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Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small
region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former
encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis.
To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted
an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers
in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six in-
dependent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1:
rs7726159, P 5 2.10 3 10239; Region 3: rs2853677, P 5 3.30 3 10236 and PConditional 5 2.36 3 1028; Region 4:
rs2736098, P 5 3.87 3 10212 and PConditional 5 5.19 3 1026, Region 5: rs13172201, P 5 0.041 and PConditional 5
2.04 3 1026; and Region 6: rs10069690, P 5 7.49 3 10215 and PConditional 5 5.35 3 1027) and one in the neighbor-
ing CLPTM1L gene (Region2: rs451360; P 5 1.90 3 10218 and PConditional 5 7.06 3 10216).Between three and five
cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific
effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent
effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide
strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in
other cancer susceptibility loci.

INTRODUCTION

Genome-wide association studies (GWAS) have identified inde-
pendent susceptibility loci in a region on chromosome 5p15.33
that are associated with at least 10 distinct cancers. The pub-
lished findings include bladder (1), estrogen-negative breast
(2), glioma (3), lung (4–7), ovary (8), melanoma (9), non-
melanoma skin (10,11), pancreas (12), prostate (13) and testicu-
lar germ cell cancer (14). This degree of pleiotropy for common

susceptibility alleles suggests that the region harbors an import-
ant set of elements that could influence multiple cancers. It has
been observed previously that one allele may be protective for
one cancer while conferring susceptibility to another (15).
These independent loci map to �63,000 bp of 5p15.33 that
harbors two plausible candidate genes: TERT, which encodes
the catalytic subunit of telomerase reverse transcriptase (16)
and CLPTM1L, which encodes the cleft lip and palate-associated
transmembrane 1 like protein (also called cisplatin resistance
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related protein, CRR9). CLPTM1L appears to play a role in
apoptosis and cytokinesis, is overexpressed in both lung and
pancreatic cancer and is required for KRAS driven lung cancer
(17–21). Germline mutations in TERT can cause dyskeratosis
congenita (DC), a cancer-prone inherited bone marrow failure
syndrome caused by aberrant telomere biology (22). Clinically
related telomere biology disorders, including idiopathic pul-
monary fibrosis and acquired aplastic anemia, can also be
caused by germline TERT mutations (reviewed in 23).

To investigate the genetic architecture of common suscepti-
bility alleles across this region of 5p15.33 in multiple cancer
sites, we utilized a recently developed method called association
analysis based on subsets (ASSET) that combines association
signals for an SNP across multiple traits by exploring subsets
of studies for true association signals in the same, or the opposite
direction, while accounting for the multiple testing required
(24). The method has been shown to be more powerful than
the standard meta-analysis in the presence of heterogeneity,
where the effect of a specific SNP might be restricted to only a
subset of traits or/and may have different directions of associa-
tions for different traits (24).

RESULTS

In this study, we conducted a cross-cancer fine-mapping analysis
of a region on chromosome 5p15.33 known to be associated with
multiple cancer sites. We imputed each dataset across a 2 Mb
window (chr5: 250 000–2 250 000; hg19) using the 1000
Genomes (1000G) and DCEG reference datasets (25,26) and
applied a subset-based meta-analysis method (ASSET) (24) to
combine results across six cancers (11 studies) (see Materials
and Methods for details). This method has been shown to
improve power and interpretation when compared with other
traditional methods for the analysis of heterogeneous traits (24).

In the first analysis, we focused on six distinct cancer sites in
which 5p15.33 had previously been reported and had a nominal
P-value in our dataset (‘Tier-I studies’ scans, see Materials and
Methods). We performed the analysis across all studies (77%
European, 7% African American and 16% Asian ancestry,
ALL scans), and, because the majority of studies and subjects
were of European ancestry, we conducted parallel analyses in
this group only (EUR scans). Bonferroni correction was used
to assess significance, using the threshold at 1.3 × 1025, based
on the number of single-nucleotide polymorphisms (SNPs) ana-
lyzed across the region (n ¼ 1924) and the two analyses per-
formed (ALL or EUR scans) (see Materials and Methods). In
the second analysis, we examined the regions identified above
in eight cancers in which 5p15.33 had not been reported in the
literature (NHGRI Catalog of Published GWAS studies: http://
www.genome.gov/gwastudies/), or did not show a nominal
P-value in our dataset (‘Tier-II studies’).

Application of ASSET by sequential conditioning of asso-
ciated SNPs revealed up to six independent loci on 5p15.33,
each influencing risk of multiple cancers (Fig. 1, Table 1; Sup-
plementary Material, Table S1). In the primary analysis of all
subjects, we performed the ASSET meta-analysis based on un-
conditional association results from each of the six cancer
scans (11 studies). This identified rs7726159 with the lowest
P-value (P ¼ 2.10 × 10239), thus marking Region 1. The next

four SNPs, ranked by P-values, were highly correlated with
the index SNP based on 1000G CEU data: rs7725218 (P ¼
2.98 × 10239, pair-wise r2 ¼ 0.90), rs4449583 (P ¼ 3.37 ×
10239, pair-wise r2 ¼ 1.0), rs7705526 (P ¼ 1.00 × 10236, pair-
wise r2 ¼ 0.74) and rs4975538 (P ¼ 4.11 × 10232, pair-wise
r2 ¼ 0.76). These five SNPs reside in the second and third
intron of the TERT gene and are common, with effect allele fre-
quencies ranging between 0.18 and 0.43 in African (AFR),
0.35–0.37 in Asian (ASN) and 0.32–0.38 in European (EUR)
populations, each estimated in the 1000G project (Supplemen-
tary Material, Table S2). A search for surrogates using an r2

threshold of 0.7 across a 1 Mb window centered on the index
SNP did not identify additional highly correlated SNPs. The
effect allele (A) of rs7726159 was positively associated with
glioma (Glioma Scan) and lung cancer (Asian Lung) (P ¼
4.38 × 10236, ORCombined ¼ 1.47; 95% CI ¼ 1.38–1.56), but
negatively associated with testicular cancer (TGCT NCI), pros-
tate cancer (Pegasus and AdvPrCa) and pancreatic cancer
(ChinaPC) (P ¼ 5.07 × 1026, ORCombined ¼ 0.85; 95% CI ¼
0.80–0.91) (Fig. 2A).

The most significant SNP after conditioning on rs7726159 was
rs451360 (P ¼ 1.90 × 10218; PConditional ¼ 7.06 × 10216), res-
iding in intron 13 of CLPTM1L and marking Region 2 (Fig. 1,
Table 1). Six SNPs were correlated with rs451360 with an r2 .
0.7, all located within 500 kb of this SNP and spanning the
entire length of CLPTM1L: rs380145, rs13170453, rs37004,
rs36115365, rs35953391 and rs7446461. This effect allele
(rs451360-A) was positively associated with pancreatic cancer
(PanScan) and testicular cancer (TGCT NCI) (P ¼ 4.38 ×
10213, ORCombined ¼ 1.34; 95% CI ¼ 1.24–1.45), but negative-
ly associated with lung cancer (AA Lung, Asian Lung and Eur
Lung) (P ¼ 9.50 × 1028, ORCombined ¼ 0.85; 95% CI ¼ 0.80–
0.90) (Fig. 2B). Although large differences were seen in the
effect allele frequencies across the 1000G continental popula-
tions, 0.02–0.03 in AFR, 0.12 in ASN and 0.17–0.24 in EUR
(Supplementary Material, Table S2), the signal was still suffi-
ciently strong to be detected, particularly in African and Asian
lung studies, suggesting its importance in lung cancer etiology.

In our sequential conditional analysis, rs2853677 (located in
the first intron of TERT) was the most significant SNP after con-
ditioning on both rs7726159 and rs451360, thus marking Region
3 (P ¼ 3.30 × 10236; PConditional ¼ 2.36 × 1028) (Fig. 1,
Table 1). No additional SNPs with an r2 . 0.7 were located
within 500 kb of this SNP, which has relatively low LD with
both rs7726159 (r2 ¼ 0.13) and rs451360 (r2 ¼ 0.12) in
1000G CEU data. Region 3 (rs2853677-A) was positively asso-
ciated with testicular cancer (TGCT NCI) and pancreatic cancer
(PanScan and ChinaPC) (P ¼ 1.36 × 1027, ORCombined ¼ 1.22;
95% CI ¼ 1.13–1.31), but negatively associated with lung
cancer (Asian Lung and AA Lung) and glioma (Glioma scan)
(P ¼ 2.79 × 10231, ORCombined ¼ 0.73; 95% CI ¼ 0.70–0.77)
(Fig. 2C). The effect allele frequency for rs2853677 was consist-
ent across the three continental 1000G populations correspond-
ing to the studies included in this analysis: 0.60 in EUR, 0.67 in
ASN and 0.71 in AFR (Supplementary Material, Table S2).

A conditional analysis based on the three SNPs above
(rs7726159, rs451360 and rs2853677) yielded Region 4,
marked by rs2736098 (P ¼ 3.87 × 10212; PConditional ¼
5.19 × 1026), a synonymous variant (A305A) in the second
exon of TERT (Fig. 1, Table 1). Three additional SNPs with an
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Figure 1. Sequential conditional analyses and ASSET meta-analyses identified up to six independent signals for the TERT-CLPTM1L region on chromosome 5p15.33.
SNPs marking each region are plotted in the upper panel with two P-values (solid diamonds correspond to an unconditional test and open diamonds correspond to a
conditional test) on a negative log scale (left y-axis) against genomic coordinates (x-axis, hg19). Cancers from different GWAS scans (acronyms detailed in box in top
panel) that are associated within each region in the subset meta-analysis are listed (red, positively associated; green, negatively associated) from the unconditional
ASSET meta-analysis. Effect alleles are shown next to SNP identifiers. Recombination hotspots (curved lines, top panel) were inferred from three populations
from the DCEG Imputation Reference Set version 1 (red, CEU; green, ASN; blue, YRI) as the likelihood ratio statistics (right y-axis). Also shown are the gene struc-
tures for TERT, MIR4457 and CLPTM1L (middle panel), and LD heat map based on r2 using the 1000 Genomes CEU population (lower panel). Results are shown for
the ALL analysis except the region marked by rs10069690 (top panel) and labeled with a ‘∗’ that was identified in the European ancestry-only analysis (EUR).
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Table 1. Association results for SNPs on chromosome 5p15.33 with the risk of cancer

SNP Gene Region Position Unconditional OR (95% CI) Unconditional
P-value

Significant phenotype clusters Conditional OR (95% CI) Conditional
P-valuePositively

associated
Negatively
associated

Positively
associated

Negatively
associated

Positively
associated

Negatively
associated

ALL
rs7726159 TERT 1 1282319 1.47 (1.38–1.56) 0.85 (0.80–0.91) 2.10 × 10239 AsianLung, Glioma Scan TGCT NCI, Pegasus,

AdvPrCa, ChinaPC
rs451360 CLPTM1L 2 1319680 1.34 (1.24–1.45) 0.85 (0.80–0.90) 1.90 × 10218 PanScan, TGCT NCI EurLung, AfrAmLung,

AsianLung
1.33 (1.23–1.44) 0.86 (0.81–0.92) 7.06 × 10216

rs2853677 TERT 3 1287194 1.22 (1.13–1.31) 0.73 (0.70–0.77) 3.30 × 10236 TGCT NCI, PanScan,
ChinaPC

AsianLunga,
Glioma Scan,
AfrAmLung

1.11 (0.94–1.30) 0.80 (0.74–0.86) 2.36 × 1028

rs2736098 TERT 4 1294086 1.15 (1.10–1.21) 0.81 (0.74–0.89) 3.87 × 10212 AfrAmLung, Pegasus,
EurLunga, Bladder NCI

PanScan, TGCT NCIa 1.18 (1.10–1.25) 0.94 (0.67–1.31) 5.19 × 1026

rs13172201 TERT 5 1271661 1.06 (0.80–1.41) 0.84 (0.73–0.96) 5.00 × 1022 EurLung, Pegasusa,
PanScan, AfrAmLunga

TGCT NCI, Glioma Scan 1.13 (1.03–1.23) 0.81 (0.70–0.92) 1.31 × 1024

EUR
rs4449583 TERT 1 1284135 1.50 (1.35–1.68) 0.89 (0.83–0.94) 1.02 × 10215 Glioma Scan TGCT NCI, Pegasus,

AdvPrCa, PanScan
rs13170453 CLPTM1L 2 1317481 1.34 (1.24–1.45) 0.87 (0.80–0.95) 6.69 × 10215 PanScan, TGCT NCI EurLung 1.33 (1.22–1.44) 0.86 (0.80–0.93) 6.67 × 10214

rs10069690 TERT 6 1279790 1.48 (1.31–1.67) 0.87 (0.83–0.92) 7.49 × 10215 Glioma Scana AdvPrCa, TGCT NCIa,
PanScana, Bladder
NCI, Pegasusa

NA 0.77 (0.69–0.85) 5.35 × 1027

rs13172201 TERT 5 1271661 1.07 (0.88–1.29) 0.84 (0.73–0.96) 4.08 × 1022 EurLung, Pegasusa,
PanScan

TGCT NCI, Glioma Scan 1.13 (1.04–1.22) 0.82 (0.75–0.90) 2.04 × 1026

rs2736098 TERT 4 1294086 1.14 (1.08–1.20) 0.81 (0.74–0.89) 5.73 × 10210 Pegasus, EurLunga, Bladder
NCIa

PanScan, TGCT NCI 1.23 (1.11–1.35) 0.88 (0.75–1.02) 6.31 × 1025

The results from the imputation and subset-based ASSET meta-analysis is shown for the ‘ALL’ scans that include 11 GWAS scans performed in subjects of European, Asian and African American ancestry; and for the ‘EUR’ scans that include
eight scans performed in subjects of European ancestry. Scan acronyms are detailed in Materials and Methods. Listed are SNPs that mark each of the regions identified, gene, genomic location, unconditional and conditional P-values and
GWAS scans that were positively or negatively associated with the minor allele for each SNP/region. Note that different highly correlated SNPs may mark the same region in the ‘ALL’ vs. the ‘EUR’ analysis (Regions 1 and 2). NA indicates
that no scan was associated with a particular region.
aCancer sites that were no longer significant in the conditional analysis.
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Figure 2. (A–F) Forest plots for individual risk loci on chr5p15.33 for the unconditional ASSET meta-analysis. For each cancer/GWAS scan, OR and 95% CI were
listed and plotted along each line as per the unconditional association analysis. A vertical line of OR ¼ 1 indicates the null. Two summary lines list ORs for the posi-
tively or negatively associated subsets as estimated by the ASSET program. (A) rs7726159, (B) rs451360, (C) rs2853677, (D) rs2736098, (E) rs13172201 and (F)
rs10069690 in the analysis of European-ancestry studies only. Forest plots for the conditional analyses are shown in Supplementary Material, Figure S1A–E.
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r2 . 0.7 were located within 500 kb of this SNP: rs2853669,
rs2736108 and rs2736107, all in the promoter of TERT,
from �200 to 2700 bp upstream of the transcriptional start
site. This region (rs2736098-T) was positively associated with
lung cancer (Eur Lung and AA Lung), prostate cancer
(Pegasus) and bladder cancer (Bladder NCI) (P ¼ 2.58 ×
1028, ORCombined ¼ 1.15; 95% CI ¼ 1.10–1.21), and negative-
ly associated with testicular cancer (TGCT NCI) and pancreatic
cancer (PanScan) (P ¼ 4.89 × 1026, ORCombined ¼ 0.81; 95%
CI ¼ 0.74–0.89) (Fig. 2D). The effect allele frequencies dis-
played a wide range across the three continental populations in
1000G, interestingly with the lowest frequency in the most
ancient population, 0.06–0.08 (AFR), whereas the other two
populations were comparably high: 0.23–0.29 (EUR) and
0.22–0.33 (ASN) (Supplementary Material, Table S2).

An additional suggestive region (Region 5) marked by
rs13172201 (P ¼ 0.05; PConditional ¼ 1.31 × 1024) was deter-
mined by our sequential conditional analyses (Fig. 1, Table 1),
unmasked mainly due to conditioning on rs7726159 (Region 1).
The risk alleles for rs13172201 and rs7726159 were negatively
correlated (r ¼ 20.27, based on 1000G CEU data) and, in an ex-
ploratory analysis of rs13172201 in the Eur Lung scan, this SNP
appeared to have a stronger association in rs7726159 CC carriers
(P ¼ 7.0 × 1024, OR ¼ 1.21 95% CI ¼ 1.08–1.35) when com-
pared with rs7726159 AC/AA carriers (P ¼ 0.10, OR ¼ 1.12
95% CI ¼ 0.98–1.27).

Region 5 (rs13172201-C) was positively associated with lung
cancer (Eur Lung and AA Lung), prostate cancer (Pegasus) and
pancreatic cancer (PanScan) and negatively associated with tes-
ticular cancer (TGCT NCI) and glioma (Glioma scan) (Fig. 2E).
The effect allele for rs13172201, the sentinel SNP in Region 5,
was the minor allele in European (0.26 in EUR) and African
(0.39 in AFR) populations, while it has become the major
allele in Asians (0.85 in ASN).

In an analysis restricted to studies of European ancestry (EUR
scans), we noted strong associations for Regions 1, 2, 4 and 5
(Table 1) but not Region 3 (marked by rs2853677). The condi-
tional P-value for Region 5, suggestive in the analysis based
on all ethnic groups, improved in this subset and surpassed the
threshold of 1.3 × 1025 (rs13172201: P ¼ 0.041; PConditional ¼
2.04 × 1026). An additional region, Region 6, marked by
rs10069690 (P ¼ 7.49 × 10215; PConditional ¼ 5.35 × 1027) in
intron 4 of TERT was identified in the European ancestry-only
analysis (Fig. 1, Table 1). The significance for this region did
not reach our Bonferroni-corrected P-value threshold in the ana-
lysis of all studies (P ¼ 5.4 × 1024 after conditioning on
rs7726159, rs451360, rs2853677 and rs2736098). As Regions
3 and 6 were located between the same two recombination hot-
spots (Fig. 1), we assessed correlation in 1000G CEU subjects
and noted virtually no LD (rs10069690, rs2853677, r2 ¼
0.0052), thus supporting the notion that they are independent
signals. Low LD existed for these two SNPs in the 1000G YRI
(r2 ¼ 0.098) and CHB/JPT (r2 ¼ 0.048) populations (Supple-
mentary Material, Table S3). Region 6 (rs10069690-T) was
positively associated with glioma (Glioma scan) (P ¼ 4.07 ×
10210, ORCombined ¼ 1.48; 95% CI ¼ 1.31–1.67) and negative-
ly associated with testicular (TGCT NCI), prostate (Pegasus and
AdvPrCa), bladder (Bladder NCI) and pancreatic cancer
(PanScan) (P ¼ 4.95 × 1027, ORCombined ¼ 0.87; 95% CI ¼
0.83–0.92) (Fig. 2F). Highly correlated SNPs (r2 . 0.7) were

not observed within 500 kb of rs10069690. Notably, the
P-value for rs10069690 in the Advanced Prostate cancer scan
improved from 1.64 × 1025 to 2.03 × 10210 after conditioning
on Region 1. The correlation between rs10069690 and
rs7726159 (Region 1) is r2 ¼ 0.13 in the 1000G CEU, r2 ¼
0.30 in YRI and r2 ¼ 0.42 in CHB/JPT populations (Supplemen-
tary Material, Table S3). SNP rs10069690 was nominally
significant in the other two prostate cancer scans with uncondi-
tional P-values of 0.003 (Pegasus) and 0.02 (CGEMS PrCa)
but was not significant after conditioning on the first region in
these scans (P ¼ 0.36 in Pegasus, P ¼ 0.078 in CGEMS PrCa).

For the six signals noted, Regions 1, 3 and 6 are flanked by two
recombination hotspots that separate them from Region 5 on the
telomeric side and from Region 4 on the centromeric side. Re-
combination hotspots also separate Regions 2 and 4 (Fig. 1).
The LD between SNPs in loci 1, 3 and 6 was low to moderate
(r2 ¼ 0.0052, 0.131 and 0.449 in 1000G CEU, r2 ¼ 0.0981,
0.298 and 0.0765 in YRI and r2 ¼ 0.0484, 0.415 and 0.341 in
CHB/JPT); however, the conditional analyses supported the
presence of three signals bounded by strong recombination hot-
spots on either side. Region 5 is the most telomeric one and sepa-
rated from the rest by a strong recombination hotspot.
Supplementary Material, Table S1 shows P-values for the six
regions along each step of the sequential conditional analysis
to reflect the change in significance in the analysis.

We also assessed the associations for each of the regions in the
‘Tier-II studies’ comprising nine GWAS datasets across eight
cancers, including 11 385 cases and 18 322 controls. None of
the regions showed significant association (data not shown).

In addition to characterizing independent signals in the
TERT-CLPTM1L region, we have fine-mapped previously
reported signals. For pancreatic cancer, the reported GWAS
SNP rs401681 had a P-value of 3.7 × 1027 and an OR of 1.19
(12). After imputation, an improved P-value was seen for
rs451360 (marking Region 2) (P ¼ 2.0 × 10210; OR ¼ 1.29).
After conditioning on rs451360, the P-value for rs401681 was
no longer significant (P ¼ 0.1). The LD between these two
SNPs is moderate (r2 ¼ 0.35). For glioma, the GWAS SNP
rs2736100 had a P-value of 8.49 × 1029 and OR of 1.08 in the
Glioma scan (27). The best imputed SNP rs449583 (r2 ¼ 1
with rs7726159, marking Region 1) showed a much improved
P-value of 4.1 × 10214 with an OR of 1.50, and the P-value of
rs2736100 was no longer significant after conditioning on
rs449583 (P ¼ 0.64). The LD between these two SNPs was mod-
erate (r2 ¼ 0.39).

Bioinformatic analyses using public data bases (ENCODE
and TCGA) were performed to investigate the possible function
of SNPs that mark each of the six regions as regulators of expres-
sion of TERT, or CLPTM1L, as well as other genes. Based on
ENCODE data, the strongest evidence for putative regulatory
functions was seen for SNPs in Regions 1 (rs7725218 and
rs4975538), 2 (rs36115365 and rs380145), 4 (rs2736108 and
rs2853669) and 5 (rs13172201) with evidence of an open chro-
matin conformation, regulatory histone modification marks
and transcription factor binding in multiple cell types such as
prostate, pancreas, breast, lung and brain (Supplementary Mater-
ial, Table S2).

We next examined the TCGA datasets for expression (eQTL)
and methylation (meQTL) quantitative trait loci for lung adeno-
carcinoma (LUAD), prostate adenocarcinoma (PRAD) and
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glioblastoma multiforme (GBM). We did not observe signifi-
cant eQTLs (P . 0.41, data not shown) but noted multiple
meQTLs in LUAD and PRAD tumor samples (Supplementary
Material, Tables S5 and S6). Methylation at a subset of CpG
probes with meQTLs correlated with expression of TERT
and/or CLPTM1L, including two for Region 4 in TCGA
LUAD samples (cg26209169: b ¼ 20.47, P ¼ 1.18 × 1025;
cg11624060: b ¼2 0.36, P ¼ 0.001). These CpGs are located
�1800 bp downstream of CLPTM1L (227 bp apart), overlap
with key transcription factor binding sites (e.g. TCF3, TCF4,
HNF3A, MAX, RUNX3/AML2, ATF-2 and USF1/USF2) and
active histone modification marks from ENCODE, and are nega-
tively correlated with expression of TERT and CLPTM1L (Sup-
plementary Material, Table S5 and Fig. S2). Replication was
seen in normal lung samples (cg26209169 and Region 4,
b ¼2 0.650, P ¼ 5.17 × 1025; cg11624060 and Region 4,
b ¼ 20.493, P ¼ 0.0027) from EAGLE (28). The most signifi-
cant meQTLs in TCGA PRAD samples were seen for Region 1
(cg03935379: b ¼ 21.06, P ¼ 8.47 × 10215; cg06531176:
b ¼2 1.18, P ¼ 2.61 × 10215). These replicated in EAGLE
(P ¼ 5.93 × 1028 and P ¼ 0.002, respectively), did not correl-
ate with expression of TERT or CLPTM1L, and were both
located within exon 3 of TERT (Supplementary Material,
Table S6).

Analysis of TCGA data also revealed increased expression of
TERT and CLPTM1L in tumors compared with normal tissues
for lung and prostate cancer (on average 1.29- to 2.02-fold
change for paired samples). Copy number differences were
more evident in lung tumors (average number of copies was
2.02 in normal and 2.54 in tumors for 51 paired samples, P ¼
1.10 × 1027) (Supplementary Material, Fig. S3).

DISCUSSION

Chr5p15.33 harbors a unique cancer susceptibility region that
contains at least two plausible candidate genes: TERT and
CLTPM1L. Through a subset-based meta-analysis of GWAS
data drawn from six different cancers from three continental
populations, we have characterized up to six independent,
common, susceptibility alleles, all with evidence of both
risk-enhancing and protective effects, differing by cancer type.

TERT encodes the catalytic subunit of the telomerase reverse
transcriptase, which, in combination with an RNA template
(TERC), adds nucleotide repeats to chromosome ends (29).
Although telomerase is active in germ cells and in early develop-
ment, it remains repressed in most adult tissues. Telomeres
shorten with each cell division and when they reach a critically
short length, cellular senescence or apoptosis is triggered.
Cancer cells can continue to divide despite critically short telo-
meres, by upregulating telomerase or by alternative lengthening
of telomeres (16,30,31). While studies investigating the relation-
ship between surrogate tissue (i.e. buccal or blood cell DNA)
telomere length and cancer risk have been contradictory,
larger prospective studies have not reported an association for
risk but only survivorship (32–35). Heritability estimates of
telomere length in twin studies suggest a significant genetic con-
tribution, between 36 and 78% (36,37). GWAS SNPs on 5p15.33
have been associated with telomere length implying that TERT
may indeed be the gene targeted by at least some risk variants

in this region (38–40). In addition, germline TERT promoter
mutations have been identified in familial melanoma as well as
somatic mutations in multiple cancers (41,42).

The most commonly reported SNP in the TERT gene,
rs2736100, was first reported in several GWAS: glioma (3,43),
lung cancer in European and Asians (7,44–46) and testicular
cancer (14). We have fine-mapped this locus (Region 1) to a
set of five correlated SNPs in the second and third intron of
TERT (marked by rs7726159). In addition to the cancers listed
above, we noted novel contributions to this locus by prostate
and pancreatic cancer. Fine-mapping efforts in lung (47) and
ovarian cancer (48) have reported the same SNP. Region 3
(rs2853677), located in the first intron of TERT, has been asso-
ciated with glioma in Chinese subjects (49) and lung cancer in
Japanese subjects (50), in agreement with the strong contribution
to this region seen in our analysis by scans performed in indivi-
duals of Asian ancestry. In addition to lung cancer and glioma,
we noted novel associations for Region 3 with pancreatic and tes-
ticular cancer. Region 4 was marked by a synonymous SNP
(rs2736098) located in the second exon of TERT, with three add-
itional highly correlated SNPs in the promoter region. This
region has been reported via fine-mapping in lung, bladder, pros-
tate, ovarian and breast cancer, and shown to influence TERT
promoter activity (8). Novel contributions to Region 4 were
noted for pancreatic and testicular cancer.

In our analysis, we uncovered a new susceptibility locus,
Region 5 (marked by rs13172201, Fig. 1), which surpassed the
Bonferroni threshold in European studies. We found evidence
for a negative correlation between this SNP and rs7726159
(Region 1), indicating a possible interaction. This locus is not
significant at a GWAS threshold and requires confirmation in
independent samples. Region 6 (marked by rs10069690) has
previously been associated with estrogen- and progesterone
receptor-negative breast cancer in populations of European
and African ancestry (2,51); our analysis adds five cancers to
this list: glioma, prostate, testicular germ cell, pancreas and
urinary bladder.

The gene adjacent to TERT, namely CLPTM1L, encodes a
protein that is overexpressed in lung and pancreatic cancer, pro-
motes growth and survival, and is required for KRAS driven lung
cancer, indicating that it is a plausible candidate gene in this
region (17–21). The locus in CLPTM1L (Region 2) has previ-
ously been associated with risk of cancer in multiple GWAS,
marked by rs401681 or rs402710 in pancreatic, lung and
bladder cancer as well as in melanoma (1,4,5,12,52). Our subset-
based approach has fine-mapped this signal to a set of seven cor-
related SNPs that span the entire length of CLPTM1L.

Two recent papers from the Collaborative Oncology
Gene-Environment Study (COGs) fine-mapped 5p15.33 in pros-
tate, breast and ovarian cancer and identified four of the six loci
noted in the current study (53,54). In prostate cancer, COGs iden-
tified three regions that corresponded to our Region 1 (COGs
Region 1, rs7725218), Region 3 (COGs Region 2, rs2853676,
r2 ¼ 0.32 with rs2853677) and Region 4 (COGs Region 3,
rs2853669) (54). Interestingly, COGs reported protective
alleles in Region 1 associated with increased TERT expression
in benign prostate tissue samples. The fourth COGs prostate
cancer locus, marked by rs13190087, was not significant in our
study (P ¼ 0.089), possibly due to a more specific effect for
prostate cancer for this locus where our study had less power.
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In breast and ovarian cancer, COGs identified three regions corre-
sponding to our Region 1 (COGs Region 2, rs7705526, associated
with risk of ovarian cancer with low malignant potential, telomere
length and promoter activity), Region 4 (COGs Region 1,
rs2736108, associated with risk of ER-negative and BRCA1 mu-
tation carrier breast cancer, telomere length and altered promoter
activity) and Region 6 (COGs Region 3, rs10069690, associated
with risk of ER-negative breast cancer, breast cancer in BRCA1
carriers and invasive ovarian cancer) (53). Regions 2 (in
CLPTM1L) and 5 (in TERT) were not observed in the COGs
reports, perhaps due to the choice of SNPs by COGs for fine-
mapping as well as the more comprehensive reference set for
1000 Genomes used to conduct our imputation, or because of
cancer-specific effects for these loci.

It is becoming increasingly clear that DNA methylation is
under genetic control. Regions of variable methylation exist
across tissues and individuals, tend to be located in intergenic
regions, overlapping known regulatory elements. Notably,
these are enriched for disease-associated SNPs (28,55,56). Ana-
lysis of TCGA data, while not uncovering significant eQTLs,
indicated that DNA methylation could play a role in the under-
lying biology at 5p15.33. Methylation in a small region down-
stream of CLPTM1L, with features supporting an active
regulatory function, was consistent with lower methylation
levels in carriers of risk alleles for lung cancer (Region 4) and
higher expression of TERT and CLPTM1L. Increased expression
of both genes is consistent with a pro-tumorigenic role in lung
cancer (19,21,31). For prostate cancer, the most notable
meQTLs were located within exon 3 of TERT with increased
rates of methylation for carriers of risk alleles in Regions 1 and
6. Although gene-body methylation has been observed to posi-
tively correlate with gene expression (57), we did not see evi-
dence to support this for this particular set of CpGs. As a large
fraction of meQTLs does not overlap with eQTLs (55), they
may influence molecular phenotypes other than gene expression
such as alternative promoter usage, splicing and even mutations
(58–60). It is intriguing that methylation QTLs observed in
TCGA data differ to some degree between lung and prostate
cancer, and that none were observed in glioblastoma. This indi-
cates that the TERT-CLPTM1L region may harbor multiple ele-
ments that have the capacity to influence molecular phenotypes
that in turn impact cancer development. However, only a subset
of these elements may be active in each organ, thus leading to dif-
ferent mechanistic avenues for risk modulation in different
tissues. It is possible that the interplay between risk variants,
multiple biological mechanisms and attributed genes, in addition
to environmental and lifestyle factors that differentially influ-
ence various cancers may eventually come to explain how the
same alleles at this complex locus can mediate opposing
cancer risk in different organs.

In summary, we report up to six independent loci on
chr5p15.33, each influencing the risk of multiple cancers. We
observed pleiotropy for common susceptibility alleles in this
region, defined as the phenomenon wherein a single genetic
locus affects multiple phenotypes (61). These alleles could influ-
ence multiple cancers distinctly, perhaps in response to environ-
mental factors or in interactions with other genes. Our cardinal
observations underscore the complexity of the alleles and
suggest the importance of tissue-specific factors that contribute
to cancer susceptibility. Further laboratory analysis is needed to

validate our findings using TCGA data, and investigate the
optimal functional variants in each of the six independent loci
in order to provide a clearer understanding of each of the loci
in this multi-cancer susceptibility region.

MATERIALS AND METHODS

Study participants

Participants were drawn from a total of 20 previous GWAS scans
of 13 distinct cancer types: bladder, breast, endometrial, esopha-
geal squamous, gastric, glioma, lung, osteosarcoma, ovarian,
pancreatic, prostate, renal cancer and testicular germ cell
tumors. We first assessed a set of 11 GWAS representing six dis-
tinct cancers (‘Tier-I studies’) in which 5p15.33 had previously
been implicated (NHGRI Catalog of Published GWAS studies:
http://www.genome.gov/gwastudies/). The GWAS scans and
their acronyms were: Asian lung cancer scan (AsianLung),
European lung cancer scan (EurLung), African American lung
(AA Lung), PanScan, China pancreatic cancer scan
(ChinaPC), Testicular germ cell tumor (TGCT NCI) scan,
glioma scan, Bladder NCI scan, Pegasus prostate cancer scan
(Pegasus), CGEMS prostate cancer scan (CGEMS PrCa) and
Advanced prostate cancer scan (Adv PrCa) (see case and
control counts in Supplementary Material, Tables S4A–D). In
a second analysis, we separately assessed a set of nine GWAS
scans representing eight cancers (‘Tier-II studies’) in which
5p15.33 had not been previously reported in the literature
(NHGRI Catalog of Published GWAS studies: http://www.
genome.gov/gwastudies/). These studies were: Asian esopha-
geal scan (Asian EsoCa), Asian gastric cancer scan (Asian
GastCa), CGEMS Breast cancer scan (CGEMS Breast), Endo-
metrial cancer scan (EndomCa), ER negative breast cancer
scan (ERneg BPC3 BrCa), Ghana prostate cancer scan (Ghana
PrCa), Osteosarcoma scan (OS), Ovarian cancer scan (OvCa)
and Renal cancer scan (Renal US) (see case and control counts
in Supplementary Material, Tables S4E–H). Studies were con-
ducted in individuals of European background (EUR scans)
but we did include studies in populations of Asian ancestry
(i.e., esophageal squamous, gastric, non-smoking lung and pan-
creatic cancers) and African ancestry (i.e. lung and prostate
cancer) (ALL scans). Study characteristics, genotyping and
quality control have been previously published for all studies
listed by cancer type and GWAS scan acronym: bladder
cancer/Bladder NCI (1,62), breast cancer/CGEMS BrCa (63),
breast cancer/ERneg BPC3 BrCa (64), endometrial cancer/
EnCa (65), gastric cancer and esophageal squamous cell carcin-
oma/Asian UpperGI (66), glioma/Glioma scan (27), lung cancer
in Europeans/EurLung (7), lung cancer in African Americans/
AALung (67), lung cancer in non-smoking women from Asia/
AsianLung (68,69), osteosarcoma/OS (70), ovarian cancer/
OvCa (71), pancreatic cancer/PanScan (12,72), pancreatic
cancer in Asians/ChinaPC (73), prostate cancer/Pegasus (un-
published data), prostate cancer/CGEMS PrCa (74), advanced
prostate cancer/AdvPrCa (75), prostate cancer in Africans/Gha-
naPrCa (unpublished data), renal cancer/Renal US (76) and tes-
ticular germ cell tumors/TGCT NCI (77).

Each participating study obtained informed consent from
study participants and approval from its Institutional Review
Board (IRB) including IRB certification permitting data
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sharing in accordance with the National Institutes of Health
(NIH) Policy for Sharing of Data Obtained in NIH Supported
or Conducted GWAS.

Genotyping

Arrays used for scanning included the Illumina HumanHap
series (317 + 240S, 550, 610 K, 660 W and 1 M), as well as
the Illumina Omni series (OmniExpress, Omni1M, Omni2.5
and Omni5M). The majority of the studies were genotyped at
the Cancer Genomics Research Laboratory (formerly Core
Genotyping Facility) of the National Cancer Institute (NCI) of
the NIH. The ChinaPC GWAS (Affymetrix 6.0) was genotyped
at CapitalBio in Beijing, China. This necessitated imputation
before the cross-cancer subset-based meta-analysis. We used a
combination of public resources, 1000 Genomes (1000G) (25)
and DCEG (26) reference datasets, to impute existing GWAS
datasets (78) using IMPUTE2 (79).

In addition to the standard QC procedures previously applied
in the primary GWAS publications, we further filtered SNPs as
follows: (i) completion rate per locus , 90%, (ii) MAF ,
0.01, (iii) Hardy–Weinberg proportion P-value , 1 × 1026,
(iv) exclusion of A/T or G/C SNPs.

Lift over the genomic coordinates to NCBI genome build 37
or hg19

Because the March 2012 release of the 1000 Genomes Project
data is based on NCBI genome build 37 (hg19), we utilized the
LiftOver tool (http://hgdownload.cse.ucsc.edu/) to convert
genomic coordinates for scan data from build 36 to build 37.
The tool re-maps only coordinates, but not SNP identifiers. We
prepared the inference.bed file and then performed the lift over
as follows:

�/tools/liftover/liftOver inference.bed �/tools/liftover/hg18
ToHg19.over.chain.gz output.bed unlifted.bed

A small number of SNPs that failed LiftOver, mostly because
they could not be unambiguously mapped to the genome by
NCBI, were dropped from each imputation inference set.

Strand alignment with 1000 Genomes reference data set

Since A/T or G/C SNPs were excluded, strand alignment for the
scan data required checking allele matches between the infer-
ence set and reference set locus by locus. If they did not match,
alleles were complemented and checked again for matching.
SNPs that failed both approaches were excluded from the infer-
ence data. Locus identifiers were normalized to those used in the
1000 Genomes data based on genomic coordinates, although the
IMPUTE2 program uses only the chromosome/location to align
each locus overlapping between the imputation inference and
reference set.

Conversion of genotype files into WTCCC format

After LiftOver to genome build 37 and ensuring that alleles were
reported on the forward strand, we converted the genotype data
into IMPUTE2 format using GLU. We split the genotype file into
one per chromosome and sorted SNPs in order of genomic loca-
tion using the GLU transform module.

Imputation of a 2Mb window on chr5p15.33

We used both the 1000G data (March 2012 release) (25) and the
DCEG imputation reference set (26) as reference datasets to
improve overall imputation accuracy. The IMPUTE2 program
(79) was used to impute a 2 Mb window on chr5p15.33 from
250 000 to 2 250 000 (hg19) with a 250 kb buffer on either
side as well as other recommended default settings. For the asso-
ciation analysis, we focused on a smaller region from chr5:
1 250 000–1 450 000 delineated by recombination hotspots
(discussed below).

Post-imputation filtering and association analysis

We excluded imputed loci with INFO , 0.5 from subsequent
analyses. SNPTEST (79) was used for the association analysis
with covariate adjustment and score test of the log additive
genetic effect. The same adjustments as used originally in each
individual scan were used. Note that the per SNP imputation ac-
curacy score (IMPUTE’s INFO field) is calculated by both
IMPUTE2 and SNPTEST. The two INFO metrics calculated
during imputation by IMPUTE2 and during association testing
by SNPTEST are strongly correlated, especially when the addi-
tive model is fitted (78). We chose the INFO metric calculated by
SNPTEST for post-imputation SNP filtering.

Subset and conditional analyses

Association outputs from SNPTEST were reformatted and sub-
sequently analyzed using the ASSET program, an R package
(http://www.bioconductor.org/packages/devel/bioc/html/ASSET.
html; https://r-forge.r-project.org/scm/viewvc.php/∗checkout∗/p
kg/inst/doc/vignette.Rnw?root=asset) for subset-based meta-
analyses (24). ASSET is a suite of statistical tools specifically
designed to be powerful for pooling association signals across mul-
tiple studies when true effects may exist only in a subset of the
studies and could be in opposite directions across studies. The
method explores all possible subset (or a restricted set if user spe-
cifies so) of studies and evaluates fixed-effect meta-analysis-type
test-statistics for each subset. The final test-statistics is obtained
by maximizing the subset-specific test-statistics over all possible
subsets and then evaluating its significant after efficient adjustment
for multiple testing, taking into account the correlation between
test-statistics across different subsets due to overlapping subjects.
The method not only returns a P-value for significance for the
overall evidence of association of an SNP across studies, but also
outputs the ‘best subset’ containing the studies that contributed to
the overall association signal. For detection of SNP association
signals with effects in opposite directions, ASSET allows subset
search separately for positively and negatively associated studies
and then combines association signals from two directions using
a chi-square test-statistics. The method can take into account cor-
relation due to overlapping subject across studies (e.g. share con-
trols). More details about these and other features of the method
can be found elsewhere [22].

For our current study, the matrices of the overlapping counts
for cases–controls across datasets, which are utilized by
ASSET to adjust for possible correlation across studies, were
constructed and passed into the ASSET program (Supplemen-
tary Tables S4A–H). We used a two-sided test P-value, which
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can combine association signals in opposite directions, to assess
the overall significance of whether an SNP was associated with
the cancers under study. For detection of independent suscepti-
bility SNPs, we performed sequential conditional analysis in
which in each step the ASSET analysis is repeated by condition-
ing on SNPs that have been detected to be most significant in pre-
vious steps. The process was repeated until the P-value for the
most significant SNP for a step remained ,1.3 × 1025, a con-
servative threshold that corresponds to Bonferroni adjustment
for the 1924 SNPs used in the analysis for an alpha level of
0.05 and the two analyses performed (for the ALL vs. the EUR
scans).

In the primary analysis, we included all GWAS scans in which
one or more susceptibility alleles on 5p15.33 had been previous-
ly noted at genome-wide significant threshold (‘Tier-I studies’).
We further required a nominal signal in our data (P , 0.05). This
yielded 11 GWAS across six distinct cancer sites and includes
34 248 cases and 45 036 cancer-free controls (Supplementary
Material, Tables S4A–D). In a secondary analysis, we assessed
the associations for each of the six regions in scans in which
5p15.33 had not been previously reported in the literature (http://
www.genome.gov/gwastudies/), or did not show a nominal
P-value in the GWAS datasets used in the current study
(‘Tier-II studies’). This yielded nine GWAS datasets across
eight cancers, including a total of 11 385 cases and 18 322 con-
trols (Supplementary Material, Tables S4E–H).

Recombination hotspot estimation

Recombination hotspots were identified in the region of 5p15.33
harboring TERT and CLPTM1L (1 264 068–1 360 487) using
SequenceLDhot (80), a program that uses the approximate mar-
ginal likelihood method (81) and calculates likelihood ratio sta-
tistics at a set of possible hotspots. We tested three sample sets
from East Asians (n ¼ 88), CEU (n ¼ 116) and YRI (n ¼ 59)
from the DCEG Imputation Reference Set. The PHASE v2.1
program was used to calculate background recombination
rates (82,83).

Validation of imputation accuracy

Imputation accuracy was assessed by direct TaqMan genotyping.
TaqMan genotyping assays (ABI, Foster City, CA, USA) were
optimized for six SNPs (rs7726159, rs451360, rs2853677,
rs2736098, rs10069690 and rs13172201) in the independent
regions. In an analysis of 2327 samples from the Glioma brain
tumor study (Glioma BTS, 330 samples) (27), testicular germ
cell tumor (TGCT STEED study, 865 samples) (77) and
Pegasus (PLCO, 1132 samples) (unpublished data), the allelic
R2 (84) measured between imputed and assayed genotypes
were 0.88, 0.98, 0.86, 0.85, 0.81 and 0.61 for the six SNPs
listed in the same order as above.

Bioinformatic analysis of functional potential

HaploReg v2(http://www.broadinstitute.org/mammals/haploreg/
haploreg.php) was used to annotate functional and regulatory po-
tential of highly significant and highly correlated SNPs that mark
each of the regions identified (using ENCODE data) (85). Regulo-
meDB (http://regulome.stanford.edu/) was used to assess and

score regulatory potential of SNPs in each locus (86). eQTL
effects were assessed using the Multiple Tissue Human Expres-
sion Resource database (http://www.sanger.ac.uk/resources/
software/genevar/) but significant findings at a P , 1 × 1023

threshold were not noted (data not shown) (87). Predicted
effects of SNPs on splicing were assessed using NetGene2 (http://
www.cbs.dtu.dk/services/NetGene2/) (88) but no effect were seen
for any of the SNPs in the six regions (data not shown).

We carried out eQTL and methylation quantitative trait locus
(meQTL) analyses to assess potential functional consequences
of SNPs in the six regions identified in normal and tumor
derived tissue samples from TCGA: LUAD (52/403 normal/
tumor samples for eQTL analysis: 26/354 normal/tumor
samples for meQTL analysis), PRAD (31/133 normal/tumor
for eQTL; 39/158 normal/tumor for meQTL) and GBM (109
tumor for eQTL; 83 tumor for meQTL; normal GBM samples
were not available). Transcriptome (Illumina HiSeq 2000,
level 3), methylation (Illumina Infinium Human DNA Methyla-
tion 450 platform, level 3), genotype data (Affymetrix Genome-
Wide Human SNP Array 6.0 platform, level 2) and phenotypes
were downloaded from the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/). Methylation probes located on X/Y
chromosomes, annotated in repetitive genomic regions (GEO
GPL16304), with SNPs (Illumina dbSNP137.snpupdate.ta-
ble.v2) with MAF . 1% in the respective TCGA samples,
with missing rate .5%, as well as 65 quality control probes on
the 450 K array. We excluded transcripts on X/Y chromosomes
and those with missing rate .5%. A principle component ana-
lysis was conducted on a genome-wide level in R using gene ex-
pression and methylation data (separately in normal and tumor
tissues, and after excluding transcripts with variance , 1028

and methylation probes with variance ,0.001). Genotype im-
putation was performed as described above for the 2 Mb
window centered on TERT and CLPTM1L. For eQTL analysis,
normalized transcript counts for CLPTM1L and TERT were
normal quantile transformed and regressed against the imputed
dosage of minor allele for each risk locus (six loci, 19 SNPs).
The regression model included age, gender (not for PRAD),
stage (only for tumor samples), copy number, top five principle
components (PCs) of imputed genotype dosage and top five PCs
of transcript counts to account for possible measured or unmeas-
ured confounders and to increase detection power. The meQTL
analysis was conducted in a similar manner in TCGA LUAD,
PRAD GBM samples; beta-values of methylation at 169 CpG
probes in the region encompassing TERT and CLPTM1L were
normal quantile transformed and regressed as described above
with the exception of inclusion of the top five PCs of methylation
instead of expression values. We report the estimate of regres-
sion coefficient of imputed dosage, its standard error and
P-values, adjusted by the Benjamini–Hochberg procedure for
controlling false discovery rate (89). Spearman’s rank-order cor-
relation was calculated to assess the relationship between the
methylation and gene expression for TCGA LUAD (n ¼ 486),
PRAD (n ¼ 186) and GBM (n ¼ 126) tumor samples.
P-values were adjusted by the Benjamini–Hochberg procedure
as described above. For the purpose of visualizing meQTLs, the
most likely genotype was selected from the imputed genotype
dosages.

Methylation QTLs were assessed in EAGLE normal lung
tissue samples (n ¼ 215) as previously described with the
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addition of imputation of the 19 SNPs in the 6 regions under
study here (28).
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