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Abstract

Cross-domain alignment refers to the task of mapping a con-
cept from one domain to another, for example, “If a doctor
were a color, what color would it be?”. This seemingly pecu-
liar task was designed to investigate how people represent con-
crete and abstract concepts through their mappings between
categories and their reasoning processes over those mappings.
In this paper, we adapt this task from cognitive science to eval-
uate the conceptualization and reasoning abilities of large lan-
guage models (LLMs) through a behavioral study. We examine
several LLMs by prompting them with a cross-domain map-
ping task and analyzing their responses at the population level
and the individual level. Additionally, we assess the models’
ability to reason about their predictions by analyzing and cat-
egorizing their explanations for these mappings. The results
reveal several similarities between humans’ and models’ map-
pings and explanations, suggesting that models represent con-
cepts similarly to humans. This similarity is evident not only at
the model representation level but also in their behavior. Fur-
thermore, the models mostly provide valid explanations and
deploy reasoning paths that are similar to humans.

Introduction
Large Language Models (LLMs) have significantly improved
their ability to generate human-like text and tackle complex
tasks that require reasoning. However, the ability to explain
or present their behavior in human-understandable terms has
remained a challenge (Doshi-Velez & Kim, 2017; Du et al.,
2021; Zhao et al., 2023). The ability to interact with them in
a very similar way to humans, has encouraged researchers to
evaluate their understanding and reasoning abilities by com-
paring their behavior to humans (Futrell et al., 2019; Binz &
Schulz, 2023b), drawing insights from fields such as cogni-
tive psychology, psycholinguistics, and neuroscience (Huth,
De Heer, Griffiths, Theunissen, & Gallant, 2016; Pereira et
al., 2018; Futrell et al., 2019; Goldstein et al., 2022).

In this paper, we perform a behavioral study on LLMs,
drawing inspiration from a recently created psychological
task that has claimed to uncover aspects of how people rep-
resent concrete vs. abstract concepts, and the conceptual or-
ganization of metaphoric language (Q. Liu & Lupyan, 2023,
henceforth LL23). In this task, participants are asked to map
concepts from one semantic domain to another (e.g., doc-
tor to color, and piano to animal, see Fig. 1) and explain
their choices. Interestingly, it was shown that individuals
perform these seemingly arbitrary mappings in predictable
ways, relying on certain types of similarity such as percep-
tual similarity or word associations. For example, drum
was consistently mapped to thunder, clearly motivated by
their sensory similarity, as they both make a similar noise.

*Equal contribution.

Figure 1: Cross-Domain Alignment: Mapping object from
domain A to domain B. Here, doctor from the profession do-
main to the color domain, and piano from the instrument do-
main to the animal domain.

Understanding the basis of these mappings offers insights
into the participants’ conceptual representation and organiza-
tion, similar to how psychologists use mental associations or
nonsensical tests to assess human conceptual representations
(Greenwald, McGhee, & Schwartz, 1998; Davis, Morrow, &
Lupyan, 2019). We further investigate the reasoning behind
their mappings by analyzing their explanations of the map-
ping responses, making them more interpretable.

Our experiments are divided into two main parts: (1)
Cross-domain mapping task, and (2) Explanations of the
mappings. We first ask whether LLMs can perform cross-
domain mappings and if so, whether they converge with hu-
man behavior. To answer these questions, we use human data
collected as part of cognitive experiments, to prompt sev-
eral LLMs with cross-domain mappings. Surprisingly, re-
sults show that models can perform such mappings, reach-
ing a substantial agreement at the population level, which is
much higher than a random chance guess. Moreover, some
LLMs surpass the individual level agreement with the popu-
lation level (i.e. most popular) mappings, showing that their
behavior is closer to the “typical” human behavior than that
of a random participant.

To further interpret the models’ mappings and their abil-
ity to reason about them, we prompt the models to explain
the mappings. We use the predefined similarity categories
(e.g., perceptual similarity) that were found to establish the
basis of alignment for humans and train a classifier to clas-
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sify the models’ explanations according to them. We see that
the models’ explanation categories are distributed in a very
similar way to humans, suggesting they rely on similar types
of similarity in their representations. Moreover, we perform
a qualitative analysis of their explanations, showing they can
give concise arguments for the cross-domain mappings. Our
findings can contribute to the recent discussion in the NLP
and cognitive literature as to whether we can ascribe concepts
such as conceptualization to LLMs, by demonstrating that at
least at the behavioral level, alignment can be found between
LLMs and humans in conceptualization tests (Bubeck et al.,
2023; Kosinski, 2023; Binz & Schulz, 2023a).

Background
In recent years, the use of methods and experiments from
the cognitive psychology literature in the field of NLP, has
become more ubiquitous (Dasgupta, Schulz, Tenenbaum, &
Gershman, 2020; Hagendorff, Fabi, & Kosinski, 2023; Ull-
man, 2023). LLMs are also used as cognitive models, as
they offer almost accurate representations of human behav-
ior, even outperforming traditional cognitive models on some
tasks (Binz & Schulz, 2023a; Suresh et al., 2023; Gold-
stein, Havin, Reichart, & Goldstein, 2023). Moreover, it was
shown that improving model-human alignment on psycho-
logical tasks results in model improvement on various down-
stream applications (Sucholutsky & Griffiths, 2023).

Recent psychological research proposes a new task, cross-
domain alignment, to specifically investigate concepts’ se-
mantic similarity between different domains (LL23). Cross-
domain alignment refers to the task of mapping a concept
from one domain to another (LL23). Comparing words (con-
cept) within a semantic domain (e.g. dog/cat or nurse/doctor)
is relatively easy as they have a multitude of common fea-
tures, and tend to share similar functions. However, it is less
intuitive to align concepts from different semantic domains –
such as nurse (profession) to blue (color) or guitar (instru-
ment) to rain (weather). The research concludes that even
concrete concepts are mentally organized along more abstract
dimensions. An example of such a dimension is valence; ex-
periments indicate that individuals tend to assign positive or
negative valence to concrete concepts in domains like colors,
professions, and beverages. Here, we use this task to get a
glimpse into LLMs’ conceptualization and reasoning abili-
ties.

Cross-Domain Mapping
In this section, we describe the cross-domain mapping ex-
periments. We perform two types of analysis – population-
level analysis, in which we compare the model’s behavior to
a “typical” human behavior. We then perform an individual-
level analysis where we compare the model’s behavior and a
single participant’s behavior.

Experimental Setup
Dataset. For our experiments, we use the cross-domain
mapping data collected from humans by LL23 in their ex-

periments (full details are in the Appendix). The data con-
tains 12 domains1 (see Table 2 in the Appendix), from which
32 domain-pairs were selected. For each domain pair, 2-3
random statements of the form:“If a(n) x (source item) were
a(n) y (target domain), what y would it be?”(e.g. “If a doctor
(source item) were a color (target domain), what color would
it be?”) are constructed. Resulting in 75 statements, each
answered by 20 participants.

Models. We select seven robust LLMs, including variants
of Flan language models (Wei et al., 2022) and Llama-
chat language models (Touvron et al., 2023) and Mistral-
7B2 (See Appendix for full details). These models, termed
“instruction-following LLMs”, belong to a category of lan-
guage models specifically trained to follow instructions — an
important trait in our context. We select these models for their
accessibility and their high performance.

Prompt Templates. Following recent works, to reduce the
noise in the models’ response, we manually construct 4 tem-
plates to prompt the models (Mizrahi et al., 2023; Rabi-
novich, Ackerman, Raz, Farchi, & Anaby-Tavor, 2023). For
example, “If a(n) x (source item) were a(n) y (target domain),
it would be a(n) ” (see Appendix for a full description of the
templates). We choose the indefinite article preceding x and
y to construct a grammatical sentence. For the Llama mod-
els that are oriented towards more lengthy conversational re-
sponses, we adjust the meta-prompt to encourage them to pro-
vide short answers that fit the format.

Prompting Methodology. Prompting the model with 4
templates per statement, results in 4 responses. We use ma-
jority vote to consolidate the results, and have one model re-
sponse per statement3. We use greedy decoding as a way of
approximating the model’s most probable response. Notably,
different templates and different decoding schemes can lead
to different responses that in turn affect the model’s behav-
ior, however, these interventions were designed to ensure re-
sponses that better capture the model’s predominant behavior.

Metrics. To score the model’s performance we use Match
at K metric, M@K. Namely, we check if the model’s answer
is within the first K most popular human answers. Formally,
we denote the model’s responses by {r1, . . . ,rN} and the hu-
mans’ responses by {h j

1, . . . ,h
j
N} where N is the number of

statements, N = 75, and j is the popularity of the answer,
with 1 representing the most popular answer. Accordingly,

1The domains were initially selected in the original paper, LL23.
2We exclusively employ Mistral for generating explanations for

the received cross-domain mappings. Our choice is based on the
observation that Mistral does not follow the task’s instructions, such
as providing responses that are not concise or relevant to the task
(this may be attributed to its training and alignment process).

3In case of a tie we randomly choose one response.

6078



If a doctor were a color, 
what color would it be?

red
white
blue
white
white
………
white 
green

Domain Pair

Human Annotators

Large language model

Please answer in one word:
If a doctor were a color, 
what color would it be?

white

red

doctor    color

M@1 M@anyM@3

B.

A.

C.

<s>[INST] <<SYS>>

Answer in one word, and one word only.
<</SYS>>

Question: If a doctor were a color, what 

color would it be?[/INST]
Answer:

Llama prompt template 

Figure 2: A. An illustration of our evaluation pipeline, at the top, is the human annotation process of LL23, and at the bottom is
our LLM evaluation process. B. Model-human Agreement: each bar represents the M@1 score. The dashed line represents the
individual-level norm for agreement with the most popular answer. C. Llama prompt template. An example of a Llama prompt
template, for the domain-pair (doctor, color).

M@K is defined as the average over the indicator δi j repre-
senting if for statement i, the model’s response ri is the same
as the human response h j

i . For our experiments, we will use,
M@1, M@3, and M@any, with M@any indicating that the
model’s response is one of the humans’ answers.

We note that 20 human participants are a relatively small
group to establish responses at the population level, neverthe-
less, LL23 found responses to converge in a nontrivial way,
indicating these responses are at least somewhat representa-
tive. To overcome this we chose to incorporate M@any and
asses if the model answer is reasonable even if less probable.

Experiments & Results
Since there are no clear-cut “right” or “wrong” responses for
cross-domain mappings (a characteristic typical to any pro-
jective test), we conduct our analysis at both the population
and individual levels. This allows us to assess LLMs behavior
by comparing it to human behavior. 4

Population-Level Analysis. We begin by evaluating the ca-
pability of LLMs to perform cross-domain mappings, com-
paring their performance to that of ’typical’ or average hu-
man behavior For each domain pair, we have one response

4Our code and supplementary materials are publicly available at
https://github.com/tai314159/XCategory

from the model and ∼ 20 responses from human participants.
We then compute M@1, M@3 and M@any.

Results. Table 1 presents the M@1, M@3, and M@any for
the Flan and Llama models. The M@1 score ranges between
8.1% − 24.3%, and the M@3 ranges between 14.9 − 36.5.
Llama-7B scores the highest in both M@1 and M@3 with
24.3% and 36.5% respectively. The M@any shows further
increase and has higher than 50% of being a human answer
for most models. It is easy to be convinced that these scores
are much higher than a random chance baseline of just guess-
ing a concept from the target domain.

Interestingly, we see that larger models do not necessar-
ily score higher. A possible reason for this might be that
their responses are less similar to those of humans, but still
acceptable or even semantically equivalent (e.g, answering
latte where humans answer with coffee). Verifying this re-
quires the definition of a metric that assesses semantic equiv-
alence rather than word-level matching, a direction we leave
for future work. Another explanation can be the size of the
training data5. We note that as the evaluation set is rela-
tively small these conclusions may vary. Nonetheless, our

5Flan-ul2 was pre-trained on 1 trillion tokens, Llama was trained
on 2 trillion tokens, Flan-xl and -xxl, was trained for at most 350B
tokens, based on the T5, and T5-LM-adapt versions (Raffel et al.,
2023).
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Model Name M@1 M@3 M@any

Flan-xl 12.2 23.0 39.2
Flan-xxl 8.1 14.9 32.4
Flan-ul2 18.9 28.4 55.4
Llama-7B 24.3 36.5 54.1
Llama-13B 21.6 27.0 56.8
Llama-70B 16.2 29.7 50.0

Table 1: Cross-Domain Alignment scores for several models.
Here, M@n indicates that the model answer is within the top
n most popular human answers.

main claim is that LLMs perform cross-domain mappings at
an above-chance level6, resembling the patterns observed in
human cognitive processes across all models.

Individual-Level Analysis. Our task can be categorized
as a projective test, similar to the Word Association and
Rorschach tests, in which the patient is expected to project
unconscious perceptions by the test stimuli. In such tests, the
popular answers at the population level are not expected to
be produced at the individual level. To further understand the
behavior of LLMs compared to humans, beyond just the av-
erage human behavior, we additionally conduct an analysis at
the individual level.

In our task, due to the absence of predefined individual be-
haviors in the experimental data, we employ a manipulation
at the single annotator level to infer individual-level norms
for cross-domain mappings. To this end, we iteratively ex-
clude one annotator from the pool of annotators and score
their answers compared to the popular answers defined by
the rest of the annotators. This procedure allows us to estab-
lish individual-level norms, however, as we sample from the
distribution defined by the annotations we can see this norm
as upper-bound to the actual individual-level norm. Nonethe-
less, This individual-level norm facilitates a comparison be-
tween individuals and LLMs.

Results. Figure 2B present the M@1 results compared to
the individual-level norm we define. The individual-level
norm is about 17.4%. We can see that Flan-ul2 and Llama-7B
outperform this baseline, and Llama-70B slightly underper-
forms it. These results indicate that some LLMs may align
more closely to the average human behavior, than individual
humans on this task.

Furthermore, we investigate whether models exhibit a
higher level of agreement with the most popular human an-
swer in cases where humans also demonstrate a higher con-
sensus on the most popular answer. To account for this, we
propose a new score similar to the M@1 score. We re-weight

6The chance level for any response (which is uniquely defined
by a domain-pair) can be interpreted as the probability of randomly
choosing a concept from the target domain.

each statement’s score by multiplying it by the number of an-
notators providing that response. Then we normalize it to en-
able a meaningful comparison with the M@1 results. We get
that, the new score is higher in cases with higher human con-
sensus, and lower in cases with lower consensus. According
to this adjusted scoring method, we observe a 30% improve-
ment over the M@1 results, suggesting that LLMs, tend to
agree with humans more in cases with higher consensus. This
is another point of similarity between LLMs and humans.

We turn to analyze the cases where models diverge in their
agreement with humans. For that, we offer a categorization
of their disagreement patterns, based on manual inspection
of the data: (1) Similar meaning, (2) Acceptable answer, (3)
Wrong answer. To illustrate, while most participants mapped
drum to thunder, the model mapped it to stormy. In essence,
their mappings are semantically similar, but since the score is
sensitive to the form of the responses, such cases do not count
as an agreement. An example of the second category is cases
in which the model gives an acceptable answer that differs
from the human answer. For example, the model mapped
a football to an orange, while the typical human answer is
a pineapple. This suggests that in such cases models rely
on different features than humans. Lastly, the model might
generate less common or hypothetical answers that can arise
from the nonsensical nature of questions in this task.

Explanations
In this section, we focus on cross-domain mappings’ expla-
nations. We ask, what type of similarity LLMs rely on when
performing cross-domain mappings, and whether LLMs can
reason about their responses. For humans, the cross-domain
alignment process relies on various factors, including percep-
tual, associative, and phonological similarity. This elicitation
has shown to be valuable, as it sheds light on the underlying
representations of basic concepts (LL23). Motivated by this
finding we derive explanations for the LLMs mappings. We
perform a qualitative and quantitative analysis of the expla-
nations they generate for their mappings.

Dataset. For each cross-domain mapping, LL23 collected
20 distinct responses, each accompanied by a participant-
provided explanation outlining the reasoning behind their
choice. Subsequently, two independent raters performed an-
notation by classifying each response into one or more of
seven predetermined categories: (1) Phonological associa-
tion, (2) Perceptual similarity, (3) Word associations, (4)
Common mediators, (5) Abstract alignment on certain dimen-
sions, (6) Thematic association, and (7) Guessing (or Other;
full details regarding these categories are in the Appendix).
As explanations tend to have few plausible categories, the
inter-rater agreement was substantial but yet not high with
Cohen’s kappa of 0.62 and agreement of 61.5%. Most ex-
planations, 93.5%, were classified into one category, and we
choose to focus on this case. The annotated explanations in-
dicate that human explanations aren’t distributed uniformly
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Mediators

Perceptual
Similarity

Thematic
Association Other Word

Association

B.A.

Green symbolizes growth, 
development, and life. In the 
context of science, it represents 
the natural world and the study 
of various sciences like botany.

It's rather a humorous way of 
expressing the idea that truck drivers 
spend a lot of time on the road and 
may enjoy a beer or two while on 
breaks.

The idea here is to think of a fruit 
that has an irregular shape, and a 
hard, textured outer layer with 
small bumps, which resembles the 
surface of a football. 

GreenScience

BeerTruck

PineappleFootball

Figure 3: A. A few examples of models’ explanations from different categories B. Basis of cross-domain alignment, according
to the model’s explanations.

across these categories, with categories 5, 4, and 2 accounting
for most explanations, with 46.1% of the explanations relying
on (5) Abstract alignment, alone.

Model Explanations
For model explanations, we use the Llama models (described
in the Appendix) with the addition of Mistral-7B, a strong
LLM that is specifically geared towards explanation and rea-
soning tasks (Jiang et al., 2023). We prompt the model with
the question template, the human response, and a prefix for
the explanation. We also add a meta-instruction that asks the
model to provide a clear explanation for his answer. For this
part, we use a temperature of 0.7 to elicit a few different rea-
soning paths. For each statement, we have 4 templates, and
for each statement we sample 4 explanations, leading to 16
explanations per statement and 1200 per model, in total.

Explanation Quality To ensure the validity of the expla-
nations, we conduct a small-scale qualitative analysis of the
model’s explanations. For this analysis, we randomly sam-
ple one explanation for each of the 75 statements, focus-
ing on Mistral-7B and Llama-13B. We manually classify7

each explanation into (i) sensible or (ii) not sensible expla-
nations. Overall, Mistral-7B produces more sensible expla-
nations with 87% of explanations classified as sensible, com-
pared to Llama-13B, which scored 69%. Consequently, we

7One of the authors manually annotated the data.

conclude that both models exhibit a decent to high percent-
age of sensible explanations.

Explanations Categories

We analyze model explanations by classifying them into
seven predefined categories (following the classification of
LL23). Initially, we use LLMs with a manually constructed
prompt with one example per category and test the perfor-
mance on the human-annotated explanations data. Mistral-
7B performs the best at 40.8%, considerably below the inner-
annotator agreement of 61.5%. To improve the results, we
fine-tune a RoBERTa-large SetFit classifier with 32 examples
per category, excluding 224 examples for training, which are
about 16% of the data (Tunstall et al., 2022; Y. Liu et al.,
2019). We deliberately choose the same number of examples
per category to minimize potential classification bias. The
fine-tuned classifier achieves a 60.1% accuracy, comparable
to the inner-annotator agreement, so we use the resultant clas-
sifier to annotate our model explanations.

In Figure 3, we present a comparison between the distribu-
tion of explanation categories generated by LLMs and those
produced by humans. To make it clearer, categories not pre-
dicted by the models are excluded from the analysis. The
analysis reveals consistent trends in the dominant explana-
tion categories employed by both humans and LLMs. Specif-
ically, the primary categories for both groups include (5) Ab-
stract alignment, (4) Common mediators, (2) Perceptual sim-

6081



ilarity, and (6) Thematic association, suggesting LLMs rely
on similar types of similarity as humans to perform cross-
domain mappings. However, this hypothesis requires further
evaluation, as the link between how the LLMs explain a given
mapping and the factors they rely on during the mapping pro-
cess is not clear.

Regarding categories Other, and (7) Guessing, we note that
humans often use “Guessing”, whereas LLMs consistently try
to provide an explanation and abstain from guessing. This
difference can lead to a larger percentage of explanations
assigned to the ”Other” category for LLMs. Additionally,
LLMs produce only a few (3) Word Association explana-
tions and don’t produce (1) Phonological Association expla-
nations. This may suggest that LLMs are less equipped to
model less frequent, end-of-distribution behaviors. Further-
more, the lower prevalence of category (3) implies that the
associative strength between the source word and target do-
main words tends to be weaker overall. Consequently, similar
to humans, LLMs are less likely to use this type of similarity
in their explanations.

These results show a strong similarity between the distribu-
tion of similarity types used by humans and LLMs as the basis
of their alignment. This may suggest that they both rely on
similar processes or factors while performing the mappings.

Explanations Similarity
We show that LLMs and human explanations distribute sim-
ilarly across the different categories. Here, we try to further
understand if the explanations that are produced by LLMs are
similar to human explanations, rather than just falling into the
same category. To that end, we compare the pairwise similar-
ity of LLM and human explanations in comparison to LLM
and LLM explanations similarity. Practically, we sample one
explanation per statement from the pair of LLMs or LLM
and human, and for each explanation pair (ei,e j) we calculate
the commonly used BERTScore metric (Zhang, Kishore, Wu,
Weinberger, & Artzi, 2019) across all 75 explanation pairs.
We then average these scores and define this score as the sim-
ilarity between the two models8. We average across all sim-
ilarity scores of LLM pairs and LLM-human pairs. We get
that the similarity score between LLMs is 85.7%, while the
similarity score between LLM and humans is 83.6% (found
significant by t-test). This indicates that the model’s expla-
nations tend to be more similar to each other than to those of
humans. A possible reason for this could be the tendency of
models to provide a full and lengthy explanation, unlike most
annotators’ explanations, which are concise.

Moreover, we use the same setup to compare explanations
across different categories. Interestingly, we see that explana-
tions from the Perceptual Similarity category, are much more
similar to each other (87.7%) than other categories of expla-
nations (4 with 84.7%, and 5 with 85.0%), suggesting that
both LLMs and humans tend to rely on the same perceptual

8For technical reasons the value itself doesn’t reflect the simi-
larity, but can facilitate a comparison between different similarity
scores.

attributes in their explanations, and possibly, while perform-
ing cross-domain mappings.

Discussion
In this paper, we draw inspiration from the recently curated
psychological task, cross-domain alignment (LL23). This
task was designed to reveal how humans represent concrete
and abstract concepts, by drawing insights regarding the types
of similarity humans tend to rely on while performing these
mappings. We use this task to perform a behavioral analysis
of LLMs, prompting them with cross-domain mappings.

Our results reveal that, at the population level, there is
a substantial agreement between LLMs’ and humans’ map-
pings. The top-performing model predicts the most popular
human answer more than 25% of the time, much higher than
a random baseline, and most models agree with at least one
participant, more than half of the time. However, as our met-
rics rely solely on word-matching and do not account for se-
mantic equivalence, this approach might yield only a lower
bound. Consequently, we defer this direction to future work.

We find that LLMs produce sensible explanations for the
mappings. Their explanation categories distribute similarly
to those of humans, which might imply that they rely on sim-
ilar dimensions of similarity in their mappings. The connec-
tion between the explanations provided for the mappings and
the actual factors LLMs rely on during their performance is
highly non-trivial, and requires further verification.

An intriguing finding is that, similarly to humans, LLMs
tend to generate explanations that are based on perceptual
similarity, even though they were trained only on text. For
example, mapping pineapple to football due to their shared
texture and shape. This relates to the body of work that
tries to assess the ability of LLMs to learn perceptual knowl-
edge, such as visual, sensory, and phonological knowledge
from text alone (van Paridon, Liu, & Lupyan, 2021; Win-
ter, Lupyan, Perry, Dingemanse, & Perlman, 2023; Q. Liu &
Lupyan, 2023; Alper, Fiman, & Averbuch-Elor, 2023; Mar-
jieh, Sucholutsky, Rijn, Jacoby, & Griffiths, 2023).

To conclude, we show that the seemingly nonsensical test
of cross-domain mappings reveals similar patterns of behav-
ior as presented by humans. We also use this task to as-
sess LLM’s ability to reason about these mappings, similar to
how humans can “reverse-engineer” the reasons behind such
alignments. This motivates a future study on the implications
of these findings, and an examination of whether this align-
ment between LLMs and humans runs even deeper, namely,
whether the behavioral correlates found between these tests
and personality and cognitive patterns in humans can also be
observed in LLMs. Given the impressive abilities presented
by LLMs, several lines of work construe them as cognitive
(Binz & Schulz, 2023a; Kosinski, 2023; Sap, LeBras, Fried,
& Choi, 2022) and even neural (Huth et al., 2016; Pereira et
al., 2018; Goldstein et al., 2022) models; we view this work
as providing empirical data that can help map the strengths
and weaknesses of this construal.
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Experimental Details
Data
Domains. For the domain-pair mappings we use the dataset
created by LL23 as we describe in the paper. The domains
are: cities, animals, instruments, beverages, colors, subjects,
jobs, fruits, vehicles, sports, supernaturals, and weather.

Dataset.
For our experiments, we use the cross-domain mapping data
collected from humans by LL23 in their experiments. Here,
we describe the main steps for its construction that will be
relevant for us9. The data was collected through Mturk from
80 participants (40 females, 40 males, mean age = 40). Af-
ter establishing 12 general domains, 32 domain pairs were
selected, such that each domain is matched with two or three
other domains (e.g., animal 7→ job/sports/beverage). For each
domain pair, 2-3 random statements of the form:“If a(n) x
(source item) were a(n) y (target domain), what y would it
be?”(e.g. “If a doctor (source item) were a color (target do-
main), what color would it be?”)are constructed. Resulting in
75 statements, each answered by 20 participants.

Models.
For the cross-domain mapping experiments, we select a few
robust LLMs to evaluate. Flan language models (Wei et al.,
2022) are fine-tuned on a diverse range of natural language
processing (NLP) tasks and datasets, making them adaptable
for various tasks through prompting. In our experiments, we
use three variants: Flan-xl (3B), Flan-xxl (11B), and Flan-ul2
(20B) (Tay et al., 2023). Llama-2-chat (Touvron et al., 2023)
is a set of large language models developed for conversational
applications that undergo alignment with human preferences.
We use llama-2-chat in three different sizes, referred to as
Llama-7B, Llama-13B, and Llama-70B.

Prompt Templates
In our mapping experiment, we used the next 4 different tem-
plates. One presents the task as a question:

’If a $x$ (source item) were a $y$
(target domain), what would it be?

9Full details for the data construction are also found in LL23’s
supplementary materials https://osf.io/tkc84/.

and three as sentence compilation:

’If a $x$ (source item) were a $y$
(target domain), it would be a’

’If a $x$ (source item) were a $y$
(target domain), it would be an’

’If a $x$ (source item) were a $y$
(target domain), it would be’

We choose the indefinite article preceding x and y to con-
struct a grammatical sentence. We also change the indefinite
article preceding the end of the prompt to avoid directing the
model toward one type of answer more than another.

For the explanations experiment, we modify the meta in-
struction and add an explanation prefix.

Answer in one word, and one word only.
Then provide a clear explanation for your answer
Question: {instruction}
Answer: {answer}
Explanation:

Re-weighted M@1 Score
Table 3 presents the full results of the re-weighted M@1
score, as defined in the paper. From the table, we also see
that Flan-ul2 surpasses Llama-7B, and achieves 61.9%.

Explanations Categories
The alignment explanations are categorized into seven pre-
defined categories, to reveal their underlying logic, following
the classification established by LL23. This classification is
derived from the manual examination of human annotators’
rationale provided for their explanations. In cases where an
explanation fits into multiple categories, such as those ob-
served in both our experiments and the human experiments
conducted by LL23, the most suitable category is selected.

Elaborating on Predefined Explanation Categories
We hereby elaborate on each of the categories10:
Abstract Alignment. The concepts require active abstrac-
tion to get the similarity. For example, “If a cloudy day were
a fruit it would be a banana” (explanation: “cloudy days are
sad and mushy like a rotten banana.”).
Perceptual Similarity. The similarity is based on perceptual
features. For example, “If a thunder were an instrument it
would be a drum”.
Common Mediators. Both concepts are associated with a
third concept. For example, “if a sunny day were a fruit, it
would be an apple.” (explanation: “Both apple and sunny
days are associated with summer.”).
Word Associations. The alignment is based on an associative
relation11 For example, “ if Beijing were a color, it would be

10We use the examples from LL23
11As this may hold true for many of the predefined categories,

in LL23, the human annotators were directed to choose this cate-

6084



Category Concepts

Subject History, Philosophy, Biology, Mathematics, Psychology, Science
Colors White, Red, Blue, Brown
Animals Bird, Cat, Horse, Dog, Cow, Bear, Elephant
Sports Baseball, Football, Golf, Bike, Volleyball
Weather Cloudy day, Snow, Rain, Sunny day
Supernaturals Zombie, Fairy, Wizard, Spell, Witch, Demon
Jobs Cashier, Carpenter, Doctor, Plumber
Fruits Banana, Pear, Strawberry, Apple, Grape
Cities Boston, New York, London, Beijing, Paris
Instruments Piano, Drum, Flute, Guitar, Harp
Beverages Water, Wine, Whisky, Milk, Tea, Juice
Vehicles Scooter, Bike, Truck, Motorcycle

Table 2: Categories and their respective concepts.

Model Name RW-M@1 @1 Diff

Flan-xl 42.3 12.2 30.1
Flan-xxl 38.6 8.1 30.5
Flan-ul2 61.9 18.9 43.0
Llama-7B 55.4 24.3 31.1
Llama-13B 55.1 21.6 29.5

Table 3: Cross-Domain Alignment scores for several models.
Here, we present RW-M@1, M@1 and their differences. RW-
M@1 takes into account the human consensus about the most
popular answer. The higher scores of RW-M@1 indicate that
the models tend to produce the most popular answer more
when it is in higher consensus.

red.” (explanation: “because it reminds me of “red China”.”).
Phonological Similarity. The similarity is based on phono-
logical similarity (e.g, bear and beer).
Thematic Association. The similarity is based on thematic
(non-linguistic) association12. For example, “If a dog were a
sport, it would be frisbee” (explanation: “they love games of
fetch and frisbee”).
Guessing. In cases where the explanation relies on intuition
or speculation. For example, “ If mathematics were a color, it
would be black. ” (explanation: ”I was guessing.”).

gory when the associations were likely formed by frequent word
co-occurrence.

12The human annotators in LL23 were given the guideline “If two
things appear in the same context that does not necessarily have any-
thing to do with language, it should go into this category. If the as-
sociation is based on linguistic context it should go into the Word
Association category.”

Distribution Of Explanations Categories
In Table 4 we present the number of explanations for LLMs
and humans and their distribution across categories. These
values are the basis for Fig. 3B. In this Table, we use the
abbreviation Perceptual Sim. for Perceptual Similarity, and
T-Association and W-Associations for and Thematic Associ-
ation and Word Associations respectively.

Explanations Similarity
In Table 5, we present the similarity between explanations of
different LLMs, and human pairs, as calculated by the aver-
age BERT-Score. Above the diagonal, we present the average
similarity, and below the diagonal, we present the standard
deviation. We see that LLMs tend to be more similar to one
another, than to humans. This does not necessarily reveal
dissimilarity between human and LLM explanations in gen-
eral as the annotations explanations tend to also differentiate
in style; human explanations are shorter and are not always
structured as a full sentence. For instance, to explain map-
ping Boston to red, one annotator replied: ”red sox”.

Limitations
Despite the insights gained from our experimentation, sev-
eral limitations should be acknowledged. First, we work with
strong LLMs that are not SOTA. We chose this setup as SOTA
LLMs are proprietary which prevents us from knowing the
process of prompting the models. Instead, we prefer to uti-
lize the best open-source models that allow us more control
of our experiment.

Second, Our score M@k is sensitive to the surface form
of the responses, as we discuss in our analysis. The model
might perform a semantically equivalent mapping to that of
humans, but if the form of the response is different, it will not
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Model Metric Abstract Alignment Common Mediators Perceptual Sim. T-Association Other W-Associations

Llama-7B 662 345 115 38 38 2
Llama-13B 760 269 108 48 14 1
Llama-70B 624 448 158 21 34 4
Mistral-7B 471 367 150 85 29 9
Human 659 221 192 102 38 29

Table 4: Distribution of explanations categories for different models.

Llama-7b Llama-13b Llama-70b Mistral-7b Human

Llama-7b 100.0 87.3 88.6 87.4 83.6
Llama-13b 10.4 100.0 87.7 86.0 84.1
Llama-70b 2.2 1.0 100.0 87.2 83.7
Mistral-7b 2.1 1.0 1.9 100.0 83.1
Human 1.3 1.4 1 1.6 100.0

Table 5: Similarity and standard deviation between explanations of different LLMs and human pairs.

be taken into account. This concern can be mitigated by in-
corporating other tools that can detect semantic equivalency.
For example, using word-embedding-based metrics. This is
something we intend to do in future work.

Furthermore, the human experiment data we use is of small
scale (1500 data points) raising a few concerns. One concern
involves the robustness of the data. Although this concern
holds, the clear patterns from our experiments across different
models can ease it somewhat. Additionally, the lack of social
demographic details about our participants makes our results
susceptible to societal biases and might not accurately reflect
the phenomenon in other real-world distributions. To address
this, future work can validate our results over larger and more
diverse annotator cohorts.
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