damage (DDS = 0.008); and d) excess damage (DDS = 0.016).
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7 further illustrates the success of this integration with the p53 DNA damage module. At all

degrees of DNA damage, the plots of p21 and p53 closely mimic one another in terms of general

behavior. At lower levels of DNA damage, both plots exhibit exponential trends that transition to

plateaus after approximately five hours; similarly, both plots display rapid, cyclical behavior

under higher applications of DNA damage stress. However, the absence of significant impact of

Figure 7. MATLAB-generated plot of the novel integration of p21 into the optimized

Conradie-Abroudi cell cycle model under varying input levels of DNA damage stress (DDS),

including a) low damage (DDS = 0.002); b) medium damage (DDS = 0.004); c) high damage

(DDS = 0.008); and d) excess damage (DDS = 0.016).
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p21 on the activity of the Cyclin A/Cdk2 and Cyclin E/Cdk2 complexes suggests that further

constant refinement is needed via parameter variation in future iterations of this model.

The integration of the BMAL1 module over a broad range of DNA damage input values

is shown in Figure 8. At low (DDS = 0.002) to medium (DDS = 0.004) levels of DNA damage,

BMAL1 exhibited a dampening effect on the behavior of p53; however, this influence was

significantly reduced at high (DDS = 0.008) to excessive (DDS = 0.016) levels of DNA damage.

Figure 8. MATLAB-generated plot of the novel integration of BMAL1 into the optimized

Conradie-Abroudi cell cycle model under varying input levels of DNA damage stress (DDS),

including a) low damage (DDS = 0.002); b) medium damage (DDS = 0.004); c) high damage

(DDS = 0.008); and d) excess damage (DDS = 0.016).
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This model is consistent with experimental data of BMAL1 and p53 protein behavior.26

However, this is a simplified overview of BMAL1 interaction with the cell cycle. While the

model does account for the influence of cytoplasmic and nuclear PER and CRY protein

complexes, there is no provision for the BMAL1/CLOCK complex; this heterodimer is a known

positive regulator of circadian oscillation and Wee1, a nuclear protein that regulates cell cycle

progression through inhibition of Cdk1.30 These components will be incorporated in future

iterations of this model to further elucidate the interactions between BMAL1 and key cell cycle

regulators.
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DISCUSSION

This work demonstrates the first documented attempt made to synthesize a computational

model of the mammalian cycle that incorporates both circadian rhythm variation and a

multi-faceted approach to the DNA damage response as coupled contributors to cycle regulation.

As a preliminary step, a successful replication and optimization of an oscillating cell cycle model

was executed. The integration of the novel p16 and p21 modules alongside the optimized p53

module allowed for the application of a range of DNA damage stress inputs to the system, with

an output of senescence-associated protein behavior that simulated DNA damage repair events

and cell cycle arrest at lower and higher stress input signals, respectively. Though this model

behavior was particularly pronounced in both the p21 and p53 modules, expected p16 activity

was only achieved at high levels of DNA damage stress. p16 also appeared to have a limited

effect on cyclin dynamics, an observation that was inconsistent with experimental data and

suggested the need for more sophisticated parameter selection. In future work, this will be

accomplished through a screened comparison of constants in comparison to experimental

observations using the approximate Bayesian computation sequential Monte Carlo (ABC-SMC)

method. Further, integration of a circadian rhythm module featuring BMAL1 demonstrated the

computational ability to restrict p53 behavior under limited DNA damage inputs; however, this

module is constrained by simplification of the interactions between BMAL1 and cell cycle

regulators, and will be expanded in future studies as complexity is added.

Following rectification of the aforementioned limitations to model function, several

additions to this work will be explored to encompass a broader understanding of cell cycle

regulation in response to circadian rhythm variation and DNA damage stress inputs. The current

model plots molecular interactions over 50 hours, or slightly longer than two complete cell
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cycles; future iterations of this model will extend this time period to 30 days to simulate a more

relevant biological time scale of senescence-associated cell pathology. Further, DNA damage

inputs will be adjusted to include tunable and time varying levels of DNA damage. To obtain a

more detailed understanding of the interactions among circadian rhythm proteins, key cell cycle

regulatory factors and DNA damage proteins, the repertoire of circadian proteins incorporated

into this model will be expanded to include the 1- and 2- isoforms of period (PER) and

cryptochrome (CRY) proteins. As previously noted for future parameter optimization, unknown

rate constants will be screened using the ABC-SMC method.31 Following these extensions, cell

cycle arrest and senescence will be strategically simulated with an optimized DNA damage

increase. Validation of the computational model of senescence will include cell cycle arrest

stability after transient DNA damage stimuli, consistent with experimental data. When circadian

rhythm and DNA damage modules have been satisfactorily expanded, model performance will

be quantified through local sensitivity analyses of all system constants and initial conditions,

including constants adapted from source mammalian cell cycle models. After these validations,

this model will be integrated into a computational model of TM cell population dynamics to

study the time course of glaucoma progression in both in vitro models and in vivo disease

systems. Model performance will be cross-validated against in vitro experimental data of specific

cell cycle and circadian rhythm components in TM cells, as well as published population and

senescence studies of healthy and glaucomatous TM in vivo.

In summation, this project brings together vital molecular signaling components

governing cellular growth and proliferation into one cohesive computational model. Of particular

interest is the application of the base work demonstrated in this model to the development of a

computational approach to the prediction and treatment of glaucoma pathology. Enhanced
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understanding of the molecular signaling pathways implicated in glaucoma induction will enable

future diagnostic and therapeutic developments, as identification of potential early markers of

glaucoma progression, of which BMAL1 and p53 are of particular interest, may aid in

preventative treatment to slow the progression of blindness in elderly populations. The

development and further validation of this novel in silico framework of these molecular

interactions will lead to an increasingly quantitative understanding of this disease; further,

validation of BMAL1 as a key regulator of aging-associated diseases can be leveraged in future

studies of other aging diseases and phenotypes.
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