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Flat entanglement spectra in fixed-area states

of quantum gravity

Xi Dong,a Daniel Harlow,b and Donald Marolfa

aDepartment of Physics, University of California, Santa Barbara, CA 93106, USA
bCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA

02139, USA

E-mail: xidong@ucsb.edu, harlow@mit.edu, marolf@ucsb.edu

Abstract: We use the Einstein-Hilbert gravitational path integral to investigate grav-

itational entanglement at leading order O(1/G). We argue that semiclassical states

prepared by a Euclidean path integral have the property that projecting them onto a

subspace in which the Ryu-Takayanagi or Hubeny-Rangamani-Takayanagi surface has

definite area gives a state with a flat entanglement spectrum at this order in grav-

itational perturbation theory. This means that the reduced density matrix can be

approximated as proportional to the identity to the extent that its Renyi entropies Sn
are independent of n at this order. The n-dependence of Sn in more general states then

arises from sums over the RT/HRT-area, which are generally dominated by different

values of this area for each n. This provides a simple picture of gravitational entangle-

ment, bolsters the connection between holographic systems and tensor network models,

clarifies the bulk interpretation of algebraic centers which arise in the quantum error-

correcting description of holography, and strengthens the connection between bulk and

boundary modular Hamiltonians described by Jafferis, Lewkowycz, Maldacena, and

Suh.
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1 Introduction

The study of entanglement in gravitational systems has a long history, going back to

[1–4]. In recent years it has been given new life within the relatively precise context

of AdS/CFT [5–16]. The primary driver of this resurgence of interest has been the

Ryu-Takayanagi (RT) formula, which says that at leading order in the semiclassical

expansion in G the von Neumann entropy on a boundary spatial subregion R of any

semiclassical state ρ is given by

S(ρR) =
A[γR]

4G
, (1.1)

where γR is the Hubeny-Rangamani-Takayanagi (HRT) surface in the bulk associated

to that subregion and A[γR] is its area in that state [6–8]. More recently, the nature

of entanglement in AdS/CFT was clarified considerably by the observation that the

holographic mapping from the bulk to the boundary has the structure of a quantum

error-correcting code [17]. Quantum error-correcting codes are protocols which store

quantum information nonlocally in the entanglement between many local degrees of

freedom, in such a way that the stored information is protected from errors acting on

small numbers of those local degrees of freedom: in [17] it was observed that this is
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Figure 1. The encoding circuit for a tensor network holographic code (figure borrowed from

[28]). r/r denotes bulk degrees of freedom at the red dots to the left/right of the green HRT

surface γR, |χ〉 is a tensor product of a set of EPR pairs on each link cut by γR, and UR/UR
are unitary transformations generated by the pieces of the network to the left/right of γR.

precisely what is required to explain the emergence of the radial direction in AdS/CFT.

In particular in [18–20] a close connection between the RT formula and quantum error

correction was developed, with [20] showing that a rather general family of quantum

error-correcting codes all obey an RT-like formula.

Throughout these developments, a supporting role has been played by Renyi en-

tropies, which for any quantum state ρ are defined by

Sn(ρ) ≡ − 1

n− 1
log Tr(ρn). (1.2)

Typically these are well-defined for n ≥ 1, with S1(ρ) being equivalent to the von

Neumann entropy −Trρ log ρ. Indeed the most prominent appearance of Renyi entropy

is in the use of the replica trick to compute von Neumann entropy via the limit n→ 1

[12, 21–23]. Renyi entropies are also interesting objects on their own however, with

their n-dependence allowing them to probe more information about a quantum state

than the von Neumann entropy does: indeed in principle we should be able to extract

the full spectrum of ρ from a careful study of the Renyi entropies (see [24–27] for recent

work focused specifically on Renyi entropies). It therefore is natural to ask if quantum

error correction gives any useful perspective on Renyi entropy.

One way to begin to address this question is to ask how Renyi entropy behaves in
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simple tensor network models of holographic codes which have so far been constructed

[29, 30], but here a surprise is in order. These models are (to a good approximation

in the second case) examples of what [20] called subsystem codes with complementary

recovery, which in practice means that they are encoded via a quantum circuit of the

type illustrated in figure 1.1 The quantum error correction interpretation of the RT

formula proposed in [20] follows from the circuit diagram in figure 1: for any state ρrr
we feed into the rr indices of the circuit, we have

S(ρR) = S(χR) + S(ρr), (1.3)

where χR is the restriction of |χ〉 to the subfactor of R which does not contain r.

S(χR) thus receives a contribution from each link which is cut by γR, and is therefore

proportional to its area, so we can identify the first term in (1.3) as giving rise to the

leading-order RT formula (1.1). S(ρr) is the von Neumann entropy of the bulk fields in

the entanglement wedge of R, and thus gives the O(G0) contribution to the quantum

version of the Ryu-Takayanagi formula proposed in [31]. For our purposes here the

main point however is that we can also use this encoding circuit diagram to compute

the Renyi entropies of any bulk state we feed into the rr legs of the circuit. At leading

order in G these Renyi entropies will again be dominated by the contribution from |χ〉,
but since |χ〉 consists entirely of maximally mixed EPR pairs, the eigenvalues of its

restriction χR to R are all equal and the Renyi entropy Sn(ρR) is thus independent of

n at leading order! This certainly is not what is predicted by general relativity in the

bulk (see e.g. [26]), and understanding what feature of holography is therefore missing

has been one of the interesting open problems in holographic error correction.

The first guess for how to rectify this discrepancy is to change the tensors in the

network. This however will not change the n-independence of the Renyi entropies,

since the index contradictions will still correspond to inserting maximally mixed states

on each link. We can try to improve this by changing the rules for doing the index

contractions to include the insertion of a non-maximally mixed state [30], but this seems

unlikely to capture the full n-dependence expected from holography, especially e.g. in

the presence of multiple intervals. Our main goal in this paper is to instead argue that

in a certain sense the simple holographic networks have it right: in the gravitational

states which they are most analogous to, the Renyi entropies are independent of n to

leading order in G! Indeed we argue that holographic tensor networks of the type shown

in figure 1 should best be understood as states where the area of the HRT surface γR
has been projected onto a definite value, killing the fluctuations which would usually be

1Readers for whom this is unfamiliar may wish to consult [28] for more background on these ideas,

which we will also review in some more detail in section 3 below.
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present in a good semiclassical state generated by a path integral. In other words, the

leading-order n-dependence of the Renyi entropies for such semiclassical states arises

entirely from those fluctuations.

To reproduce this n-dependence using tensor networks, we therefore need to make

the network geometry dynamical in some sense. This conclusion will be no surprise to

experts, and indeed has already been discussed in [32]2; see also [34] for related discus-

sion of HRT-area-eigenstates and their superpositions. After all making the geometry

of the HRT surface dynamical was the difference between an incorrect first attempt

[35] to derive the RT formula, which just replicated the bulk geometry, and the later

correct version [12], which allowed the geometry to backreact as needed to solve the

equations of motion at the HRT surface [23]. Our contribution is to show more clearly

how those two approaches are related, and that in particular there is a question for

which the “wrong” replicated saddle point is actually the right answer.

The majority of this paper will focus on establishing the n-independence of the

Renyi entropies of fixed-area states in gravity, but in section 3 we will return to quantum

error correction to interpret our gravitational results. In section 4 we will then explain

how our results imply a strengthening of the JLMS relation [18] between bulk and

boundary modular Hamiltonians. The idea is that that relation holds also “in the

exponent” as a statement about the bulk and boundary modular flow operators. These

operators are used to define the modular flow operation, so understanding them better

may be of use in implementing the proposal of [36] to use modular flow as an explicit

bulk algorithm for entanglement wedge reconstruction.

2 Cutting gravitational path integrals to compute boundary

Renyi entropy

The basic idea of this section is to cut and paste gravitational path integrals in a

way that enables us to compute the boundary Renyi entropy of a state which has

been projected to a definite area of the HRT surface. Doing so however requires us to

understand how to describe gravity in a subregion. This question has been studied in

considerable detail at the classical level in [37] (see also [18, 38–44] for related work);

we now review it from a slightly different perspective which is more conducive to seeing

the connection to quantum error correction we develop in section 3.

2The simplest way to introduce dynamics to a tensor network is to include new degrees of freedom

on the links which allow the tensor we sew in to change dynamically [33], which roughly speaking is

what the “center” degrees of freedom we describe below in the gravitational picture are doing.
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2.1 A phase space for gravity in the entanglement wedge

In any mechanical system, phase space is defined as the set of distinct initial conditions.

When the initial-value problem is well-posed, meaning that each initial condition leads

to a unique classical solution, we can equivalently think of phase space as the set of

classical solutions. In the presence of gauge symmetries the initial-value problem is not

well-posed for the degrees of freedom appearing in the action, but it will be well-posed

once we quotient the set of classical solutions by the set of gauge transformations: the

phase space is then in one-to-one correspondence with these equivalence classes.

For example consider the Maxwell theory, with action

S = −1

2

∫
M

F ∧ ?F. (2.1)

Here M is an arbitrary manifold, possibly with a codimension-one boundary where we

need to specify boundary conditions. For concreteness we will require that the pullback

of A to ∂M vanishes, but other boundary conditions can be incorporated easily into

our analysis. We may define a “pre-phase space” consisting of all A obeying these

boundary conditions and also the equation of motion d?F = 0, and the physical phase

space will then be the quotient of these by the set of gauge transformations A′ = A+dε

such that ε|∂M = 0. The pre-symplectic form on pre-phase space is given by

Ω(δ1A, δ2A) =

∫
Σ

(δ1A ∧ ?dδ2A− δ2A ∧ ?dδ1A) , (2.2)

where δ1A and δ2A are variations which obey Maxwell’s equation (they can be thought

of as differentials on pre-phase space), and Σ is any Cauchy slice of M (it is easy to see

that Ω is independent of the choice of Σ). Note that if we take either of these variations

to be a gauge transformation then Ω vanishes:

Ω(dε, δA) =

∫
Σ

dε ∧ ?dδA

=

∫
∂Σ

ε ? dδA

= 0. (2.3)

In going from the first to the second line we have used that δA obeys the equations

of motion, while in going from the second to the third we have used that ε|∂M =

0. Therefore the presymplectic form (2.2) is degenerate: the nondegenerate physical

symplectic form is obtained once we quotient the set of A by all gauge transformations

obeying the boundary conditions.
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The quotient from pre-phase space to phase space can lead to difficulties in trying to

define subsystems of theories with gauge symmetries. For example let r be a subregion

of Σ.3 We can define a restricted pre-symplectic form

Ωr(δ1A, δ2A) =

∫
r

(δ1A ∧ ?dδ2A− δ2A ∧ ?dδ1A) (2.4)

which we might hope to use in defining a dynamics of “the degrees of freedom in r”.

Unfortunately the same calculation that we just did for Ω now shows that Ωr will not

be zero acting on variations which are pure gauge: instead we have

Ωr(dε, δA) =

∫
∂̂r

ε ? dδA, (2.5)

where ∂̂r denotes the part of ∂r which does not intersect ∂Σ. This in general does not

vanish. There are various approaches to this problem which have been proposed in the

literature. In [37, 45–47] the strategy is to promote the gauge transformations which

do not vanish on ∂̂r (modulo the ones that do) to new physical degrees of freedom,

which are sometimes called edge modes. These degrees of freedom have no counterparts

on the physical phase space on Σ, so the phase space one constructs this way is not

a submanifold of the original one. The approach we will take instead is inspired by

the algebraic approach of [48], which we prefer since no unphysical degrees of freedom

appear and the connection to quantum error correction is more manifest.4 Our strategy

is instead to just fix the restriction of A to ∂̂r to some definite configuration A∂̂r, and

then quotient only by gauge transformations in r which vanish on ∂r: we will refer to

the resulting phase space, on which Ωr is a non-degenerate symplectic form, as Pr(A∂̂r).
Similarly on the complement r of r, we can define an analogous phase space Pr(A∂̂r),
where we have simplified notation by observing that ∂̂r = ∂̂r. We can then construct

a gauge-invariant phase space on all of Σ via

P =
∐
α∈S

(Pr(α)× Pr(α)) , (2.6)

where
∐

denotes disjoint union and S denotes a set which contains a single representa-

tive of each gauge-equivalence class of the set of gauge field configurations on ∂̂r. Due

3This is the first instance of a convention we will maintain throughout: r denotes a spatial subregion

which we will ultimately think of as being in the bulk of AdS/CFT, while R denotes a boundary spatial

subregion.
4Our technique is also close to that in [18], but we differ on a few points. Most importantly their

analysis of the gravitational case might be read as implying that the restricted phase space only makes

sense if the internal boundary ∂̂r is extremal (this claim was also recently made explicitly in [43]), but

our analysis makes it clear that there is no such requirement and any gauge-invariant choice of that

boundary should work.
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to the presence of gauge symmetry, we see that it is not the product of a phase space for

r and a phase space for r. This phase space is not quite the one we started with, since it

does not include the canonical conjugates of the α (the electric fields within ∂̂r). These

two phase spaces however will lead to the same quantum theory: after quantization the

decomposition (2.6) of phase space becomes a Hilbert space decomposition

H = ⊕α∈S (Hrα ⊗Hrα) , (2.7)

and the electric fields within ∂̂r reappear as operators which mix the different α sectors.

We thus have not lost anything compared to what we would have gotten starting with

the full theory on Σ.

The Hilbert space structure (2.7) has an elegant interpretation via the theory of

von Neumann algebras, which are subsets of the bounded operators on a Hilbert space

that are closed under addition, multiplication, and hermitian conjugation, and which

also contain all multiples of the identity.5 A standard theorem (see e.g. the appendix of

[20]) says that a von Neumann algebra M acting on a finite-dimensional Hilbert space

H always induces a decomposition of H of precisely the form (2.7), with all operators in

either M or its commutant M ′ being block diagonal in the α. Moreover we can choose

the tensor factorization within each block such that M acts nontrivially only on Hrα

and M ′ acts nontrivially only on Hrα , and indeed any operator which is block diagonal

and acts only on the Hrα is in M and any operator which is block diagonal and acts

only on the Hrα is in M ′. The center ZM of M , which is also the center of M ′, consists

precisely of those block diagonal matrices which within each block are proportional to

the identity on Hrα ⊗Hrα . In other words we can decompose the Hilbert space as in

(2.7) such that

M = ⊕α (L(Hrα)⊗ Irα) ,

M ′ = ⊕α (Irα ⊗ L(Hrα)) , (2.8)

ZM = ⊕αλαIrαrα ,

where L(H) denotes the set of linear operators on H. In gauge theories it is therefore

quite natural to interpret the decomposition (2.7) as being induced by the algebra

A(r) of gauge-invariant operators in the region r and its commutant A(r), the algebra

of gauge-invariant operators in r [20, 48]. The degrees of freedom labeled by α are

precisely the shared center of these two algebras.

5If the Hilbert space it acts on is infinite-dimensional, a von Neumann algebra is further required

to be closed in the weak operator topology. The theorem we state momentarily applies also in infinite

dimensions to von Neumann algebras which are direct sums of type I factors.
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We now turn to gravity. In general relativity the gauge transformations are diffeo-

morphisms, and infinitesimally they act on any tensor field φ via the Lie derivative

δξφ = Lξφ. (2.9)

At leading order in G it will be sufficient to study pure general relativity with a negative

cosmological constant, with action

S =
1

16πG

∫
M

ddx
√
−g
(
R+ (d− 2)(d− 1)

)
+ Sbd. (2.10)

Here Sbd is a set of boundary terms which live at ∂M , which in addition to the Gibbons-

Hawking term may include additional “holographic renormalization” terms depending

on the boundary induced metric. The symplectic form Ω for general relativity with this

action can be constructed using standard techniques [49], and is invariant under gauge

transformations ξ which vanish at ∂M . We however would like to define a phase space

for a spatial subregion r ⊂ Σ in gravity. Using the machinery of [49] it is not difficult

to show that under a gauge transformation δξg = Lξg for which the generating vector

field ξµ vanishes at ∂M , we have

Ωr(Lξg, δg) = −
∫
∂̂r

(δQξ − ξ · θ) , (2.11)

where

ξ · θ ≡ 1

16πG
ξµ
(
gµα∇β − gαβ∇µ

)
δgαβε, (2.12)

with ε being the ε-tensor, and

Qξ ≡ −
1

8πG
? dξ, (2.13)

with ξ now viewed as a one-form. ∂̂r again denotes the part of ∂r which does not

intersect ∂Σ. Thus Ωr will again not be invariant under all the gauge transformations

which we quotient by in the description of the full spacetime, so any construction of a

phase space for “just the degrees of freedom in r” will need to address this. The first

obvious guess is to only quotient by gauge transformations ξµ which vanish at ∂r and

only consider variations which preserve the induced metric on ∂r. This however is not

quite sufficient: it gets rid of the second term in equation (2.11), but the first still gives

a nontrivial result6

Ωr(Lξg, δg) =
1

16πG

∫
∂̂r

ε∂̂r∂Aξ
BδεAB, (2.15)

6If we do allow the induced metric on ∂̂r to vary then there is also a term

1

16πG

∫
∂̂r

εAB∇AξBδε∂̂r, (2.14)

which shows that A[∂̂r]/(4G) is the generator of boosts in the normal plane around ∂̂r.
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where ε∂̂r is the ε tensor on ∂̂r and εAB is the ε tensor in the plane normal to ∂̂r.

The quantity εAB depends on the metric only through the conformal structure of the

two-dimensional metric in that normal plane, so this term will only vanish if we further

restrict the metric variations δg by requiring them to preserve that conformal structure.

This then requires us to further restrict the ξµ we quotient by to be conformal killing

vectors in the normal plane [37]. Thus we again define subregion phase spaces Pr(α)

and Pr(α), where α denotes an induced metric on ∂̂r and a conformal structure in

the normal plane, and we have quotiented only by diffeomorphisms which vanish at

∂̂r and are conformal Killing vectors in the normal plane. We can then introduce a

phase space on the full Cauchy slice as in equation (2.6), where again we sum over

one element of each equivalence class under diffeomorphisms which do not necessarily

vanish at ∂̂r and are not required to be conformal Killing vectors in the normal plane

of the induced metrics on ∂̂r and conformal structures in the normal plane. Since

all conformal structures are gauge-equivalent on a two-dimensional plane, this means

that the set S will be equivalent just to the set of induced metrics on ∂̂r modulo

diffeomorphisms there. As in electromagnetism this will not quite be the full phase

space of general relativity on this slice, since the canonical conjugates of the α are

missing, but the two phase spaces will again lead to the same quantum theory with a

Hilbert space decomposition (2.7).

The application of this result which is of interest for us in AdS/CFT is to define the

gravitational dynamics within the entanglement wedge WR of a boundary subregion R.

We remind the reader that for any boundary spatial subregion R the HRT surface is

defined as the codimension-two achronal surface γR obeying the following criteria:

• ∂γR = ∂R.

• The area of γR is extremal under variations which preserve the previous condition.

• There exists an achronal surface ΣR such that ∂ΣR = γR ∪R.

• If there is more than one surface obeying the previous criteria, we pick the one

of smallest area.

The entanglement wedge WR of R is then defined as the bulk domain of dependence of

any such ΣR. In the above construction we should then take r = ΣR and ∂̂r = γR to

arrive at a phase space construction of entanglement wedge dynamics. The “central”

degrees of freedom S then consist of the induced metric on the HRT surface γR modulo

diffeomorphisms, which in particular includes its area: this confirms the argument

of [20] that the “area operator” in the quantum Ryu-Takayanagi formula should be

thought of as being in the center of the algebra of operators in the entanglement wedge.
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Figure 2. Using the bulk Euclidean path integral to prepare a state. The red dots are

boundary sources we can adjust to change which state we prepare, and the center degrees of

freedom α are the induced metric data on the HRT surface γR.

2.2 Computing boundary Renyi entropy at fixed area

Having constructed a classical phase space for gravity in the entanglement wedge, we

may now quantize it, and in particular we may do so using the path integral. For

simplicity we restrict to states which possess a moment of time-reflection symmetry

and can be prepared by a Euclidean path integral.7 These path integrals will prepare

states in a Hilbert space with the structure (2.7), so they will have the form

|ψ〉 =
∑
α,i,j

Cα,ij|α, i〉R|α, j〉R. (2.16)

We give a graphical illustration of such a state in figure 2. This representation is

convenient because it allows to understand how projections onto definite values for α

can be inserted into the cutting and gluing of gravitational path integrals. We now use

this to compute the boundary Renyi entropies for states which have been projected in

this way.

In particular, let us consider a new state obtained by projecting the state |ψ〉 in

Eq. (2.16) to a fixed area Â on the HRT surface γR.8 This fixed-area state |ψÂ〉 can

be thought of as an eigenstate of the “area operator” in the quantum RT formula.

Explicitly, it has the same form as in Eq. (2.16) with the sum restricted to a subset of

α for which the total area A[α] of γR is Â:

|ψÂ〉 =
∑

α,i,j:A[α]=Â

Cα,ij|α, i〉R|α, j〉R. (2.17)

7All of our arguments should be convertible to Lorentzian arguments along the lines of those in

[50].
8One can also consider states where we fix the entire induced metric on γR; we discuss these at the

end of this subsection.
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This state is prepared by the same bulk path integral with boundary sources that

prepares |ψ〉, but with the extra constraint that only configurations where the area of

γR is Â are integrated over.

The norm of such a fixed-area state is calculated by a “full” bulk path integral

obtained by gluing the path integral preparing |ψÂ〉 with a conjugate path integral

preparing 〈ψÂ|. The two path integrals are glued together along the achronal surfaces

ΣR and ΣR, with the fixed-area constraint enforced on γR:

〈ψÂ|ψÂ〉 =

∫
Dg
∣∣∣
AγR [g]=Â

e−I[g] ≡ Z1 (2.18)

where AγR [g] is the area of γR in the metric g, I[g] is the bulk Euclidean action, and

dependence on the boundary sources is implicit in the path integral. We call this full

path integral Z1 in anticipation of the discussion below on Renyi entropies.

In the semiclassical approximation, the path integral (2.18) is dominated by a

saddle-point solution gc1, but as we have fixed the area of γR, gc1 is only required to

satisfy the equations of motion away from γR and is allowed to develop a uniform

conical defect on γR.9 To see the conical defect, we choose to enforce the fixed-area

constraint in Eq. (2.18) by introducing a Lagrange multiplier µ:

Z1 =

∫
Dg dµ e−I[g]−iµ(AγR [g]−Â). (2.19)

The Lagrange multiplier term can be interpreted as the action of a cosmic brane with

tension iµ. Even though the cosmic brane is fixed to be on the HRT surface γR (whose

extremality can be defined here by the vanishing trace of extrinsic curvature as we

approach γR), at the level of the saddle-point solution we could equivalently allow the

location of the cosmic brane to be arbitrary (subject to the homology constraint) and

require the total action in Eq. (2.19) to be stationary with respect to variations of the

brane location. From this we find that the saddle-point geometry gc1 should satisfy the

equations of motion everywhere including on the cosmic brane. In the case of Einstein

gravity that we focus on, codimension-2 cosmic branes backreact on the geometry by

creating a conical deficit angle proportional to its tension [51].10 Therefore, the saddle-

point solution of Eq. (2.19) is characterized by a real conical defect geometry gc1 and

9We will provide a more general argument at the end of this subsection (when we discuss states

with the entire induced metric on γR fixed) which does not rely on showing that the singularity on γR
is a conical defect.

10This follows from the observation in footnote 6 that the area of γR gives the generator of boosts

in the normal plane around γR, and can also just be derived by studying the behavior of the Einstein

equation in the vicinity of the brane.
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Figure 3. Cutting open the n = 1 gravitational path integral (left) and gluing together 3

copies to form a path integral for computing the third boundary Renyi entropy (right). Red

dots are the sources which produce the “ket” part of the density matrix, while blue dots are

their CPT conjugates which produce the “bra” part. The HRT surface γR is represented by

the black dot in the center, and is shared between all copies in the Renyi computation.

a purely imaginary µ = −iµE chosen so that the area of γR agrees with Â after the

backreaction of the cosmic brane is taken into account. We will refer to the conical

opening angle in gc1 as φ1.

Now let us calculate the boundary Renyi entropies on R in the fixed-area state

|ψÂ〉. We will do this in two ways and obtain the same result. The first way is a direct

calculation of the Renyi entropies Sn(ρR) for integer n ≥ 2 by rewriting Eq. (1.2) as

Sn(ρR) =
1

1− n
log

Zn
Zn

1

(2.20)

where Zn is an n-fold bulk path integral obtained by gluing together n copies of the

path integral preparing |ψÂ〉 (denoted by P1, · · · , Pn) and n copies of the conjugate

path integral preparing |ψÂ〉 (denoted by P 1, · · · , P n). The manner of gluing is as

follows: we first glue Pi with P i along ΣR, and then glue Pi with P i−1 along ΣR (with

the understanding that P 0 means P n). The common surface γR in the resulting path

integral is constrained to have area Â since each of the pieces we glue does. A natural

bulk interpretation of this gluing procedure is that the first step of gluing Pi with P i

along ΣR generates n copies of an unnormalized density matrix which can be viewed as

the bulk version of ρR and may also be obtained by cutting the path integral Z1 open

along ΣR. The second step then forms TrρnR by cyclically gluing these density matrices

together along ΣR. We illustrate this in figure 3.

Just like Z1, the n-fold path integral Zn is given at leading order in the semiclassical

approximation by the action of the dominant saddle-point solution gcn,

Zn = e−I[g
c
n], (2.21)
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which can be used to rewrite Eq. (2.20) as

Sn(ρR) =
I[gcn]− nI[gc1]

n− 1
. (2.22)

A nice consequence of fixing the area of the HRT surface γR is that the saddle-point

geometry gcn is extremely simple – it is obtained by cyclically gluing n identical copies

of gc1 along ΣR (after first cutting each one open along ΣR). The resulting geometry

gcn is locally identical to gc1 away from γR and has a conical defect on γR with opening

angle φn = nφ1.

The action of gcn (including gc1) consists of two contributions:

I[gcn] = nIaway[gc1] +
(nφ1 − 2π)Â

8πG
. (2.23)

Here the first term comes from everywhere away from γR and is therefore proportional

to n. The second term comes from a localized contribution on the conical defect γR due

to the fact that the Ricci scalar R contains a delta function at γR times a coefficient

2(2π − nφ1) that is twice the conical deficit angle. Plugging this into the Euclidean

Einstein-Hilbert action I = −
∫
ddx
√
gR/(16πG), we find the second term in Eq. (2.23)

where we have used the fixed area Â of γR.

Plugging the action (2.23) into Eq. (2.22) we find that terms linear in n cancel out,

giving the Renyi entropy

Sn(ρR) =
Â

4G
. (2.24)

We have obtained this result for integer n ≥ 2, but it can trivially be analytically

continued to an arbitrary n, leading to Renyi entropies that do not depend on n.

This suggests that the fixed-area state |ψÂ〉 has a flat entanglement spectrum on the

boundary subregion R at leading order in gravitational perturbation theory.

Now we provide an alternative way of obtaining the same boundary Renyi entropies.

It is simpler than the brute-force method used above, and has the advantage of giving

the Renyi entropies for arbitrary n directly without analytic continuation. We start

with the cosmic brane prescription for Renyi entropies derived in Refs. [12, 26]. It says

that a refined version of the Renyi entropy defined by

S̃n(ρR) ≡ n2∂n

(
n− 1

n
Sn(ρR)

)
= −n2∂n

(
1

n
log TrρnR

)
(2.25)

is given by the area of a codimension-2 cosmic brane γR,n inserted into the bulk solution:

S̃n(ρR) =
A[γR,n]

4G
. (2.26)
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The cosmic brane γR,n is homologous to the subregion R and creates a conical defect

with deficit angle 2π(n − 1)/n due to its tension (n − 1)/(4nG). The refined Renyi

entropy S̃n(ρR) can be defined alternatively as the von Neumann entropy of the den-

sity matrix ρnR/TrρnR. The prescription (2.26) is a natural generalization of the RT

formula with the cosmic brane γR,n replacing the HRT surface γR. Once we know

the refined Renyi entropies S̃n, the Renyi entropy Sn for any n is easily obtained by

integrating (2.25):

Sn(ρR) =
n

n− 1

∫ n

1

S̃n′(ρR)

n′2
dn′. (2.27)

Let us now apply this prescription to the fixed-area state |ψÂ〉. We need to insert a

cosmic brane γR,n into the saddle-point geometry gc1 dominating the state norm Z1. It

is worth noting that this cosmic brane γR,n is different from (and introduced in addition

to) the cosmic brane introduced earlier by the Lagrange multiplier in Eq. (2.19) (which

is already present in gc1). However, the two cosmic branes coincide with each other and

create a combined conical angle that is actually the same as the one in gc1 – another great

simplification due to fixing the area of the HRT surface γR. To see this, we observe that

if we place the cosmic brane γR,n at exactly the location of γR and do not change the

geometry gc1 in any way, it would automatically satisfy the equations of motion away

from γR and have the same area Â on γR. Thus inserting the “extra” cosmic brane

γR,n does not affect the geometry at all – the only thing that gets changed is the saddle

point of the Lagrange multiplier, or equivalently the tension of the “original” cosmic

brane already present in gc1: its saddle-point value in the path integral (2.19) changes

from µE to µE − (n− 1)/(4nG) to “absorb” the tension of the extra cosmic brane γR,n
in order to keep the geometry unchanged and the equations of motion satisfied.

Therefore, the area of the cosmic brane γR,n is Â and Eq. (2.26) immediately leads

to a constant refined Renyi entropy

S̃n(ρR) =
Â

4G
. (2.28)

Integrating this in Eq. (2.27) we reproduce the n-independent Renyi entropy (2.24).

In the discussion above we have focused on fixed-area states (2.17), but we now

point out that the same n-independent Renyi entropy applies to states obtained by

projecting |ψ〉 in Eq. (2.16) to a fixed value α̂ of α:

|ψα̂〉 =
∑
i,j

Cα̂,ij|α̂, i〉R|α̂, j〉R, (2.29)

as long as the norm of the state is dominated semiclassically by a saddle-point geometry.

This fixed-α state is prepared by the same bulk path integral that prepares |ψ〉 but
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with the extra constraint that the entire induced metric on the HRT surface γR is given

by α̂.

The norm of |ψα̂〉 is again calculated by a full bulk path integral Z1 defined in a

way similar to Eq. (2.18). We assume that the path integral Z1 is dominated in the

semiclassical approximation by some saddle-point solution gc1.11 The difference with

the fixed-area case is that here gc1 is allowed to develop a more general singularity than

a uniform conical defect on γR. A specific example of such a singularity is a conical

defect whose conical angle varies along γR, but in general it could be any singularity

whose contribution to the bulk Lagrangian is a distribution (such as a delta function)

localized on γR.

The boundary Renyi entropies on R in the fixed-α state can be calculated by the

same two methods used above. The second method of introducing a cosmic brane γR,n
to calculate the refined Renyi entropy immediately leads to the same conclusion that

the cosmic brane γR,n would be placed at exactly the location of the singularity in gc1
without modifying the geometry in any way. This gives the same n-independent refined

Renyi entropy (2.28) with Â replaced by A[α̂], the total area calculated from the fixed

induced metric α̂. Therefore, the Renyi entropies are also n-independent and given by

Sn(ρR) =
A[α̂]

4G
. (2.30)

We can reproduce this result using the first, more direct method as well. The Renyi

entropies for integer n ≥ 2 are calculated from Eqs. (2.20) and (2.22) with the saddle-

point geometry gcn now satisfying the fixed-α constraint. Again gcn is simply obtained

by cyclically gluing n copies of gc1 along ΣR. To calculate the contribution to the action

from the singularity on γR in gc1 and gcn, it is useful to regularize the singularity in gc1
by replacing a small neighborhood of γR with a smooth geometry and to construct gcn
by gluing n copies of this regularized version of gc1, with the understanding that the

thickness of the neighborhood of γR will be taken to zero eventually. This version of

gcn has a simple, uniform conical defect on γR with opening angle 2πn, and its action is

I[gcn] = nI[gc1] +
(n− 1)A[α̂]

4G
(2.31)

where the first term comes from everywhere away from γR (which is smooth in the

regularized gc1) and the second comes from the uniform conical defect. Eq. (2.31) is the

generalized version of Eq. (2.23) that applies here. Plugging it into Eq. (2.22) we find

the n-independent Renyi entropy (2.30) as promised.

11We leave it to future work to verify this assumption and find the precise form of the singularity

on γR in general situations.
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Finally, we point out that we do not expect our conclusion of n-independent Renyi

entropies to be modified by higher-derivative corrections in the gravitational action. In

these cases, the RT formula (1.1) and its generalization (2.26) to refined Renyi entropies

are modified by replacing the area A by some generalized notion of area Agen [52–54].

This generalized area is an integral over γR of some combination of local geometric

invariants and its form is completely determined by the bulk action. We expect that a

calculation very similar to the one performed above in Einstein gravity would lead to

the same n-independent Renyi entropies as in Eqs. (2.24) and (2.30) with A replaced

by Agen, although we leave the details to future work.

2.3 The origin of n-dependence

We can now easily understand how the n-dependence of the Renyi entropy in unpro-

jected semiclassical states arises. Consider the fixed-area replicated path integral

Zn(Â) =

∫
Dgne−I[gn]δ(AγR(gn)− Â), (2.32)

where here Dgn means that we are integrating over metrics (and other bulk fields)

which at the Euclidean AdS boundary have n copies of the sources preparing the state,

as in figure 3. The unprojected path integral is then obtained by

Zn ≡
∫
dÂZn(Â) (2.33)

In the semiclassical limit we have

Zn(Â) ≈ e−I[g
c
n(Â)], (2.34)

so we are interested in semiclassically evaluating the integral

Zn =

∫
dÂe−I[g

c
n(Â)]. (2.35)

The saddle point for this integral will be precisely the value An for which the opening

angle φ1 is 2π/n, since ultimately in doing the integral over Â we are just doing the

full gravitational path integral in a different order and the saddle point gcn(An) must

be smooth and obey the Einstein equation at γR. Moreover using the cosmic brane

method [12, 26], we then immediately see that the refined Renyi entropies are given by

S̃n =
An
4G

. (2.36)
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Since An is now a nontrivial function of n, we see that S̃n, and thus Sn, will be as well.

From this point of view the entire n-dependence of the Renyi entropies arises from the

shifting of the saddle point value of Â in (2.35) as we change n.

This discussion generalizes in a simple way to fixed-α states as well, we can also

write

Zn =
∑
α̂

Zn(α̂), (2.37)

and since Zn(α̂) again leads to n-independent Renyi entropies we can view the n-

dependence of the full Renyi entropies as coming from the shifting of the saddle point

in the “sum” over α as we change n.

3 A quantum error-correction interpretation

In AdS/CFT the above gravitational discussion is all happening in the bulk, and must

be embedded into the dual CFT some way. Most states in the CFT will contain large

black holes which in particular have swallowed whatever region we might be interested

in. In [17] it was emphasized that the quantum structure of perturbative general

relativity should be understood in AdS/CFT as holding only in a code subspace, Hcode,

of the full CFT Hilbert space. This subspace is not unique, since we may be willing to

tolerate some black holes which are far away from whatever physics we are considering,

and if we are ambitious we may even try to include the microstates of some black

holes within the code subspace degrees of freedom [20, 55, 56]. We may also want

to exclude bulk degrees of freedom such as heavy matter fields which are describable

within effective field theory. In general one can think of the choice of code subspace as

being similar to the choice of a renormalization scheme: we choose it as is convenient

for the particular problem we have in mind. In fact this is more than analogy: doing

renormalization group flow in the bulk is one example of changing our choice of code

subspace. For this paper we will take our code subspace to be the linear span of the

set of states which can be prepared by a bulk Euclidean path integral with an O(G0)

number of boundary sources of low scaling dimension.

Any state in this code subspace should obey the quantum Ryu-Takayanagi formula,

which says that any bulk state ρ prepared by a bulk path integral should have a dual

CFT state ρ̃ with the property that for any boundary subregion R we have [31, 54]12

S(ρ̃R) = Tr (ρLR) + S(ρr). (3.1)

12From now on we view CFT states and operators as encoded quantities and denote them with tildes;

this is slightly different from our notation in previous sections. Note that these tildes are completely

different from those in refined Renyi entropies S̃n.
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Here LR is an operator localized on the HRT surface γR which at leading order in G is

just A[γR]/(4G), and S(ρr) is the entropy of ρ restricted to the algebra of operators in

the entanglement wedge WR. LR is required to be in the center of that algebra, and

indeed this follows from the construction of section 2.1 since the area of γR is determined

by its induced metric. The von Neumann entropy of a state ρ on a subalgebra M , which

is a generalization of the definition for a subfactor, is given in terms of the diagonal

blocks of ρ in the decomposition (2.7). Indeed we can represent each diagonal block of

ρ as pαρrαrα , with Trρrαrα = 1 and
∑

α pα = 1, and the entropy is then (see [20] for

more on this definition)

S(ρr) ≡ −
∑
α

pα log pα +
∑
α

pαS(ρrα). (3.2)

One of the main results of [20] was that the quantum Ryu-Takayanagi formula (3.1)

can hold in all states of a code subspace Hcode ⊂ HR ⊗HR if and only if the encoding

map has a very specific form, which generalizes that of the quantum circuit shown in

figure 1. Indeed if we algebraically decompose the code subspace Hcode as in equation

(2.7), we can choose a basis |α̃, ij〉 as in figure 2. The result then is that the quantum

RT formula requires HR and HR to decompose as

HR = ⊕α
(
HR1

α
⊗HR2

α

)
⊕HR3

HR = ⊕α
(
H
R

1
α
⊗H

R
2
α

)
⊕HR3

, (3.3)

where HR1
α
∼= Hrα and H

R
1
α

∼= Hrα , and moreover that our complete basis for Hcode

must be obtainable as

|α̃, ij〉 = URUR

(
|α, i〉R1

α
⊗ |α, j〉

R
1
α
⊗ |χα〉R2

αR
2
α

)
(3.4)

for some unitaries UR, UR on HR and HR and some set of states |χα〉. In [20] codes

with this structure were called “operator algebra quantum error-correcting codes with

complementary recovery”, since the structure (3.4) also holds if and only if all operators

in the WR algebra can be represented on R and all operators in its commutant (the

WR algebra) can be represented on R. By taking the partial trace, (3.4) immediately

implies that for any bulk state ρ on Hcode we have

ρ̃R =
∑
α

pαUR
(
ρR1

α
⊗ χR2

α

)
U †R, (3.5)

where ρR1
α

has the same matrix elements as the state ρrα appearing in the computation

of the von Neumann entropy of the state ρ on the algebra of operators in WR and

χR2
α
≡ Tr

R
2
α
|χα〉〈χα|. Computing the von Neumann entropy of both sides of (3.5)
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and using (3.2), we recover the quantum Ryu-Takayanagi formula (3.1) with the “area

operator” given by

LR =
∑
α

S(χR2
α
)Irαrα . (3.6)

Showing that this is the only way for (3.1) to be satisfied is somewhat harder, and was

the main content of [20].

With equation (3.5) in hand, it is a simple matter to consider also Renyi entropies.

Indeed we have immediately that

Tr(ρ̃nR) =
∑
α

pnαTr(ρnrα)Tr(χnR2
α
). (3.7)

Just as in the quantum RT formula, in the semiclassical limit the “bulk” contribution

from Tr(ρnrα) will be subleading so the Renyi entropy for all states in the code subspace

should obey

Tr(ρ̃nR) ≈
∑
α

pnαTr(χnR2
α
). (3.8)

Our proposal is that this equation is a CFT representation of equation (2.37). Note in

particular if we project onto a state of definite α then we are left just with Tr(χnR2
α
),

so we learn that the n-independence at fixed α we uncovered on the gravity side has

a striking interpretation for holographic codes: the states |χα〉R2
αR

2
α

must have a flat

entanglement spectrum on R2
α for all α. For tensor network codes such as that in

figure 1 this was a consequence of the fact that this state was a tensor product of

maximally entangled EPR pairs on the links of the network, but now we see it is a

general property of holographic states at fixed α.

We point out for completeness that the statements made above can also be seen

from the refined Renyi entropies S̃n(ρ̃R) defined in Eq. (2.25). To see this we now

derive a general formula for S̃n(ρ̃R) that holds in any operator algebra quantum error-

correcting code with complementary recovery and for any state in the code subspace.

We will see that it gives a nice code interpretation of the cosmic brane prescrip-

tion (2.26) for refined Renyi entropies. To do this we first note that S̃n(ρ̃R) is simply the

von Neumann entropy of the density matrix ρ̃R,n ≡ ρ̃nR/Trρ̃nR which by using Eq. (3.5)

can be written as

ρ̃R,n =
∑
α

pα,nUR
(
ρR1

α,n
⊗ χR2

α,n

)
U †R, pα,n ≡

pnαTr (ρnR1
α
⊗ χnR2

α
)∑

β p
n
βTr (ρn

R1
β
⊗ χn

R2
β
)

(3.9)

with ρR1
α,n
≡ ρnR1

α
/TrρnR1

α
and χR2

β ,n
defined similarly. Similar to the derivation of the

quantum RT formula (3.1) from Eq. (3.5), we find its generalization to the refined

Renyi entropies to be

S̃n(ρ̃R) = Tr (ρLR,n) + S̃n(ρr) (3.10)
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with the “Renyi area operator” LR,n defined as

LR,n =
∑
α

pα,n
pα

S̃n(χR2
α
)Irαrα (3.11)

and the refined Renyi entropy of ρ restricted to the algebra of operators in the entan-

glement wedge WR given by

S̃n(ρr) ≡ −
∑
α

pα,n log pα,n +
∑
α

pα,nS̃n(ρrα). (3.12)

In the semiclassical limit, Eq. (3.10) is dominated by the first term on the right hand

side which becomes

S̃n(ρ̃R) ≈
∑
α

pα,nS̃n(χR2
α
) =

∑
α p

n
αTr (ρnR1

α
⊗ χnR2

α
)S̃n(χR2

α
)∑

β p
n
βTr (ρn

R1
β
⊗ χn

R2
β
)

. (3.13)

Semiclassically, S̃n(ρ̃R) is given by S̃n(χR2
α̂
) with the saddle-point value α̂ that domi-

nates the sums over α of n-fold traces in Eq. (3.13). This is (almost) precisely what

the cosmic brane prescription (2.26) requires: the conical defect geometry created by

the cosmic brane is exactly the Zn quotient of the (replica-symmetric) saddle-point

geometry dominating the n-fold gravitational path integral [which is the bulk version

of the n-fold traces in Eq. (3.13)], with the same induced metric α̂ on γR before or

after the quotient. Here we say “almost” because the gravitational prescription (2.26)

gives the area of the conical defect which can be determined from its induced metric α̂

regardless of n, whereas Eq. (3.13) gives S̃n(χR2
α̂
) which appears to possibly depend on

n. The resolution of this puzzle is that S̃n(χR2
α̂
) must in fact be independent of n at

least to leading order semiclassically! We can also see this flat entanglement spectrum

of χR2
α̂

by comparing Eq. (3.13) for a fixed-α state with n-independent Renyi entropies

found on the gravity side.

There is a point about this connection which may at first seem confusing: our bulk

path integral construction in figure 3 looks like we are computing the Renyi entropy

only using the bulk degrees of freedom, but in the holographic interpretation that we

have just given to the calculation we threw out the bulk contribution and the Renyi

entropy came entirely from the states |χα〉. What happened? The issue is that although

the bulk construction in figure 3 resembles a bulk Renyi entropy calculation, strictly

speaking it cannot be interpreted as such without a cutoff; otherwise the circle contracts

and there is no trace interpretation in the bulk. This is the same miracle by which the

Euclidean path integral is able to compute the black hole entropy correctly without

knowing the microscopic theory of quantum gravity. In the CFT calculation we have
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those microstates in hand in the form of |χα〉, and the calculation is dominated by

them. In the bulk calculation this UV information instead goes into the infrared value

of Newton’s constant G, which finds its way into the answer via the evaluation of the

action on the semiclassical saddle point.

4 An exponentiated JLMS formula?

There is an interesting interplay between the n-independence of Renyi entropies in fixed-

α states and the JLMS formula relating bulk and boundary modular Hamiltonians. To

understand this relation, we first note that from (3.5) we have

K̃ρ
R ≡ − log ρ̃R = −

∑
α

UR
(
log(pαρR1

α
)⊗ IR2

α
+ IR1

α
⊗ logχR2

α

)
U †R. (4.1)

Using the expression

Pc ≡
∑
α

URUR

(
I
R1
αR

1
α
⊗ |χα〉〈χα|R2

αR
2
α

)
U †RU

†
R

(4.2)

for the projection operator onto Hcode, by direct calculation one can derive a version of

the JLMS formula [18, 20]

Pc

(
K̃ρ
R ⊗ IR

)
Pc =

(
L̃R + K̃ρ

r

)
Pc, (4.3)

where L̃R is the encoded area operator

L̃R ≡
∑
α

URUR

(
S(χR2

α
)I
R1
αR

1
α
⊗ |χα〉〈χα|R2

αR
2
α

)
U †RU

†
R

(4.4)

and K̃ρ
r is the encoded bulk modular Hamiltonian

K̃ρ
r ≡

∑
α

URUR

(
− log(pαρR1

α
)⊗ I

R
1
α
⊗ |χα〉〈χα|R2

αR
2
α

)
U †RU

†
R
. (4.5)

Now, given a modular Hamiltonian, it is natural to exponentiate it to generate

modular flow [57]. Since the JLMS formula (4.3) gives a relation between bulk and

boundary modular Hamiltonians, one may ask if we can exponentiate it into an equation

of the form

Pce
is(K̃ρ

R⊗IR)Pc = eis(L̃R+K̃ρ
r )Pc, (4.6)

which would say that we could compute the bulk modular evolution of a state in the

code subspace using the boundary modular evolution. Unfortunately however (4.6)
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only follows from (4.3) if Pc and K̃ρ
R⊗ IR are commuting quantum operators, and from

a coding point of view there is no reason to expect this to be the case. Indeed it is not

hard to show that they will commute if and only if for all α we have

|χα〉〈χα| logχR2
α

= logχR2
α
|χα〉〈χα|. (4.7)

Now however we learn something interesting: (4.7) holds if and only if the nonzero

eigenvalues of χR2
α

are all equal, which is precisely the structure we found at leading

order in G in section 2.2! In other words, the flat entanglement spectrum at fixed

α which we found in gravity is closely related to the question of whether or not the

exponentiated version (4.6) of the JLMS formula is valid, at least at leading order in

G.

We can make this connection between the exponentiated JLMS formula and a flat

entanglement spectrum at fixed α more explicit. Indeed let |ψ̃α̂〉 be some encoded state

which has support only when α = α̂. Using our formulae for Pc and K̃ρ
R we have

〈ψ̃α̂|e−is(K̃
ρ
R⊗IR)Pce

is(K̃ρ
R⊗IR)|ψ̃α̂〉 = Tr

(
χ1+is
R2
α̂

)
Tr
(
χ1−is
R2
α̂

)
. (4.8)

Equation (4.6) would imply that the left hand side of this equation is one, while on

the right-hand side this in general would only be true for s = 0. The objects on the

right-hand side are just the exponentials of the Renyi entropies of χR2
α

analytically

continued to complex n, so for equation (4.6) to hold through any particular order in

G we thus need these Renyi entropies to be n-independent to that order.13 We suspect

that our flatness result can be extended at least to O(G0) on the gravity side, but we

leave a detailed study for future work.

In quantum error correction language, what we have learned is that the modular

Hamiltonian K̃ρ
R is a “logical” operator whose action preserves Hcode. This is somewhat

puzzling from the point of view of the CFT, where for generic regions R it is only the

“full” modular operator K̃ρ
R ⊗ IR − IR ⊗ K̃ρ

R
which preserves the set of low energy

states. And indeed we note that a calculation similar to that leading to (4.7) tells us

that [K̃ρ
R ⊗ IR − IR ⊗ K̃

ρ

R
, Pc] will vanish if and only if

|χα〉〈χα|(logχR2
α
− logχ

R
2
α
) + (logχ

R
2
α
− logχR2

α
)|χα〉〈χα| = 0, (4.9)

which is true for any |χα〉 since the first and second terms vanish identically. Thus the

modular flow operation on operators generated by K̃ρ
R⊗ IR− IR⊗ K̃

ρ

R
will always send

13In testing this approximate flatness, the closeness of the right hand side of (4.8) to one is perhaps

a better diagnostic of the accuracy of (4.6) than is (4.7), since the former is a numerical relation and

the latter is an operator equation.
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logical operators to logical operators14, as needed for the proposal of [36]. Nonetheless

it seems that the stronger condition (4.6) also holds, at least to leading order in G.

How this is compatible with the CFT picture is a question we leave for future work.

5 Discussion

In this paper we argued that states which are prepared by Euclidean gravitational path

integrals have the property that, if we project them onto eigenstates of fixed area for

the HRT surface γR, we obtain a state whose Renyi entropies are independent of n at

leading order O(1/G) in Newton’s constant G. We further argued that the same is true

for states where we act with a projection onto a definite value of the entire induced

metric on γR. We then gave the latter result an interpretation within quantum error

correction as a flat entanglement spectrum for the states |χα〉 appearing in equation

(3.4). Finally we argued that this flatness leads to a somewhat surprising strengthening

(4.6) of the relationship [18, 20] between bulk and boundary modular Hamiltonians.

It would be interesting to develop a more detailed understanding of how our fixed-

area states are realized in the CFT. In specific simple cases we can give a rough picture,

at least to leading order in the bulk Newton constant G. Note for example that flat-

spectrum states arise in any microcanonical ensemble, where all states in a given energy

range ∆E = [E1, E2] enter with equal weight. Starting with a thermofield-double state

|ψ〉 on a pair of CFTs, taking the two CFTs to be respectively R and R̄, and project-

ing onto fixed HRT-area A thus yields a state |ψ〉A that, up to normalization, seems

likely to resemble the microcanonical double state |ψ〉micro = e−S/2
∑

E∈∆E |E〉R|E〉L
(see e.g. [58]), where |E〉R,L denote eigenstates of the right- and left-CFTs and with

∆E an appropriate small-but-not-exponentially-small range of energies centered on a

Schwarzschild-AdS black hole of the desired area. Indeed, since the conical singularities

of our fixed-area saddles make no contribution to the induced metric on the surface

of time-symmetry15, comparing with the results of [58] one sees immediately that our

fixed-area projection and the microcanonical double are described by semi-classical bulk

saddles that coincide on this surface, and which thus define the same Lorentz-signature

bulk solution. The same is true for any Renyi copy of the states. As a result, (Renyi)

14An immediate corollary is that the modular flow generated by K̃ρ
R⊗ IR alone will always preserve

the set of logical operators supported on R, even if this flow does not preserve Hcode.
15This interesting fact is critical to the idea that they prepare standard states, which in particular

satisfy the usual Hamiltonian and momentum constraints. It can be seen geometrically, or from the

fact that the associated cosmic brane lies entirely inside the surface of time-symmetry, so that its stress

tensor has no components normal to the surface. Since the constraints are precisely the components of

the bulk equations of motion that involve such normals, the brane stress tensor makes no contribution.
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entropies and light fields in |ψ〉micro agree with those in the desired fixed-area state at

the level of bulk classical solutions.

However, the two states |ψ〉A and |ψ〉micro will differ beyond this order. In particu-

lar, the fixed-area state will have additional contributions from certain terms obtained

from |ψ〉micro by acting separately on either side with unitaries that preserve the code

subspace on which the HRT-area operator is defined. Since the density of states is an

increasing function of energy, such unitaries typically raise the total energy on either

side. In the bulk, such terms describe copies of the microcanonical black hole (and

in particular with the same HRT-area) with additional matter or gravitational waves

on either side of the HRT surface. The restriction to unitaries that preserve the code

subspace should allow only an O(1) number of such terms within any small range of

energies. As a result, one expects the entanglement entropy of |ψ〉A to differ from that

of |ψ〉micro only at the level of O(1) corrections. Indeed, since each additional such

term has the same entropy S = A/4G as states in ∆E, terms in which the energy

has been raised by δE � T are highly suppressed by the Boltzmann factor of the

original thermofield-double state |ψ〉. One may think of them as describing subleading

saddles that contribute to |ψ〉A. And terms in which the energy has been raised only

by δE . T can be described by the same leading-order bulk saddle as |ψ〉micro, but

with the associated state of bulk quantum fields differing by O(1) excitations. In this

sense, fixed-area projections of the thermofield-double state |ψ〉 are just microcanonical

double states at leading order in G.

Fixed HRT-area states defined by projecting a generic state |ψ〉 should thus be

similarly close to microcanonical-double states defined by projecting |ψ〉 onto spectral

intervals ∆K defined by its modular Hamiltonian K on R. However, when ∂R = ∂R̄

is non-empty, one should understand these states to be somewhat singular as their

UV structure clearly differs significantly from that of the CFT vacuum. And as above

small discrepancies will remain. Of course, it should be possible to map the HRT-area

operator (and thus its spectral projections) to the CFT using the methods of e.g. [36]

and hence to construct fixed HRT-area states directly in the CFT. However it remains

unclear to us whether the result will takes an elegant form, and in particular whether it

admits a natural generalization to non-holographic CFTs. These are important points

to address in future investigations.

The flatness we found at leading order in G in fixed-area states is a striking result.

Perhaps the most important task following up on this work is thus to use gravitational

arguments to understand how far this flatness extends in the expansion in G. This

may also shed light on the meaning of the strengthened JLMS relation (4.6). Another

interesting project would be to study in more detail how Renyi entropies behave in the

tensor networks constructed in [33] which have center degrees of freedom on the links.
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It would also be interesting to establish similar results in higher-derivative theories of

gravity, and it would be enlightening to work out the conical geometries in section 2.2

in some more detail in simple examples. We are optimistic that the recent interplay

between quantum gravity and quantum information theory has yet more to teach us.
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