
UC San Diego
UC San Diego Previously Published Works

Title
Unrooted unordered homeomorphic subtree alignment of RNA trees

Permalink
https://escholarship.org/uc/item/7qr8h077

Journal
Algorithms for Molecular Biology, 8(1)

ISSN
1748-7188

Authors
Milo, Nimrod
Zakov, Shay
Katzenelson, Erez
et al.

Publication Date
2013-04-16

DOI
http://dx.doi.org/10.1186/1748-7188-8-13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qr8h077
https://escholarship.org/uc/item/7qr8h077#author
https://escholarship.org
http://www.cdlib.org/

Milo et al. Algorithms for Molecular Biology 2013, 8:13
http://www.almob.org/content/8/1/13

RESEARCH Open Access

Unrooted unordered homeomorphic subtree
alignment of RNA trees
Nimrod Milo1†, Shay Zakov2†, Erez Katzenelson1, Eitan Bachmat1, Yefim Dinitz1 and Michal Ziv-Ukelson1*

Abstract

We generalize some current approaches for RNA tree alignment, which are traditionally confined to ordered rooted
mappings, to also consider unordered unrooted mappings. We define the Homeomorphic Subtree Alignment problem
(HSA), and present a new algorithm which applies to several modes, combining global or local, ordered or unordered,
and rooted or unrooted tree alignments. Our algorithm generalizes previous algorithms that either solved the
problem in an asymmetric manner, or were restricted to the rooted and/or ordered cases. Focusing here on the most
general unrooted unordered case, we show that for input trees T and S, our algorithm has an
O(nT nS + min(dT , dS)LT LS) time complexity, where nT , LT and dT are the number of nodes, the number of leaves, and
the maximum node degree in T, respectively (satisfying dT ≤ LT ≤ nT), and similarly for nS, LS and dS with respect to
the tree S. This improves the time complexity of previous algorithms for less general variants of the problem.
In order to obtain this time bound for HSA, we developed new algorithms for a generalized variant of the
Min-Cost Bipartite Matching problem (MCM), as well as to two derivatives of this problem, entitled All-Cavity-MCM and
All-Pairs-Cavity-MCM. For two input sets of size n and m, where n ≤ m, MCM and both its cavity derivatives are solved
in O(n3 + nm) time, without the usage of priority queues (e.g. Fibonacci heaps) or other complex data structures. This
gives the first cubic time algorithm for All-Pairs-Cavity-MCM, and improves the running times of MCM and
All-Cavity-MCM problems in the unbalanced case where n � m.
We implemented the algorithm (in all modes mentioned above) as a graphical software tool which computes and
displays similarities between secondary structures of RNA given as input, and employed it to a preliminary experiment
in which we ran all-against-all inter-family pairwise alignments of RNAse P and Hammerhead RNA family members,
exposing new similarities which could not be detected by the traditional rooted ordered alignment approaches. The
results demonstrate that our approach can be used to expose structural similarity between some RNAs with higher
sensitivity than the traditional rooted ordered alignment approaches. Source code and web-interface for our tool can
be found in http://www.cs.bgu.ac.il/~negevcb/FRUUT.

Keywords: RNA structure, Tree alignment, Homeomorphic subtree alignment, Unrooted, algorithm, Cavity matching

Background
Secondary structure of RNA molecules serves important
functions in many non-coding RNAs [1]. Functional con-
straints lead to evolutionary structural conservation that
in many cases exceeds the level of sequence conserva-
tion. Thus, detecting similarity between RNA secondary
structures is of major importance in functional RNA
research [2,3].

*Correspondence: michaluz@cs.bgu.ac.il
†Contributed equally
1Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
Full list of author information is available at the end of the article

A mainstream approach for (pseudoknot free) RNA sec-
ondary structure comparison represents them as trees,
and applies tree alignment algorithms [4-6] to their
comparison.

Several variants of tree edit distance and alignment
problems were previously studied. These variants differ
in the type of trees they examine (ordered/unordered,
rooted/unrooted), in the type of edit operations or
alignment restrictions they apply [4-14], and in their
algorithmic approaches (see [7]).

© 2013 Milo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.cs.bgu.ac.il/~negevcb/FRUUT

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 2 of 27
http://www.almob.org/content/8/1/13

Currently available bioinformatic softwares for RNA
tree comparison usually apply rooted ordered tree
alignment [11,12,14,15]. However, there are known
evolutionary phenomena, such as segment insertions,
translocations and reversals, which may result in a
reordering or re-rooting of RNA structural elements [16].
These events can yield two similarly structured motifs,
which are rooted differently (with respect to the standard
“external loop” corresponding roots) [17], and/or per-
muted with respect to branching order. There are known
examples of such unrooted/unordered RNA structural
conservations [18,19] (Figure 1), therefore, it is possible
that searching for unordered and unrooted structural sim-
ilarities may reveal new relations between RNA molecules
that were previously undetected.

The general Unordered Tree Edit Distance problem is
MAX-SNP hard [20], promoting the study of constrained
variants. The Subtree Isomorphism problem [21,22] is,
given a pattern tree S and a text tree T, to find if there
is some subtree T ′ of T which is isomorphic to S. The
Subtree Homeomorphism problem [23-25] is a variant
of the former problem, where degree-2 nodes may be
deleted from the selected subtree T ′ of the text. Pinter
et al. [26] efficiently solved the Subtree Homeomorphism

problem, under the unrooted unordered settings. In addi-
tion, their algorithm assigns costs for alignments and finds
an alignment of minimum cost, thus solving a weighted
variant of the problem. The running time of the algorithm
of [26] is O(n2

SnT + nSnT log nT), where nT and nS are
the number of nodes in T and S, respectively (improved
time complexities under some scoring scheme restric-
tions were also shown in [26]). The Constrained Edit
Distance Between Unordered Labeled Trees problem, pre-
sented by Zhang in [27], is a restricted version of rooted
unordered tree edit distance, which allows the edit opera-
tions of node relabeling, subtree pruning, and deletions of
degree-2 nodes (where in the general edit distance variant,
nodes of arbitrary degrees may be deleted). Zhang gave
an O(nT nS(dT + dS)log(dT + dS)) time algorithm for this
variant, where dT and dS are the maximum node degrees
in T and S respectively. In this sense, the algorithm of
[27] can be viewed as a symmetric (allowing deletions
from both input trees), yet rooted variant of the algorithm
of [26].

The essential approach in many tree comparison algo-
rithms is a recursive rooted comparison of subtrees of
the input trees, and finding the best combination of such
sub-instance solutions to yield a solution for the input

5’ 3’

5’ 3’

A

B

C

c

(a)

1
2

3

4

5 6

7

8

9

10
11

12

13

14
15

16

17

18

19

20

21
22

23

24

1

2

3

4

5

6

7

8

9

10
11

12

13
1415

1617

18
19

20

21 22

23 24

(b)
Figure 1 Unrooted and unordered RNA similarities. Nodes of the RNA trees are clustered to motifs marked by letters or numbers (stems, loops,
and unpaired nucleotide intervals), where aligned motifs share the same annotation, and unaligned nodes are in gray. Nomenclature is according to
[50]. (a) An unrooted alignment between Hammerhead RNAs: PDB_00693 (Type I, top) and RFA_00388 (Type III, bottom), with a computed and
corrected, p-value of 2.1250 × 10−7. Arrows mark the roots chosen by our tool. The unrooted mode of FRUUT identifies the high similarity between
the molecules, not being restricted to align external loops to each other. (b) An unordered alignment between RNAse P RNAs: ASE_00047 (left) and
ASE_00334 (right), with a computed, and corrected, p-value of 1.190 × 10−4. In the unordered mode of FRUUT, the aligned motifs marked by 6 and
8 do not preserve order. In both molecules, pseudoknots occur between intervals annotated by 8 and 2, and between intervals annotated by 13 and
15 (see Figure 12), asserting the validity of the alignment.

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 3 of 27
http://www.almob.org/content/8/1/13

instance. The computation considers the cases in which
either one of the roots is deleted, and the case where the
roots are aligned to each other. In the latter case, it is
required to find an optimal matching between the two
children sets of the roots, where in the ordered variant
such matching is restricted to maintain the child order
(and may be computed by a reduction to sequence align-
ment), and in the unordered variant no such restriction
holds (and thus an optimal matching can be found by a
bipartite graph matching algorithm).

Our contribution
We propose an efficient algorithm for comparing
unordered unrooted trees. Specifically, we define the
Homeomorphic Subtree Alignment (HSA) problem, for
which we give an O(nT nS + min(dT , dS)LT LS) running
time algorithm, where LT and LS are the numbers of
leaves in the input trees T and S, respectively. Our
approach can be viewed as a generalization of the two
previous works [26,27], which relaxes the asymmetric
“text-pattern” restriction of [26], as well as the rooting
restriction of [27].

Both algorithms in [26,27], as well as the algorithm
presented here, make use of subroutines for solving
the Minimum Cost Bipartite Matching (MCM) problem,
which dictate their time complexities. Here, we define the
All-Pairs-Cavity-MCM problem, a generalization of the
All-Cavity-MCM problem [28], and show how to inte-
grate it into our tree alignment algorithm. For MCM
and both its cavity derivatives, we use similar ideas to
those applied in [29] to obtain O(n3 + nm) time algo-
rithms, where n and m are the sizes of the input sets,
and n ≤ m. This gives the first cubic time algorithm for
All-Pairs-Cavity-MCM, and improves the running times
of MCM and All-Cavity-MCM problems in the unbal-
anced case where n � m. The new MCM algorithms
we developed allow our HSA algorithm to match, and
even improve, the running times of the previous algo-
rithms of [26,27] for less general variants of the HSA
problem.

We implemented the algorithm (in all combininations
of global or local, ordered or unordered, and rooted or
unrooted modes) as a graphical software tool named
FRUUT which computes and displays similarities bet-
ween secondary structures of RNA given as input, and
employed it to a preliminary experiment in which we ran
all-against-all inter-family pairwise alignments of RNAse
P and Hammerhead RNA family members, exposing
new similarities which could not be detected by the
traditional rooted ordered alignment approaches. The
results demonstrate that our approach can be used to
expose structural similarity between some RNAs with
higher sensitivity than the traditional rooted ordered
alignment approaches.

Preliminaries
Tree notations
A tree T = (V , E) is an undirected, connected and acyclic
graph. For a node v ∈ V , denote by N(v) the set of neigh-
bors of v: N(v) = {u ∈ V : (v, u) ∈ E}. Denote by dv =
|N(v)| the degree of v. A node v for which dv ≤ 1 is called
a leaf in T. For simplicity, we henceforth use the notation
v ∈ T and (v, u) ∈ T to imply that v is a node and (v, u)

is an edge in a tree T. We use the notation (v → u) to
indicate that the generally undirected edge (v, u) is being
considered with respect to the specific direction from v
to u. Denote by nT , LT , and dT the number of nodes, the
number of leaves, and the maximum degree of a node in
T, respectively.

A rooted tree is a tree in which one of the nodes
is selected as its root. Denote by Tv the tree T when
rooted upon the node v ∈ T . An ordered tree is a
tree T in which for each node v ∈ T , the elements
in N(v) are ordered. In this work we consider unrooted
unordered trees, rooted unordered trees, unrooted ordered
trees, and rooted ordered trees. If no indication is
given, we assume that the mentioned trees are unrooted
and unordered.

Let T = (V , E) be a tree. A smoothing of a node
v of degree 2 in T is obtained by removing v from T
and connecting its two neighbors by an edge. A smooth-
ing of T is a tree obtained by smoothing zero or more
nodes in T. A subtree of T is a connected subgraph
of T. For an edge (v → u) ∈ T , denote by Tv

u the
rooted subtree of T induced by v as a root, and all
nodes x in T such that the path between v and x in T
starts with (v → u).

Since a tree T with n nodes contains n − 1 undi-
rected edges, the total number of directed edges, and
hence the number of rooted subtrees of the form
Tv

u, is 2(n − 1).
A pruning of a tree T with respect to an edge (v → u)

is the removal from T of all nodes in Tv
u, except for v.

Observe that every nonempty subtree of T is obtained by
pruning T with respect to zero or more edges.

Min-Cost bipartite matching
Similarly to previous tree alignment and edit dis-
tance algorithms [26-28], the algorithm presented here
makes use of min-cost bipartite matching algorithms as
subroutines. Below, we define extended variants of
the bipartite matching problem, in which the input
groups may be ordered or unordered, and the score
incorporates both standard element matching scor-
ing terms, as well as penalties for unmatched ele-
ments. In addition, we define “cavity” variants of the
problem, which are used for speeding up our tree
alignment algorithms.

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 4 of 27
http://www.almob.org/content/8/1/13

The (generalized) Min-Cost bipartite matching problem
(MCM)
Let X and Y be two sets. A bipartite matching M between
X and Y is a set of pairs M ⊆ X×Y , such that each element
in X ∪ Y participates in at most one pair in M. If some ele-
ment z ∈ X ∪ Y does not participate in any pair in M, we
say that z is unmatched by M and denote z /∈ M. A (gener-
alized) matching cost function w for X and Y assigns costs
w(x, y) for every (x, y) ∈ X × Y and costs w(z) for every
z ∈ X ∪ Y . The cost of a bipartite matching M between X
and Y with respect to w is given by

w(M) =
∑

(x,y)∈M
w(x, y) +

∑
z∈X∪Y , z/∈M

w(z) . (1)

A matching instance is a triplet (X, Y , w), where X and Y
are two sets, and w is a matching cost function for X and
Y. The Min-Cost Bipartite Matching problem (MCM) is,
given a matching instance (X, Y , w), to find the minimum
cost of a matching between X and Y with respect to w.
Denote by MCM(X, Y , w) the solution of the MCM prob-
lem for the instance (X, Y , w), and call a matching whose
cost equals to the solution optimal.

Numerous works study and suggest algorithms for the
MCM problem, usually when no unmatched element
costs are taken into account (see e.g., [30-33]). A standard
approach is to reduce MCM to the Min-Cost Max-Flow
problem, which yields an O(nm2+m2 log m) algorithm for
MCM, where n = min(|X|, |Y |) and m = max(|X|, |Y |).
In [27], an adapted reduction was presented which gen-
eralizes the problem definition to incorporate unmatched
element costs and also runs in O(nm2 + m2 log m) time.
An algorithm suggested by Dinitz in [29] solves the MCM
problem in O(n3 + nm) time, without reducing it to Min-
Cost Max-Flow. Since that paper is in Russian and since it
considers neither unmatched element costs nor the cavity
variants of MCM (see the following section), we prefer to
explicitly adapt the Min-Cost Max-Flow approach to our
needs, using some variation of the ideas of [29].

Cavity MCM
The All-Cavity-MCM problem [28] is, given a matching
instance (X, Y , w), to compute MCM(X, Y \ {y}, w) for all
y ∈ Y . We define the All-Pairs-Cavity-MCM problem as,
given a matching instance (X, Y , w), to compute MCM(X\
{x}, Y \ {y}, w) for all x ∈ X and y ∈ Y .

Clearly, algorithms for both All-Cavity-MCM and All-
Pairs-Cavity-MCM problems can be implemented by
repeatedly running an algorithm for MCM on all required
inputs. In [28], an algorithm for All-Cavity-MCM was
proposed, which is more efficient than the naïve algorithm
and retains the same cubic running time as the stan-
dard algorithm for MCM. To the best of our knowledge,
no algorithm for All-Pairs-Cavity-MCM which improves
upon the naïve algorithm (i.e. repeatedly executing the

algorithm of [28] for All-Cavity-MCM over all x ∈ X) was
previously described.

In Section ‘Algorithms for bipartite matching prob-
lems’, we give new algorithms for (generalized, unordered)
MCM, All-Cavity-MCM and All-Pairs-Cavity-MCM. The
running times of these algorithms are summarized in
the following theorem, whose correctness is shown in
Section ‘Algorithms for bipartite matching problems’.

Theorem 1. Let (X, Y , w) be a matching instance, and
denote n = min (|X| , |Y |), m = max (|X| , |Y |). Then,
each one of the problems MCM, All-Cavity-MCM, and
All-Pairs-Cavity-MCM over the instance (X, Y , w) can be
solved in O(n3 + nm) running time. Moreover, this may be
done without the usage of priority queues (e.g. Fibonacci
heaps [31]) or other complex data structures.

Ordered MCM variants
For an ordered set Z = 〈z0, z1, . . . , zn−1〉 and an integer
k, the k-rotation of Z is the reordering of its elements
Zk = 〈

z′
0, z′

1, . . . , z′
n−1

〉
, where z′

i = z(i+k)modn (that is,
Zk = 〈

zk , zk+1, . . . , zn−1, z0, . . . , zk−1
〉
). Note that Z0 = Z.

Let X and Y be two ordered sets, and M a bipartite
matching between X and Y. Say that M preserves linear
order if for every (xi, yj), (xi′ , yj′) ∈ M, i ≤ i′ ⇔ j ≤ j′.
Say that M preserves cyclic order if there are some integers
k, l such that M preserves linear order with respect to the
rotated sets Xk and Yl. It is possible to show, that defin-
ing M as preserving cyclic order if there exists an integer l
such that M preserves linear order with respect to X and
Yl, is equivalent to the definition above.

The Linear Ordered MCM problem (Linear-MCM) and
the Cyclic Ordered MCM problem (Cyclic-MCM) are
defined similarly to MCM, with the restrictions that the
considered matchings have to preserve linear or cyclic
order, respectively. Linear-MCM is essentially equivalent
to the Sequence Alignment problem, which can be solved
in O(nm) running time [34]. Cyclic-MCM can be solved
by taking the minimum cost solution among Linear-MCM
solutions for all rotations of the smaller set in the input,
in O(n2m). More efficient algorithms for Cyclic-MCM can
be implied from [35-37].

Homeomorphic subtree alignment
An isomorphic alignment between two trees T = (V , E)

and S = (V ′, E′) is a bijection A : V → V ′, such that
for every pair of nodes v, u ∈ V we have that (v, u) ∈
E ⇔ (A(v), A(u)) ∈ E′. A homeomorphic alignment
between T and S is an isomorphic alignment between
some smoothing T ′ of T and some smoothing S′ of S, and
a homeomorphic subtree alignment (HSA) between T and
S is a homeomorphic alignment between some subtree T ′

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 5 of 27
http://www.almob.org/content/8/1/13

of T and some subtree S′ of S (Figure 2). For short, we
write (v, v′) ∈ A to indicate that A(v) = v′.

Let T and S be two trees, and A a homeomorphic
subtree alignment between them. Let T ′ and S′ be the sub-
trees of T and S, and let T ′′ and S′′ be the smoothings
of T ′ and S′, respectively, such that A is an isomorphic
alignment between T ′′ and S′′. Say that a node v ∈ T is
aligned by A if v ∈ T ′′, and that v is smoothed by A if
v ∈ T ′ and v /∈ T ′′. Say that a subtree Tv

u is pruned by
A if v ∈ T ′ and u /∈ T ′. Let prune(Tv

u) be a cost associ-
ated with pruning the subtree Tv

u from T, smooth(v) be a
cost associated with smoothing node v, and align(v, v′) be
a cost associated with aligning node v against some node
v′. Definitions for S are similar. Denote by π(A) the set of
pruned subtrees and by δ(A) the set of smoothed nodes of
T and S, with respect to A. Define the alignment cost:

w(T , S, A)=
∑

(v,v′)∈A
align(v, v′) +

∑
T ′∈π(A)

prune(T ′)
∑

v∈δ(A)

smooth(v).

(2)

Denote by HSA(T , S) the minimum alignment cost of an
HSA between T and S, and call an HSA A optimal with

respect to T and S if w(T , S, A) = HSA(T , S). The Min-
Cost HSA problem is, given a pair of trees T and S, to
compute HSA(T , S).

Remark 1. We do not give the details of how to con-
struct optimal alignments in this paper. As usual for
dynamic programming algorithms, this may be done by
a standard back-tracking procedure applied on the com-
puted dynamic programming tables.

Rooted and ordered alignments
In addition to the general Min-Cost HSA problem, we
also consider special cases of the problem in which
the two input trees are rooted and/or ordered, and the
alignment is required to satisfy certain restrictions with
respect to these additional properties. For two rooted
trees Tv and Sv′ , say that A is a rooted HSA between Tv

and Sv′ if A is an HSA between T and S, and (v, v′) ∈ A.
The definition of ordered HSA requires some additional
formalism, related to bipartite matchings.

Let A be an HSA between the trees T and S. For an
edge (v → u) ∈ T , say that u is a relevant neighbor of

(a) (b)

(c)
Figure 2 Homeomorphic Subtree Alignment. Thick lines represent tree edges, and dotted lines connect aligned node pairs. (a) An HSA

A = {(a, a′), (b, b′), . . . , (f , f ′)} between two trees T and S. The set of pruned subtrees (in green fillings) with respect to A is π(A) =
{

T a
g , T j

k , Sb′
h′

}
. The

set of smoothed nodes (in lined red) with respect to A is δ(A) = {
j, g′}. (b) The subtrees T ′ and S′ of T and S, respectively, obtained after pruning the

subtrees in π(A). (c) The smoothings T ” and S” of T ’ and S’, respectively, obtained after smoothing the nodes in δ(A). Mapping A is an isomorphic
alignment between T ” and S”.

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 6 of 27
http://www.almob.org/content/8/1/13

v (with respect to A) if there is some x ∈ Tv
u, x �= v,

which is aligned by A. Define relevant neighbors in S
similarly.

Observation 1. Let A be an HSA between trees T and S,
and (v, v′), (x, x′), (y, y′) ∈ A. The path between x and y in
T goes through v if and only if the path between x′ and y′ in
S goes through v′.

The correctness of the observation can be asserted from
the fact that A is an isomorphic alignment between a
smoothed subtree of T that contains v, x, and y, and a
smoothed subtree of S that contains v′, x′, and y′.

Lemma 1. Let (v, v′) ∈ A, and let u be a relevant neigh-
bor of v. Then, there is a unique relevant neighbor u′ of v′
such that for every (y, y′) ∈ A, y ∈ Tv

u ⇔ y′ ∈ Sv′
u′ .

Proof. Since u is a relevant neighbor of v, there is a node
x ∈ Tv

u, such that x �= v and x is aligned by A. Let x′ =
A(x), and let u′ be the relevant neighbor of v′ such that
x′ ∈ Sv′

u′ . For (y, y′) ∈ A, observe that y /∈ Tv
u if and only if

the path between x and y in T passes through v. Similarly,
y′ /∈ Sv′

u′ if and only if the path between x′ and y′ in S passes
through v′. Applying Observation 1, this implies that y ∈
Tv

u ⇔ y′ ∈ Sv′
u′ .

Lemma 1 implies that for (v, v′) ∈ A, the alignment
induces a bipartite matching MA

v,v′ between N(v) and
N(v′) in which the matched elements are exactly those rel-
evant neighbors of v and v′ (Figure 3). Say that A is ordered

(a) (b)
Figure 3 An illustration of a rooted alignment A between Tv and
Sv′

. (a) Each subtree of the form T v
u (Sv′

u′) is either pruned by the

alignment, or matched to exactly one subtree of the form Sv′
u′ (T v

u). In

this example, T v
s is matched to Sv′

z′ (in red), T v
t is matched to Sv′

y′ (in

blue), and T v
x is matched to Sv′

t′ (in green). These three subtree-
matchings induce three sub-alignments of A: Av

s , Av
t , and Av

x ,
respectively, where A is the union of these three sub-alignments (the
pair (v, v′) participates in all three sub-alignments). The pruned
subtrees in this example are T v

y , T v
z , and Sv′

x′ . (b) The corresponding

bipartite matching MA
v,v′ = {(s, z′), (t, y′), (x, t′)} between N(v) and

N(v′).

if T and S are ordered trees, and for every (v, v′) ∈ A,
the corresponding bipartite matching MA

v,v′ is cyclically
ordered.

Now, we can define three additional variants of the HSA
problem. Let Tv and Sv′ be rooted and ordered trees.
Denote by Ordered-HSA(T , S), Rooted-HSA(Tv, Sv′

) and
Ordered-Rooted-HSA(Tv, Sv′

) the minimum costs of an
ordered HSA, a rooted HSA, and an ordered and rooted
HSA between Tv and Sv′ , respectively. Define the corre-
sponding variants of the Min-Cost HSA problem whose
goals are to compute these values.

Algorithm for homeomorphic subtree alignment
In this section we describe a basic algorithm for HSA
for its unordered unrooted variant (though it is ade-
quate for the other variants as well with some simple
modifications).

Recursive computation
Let A be an HSA between T and S. Let (v, v′) ∈ A, and
MA

v,v′ the corresponding bipartite matching between N(v)
and N(v′), as defined in Section ‘Homeomorphic subtree
alignment’. Note that A can be viewed as a rooted align-
ment between Tv and Sv′ , which is the union of a set of
rooted sub-alignments Av

u between rooted subtree pairs
of the form Tv

u and Sv′
u′ , where (u, u′) ∈ MA

v,v′ (Figure 3).
The alignment cost can therefore be obtained by summing
the costs of these sub-alignments, which cover all scoring
terms implied by matching nodes, smoothing nodes, and
pruning subtrees by the corresponding sub-alignments,
and the additional pruning costs of pruned subtrees of
the forms Tv

u and Sv′
u′ (where u, u′ are unmatched by

MA
v,v′). Note that the pair (v, v′) belongs by definition to

each of the sub-alignments Av
u. In order to avoid multiple

additions of the term align(v, v′) when summing sub-
alignment costs, define w−r(Tv, Sv′ , A) = w(Tv, Sv′ , A) −
align(v, v′). The cost w(Tv, Sv′ , A) can then be written as
follows:

w(Tv, Sv′
, A) = w−r(Tv, Sv′

, A) + align(v, v′), (3)

w−r(Tv, Sv′
, A) =

∑
u∈N(v),
u/∈MA

v,v′

prune(Tv
u) +

∑
u′∈N(v′),
u′ /∈MA

v,v′

prune(Sv′
u′)

+
∑

(u,u′)∈MA
v,v′

w-r(Tv
u, Sv′

u′ , Av
u) . (4)

Call a rooted alignment non-trivial if it aligns at least
one additional pair of nodes besides the roots. Note that
every rooted sub-alignment Av

u is non-trivial (since u
and u′ are relevant neighbors of v and v′). Denote by
Rooted-HSA−r

(
Tv

u, Sv′
u′

)
the minimum w−r cost of a non-

trivial rooted alignment between Tv
u and Sv′

u′ .

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 7 of 27
http://www.almob.org/content/8/1/13

Clearly, if A is an optimal rooted HSA between Tv and
Sv′ , then for each (u, u′) ∈ MA

v,v′ w−r
(

Tv
u, Sv′

u′ , Av
u

)
=

Rooted-HSA−r
(

Tv
u, Sv′

u′
)

(otherwise, it is possible to pro-
duce a rooted alignment with a better cost than A
for Tv and Sv′). Define the bipartite matching instance
(N(v), N(v′), wv,v′), where for u ∈ N(v), u′ ∈ N(v′),
set wv,v′(u, u′) = Rooted-HSA−r(Tv

u, Sv′
u′), wv,v′(u) =

prune(Tv
u), and wv,v′(u′) = prune(Sv′

u′). Observe that
the right-hand side of Equation 4 equals the cost of
the bipartite matching MA

v,v′ for the matching instance
(N(v), N(v′), wv,v′) (see Figure 3b). In addition, every
bipartite matching between N(v) and N(v′) corresponds
to some valid rooted HSA between Tv and Sv′ , so that the
matching and alignment costs are equal.

Therefore, a minimum cost bipartite matching induces
a minimum cost alignment, and we get that

Rooted-HSA(Tv, Sv′
)=align(v, v′) + MCM

(
N(v), N(v′), wv,v′

)
.

(5)

Assuming the non-degenerate case where an optimal
HSA between T and S contains at least one pair (v, v′),
we can compute the cost of an optimal HSA by solv-
ing Rooted-HSA with respect to all possible root pairs,
and taking the pair which induces a minimum cost as a
solution for the unrooted case:

HSA(T , S) = min
v∈T ,v′∈S

Rooted-HSA(Tv, Sv′
) . (6)

In order to obtain cost functions of the form wv,v′
for the computation of Equation 5, we need to com-
pute solutions of the form Rooted-HSA−r(Tv

u, Sv′
u′) for sub-

instances of the input. When u and u′ are leaves, the only
non-trivial rooted alignment between Tv

u and Sv′
u′ con-

tains both pairs (v, v′) and (u, u′), and therefore we get
that Rooted-HSA−r

(
Tv

u, Sv′
u′

)
= align(u, u′). Otherwise,

Equation 7 computes Rooted-HSA−r
(

Tv
u, Sv′

u′
)

recursively

(see Figure 4), where wv,v′
u,u′ is defined similarly to wu,u′ with

respect to the sets N(u) \ {v} and N(u′) \ {v′}.

Proof. [Equation 7]. By definition of the Rooted-HSA−r(
Tv

u, Sv′
u′

)
score, it corresponds to the score of the best

non-trivial alignment between Tv
u and Sv′

u′ , minus the root
alignment cost term align(v, v′). We may cover the set of
all possible non-trivial rooted alignments between Tv

u and
Sv′

u′ by three sets: (a) alignments in which u is unmatched,
(b) alignments in which u′ is unmatched, and (c) align-
ments in which both u and u′ are matched (note that there
might be an intersection between groups (a) and (b)). We
show that each one of the terms I, II, and III in the right-
hand side of Equation 7 computes the minimum cost of
an alignment in each one of the groups (a), (b), and (c),
respectively, and therefore the minimum among all these
terms gives the correct value Rooted-HSA−r

(
Tv

u, Sv′
u′

)
.

We start by showing that term I computes the min-
imum cost of an alignment in group (a). Let A be an
alignment in group (a) of minimum cost. Since A is non-
trivial, and u is smoothed in A, u has exactly one additional
relevant neighbor x∗ besides v. It therefore follows that
all nodes in Tv

u except for v which are matched by A
belong to the subtree Tu

x∗ . Defining Au
x∗ = (

A \ {(v, v′)}) ∪
{(u, v′)}, we have that Au

x∗ is a non-trivial rooted HSA
between Tu

x∗ and Sv′
u′ . Therefore, the cost of A is obtained

by the summation of pruning costs of all subtrees Tu
y

for y ∈ N(u) \ {v, x∗}, the cost of smoothing u, and the
cost w−r

(
Tu

x∗ , Sv′
u′ , Au

x∗
)

(which counts for all cost terms
corresponding to node matchings, node smoothings, and
subtree prunings, implied by the sub-alignment Au

x∗).
Since A is optimal, it is clear that w−r

(
Tu

x∗ , Sv′
u′ , Au

x∗
)

=
Rooted-HSA−r

(
Tu

x∗ , Sv′
u′

)
(otherwise, it is possible to

improve the cost of A by replacing the sub-alignment
Au

x∗ with an optimal alignment for the corresponding
sub-instance). Thus,

w-r
(

Tv
u, Sv′

u′ , A
)

= smooth(u) + Rooted-HSA−r
(

Tu
x∗ , Sv′

u′
)

+
∑

y∈N(u)\{v,x∗}
prune(Tu

y) .

Since for every x ∈ N(u) \ {v} the term

smooth(u)+Rooted−HSA−r
(

Tu
x , Sv′

u′
)
+

∑
y∈N(u)\{v,x}

prune(Tu
y)

Rooted-HSA−r
(

Tv
u, Sv′

u′
)

=

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I. smooth(u) + min
x∈N(u)\{v}

(
Rooted-HSA−r

(
Tu

x , Sv′
u′

)
+ ∑

y∈N(u)\{v,x}
prune(Tu

y)

)
,

II. smooth(u′) + min
x′∈N(u′)\{v′}

(
Rooted-HSA−r

(
Tv

u, Su′
x′

)
+ ∑

y′∈N(u′)\{v′,x′}
prune(Su′

y′)

)
,

III. align(u, u′) + MCM
(

N(u) \ {v}, N(u′) \ {v′}, wv,v′
u,u′

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 8 of 27
http://www.almob.org/content/8/1/13

(a) (b)

(c)
Figure 4 An illustration of the computation of Equation 7. (a) The instance

(
T v

u , Sv′
u′

)
in the left-hand side of the equation. (b) The computation

of term I in the right-hand side of the equation: The term considers the best alignment score under the assumption that u is smoothed. In this case,
the score is obtained by taking the smoothing cost of u, and summing it, for some x ∈ N(u) \ {v}, with the alignment score between T u

x and Sv′
u′ and

the pruning cost of all subtrees T u
y for y ∈ N(u) \ {v, x}. Vertex x is chosen to be the neighbor of u that induces a minimum cost with respect to this

computation. The computation of term II is symmetric. (c) The computation of term III in the right-hand side of the equation: This term considers the
case were neither u nor u′ are smoothed, and therefore these two nodes are aligned to each other. In this case, the score is computed similarly to
the computation in Equation 5, with respect to the sets N(u) \ {v} and N(u′) \ {v′}.

is the w-r cost of a possible non-trivial alignment between
Tv

u and Sv′
u′ in which u is smoothed (where the subtree Tu

x
is optimally aligned to Sv′

u′), we get that x∗ satisfies that

smooth(u)+
∑

y∈N(u)\{v,x∗}
prune(Tu

y)+Rooted−HSA−r
(
Tu

x∗ , Sv′
u′
)
=

smooth(u)+min
x∈N(u)\{v}

⎛
⎝ ∑

y∈N(u)\{v,x}
prune(Tu

y)+Rooted−HSA−r
(
Tu

x,Sv′
u′
)⎞⎠,

hence the correctness of term I.
The proof that term II of the equation computes the

minimum cost of an alignment in group (b) is symmet-
ric to the proof of term I. As for term III, note that the
case where u and u′ are matched, but not to each other,
implies a contradiction to Observation 1. Therefore, for
any alignment in group (c), and in particular for such an
alignment A of minimum cost, we have that (u, u′) ∈ A.

In this case, the optimal alignment cost is obtained imme-
diately from applying Equation 5 for this specific sub-
instance, as formulated by term III in the equation.

The computation of wv,v′
u,u′ requires the computation of

scores of the form Rooted-HSA−r
(

Tu
x , Su′

x′
)

for all x ∈
N(u) \ {v} and all x′ ∈ N(u′) \ {v′}. It can be shown
that all Rooted-HSA−r solutions required for the compu-
tation of the right-hand side of the equation are for strictly
smaller sub-instances than the sub-instance appearing in
the left-hand side, thus the termination of the recursive
computation is guaranteed. Equation 7 can be efficiently
computed using Dynamic Programming (DP), as summa-
rized by Algorithm 1 below.

In Section ‘Time complexity of Algorithm 1’, we show
that a straightforward implementation of Algorithm 1
obtains the running time of O(min(dT , dS)nT nS + min
(dT , dS)3LT LS). For some trees T , S with nT , LT , dT ,

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 9 of 27
http://www.almob.org/content/8/1/13

Algorithm 1: HSA (T , S)

1 Construct a DP matrix H of size 2(nT − 1) × 2(nS − 1),
where nT and nS are the numbers of nodes in T and S,
respectively. The rows of H correspond to subtrees Tv

u
and the columns correspond to subtrees Sv′

u′ , ordered
with nondecreasing sizes;

2 Fill the entries of H row by row with increasing row
indices, each row column by column, with increasing
column indices. Each entry is filled according to
Equation 7 with respect to the pair of subtrees
corresponding to its row and column (all solutions for
relevant instances in the right-hand side of the
equation are already computed and stored in H, due to
the order-by-size organization of the subtrees along
the rows/columns of the matrix);

3 Compute Equation 5 for every Tv, Sv′ such that
v ∈ T , v′ ∈ S;

4 Compute Equation 6 to return HSA(T , S);

nS, LS, dS = �(n) (e.g. “star” trees), this implies an O(n5)
running time. In Section ‘Improving the time complexity’,
we show how to improve this time bound and obtain a
cubic time algorithm for the problem.

We note that Algorithm 1 generalizes to also solve the
ordered unrooted, unordered rooted, and ordered rooted
variants of Min-Cost HSA in polynomial time. In case a
rooted alignment is sought, the algorithm can compute
Equation 5 in line 3 only with respect to the two roots, and
avoid the computation of Equation 6. In case an ordered
alignment is sought, the MCM application in Equation 5
can be replaced by Cyclic-MCM, and in Equation 7
MCM can be replaced by Linear-MCM, similarly to [27].
Traditionally, ordered matchings are implemented via
reduction to sequence alignment [7,26,38]. Similarly to
the improvement described in the next section for the
unordered tree alignment algorithm, it seems that fast
incremental/decremental versions of ordered matchings
[35-37] can be integrated into the ordered variant of our
algorithm to improve its time complexity. However, the
detailed description of these techniques are beyond the
scope of this paper.

Time complexity of Algorithm 1
We first analyze the time complexity of a straight-
forward implementation of the algorithm. Then, in
Section ‘Improving the time complexity’, we show how
this time complexity can be reduced by applying cavity
matching subroutines.

Let index(Tv
u) and index(Sv′

u′) denote the row and col-
umn indices of Tv

u and Sv′
u′ in H, respectively. Let u ∈ T

and u′ ∈ S be a pair of nodes. The set of subtrees Tv
u

for v ∈ N(u) corresponds to a subset of rows in H. Sim-
ilarly, the set of subtrees Sv′

u′ for v′ ∈ N(u′) corresponds
to a subset of columns in H, and thus all solutions of the
form Rooted-HSA−r

(
Tv

u, Sv′
u′

)
are stored in a sub-matrix

of H of size du × du′ . Let Hu,u′ denote this sub-matrix,
and let vi and v′

j denote nodes in N(u) and N(u′) such that

Tvi
u and S

v′
j

u′ correspond to the i-th row and j-th column in
Hu,u′ , respectively (i.e. index(Tv1

u) is the first row in Hu,u′ ,
index(Tv2

u) is the second row, etc.). Note that H can be
viewed as a union of sub-matrices of the form Hu,u′ , where
each entry in H is covered by exactly one sub-matrix Hu,u′
for some u ∈ T , u′ ∈ S.

The following observation identifies special properties
of the second column and second row in Hu,u′ , which are
exploited for the efficient computation of Algorithm 1.
Observe that for every 1 < i ≤ du, Tu

vi is a subtree of
Tv1

u , and therefore index(Tu
vi) < index(Tv1

u). Also, Tu
v1 is

a subtree of Tv2
u , and therefore index(Tu

v1) < index(Tv2
u).

Since index(Tv1
u) < index(Tv2

u), we get the following
observation (Figure 5):

Observation 2. For every 1 ≤ i ≤ du, index(Tu
vi) <

index(Tv2
u). Similarly, for every 1 ≤ j ≤ du′ , index(Su

v′
j
) <

index(Sv′
2

u′).

In order to focus on the bottleneck expression in the
running time analysis of the algorithm, we first summa-
rize the complexity of its secondary computations in the
following lemma:

Lemma 2. It is possible to implement Algorithm 1 so
that all operations, besides computation of solutions to the
MCM problem, require O(nT nS) running time.

Proof. It is simple to observe that the computations con-
ducted in lines 1 and 4 of the algorithm consume O(nT nS)
time (the computation of all subtree sizes and their sorting
can be implemented in a linear time in a straightforward
manner, where the details are omitted from this text). As
computations of Equation 5 in line 3 and of term III of
Equation 7 in line 2 are dominated by MCM computa-
tions, it remains to show that it is possible to compute
terms I and II of Equation 7 in line 2 of the algorithm in
O(nT nS) along the entire run of the algorithm.

Consider a pair of nodes u ∈ T and u′ ∈ S,
and the corresponding sub-matrix Hu,u′ (for illus-
tration, here and on, see Figure 6a). It is simple to
observe that an explicit computation of term I of the
equation with respect to some subtrees Tv

u and Sv′
u′

can be conducted in O(du) time. Nevertheless, we
next show how to conduct this computation in O(1)

amortized time. Fix an index 1 ≤ j ≤ du′ . Let x∗ =

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 10 of 27
http://www.almob.org/content/8/1/13

(a) (b)

(c)
Figure 5 An illustration of Observation 2. (a) A node u in a tree T, such that N(u) = {v1, v2, v3}, and |T v1

u | ≤ |T v2
u | ≤ |T v3

u |. The subtree T v1
u

(bounded by a solid red line) contains T u
v2

and T u
v3

as subtrees (bounded by dashed and dotted blue lines, respectively), and therefore
|T u

v2
|, |T u

v3
| ≤ |T v1

u | ≤ |T v2
u |. (b) The subtree T v2

u (bounded by a solid red line) contains T u
v1

as a subtree (bounded by a dashed blue line), and therefore
|T u

v1
|, |T u

v2
|, |T u

v3
| ≤ |T v2

u |. (c) The DP matrix H. The rows of the matrix correspond to subtrees of T, sorted from top to bottom with non-decreasing tree
size. Rows corresponding to subtrees of the form T vi

u are in solid red, and rows corresponding to subtrees of the form T u
vi

are in waved-blue. All
waved-blue rows have smaller indices than the row corresponding to T v2

u (circled with a dashed green line).

argminx∈N(u)

(
Rooted-HSA−r

(
Tu

x , S
v′

j
u′

)
− prune(Tu

x)

)
,

and denote α = Rooted-HSA−r
(

Tu
x∗ , S

v′
j

u′

)
− prune(Tu

x∗).

As N(u) \ {v} ⊂ N(u) for every v ∈ N(u),
it is clear that for v �= x∗, minx∈N(u)\{v}(

Rooted-HSA−r
(

Tu
x , S

v′
j

u′

)
− prune(Tu

x)

)
= α . Sim-

ilarly, denote β = ∑
x∈N(u)

prune(Tu
x), and observe that∑

x∈N(u)\{v}
prune(Tu

x) = β − prune(Tu
v) for every v ∈ N(u).

Thus, for v �= x∗, term I of Equation 7 can be written as

smooth(u)+β−prune(Tu
v)+α, and given the values α and

β , be computed in O(1) time. Due to Observation 2, when
the algorithm is about to compute the entry in the second
row and j-th column of Hu,u′ (i.e. the entry corresponding

to Tv2
u and S

v′
j

u′), all required values for computing x∗, α,
and β , are already stored in H, and therefore these values
may be computed in O(du) time. Once computing these
values, it is possible to compute term I for each of the
remaining rows i > 1 in column j of Hu,u′ , except for row
i such that vi = x∗, in O(1) time each. Additional O(du)

operations are required for computing the term for row 1
and the row i such that vi = x∗, and therefore the total

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 11 of 27
http://www.almob.org/content/8/1/13

(a) (b)
Figure 6 The incorporation of cavity matching subroutines in the
DP algorithm.In (a), the DP matrix H is illustrated, where the solid red
entries correspond to entries in the sub-matrix Hu,u′ for some u ∈ T
and u′ ∈ S. In this example, N(u) = v1, v2, v3, and N(u′) = v′

1, v′
2, v′

3, v′
4,

where |T v1
u | ≤ |T v2

u | ≤ |T v3
u |, and |Sv′

1
u′ | ≤ |Sv′

2
u′ | ≤ |Sv′

3
u′ | ≤ |Sv′

4
u′ |. The

solid blue entries correspond to computed values of the form
Rooted-HSA−r(T u

vi
, Su′

v′
j
), which are required for the computation of

term III in Equation 7 for entries in Hu,u′ . The waived entries

correspond to computed values of the form Rooted-HSA−r(T u
vi

, S
v′

j

u′)

and Rooted-HSA−r(T vi
u , Su′

v′
j
), which are required for the computation of

terms I and II in Equation 7 for entries in Hu,u′ . (a) The computation of

Rooted-HSA−r(T v1
u , S

v′
1

u′) according to Equation 7. The entry
corresponding to this sub-instance is marked with a solid black circle.
In order to compute term I of the equation, there is a need to examine

values of the form Rooted-HSA−r(T u
vj

, S
v′

1
u′) for vj ∈ N(u) \ {v1}. As each

T u
vj

is a subtree of T v1
u , the rows corresponding to these subtrees have

smaller indices than the row of T v1
u , and so the required solutions are

already computed and stored in H (waved entries marked with a
dashed green circle, in the same column above the computed entry).
Similarly, for computing term II, there is a need to examine solutions
Rooted-HSA−r(T v1

u , Su′
v′

j
) for v′

j ∈ N(u′) \ {v′
1}, appearing at the same

row and to the left of the computed entry. For computing term III,

there is a need to construct the matching cost function w
v1,v′

1
u,u′ , which

assigns for each vj ∈ N(u) \ {v1} and v′
j′ ∈ N(u′) \ {v′

1} the matching

cost w
v1,v′

1
u,u′ (vj , v′

j′) = Rooted-HSA−r(T u
vj

, Su′
v′

j′
) (the corresponding

matching instance is shown in (b)). These required values appear in
blue entries marked by a dashed black circle. Due to the order in
which entries are being traversed, all required values were previously
computed by the algorithm and stored in H, thus it is possible to

compute Rooted-HSA−r(T v1
u , S

v′
1

u′) at this stage.

number of operations for computing the term for all du
entries in column j of Hu,u′ is O(du). This implies that
the amortized time for computing term I for each entry
in Hu,u′ is O(1), and therefore the amortized time for
computing term I for each entry in H is O(1). The proof
for term II is symmetric. All in all, we get that the run-
ning time for all operations conducted by the algorithm,
besides MCM computations, is O(nT nS).

Before continuing with the time complexity analysis, we
formulate an auxiliary lemma.

Lemma 3. For a tree T,
∑
v∈T

dv = O(nT), and
∑
v∈T ,
dv≥3

dv =

O(LT).

Proof. It is well known that the number of undirected
edges in T is nT −1. Since each undirected edge (v, u) con-
tributes 1 unit to the degrees dv and du of its endpoints,
we get that

∑
v∈T

dv = 2(nT − 1) = O(nT).In order to show

that
∑
v∈T ,
dv≥3

dv = O(LT), we will show that
∑
v∈T

dv≥3

dv < 3LT .

When T contains a single node, LT = 1,
∑
v∈T

dv≥3

dv = 0,and

the inequality follows. Assume by induction the cor-
rectness of the inequality for all trees with less than
n > 1 nodes, and let T be a tree with n nodes.
Let (x, y) ∈ T be an edge such that y is leaf in T.
The subtree T ′ of T containing all nodes in T except
for y (and all edges except for (x, y)) is of size n − 1,
and from the inductive assumption

∑
v∈T ′
d′v≥3

d′
v < 3LT ′ , where

d′
v denotes the degree of v in T ′. Besides y, T contains

no additional leaves which are not already leaves in T ′. In
addition, dv = d′

v for all nodes v ∈ T ′ besides x, where
dx = d′

x+1, and dy = 1. If x is a leaf in T ′ then LT = LT ′ (as
y replaces x as a leaf in T), and since dx = d′

x+1 < 3 we get
that

∑
v∈T

dv≥3

dv = ∑
v∈T ′
d′v≥3

d′
v < 3LT ′ = 3LT . If x is not a leaf in T ′

then LT = LT ′ +1 (due to the addition of y as a leaf). Here,
it is possible that d′

x = 2 and dx = 3, which would con-
tribute 3 to the degree summation for nodes with degree
≥ 3, while if d′

x > 2 the increment in the degree of x would
contribute 1 to this summation. Therefore,∑

v∈T
dv≥3

dv ≤ 3 +
∑
v∈T ′
d′v≥3

d′
v < 3 + 3LT ′ = 3LT ,

and the lemma follows.

In order to complete the time complexity analysis,
we turn to count the number of operations applied in
MCM computations throughout the algorithm’s run. Such
computations are applied when computing term III of
Equation 7, or when computing Equation 5. Term III of
Equation 7 is computed once for every pair of subtrees
Tv

u and Sv′
u′ , in O(min(du, du′)3 + dudu′) running time

(Theorem 1, see also Section ‘Reducing MCM to Min-Cost
Max-Flow’). Therefore, for a given pair of nodes u ∈ T
and u′ ∈ S, and all neighbor pairs v ∈ N(u), v′ ∈ N(u′), the
time required for MCM computations due to term III is∑

v∈N(u),
v′∈N(u′)

(
min(du, du′)3 + dudu′

) = dudu′ min(du, du′)3 + d2
ud2

u′ .

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 12 of 27
http://www.almob.org/content/8/1/13

In order to sum the expression above for all pairs
u ∈ T , u′ ∈ S, we sum indempendetly the expressions∑
u∈T

∑
u′∈S

dudu′ min(du, du′)3 and
∑

u∈T

∑
u′∈S

d2
ud2

u′ :

∑
u∈T

∑
u′∈S

dudu′ min(du, du′)3≤
∑
u∈T

du<3

∑
u′∈S

8dudu′ +
∑
u∈T

∑
u′∈S

du′ <3

8dudu′

+
∑
u∈T

du≥3

∑
u′∈S

du′ ≥3

dudu′ min(dT , dS)
3

≤ 16
∑
u∈T

du
∑
u′∈S

du′

+ min(dT , dS)
3

∑
u∈T

du≥3

du
∑
u′∈S

du′ ≥3

du′

Lem.3= O(nT nS+min(dT , dS)
3LT LS),∑

u∈T

∑
u′∈S

d2
u, d2

u′ ≤
∑
u∈T

du<3

∑
u′∈S

2dudu′ dS+
∑
u∈T

∑
u′∈S

du′ <3

2dudT du′

+
∑
u∈T

du≥3

∑
u′∈S

du′ ≥3

dudT du′ dS

≤ 2(dT + dS)
∑
u∈T

du
∑
u′∈S

du′

+ dT dS
∑
u∈T

du≥3

du
∑
u′∈S

du′ ≥3

du′

Lem.3= O((dT +dS)nT nS+dT dSLT LS).

Thus, the overall MCM computation time due to term
III in Equation 7 is O((dT + dS)nT nS + dT dSLT LS +
min(dT , dS)3LT LS).

Equation 5 is computed once for each v ∈ T and v′ ∈
S in line 3, where the corresponding matching instance’s
group sizes are dv and dv′ . Similarly as above, it can be
shown that summing the total number of operations in the
implied MCM computations yields

∑
u∈T

∑
u′∈S

(
min(du, du′)3 + dudu′

) Lem.3= O(nT nS + min(dT , dS)LT LS).

Therefore, the overall running time of Algorithm 1
is dictated by the the bottleneck expression O((dT +
dS)nT nS + dT dSLT LS + min(dT , dS)3LT LS).

Improving the time complexity
The time analysis in the previous section shows that all
operations in Algorithm 1, besides MCM computations
due to term III of Equation 7, are conducted in O(nT nS +
min(dT , dS)LT LS) time. In this section, we show how to
improve the time complexity of Algorithm 1, by incorpo-
rating cavity matching subroutines to speed up the MCM
computations due to term III of Equation 7.

Let u ∈ T , u′ ∈ S, and consider the computation
of term III of Equation 7 for instances in the first row

in Hu,u′ . Note that for the entries in this row, the first
group in the bipartite matching instance is fixed and
equals to N(u) \ {v1}, whereas for each column j, the
second group in the matching instance is N(u′) \ {v′

j}.
The first entry in this row is computed by solving the
MCM problem directly for the matching instance (N(u) \
{v1}, N(u′) \ {v′

1}, wv1,v′
1

u,u′) (Figures 6a,6b). Based on Obser-
vation 2, upon reaching the second entry in this row, all

solutions Rooted-HSA−r
(

Tu
vi , Su′

v′
j

)
for i > 1 and j ≥ 1

are computed and stored in H. Therefore, the All-Cavity-
MCM problem can be solved for the matching instance
(N(u) \ {v1}, N(u′), wv1

u,u′), where wv1
u,u′ is defined similarly

as wu,u′ with respect to the sets N(u)\{v1} and N(u′). This
allows to compute term III for each one of the remaining
entries in this row of Hu,u′ in O(1) time (Figures 7a,7b).

The first entry of the second row in Hu,u′ is
again computed directly by solving the MCM prob-
lem for the matching instance (N(u) \ {v2}, N(u′) \
{v′

1}, wv2,v′
1

u,u′). Upon reaching the second entry of the sec-
ond row of Hu,u′ , Observation 2 implies that all solu-

tions Rooted-HSA−r
(

Tu
vi , Su′

v′
j

)
for i, j ≥ 1 are already

computed and stored in H. Therefore, the All-Pairs-
Cavity-MCM problem can be solved for the matching
instance (N(u), N(u′), wu,u′), allowing to compute term
III for each one of the remaining entries in Hu,u′ in
O(1) time (Figures 7c,7d). Thus, computing term III for
all entries in Hu,u′ is done by solving the MCM prob-
lem twice, solving the All-Cavity-MCM problem once,
and solving the All-Pairs-Cavity-MCM problem once,
where the sizes of the two groups in the matching
instances for these problems are at most du and du′ . Based
on Theorem 1, this whole MCM computation for sub-
matrix Hu,u′ takes O(min(du, du′)3 + dudu′) time. Recall

that matrix H is decomposed into matrices Hu,u′ for all
pairs u ∈ T , u′ ∈ S, and so the total computation
time of term III in Equation 7 throughout the entire run
of the algorithm is∑

u∈T

∑
u′∈S

(
min(du, du′)3 + dudu′

) Lem.3= O(nT nS + min(dT , dS)LT LS),

matching the running time of all other computations, and
we get the following theorem:

Theorem 2. Algorithm 1 can be implemented with an
O(nT nS +min(dT , dS)LT LS) = O(min(nT , nS) nT nS) time
complexity.

We would like to emphasize that replacing nT and nS
by LT and LS or dT and dS in the time complexity term
of Theorem 2 is due to a refined analysis rather than
some algorithmic improvement, and such an analysis can
also be applied to refine the time complexities of some
of the previous algorithms. While in many tree compar-
ison applications typical input trees T are characterized

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 13 of 27
http://www.almob.org/content/8/1/13

(a) (b)

(c) (d)
Figure 7 The incorporation of cavity matching subroutines in the
DP algorithm. (a) Upon reaching the entry corresponding to T v1

u and

S
v′

2
u′ , all values of the form Rooted-HSA−r(T u

vj
, Su′

v′
j′
) for vj ∈ N(u) \ {v1}

and v′
j′ ∈ N(u′) are computed (see (b)). This allows to compute all

values MCM(N(u) \ {v1}, N(u′) \ {v′
j }, w

v1,v′
j

u,u′), by solving the

All-Cavity-MCM problem over the instance (N(u) \ {v1}, N(u′), wv1
u,u′),

and thus computing term III with respect to all remaining entries in
the first row of Hu,u′ . (c) Upon reaching the entry corresponding to T v2

u

and S
v′

2
u′ , all values of the form Rooted-HSA−r(T u

vj
, Su′

v′
j′
) for vj ∈ N(u) and

v′
j′ ∈ N(u′) are computed (see (d)). This allows to compute all values

MCM(N(u) \ {vj}, N(u′) \ {v′
j′ }, w

vj ,v′
j′

u,u′), by solving the All-Pairs-Cavity-

MCM problem over the instance (N(u), N(u′), wu,u′), and thus
computing term III with respect to all remaining entries in Hu,u′ .

by having the number of leaves at the same order of mag-
nitude as the number of nodes (i.e. LT = �(nT)), and
sometimes it is true that dT = �(nT) (e.g. in star-like
trees), there are cases where LT , dT � nT . Specifically,
it can be asserted that removing (by node smoothing) or
adding (by subdividing edges) degree-2 nodes to a tree
do not change its maximum degree nor the number of
its leaves, and thus trees with a high number of degree-2
nodes have a low maximum degree and a small number of

leaves with respect to the total number of nodes. As can
be shown in our examples (see Section ‘RNA tree repre-
sentation’), typical RNA trees in our application do have
a relatively high number of degree-2 nodes, and thus gain
from the fact that the cubic term in the time complexity of
the algorithm depends on the maximum node degrees and
the number of leaves, rather than the number of nodes in
the input trees.

Algorithms for bipartite matching problems
In this section we show efficient algorithms for the MCM,
All-Cavity-MCM, and All-Pairs-Cavity-MCM problems
defined in Section ‘Min-Cost bipartite matching’. These
algorithms are based on a reduction to the Min-Cost Max-
Flow problem. Since the Min-Cost Max-Flow problem is
well known to computer scientists, we only provide a brief
discussion of essential properties required for describing
our algorithms, while omitting some of the details. For
a definition of the Min-Cost Max-Flow problem, related
theorems, and a thorough discussion of its properties,
please refer to other works, e.g. [30,39,40].

Throughout this section, let (X, Y , w) be a match-
ing instance. Assume w.l.o.g. that |X| ≤ |Y |, and
denote |X| = n, |Y | = m. When the context is clear,
instead of writing a “matching M for (X, Y , w)”, we sim-
ply write a “matching M”, and similarly when writing
“M is an optimal matching” we mean that M is optimal
with respect to (X, Y , w).

Efficient algorithm for MCM
Next, we refine the reduction of MCM to Min-Cost Max-
Flow given at [27], in order to to improve the running time
of the algorithm. Our modification reduces the O(nm2 +
m2 log m) running time of the algorithm of [27] to O(n3 +
nm), using a variant of the approach of [29].

Reducing MCM to Min-Cost Max-Flow
For x ∈ X and y ∈ Y , define the effective matching
cost we(x, y) of the pair (x, y) to be we(x, y) = w(x, y) −
w(x) − w(y). The effective matching cost we(x, y) is the
cost change due to the addition of the pair (x, y) into a
matching in which both x and y are unmatched.

For each x ∈ X, define a subset Yx ⊆ Y of n smallest cost
matches for x in Y, with respect to the effective matching
costs. Define YX = ⋃

x∈X
Yx.

Lemma 4. There exists an optimal matching M∗ such
that M∗ ⊆ X × YX.

Proof. Let M∗ be an optimal matching. Since each
element in X participates in at most one pair in
M∗, M∗ contains at most n pairs, and so there are at most

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 14 of 27
http://www.almob.org/content/8/1/13

n distinct elements y ∈ Y such that y ∈ M. If M∗ con-
tains a pair (x, y) such that y /∈ YX , then y /∈ Yx, and in
particular there must be some y′ ∈ Yx such that y′ /∈ M
(since |Yx| = n). By definition of Yx, we(x, y′) ≤ we(x, y),
and the matching M′∗ obtained by removing the pair (x, y)
from M∗ and adding the pair (x, y′) satisfies w(M′∗) =
w(M∗) − we(x, y) + we(x, y′) ≤ w(M∗). Since M∗ is opti-
mal, M′∗ is also optimal. It is possible to continue and
apply such modifications until getting an optimal match-
ing M′′∗ which contains only pairs (x, y) such that y ∈ YX ,
as required.

Next, we describe how to reduce MCM into the Min-
Cost Max-Flow problem. The reduction builds the cost
flow network N = (G, s, t, c), where G is the network’s
weighted graph, s and t are the source and sink nodes
respectively, and c is the edge capacity function. The graph
G = (V , E) is defined as follows (Figure 8a):

• V = X ∪ YX ∪ {s, t, φ}, where s, t, and φ are unique
nodes different from all nodes in X and YX . Note that
we use the same notations for elements in X and YX
and their corresponding nodes in V, where ambiguity
can be resolved by the context. By definition,
|YX | ≤ n2, and so |V | = O(n2).

• E = E1 ∪ E2, where E1 = {
(x, y) : x ∈ X, y ∈ Yx

}
, and

E2 = {(s, x) : x ∈ X} ∪ {
(y, t) : y ∈ YX

} ∪
{(x, φ) : x ∈ X} ∪ {(φ, t)}. The cost cost(x, y) of every
edge (x, y) ∈ E1 is the corresponding effective
matching cost we(x, y), and the cost cost(u, v) of each
edge (u, v) ∈ E2 is zero. Note that |E| = O(n2).

The capacity function c assigns unit capacities to all edges
in E, with the exception that c(φ, t) = n.

For a maximum flow f in N, define the set of pairs
Mf = {

(x, y) : x ∈ X, y ∈ YX , f (x, y) = 1
}

.From flow con-
servation constraints, it is simple to assert that every
z ∈ X ∪ Y participates in at most one pair in Mf , and
thus Mf is a valid matching, and in addition, Mf ⊆
X × YX . For a matching M for (X, Y , w) such that M ⊆
X × YX , define the maximum flow fM in N as the flow
which is obtained by transmitting one flow unit on every
path of the form s → x → y → t for all (x, y) ∈
M, and one flow unit on every path of the form s →
x → φ → t for all x ∈ X such that x /∈ M. It is
simple to observe that fM is a valid flow in N (satis-
fying the capacity and flow conservation constraints),
where its maximality is asserted from the fact that it sat-
urates the cut ({s}, V \ {s}). Note that for every matching
M ⊆ X × YX , MfM = M, and for every maximum flow f in
N, fMf = f .

Denote by cost(f) the cost of a flow f in N, and by wX,Y
the summation wX,Y = ∑

z∈X∪Y
w(z).

(a) (b)

(c) (d)
Figure 8 The reduction from MCM to Min-Cost Max-Flow. (a) The
graph G constructed in the case where |X| = 3 and |YX | = 5. All edge
capacities are 1, except for the edge (φ, t) whose capacity is
c(φ, t) = |X| = 3. Edges of the form (xi , yj) have the costs
we(xi , yj) = w(xi , yj) − w(xi) − w(yj), and all other edges have zero
costs. (b) The residual graph Gf after finding a minimum cost
maximum flow f in the network. Edges over which there is a flow
(depicted as thickened edges) reverse their direction (the edge (φ, t)
is not saturated, and therefore both (φ, t) and (t, φ) belong to the
residual graph). In this example, the flow implies the minimum cost
matching Mf = {(x1, y1), (x3, y4)}, where the elements x2, y2, y3, and
y5 are unmatched. (c) The graph Ĝf obtained from Gf . All nodes in
the set YX are removed, and length-2 paths of the form u → y → v
are replaced with direct edges (u, v) (these are edges in the set Êf

2,
depicted with dashed lines in the figure). The cost of an edge (u, v) is
the minimum among the costs of the corresponding length-2 paths
from u to v through a node in YX . Finding minimum cost paths from s
to all nodes in Ĝf can be done in O(n2) time, where in additional
O(n2) operations it is possible to obtain minimum cost paths from s
to all nodes in Gf . (d) A minimum cost path from y2 to x1 in Gf . The
path, depicted in dashed and dotted red, is P = y2 → t → φ →
x2 → y1 → x1. The corresponding return path P′ = t → φ → x2 →
y1 → x1 → s from t to s is obtained by removing from P the first edge
y2 → t (in dotted red), and adding at the end the edge x1 → s (in
dotted green). The flow f ′ obtained by returning one flow unit from t
to s along P′ is an optimal flow in the network Nx1,y2 , corresponding to
the sub-instance (X \ {x1}, Y \ {y2}, w) (see proof of Lemma 10). The
corresponding matching for this flow is Mf ′ = {(x2, y1), (x3, y4)},
which is an optimal matching for (X \ {x1}, Y \ {y2}, w).

Lemma 5 shows the relation between a cost of a match-
ing M ⊆ X × YX and its corresponding flow fM.

Lemma 5. For every matching M ⊆ X × YX, w(M) =
cost(fM) + wX,Y .

Proof. Note that only edges in E1 in N are assigned
nonzero costs, and therefore the cost of fM is given by
cost(fM) = ∑

(x,y)∈E1

fM(x, y) · cost(x, y). In addition, note

that for every (x, y) ∈ E1, fM(x, y) = 1 if (x, y) ∈ M, and
otherwise fM(x, y) = 0.

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 15 of 27
http://www.almob.org/content/8/1/13

Hence, cost(fM) = ∑
(x,y)∈M

cost(x, y) = ∑
(x,y)∈M

we(x, y).

Now,
w(M) =

∑
(x,y)∈M

w(x, y) +
∑

z∈X∪Y
z/∈M

w(z) =
∑

(x,y)∈M
(we(x, y)+w(x)+w(y))+

∑
z∈X∪Y

z/∈M

w(z)

=
∑

(x,y)∈M
we(x, y) +

∑
z∈X∪Y

z∈M

w(z) +
∑

z∈X∪Y
z/∈M

w(z) = cost(fM) + wX,Y .

Call a minimum-cost maximum-flow in N an optimal
flow with respect to N. Proposition 1 concludes the rela-
tion between optimal flows in N and optimal matchings
of (X, Y , w).

Proposition 1. Let f ∗ an optimal flow in N. Then,
MCM(X, Y , w) = w(Mf ∗) = cost(f ∗) + wX,Y .

Proof. For the matching Mf ∗ , we have that MCM
(X, Y , w) ≤ w(Mf ∗)

Lem.5= cost(fMf ∗) + wX,Y = cost(f ∗) +
wX,Y . On the other hand, from Lemma 4 there is an
optimal matching M∗ such that M∗ ⊆ X × YX , and
MCM(X, Y , w) = w(M∗) Lem.5= cost(fM∗) + wX,Y ≥
cost(f ∗) + wX,Y , proving the proposition.

Efficient computation and time complexity

For an efficient computation of an optimal flow in
N, we first describe a modification that can be
applied to residual graphs and allows a computational
speed up.

Let f be a flow in N, and y ∈ YX . Due to the flow
conservation constraints, either f does not transmit any
flow unit through y, or f transmits one flow unit that
enters y over some ingoing edge (x, y) (where y ∈ Yx),
and leaves y by the unique outgoing edge (y, t) in E.In
both cases, and since all edges adjacent to y have a
unit capacity, the residual graph Gf = (V , Ef) con-
tains a single outgoing edge from y: the original edge
(y, t) in the former case, or the residual edge (y, x) in
the latter case (where the edge (y, t) is reversed in Gf

to become an ingoing edge (t, y)). Denote by vy the
unique node in X ∪ {t} into which there is an outgo-
ing edge from y in Ef . In addition, observe that the
number of ingoing edges into y in Gf equals to the num-
ber of ingoing edges into y in G, implying the following
observation:

Observation 3. ∑
y∈YX

∣∣{(u, y) ∈ Ef }∣∣= ∑
y∈YX

∣∣{(u, y) ∈ E
}∣∣=|E1|=n2.

Let Ĝf = (V̂ , Êf) be the graph defined by

• V̂ = X ∪ {s, t, φ},
• Êf = Êf

1 ∪ Êf
2, where

– Êf
1 = Ef \ {

(u, v) ∈ Ef : u ∈ YX or v ∈ YX
}
,

and
– Êf

2 ={
(u, v) : ∃y ∈ YX s.t.(u, y) ∈ Ef and v = vy

}
.

Observe that Êf
1 is included in Ef . Denote by costÊf

the cost function over edges in Êf . For (u, v) ∈ Êf
1

define costÊf (u, v) = cost(u, v), and for (u, v) ∈
Êf

2 define costÊf (u, v) = min(cost(u, y) + cost(y, v)).
y ∈ YX : (u, y) ∈ Ef and v = vy.

For nodes u, v ∈ V , denote by df
u,v the minimum cost of

a path from u to v in Gf , and for u, v ∈ V̂ , denote by d̂f
u,v

the minimum cost of a path from u to v in Ĝf (if there is
no path between u and v in one of these graphs, define the
corresponding minimum path cost to be ∞).

Lemma 6. For every u, v ∈ V̂ , df
u,v = d̂f

u,v.

Proof. Let u, v ∈ V̂ , and let P be a minimum cost path in
Gf from u to v. If P traverses a node y′ ∈ YX , this traver-
sal is of the form u′ → y′ → v′ for some u′, v′ ∈ V̂
such that (u′, y′) ∈ Ef and v′ = vy′ (note that there are
no edges between two nodes in YX). By construction, the
edge (u′, v′) is in Êf

2, where its cost satisfies costÊf (u′, v′) =
min(cost(u′, y) + cost(y, v′)) ≤ cost(u′, y′) + cost(y′, v′).
y ∈ YX : (u′, y) ∈ Ef

and v′ = vy.
Thus, each such sub-path u′ → y′ → v′ in P can be

replaced by an edge (u′, v′) ∈ Êf
2, where the cost of the

replacing edge is at most the cost of the sub-path. This
yields a corresponding path P̂ from u to v in Ĝf , which has
the same or lower cost than P. In particular, df

u,v ≥ d̂f
u,v.

On the other hand, let P̂ be a minimum cost path in Ĝf

from u to v. Similarly as above, every edge (u′, v′) ∈ Êf
2

in P̂ can be replaced by a path u′ → y → v′ in Ef

such that cost(u′, y) + cost(y, v′) = costÊf (u′, v′), yield-
ing a path P from u to v in Gf of the same cost as P̂.
Hence df

u,v ≤ d̂f
u,v, and so we get that if there is a path

from u to v in one of the graphs, df
u,v = d̂f

u,v. In the
case where there are no paths from u to v in both graphs,
df

u,v = d̂f
u,v = ∞.

Lemma 7. For every y ∈ YX and every v ∈ V̂ , df
y,v =

cost(y, vy) + d̂f
vy,v, and df

v,y = min
(u,y)∈Ef

(d̂f
v,u + cost(u, y)).

Proof. Let y ∈ YX and v ∈ V̂ . A minimum cost path P
from y to v in Gf (if there is such a path) must start with the
only outgoing edge (y, vy) from y, and from the optimality
of P the remainder of P is a minimum cost path from vy

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 16 of 27
http://www.almob.org/content/8/1/13

into v in Gf . Thus, the cost of P is df
y,v = cost(y, vy) +

df
vy,v

Lem.6= cost(y, vy) + d̂f
vy,v. If there is no path from y to

v in Gf , then in particular there is no path from vy to v in
Gf , and df

y,v = ∞ = df
vy,v

Lem.6= d̂f
vy,v = cost(y, vy) + d̂f

vy,v.
To show the second equality in the lemma, observe

similarly that for a minimum cost path P from v to y
in Gf and the last edge (u′, y) in P, the cost of P is
df

v,y = df
v,u′ + cost(u′, y) Lem.6= d̂f

v,u′ + cost(u′, y) ≥
min

(u,y)∈Ef
(d̂f

v,u + cost(u, y)). Since for every u such that

(u, y) ∈ Ef there is a path from v to y of cost df
v,u+cost(u, y)

(the path concatenating the edge (u, y) at the end of a
minimum cost path from v to u in Gf), it follows that
df

v,y≤ min
(u,y)∈Ef

(df
v,u+cost(u,y))Lem.6= min

(u,y)∈Ef
(d̂f

v,u+cost(u,y)), and we

get that df
v,y = min

(u,y)∈Ef
(d̂f

v,u + cost(u, y)). The case where

there is no path from v to y in Gf is resolved similarly as
above.

Using Lemmas 6 and 7, we turn to analyze the time
complexity for the reduction we described for solving
MCM(X, Y , w).

The computation of each subset Yx can be done in O(m)

time, using the algorithm of [41], and so YX can be com-
puted in O(nm) time. The network N contains O(n2)
nodes and edges, and thus can be constructed in O(n2)
time.

An optimal flow in N can be found with the algorithm
of Edmonds and Karp [30]. Essentially, this is an iterative
algorithm that maintains a valid flow f in N. Starting with
a zero-flow, at each iteration the algorithm increases the
flow by adding the bottleneck capacity flow along a mini-
mum cost path from s to t in the residual graph Gf . In our
specific reduction, all edges leaving s have a unit capacity,
and thus each augmentation path increases the size of the
flow by one unit. As the size of the maximum flow in N is
n (asserted by the minimum cut ({s}, V \ {s}) of capacity n
in N), the algorithm performs n iterations.

The time required for each iteration is dictated by the
time required for computing minimum cost paths from s
into every node in the residual graph Gf . Such paths can
be computed efficiently for weighted graphs with nonneg-
ative edge costs using Dijkstra’s algorithm [42]. In order
to render all edge costs in the residual graphs to non-
negative, the algorithm of [30] applies a node labeling
function. Such a function assigns to each node v ∈ V
a label l(v), and shortest paths in the residual network
are computed with respect to the modified edge costs
cost′(u, v) = cost(u, v)+ l(u)− l(v). It is known that a path
from u to v in Gf is of minimum cost with respect to the
original cost function if and only if it is of minimum cost

with respect to the modified cost function, and that set-
ting l(v) = df

s,v for every v ∈ V , where f is the flow at
the beginning of the i-th iteration, guarantees nonnegative
modified edge costs in the residual graph at the beginning
of the (i + 1)-th iteration (after f was augmented and the
residual graph was modified, see [30]). Thus, given that
minimum cost paths are computed from s to all nodes in
the residual graph, label maintenance at each iteration is
done in linear time with respect to the number of nodes
in the network.

In order to compute minimum cost paths from s to all
nodes in Gf , we first construct the corresponding graph
Ĝf as described above (under the assumption that edge
costs are rendered to be nonnegative). It is simple to
observe that this construction can be implemented in
O(n2) time. By construction, |V̂ | = |X ∪ {s, t, φ}| = O(n).
Using Dijkstra’s algorithm [42], d̂f

s,v can be computed for
all v ∈ V̂ in O

(
|V̂ |2

)
= O(n2) time. Note that we are

referring to the original Dijkstra algorithm (published in
1959) rather than to its commonly used improvement due
to Fredman and Tarjan [31]. While the latter improvement
reduces the running time of the algorithm for non-dense
graphs, it involves the usage of a relatively sophisticated
data structure (Fibonacci heap). In our case, the simple
implementation described in [42] does not exceed the
O(n2) running time required for the construction of Ĝf ,
without the usage of any kind of priority queue or other
complex data structures.

Given the values d̂f
s,v for all v ∈ V̂ , values df

s,v can be
computed for all v ∈ V by applying Lemmas 6 and 7. The
time required for computing distances df

s,v for all v ∈ V̂ =
V \ YX due to Lemma 6 is O

(
|V̂ |

)
= O(n), and the time

required for computing distances df
s,y for all y ∈ YX due

to Lemma 7 is
∑

y∈YX

∣∣{(u, y) ∈ Ef }∣∣ Obs.3= O(n2). Therefore,

each iteration is conducted in O(n2) time, and the total
running time of all n iterations of the algorithm is O(n3).

A special attention is required though for the initializa-
tion of the algorithm of [30]. There, it was assumed that
all edges in the input network N are of nonnegative costs,
while our described reduction from MCM does not sus-
tain this property. Nevertheless, this may be overcome by
setting the initial labels of all nodes v ∈ V to the corre-
sponding minimum path costs ds,v in the graph G of N.
Since G is acyclic, these initial costs can be computed in
O(|V | + |E|) = O(n2) time using a simple topological
traversal (see e.g., [43]).

In all, we get that the total running time required
for constructing a flow network N corresponding to the
matching instance (X, Y , w) and finding an optimal flow in
N is O(n3+nm). Computing wX,Y can be done in O(n+m)

time, and applying Proposition 1, MCM(X, Y , w) can be

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 17 of 27
http://www.almob.org/content/8/1/13

computed in O(n3 + nm) time, proving the statement in
Theorem 1 regarding MCM.

Additional practical improvements using sparsification
It is possible to further improve the running time of the
reduction in practice, by reducing the number of edges
in the network, and computing Min-Cost Flow instead of
Min-Cost Max-Flow.

We may assume without lost of generality that an opti-
mal matching M∗ between X and Y contains no pairs
(x, y) such that w(x, y) − w(x) − w(y) ≥ 0 (since remov-
ing such an edge from the matching can only decrease
its cost). Consequentially, there is an optimal flow in N
that does not transmit flow through edges (x, y) for which
w′(x, y) = w(x, y) − w(x) − w(y) ≥ 0. Therefore, the cost
of an optimal flow in the network N ′, obtained by remov-
ing such edges from N, equals to the cost of an optimal
flow in N. Note that in the case of RNA tree alignment,
removed edges correspond to pairs of subtrees which are
sufficiently dissimilar so that their pruning cost is lower
than their alignment cost. For a reasonable cost function,
it is expected that many of the subtree-pairs of the input
would sustain this condition (even in the extreme case of
aligning a tree to itself), as they represent different parts
of complex molecules.

The second improvement exploits a property of the
Min-Cost Max-Flow algorithm of [30], for which it
was shown that the series of computed augmentation
paths are of non-decreasing costs (Theorem 5 in [30]).
Note that as long as there is an augmentation path
in the network, there is such a path with cost zero
(since there is some node x for which (s, x) is not sat-
urated, and thus the path s → x → φ → t is
an augmentation path of cost zero). Therefore, once
the minimum cost of an augmentation path is zero,
all consecutive augmentation paths would have a zero
cost, and increasing the flow along these paths will not
change the overall cost of the flow. It is thus possible
to stop the flow algorithm upon the first iteration at
which the minimum augmentation path cost is zero,
where the flow at this stage is a minimum-cost flow
which is not necessarily of maximum size (while it has
the same cost as a min-cost max-flow). It is possible
to show that increasing the flow over a negative cost
augmentation path necessarily increases the size of the
corresponding matching (otherwise it implies a nega-
tive cost cycle in the residual network), therefore the
number of iterations in the above described Min-Cost
Flow algorithm is |M∗| ≤ n (where M∗ is an optimal
matching of minimum size), and so the total running
time of the algorithm is O(|M∗|n2 + nm), which is faster
than O(n3 + nm) in the case where |M∗| is small. Again,
for the RNA tree alignment application, in most cases
it is expected that the matching would be computed

with respect to dissimilar sets of subtrees, for which it is
expected to have a small optimal matching size.

Efficient algorithms for All-Cavity-MCM and
All-Pairs-Cavity-MCM
We now present Algorithm 2, which solves All-Pairs-
Cavity-MCM. Similarly to Kao et al. [28], we show that
solutions for instances of the form (X \ {x}, Y \ {y}, w)

correspond to certain shortest paths in the residual flow
network obtained when solving the instance (X, Y , w).
This observation allows to solve both All-Cavity-MCM
and All-Pairs-Cavity-MCM at the same time complexity
O(n3 + nm) as that of the algorithm for MCM presented
in the previous section.

Algorithm 2: All-Pairs-Cavity-MCM (X, Y , w)

1 Compute the set YX and construct the flow network N
corresponding to (X, Y , w), as explained in
Section ‘Reducing MCM to Min-Cost Max-Flow’;

2 Compute an optimal flow f in N ;
3 Compute for every x ∈ X and every z ∈ YX ∪ {t} the

value df
z,x (where t is the target node in N);

4 For every x ∈ X and every y ∈ Y , set

dy,x ←
{

df
y,x, y ∈ YX ,

df
t,x, y ∈ Y \ YX ,

and report

MCM(X \ {x}, Y \ {y}, w) =
cost(f) + dy,x + wX,Y − w(x) − w(y);

In order to prove the algorithm’s correctness, we first
formulate an auxiliary lemma.

Lemma 8. Let G = (V , E) be a directed graph with a cost
function cost(·) over its edges and no negative cost cycle.
Let P be a minimum cost path from a node y to a node x
in G. Let G′ = (V , E′) be the graph obtained from G by
adding, for every edge (u, v) ∈ P, the reversed edge (v, u)

(if not already in G), and setting its cost to cost(v, u) =
−cost(u, v). Then, G′ contains no negative cost cycle.

Proof. Following [30], we call a flow extreme if it is
of minimum cost among all flows of the same size.
By [30] (Theorem 3), a flow is extreme if and only if
the corresponding residual network contains no negative
cost cycle. In addition, a flow obtained by increasing an
extreme flow along a minimum cost augmentation path
from the source to the sink of the network, is also extreme
(see [44], page 121).

Let N be the flow network defined by the graph G, the
source node y, the sink node x, the cost function cost(·),
and the capacity function c which assigns two capacity
units to all edges in G. Since there is no negative cost cycle

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 18 of 27
http://www.almob.org/content/8/1/13

in N, the zero flow is extreme with respect to zero-size
flows. Let f be the unit flow along P in N, and note that the
residual graph Gf is identical to G′ by definition. Since P
is a minimum cost path from y to x in G, f is extreme with
respect to all flows of size 1. Thus, Gf contains no negative
cost cycle.

In the remainder of this section, let N be the network
corresponding to the matching instance (X, Y , w) and f
an optimal flow in N. Denote by Nx,y the network whose
graph Gx,y is obtained by excluding from G the node x,
the node y in case that y ∈ YX , and all edges adja-
cent to these nodes. The edge costs in Gx,y are inherited
from G, and the maximum flow size in Nx,y is n − 1.
Note that any flow in N which does not transmit flow
units through x and through y (when y ∈ YX), is also
a valid flow in Nx,y. In addition, observe that Gx,y con-
tains the graph corresponding to the sub-instance (X \
{x}, Y \ {y}, w) (it is possible that Gx,y contains additional
nodes in Y \ {y} excluded from (Y \ {y})X\{x} and addi-
tional edges, since x′ ∈ X \ {x} may have n adjacent edges
of the form (x′, y′) in Gx,y, while in the graph correspond-
ing to (X \ {x}, Y \ {y}, w) is has (n − 1) such adjacent
edges). Nevertheless, it can be asserted from the lem-
mas in Section ‘Reducing MCM to Min-Cost Max-Flow’,
Proposition 1, and their proofs, that for an optimal flow f ′
in Nx,y, MCM(X \ {x}, Y \ {y}, w) = cost(f ′) + wX\{x},Y\{y}.
The correctness of Algorithm 2 is implied by the
following analysis.

Lemma 9. For every x ∈ X and every y ∈ YX, there is a
path from y to x in Gf .

Proof. If f (y, t) = 0, then Gf contains the edge (y, t), and
in particular there is a path from y to t in Gf . Else, f (y, t) =
1, and from flow conservations constraints there is some
x′ ∈ X such that f (x′, y) = 1. In this case, the path y →
x′ → φ → t is a path from y to t in Gf (again, the existence
of all edges of this path in Gf can be asserted from the
flow conservation constraints). Similarly, let z ∈ YX ∪ {φ}
be the node such that f (x, z) = 1, and note that the path
t → z → x is a path from t to x in Gf . The concatenation
of a path from y to t and a path from t to x in Gf proves
that there is a path from y to x in Gf .

Now, we show the relation between MCM solutions for
instances (X, Y , w) and solutions for sub-instances of the
form (X \ {x}, Y \ {y}, w). As defined in Algorithm 2, let

dy,x =
{

df
y,x, y ∈ YX ,

df
t,x, y ∈ Y \ YX

Lemma 10. The cost of an optimal flow in Nx,y is
cost(f) + dy,x.

Proof. In order to prove the lemma, we construct a flow
f ′ in Nx,y such that w(f ′) = cost(f) + dy,x, and prove that
f ′ is optimal with respect to Nx,y.

Consider the case where y ∈ YX , and so dy,x = df
y,x.

From Lemma 9, there exists a path from y to x in the
residual graph Gf . Let P be such a path of minimum cost,
and define the weighted graph G′ that includes all nodes
and edges in Gf with the same edge costs, and in addi-
tion, for each (u, v) ∈ P, G′ contains the reversed edge
(v, u), whose cost is set to cost(v, u) = −cost(u, v). Since
Gf contains no negative cost cycle (due to the optimality
of f), Lemma 8 indicates that G′ contains no negative cost
cycle.

Define the flow f ′ which is obtained from f by return-
ing one flow unit from t to s along the path P′ as follows:
if P starts with (y, t), then P′ is obtained by removing (y, t)
from P and concatenating (x, s) at its end (see Figure 8d).
Else, P′ is obtained by concatenating (t, y), P, and (x, s).
Observe that f ′ is a valid flow in Nx,y (since f ′ passes
no flow units through x and y), its cost is cost(f ′) =
cost(f) + cost(P′) = cost(f) + dy,x (since edges adjacent
to t and s have zero costs, and so the costs of P′ and P
are equal), and its size is |f ′| = |f | − 1 = n − 1. There-
fore, f ′ is a maximum flow in Nx,y. Also, observe that the
residual graph Gf ′

x,y is a sub-graph of G′ (since the only
edges in P′ which are not in P are adjacent to either x or
y, and therefore their reversed edges, which are included
in Gf ′ , are excluded from Gf ′

x,y), and therefore it contains
no negative cycle. Thus, f ′ is an optimal flow in Nx,y of
cost cost(f) + dy,x.

For the case where y ∈ Y \YX (and dy,x = df
t,x), let P be a

minimum cost path from t to x in Gf , and P′ the path from
t to s in Gf obtained by concatenating the residual edge
(x, s) at the end of P. Similarly as above, it can be shown
that the flow f ′ obtained by returning one flow unit from t
to s along P′ is an optimal flow in Nx,y of cost cost(f)+dy,x,
and the lemma follows.

From Lemma 10, for every x ∈ X and every y ∈ Y ,
the value cost(f) + dy,x is the cost of an optimal flow in
Nx,y. From Proposition 1, adding to this cost the value
wX\{x},Y\{y} = wX,Y − w(x) − w(y) gives the minimum
matching cost for the matching instance (X\{x}, Y \{y}, w),
and thus the correctness of Algorithm 2.

In order to use the algorithm for solving All-Cavity-
MCM, we apply the following simple modification. Say we
are interested in finding solutions to sub-instances of the
form (X, Y \ {y}, w) for every y ∈ Y . We replace the set X
by the set X′ = X ∪ {xφ} for some new element xφ /∈ X
(and arbitrarily define w(xφ) = 0 and w(xφ , y) = 0 for
every y ∈ Y). We then solve All-Pairs-Cavity-MCM for
the instance (X′, Y , w), and return MCM(X′ \ {xφ}, Y \

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 19 of 27
http://www.almob.org/content/8/1/13

{y}) as the solution for the instance MCM(X, Y \ {y}).
Finding solutions for all instances (X \ {x}, Y , w) is done
symmetrically.

Time complexity of Algorithm 2
From the analysis in Section ‘Efficient computation and
time complexity’, lines 1 and 2 of the algorithm can be
computed in O(n3 + nm) running time. After finding
an optimal flow f in N, it is possible to compute for
some x ∈ X the values df

v,x for every v ∈ V in O(n2),
as explained in Section ‘Efficient computation and time
complexity’ (applying Lemma 7 and using a reversed vari-
ant of Dijkstra’s algorithm [42]). Thus, the computation
of such values for all x ∈ X, performed in line 3 of
the algorithm, can be implemented in O(n3) running
time.

Given these values, the execution of line 4 takes
O(nm) time. In all, the running time of Algorithm 2
is O(n3 + nm), proving the statements regarding
All-Cavity-MCM and All-Pairs-Cavity-MCM in
Theorem 1.

Implementation details
Our algorithm is implemented (in Java) as a tool called
FRUUT (Fast RNA Unordered Unrooted Tree mapper).
The RNA tree representation is described in Section ‘RNA
tree representation’ and the scoring scheme employed by
FRUUT is described in Section ‘Alignment cost function’.
FRUUT allows the user to select any alignment mode
combination (rooted / unrooted, ordered / unordered,

local / global) and to compute optimal pairwise align-
ments of RNA trees with an attached significance scoring
model described in Section ‘p-Value computation’. We
also provide an interactive PHP web-server for running
FRUUT in our website (RNA plots are are generated by
the Vienna Package [2]).

RNA tree representation
There are several previous models for representing a
pseudoknot-free RNA secondary structure (example in
Figure 9a) as an ordered, rooted tree [3,9,10,13,45-48].
For example, [45] represented the RNA structure as a
tree, where nodes correspond to loop elements of the
secondary structure (hairpin loops, bulges, internal loops
or multi-loops) and the edges correspond to base-paired
(stem) regions. Another, different representation is given
in Zhang’s work [9]: the nodes of the tree represent either
unpaired bases (leaves) or paired bases (internal nodes).
Each node is labeled with a base or a pair of bases, respec-
tively. There are two kinds of edges, alternatively con-
necting either consecutive stem base-pairs or a leaf base
with the last base-pair in the corresponding stem. The
aforementioned trees are rooted and ordered, their order
corresponds to the 5’-3’ orientation of an RNA sequence
and their root is traditionally a designated node parenting
the motif in which the first 5’ base participates.

The tree representation that we employed uses a sim-
ilar modeling as in Höchsman et al. [48], with some
variations we describe next. Given an RNA secondary
structure, each loop, base-pair, and interval of unpaired

(a) (b)
Figure 9 Demonstration of the selected RNA representation. (a) RNA secondary structure as presented by [2]. (b) The tree representation of
(a) in our model. Each base-pairs stacking is matched by color to it’s representing branch in the tree.

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 20 of 27
http://www.almob.org/content/8/1/13

Table 1 Cost functions: Element pruning penalty

Factor Cup Cbp Chp Cml Cil Cext

Value 1 2.5 5 3 2 0

bases generates a node in the tree representation of the
structure. Labels are assigned to tree nodes in order
to indicate their type and content. Node types are: BP
(base-pair), UPI (unpaired-base interval), HP (hairpin),
IL (internal loop or bulge), ML (multi-loop), and EXT
(external loop). For a UPI node, the label also includes
the 5’ to 3’ base-sequence of the corresponding interval,
and for a BP node the label includes the corresponding
bases (see Figure 9).

Each loop node (HP, IL, ML, and EXT) is connected,
in 5’ to 3’ sequence order, to all UPI nodes which cor-
respond to intervals of unpaired bases associated to the
loop, and to all BP nodes which correspond to stem-
terminating base-pairs adjacent to the loop. BP nodes
are nodes of degree 2, where the two neighbors of such
nodes are the BP nodes that correspond to adjacent
stacked base-pairs. The set of leaves in the tree corre-
sponds to the set of UPI nodes or BP nodes terminating
loop-free stems.

Alignment cost function
Node smoothing costs were set to 3 for BP, 11 for ML/EXT
and 5 for IL. For subtree pruning costs, we have designed
a cost function that counts the occurrences of different
types of elements appearing in the subtree and deduces
a corresponding penalty. The function is of the form:
prune(T) = Cup · Nup + Cbp · Nbp + Chp · Nhp + . . .,
where the values of Cx are constant penalty factors, Nup
is the number of unpaired bases in T, Nbp is the num-
ber of base-pairs, Nhp is the number of hairpins, and
so on (specific Cx values are given in Table 1). Table 2
summarizes the costs of matching node pairs by the align-
ment. Sequence alignment costs and base-pair alignment
costs were set using the RIBOSUM85-60 scoring matrix
[49]. In order to support the local alignment mode, we
added an option to set the subtree pruning cost to zero:
prune(T) = 0.

Relative scoring
We used a relative score formula described by Höchsmann
et al. [48] to assess the similarity of two trees, nor-
malizing the alignment cost by the average of the self-
alignment costs of the compared trees. Let HSAm(T , S)

denote the optimal alignment cost of trees T and S in
alignment mode m, where m is one of the following
modes: Rooted-Ordered, Rooted-Unordered, Unrooted-
Ordered or Unrooted-Unordered. Let RelScorem(T , S)

denote the relative score of T and S in alignment mode m,
given by [48]:

RelScorem(T , S) = 2HSAm(T , S)

HSAm(T , T) + HSAm(S, S)
. (8)

The scoring scheme we use satisfies that for every tree
T, HSAm(T , T) < 0, and for every pair of trees T , S,
HSAm(T , T), HSAm(S, S) ≤ HSAm(T , S). Under these
conditions, the relative score for any pair of trees is upper
bounded by 1, and the similarity of the trees increases as
the score approaches 1.

p-Value computation
We apply the following p-Value computation in order
to determine whether an alignment score obtained by
comparing two RNA trees is significant.

For the purpose of assessing the significance of a score,
we need to know what distribution HSA scores follow.
In order to identify the correct distribution, we first cre-
ate a set of random observations to inspect. Algorithm 3
describes a routine for shuffling a tree, while preserv-
ing most of its structural features (e.g. number of stacks,
amount of multi-loops) and keeping the tree valid in terms
of RNA secondary structure (exemplified in Figure 10).

Algorithm 4 creates a set of observations by randomly
selecting pairs of trees from a dataset, shuffling them and
reporting the relative score of their alignment. In each
alignment mode m, where m ∈ {RO, RU , UO, UU}, we
ran Algorithm 4, setting the input parameter dataset to
all the structures from over the RNAStrand [50] database
(containing 1751 RNA structures), and setting the number
of iterations (the amount parameter, in the code below)
to 2 × 106.

Table 2 Cost functions: Node matching costs

Type UPI BP HP IL ML EXT

UPI Sequence alignment ∞ ∞ ∞ ∞ ∞
BP ∞ Base-pair alignment ∞ ∞ ∞ ∞
HP ∞ ∞ -10 0 0 0

IL ∞ ∞ 0 -5 ∞ ∞
ML ∞ ∞ 0 ∞ -7 -7

EXT ∞ ∞ 0 ∞ -7 -10

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 21 of 27
http://www.almob.org/content/8/1/13

Algorithm 3: shuffle(T)

// Stage 1
1 Collect all interval bases of T and re-distribute them

into the UPI nodes at random, keeping the original
number of UPI nodes;
// Stage 2

2 Collect all base pairs of T and re-organize them into
stacks of BP nodes at random, keeping the original
number of stacks. We keep these stacks in a random
set named stacks;

3 S ← empty Set;
// keeps elements with exactly one

unassigned neighbor
4 M ← empty Set;
// keeps elements with more than one

unassigned neighbor
// Stage 3

5 Randomly choose a new EXT node from set
{ML ∈ T} ⋃{EXT};

6 foreach IL, ML, HP in T do
7 connect k random interval nodes, where k is the

number of UPI neighbours in the original node;
8 connect one random stack from stacks;
9 if node is HP then add to S, else add to M;
// Stage 4

10 while M is not empty do
11 m ← remove random node from M;
12 Connect k − 1 random nodes from S to m, where

k is the number of BP neighbours in the original
node;

13 Add m to S;
// Stage 5

14 Connect k random interval nodes to EXT, where k is
the number of intervals in the original EXT node;

15 Connect k random nodes from S to EXT, where k is
the number of BP neighbours in the original EXT
node;

The observed results where plotted in an accumulative
manner and a Maximum Likelihood (ML) fitting tech-
nique was used to determine the best distribution and its
parameters. We tried several types of distributions and
used the Kolmogorov-Smirnov test (K-S test) formula [51]
to measure the goodness of the data fit to a given dis-
tribution. In all four alignment modes the ML Gaussian
distribution provided the best fit. Figure 11 exemplifies
the fitting of the data to this distribution with alignment
mode UU. The figure also displays the ML Gumbel dis-
tribution. The K-S score of the ML Gaussian distribution
is better than the score for the ML Gumbel distribution.
Following these results we used the ML fitted Gaussian

Algorithm 4: Stats(dataset, amount)
1 obs ← empty list;
2 for itr < amount do
3 T ← Random tree from dataset;
4 S ← Random tree from dataset;
5 T ′ ← Shuffle(T);
6 S′ ← Shuffle(S);

// RelScore is defined in Equation 8
7 res ← RelScore(T ′, S′);
8 add res to obs;
9 report obs;

distribution to model the HSA results. This allowed us
to compute for a pair of trees T and S a p-Value score
analytically, using the following formula:

p-value(x) = Pr(X > x),

where x is the relative score of T and S, and X is a
random variable normally distributed with the ML fitted
parameters.

A Bonferroni correction was applied to all the reported
p-value computations described in the following sections.
This was done by multiplying the computed p-value by
the number of tests performed (i.e. the number of tree
pairs aligned within the family that participated in the
corresponding test).

Results
RNase P family
RNase P is the endoribonuclease responsible for the 5’
maturation of tRNA precursors [19]. Secondary structures
of bacterial RNase P RNAs have been studied in detail, pri-
marily using comparative methods [52], and were shown
to share a common core of primary and secondary struc-
ture. In bacteria, synthetic minimal RNase P RNAs con-
sisting only of these core sequences and structures were
shown to be catalytically proficient. Sequences encoding
RNase P RNAs of various genomes have been deter-
mined and a database established [53], which consists of a
compilation of ribonuclease P RNA sequences, sequence
alignments, secondary structures and three-dimensional
models.

We conducted a preliminary experiment, intended to
identify examples of pairs of RNA trees for which an
RNA structural comparison approach supporting unroot-
ing and branch shuffling may detect (otherwise hidden)
structural similarity. To achieve this, we ran a bench-
mark of all-against-all pairwise alignments of bacterial
RNAse P RNA secondary structure trees, using our
tool’s different tree-alignment modes and comparing
the differences between the obtained alignment costs.

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 22 of 27
http://www.almob.org/content/8/1/13

Figure 10 Example of the shuffle process. On the left is the input tree and on the right the output of the process.

The alignment cost functions and parameters used in our
experiment are given in Section ‘Alignment cost function’.

Our benchmark was based on 470 RNAse P struc-
tures, ranging across various organisms, taken from the
RNAse P database [53] (molecule naming conventions are
according to [50]). After filtering out partial and envi-
ronmental sequences, 170 distinct structures remained,
yielding 14,365 distinct pairs of trees. The sizes of the trees
in this dataset ranged from 82 to 230 nodes, averaging at
142. The total running time of the benchmark was approx-
imately 33 minutes on a single Xeon X5690 using around
300Mb of memory.

Figure 11 The result of running Stats(D, 1 × 106) in UU mode of
HSA with relative score and its fitting to Gaussian distribution.

Each pair of trees T , S was compared in two modes to
obtain the corresponding scores and alignments: rooted-
ordered (RO) and rooted-unordered (RU), and the relative
score was computed for each pair in each mode according
to Section ‘Relative scoring’.

Our goal in this experiment was to identify evo-
lutionary events that can be explained by unordered
alignments. Thus, we sought pairs of RNAse P RNAs
that are highly conserved, and yet their alignment can
still benefit substantially from unordered mappings. To
achieve this, we removed from the set pairs of trees
for which RelScoreRU(T , S) < 0.5. We sorted the
remaining pairs of trees according to the difference
between the RU and RO modes (RelScoreRU(T , S) −
RelScoreRO(T , S)).

When examining the top 50 alignments carefully, two
distinct types of mapping patterns were observed among
them, where each of the top 50 pairs belongs (with slight
variations) to one of these two types (33 to Type 1 and
17 to Type 2). In the next paragraphs, we exemplify
the highest ranking alignment of each of the two types
(the first type is shown in Figure 1b). As mentioned
before, the input for FRUUT alignments consisted only
of sequence and secondary structure information. The
tertiary structure (pseudoknot annotations) for the top-
ranking alignments were only considered later, during the
alignment interpretations.

Type 1: loop swapping in main multiloop accompanied
by hairpin deletion in P17.1 The first type of alignment

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 23 of 27
http://www.almob.org/content/8/1/13

pattern is characterized by comparisons between a green
sulfur bacteria Chlorobium and gamma purple bacterial
RNAse P RNAs. This alignment pattern is exemplified
in Figure 1b, for the bacterial RNAs ASE_00047 and
ASE_00334. When examining the corresponding tertiary
structure information (Figure 12), the transformations
predicted by FRUUT seem to make sense: observe that
there is an additional duplex connecting the loops of
intervals 13 and 15. Notice that the alignment between
the two trees maps the intervals in a manner that pre-
serves the tertiary structural information and the other
information surrounding the loops - thus exemplifies a
biologically verified alignment which does not preserve
branch ordering.

Type 2: hairpin swapping between P17 and P17.1
The second type of alignment pattern is character-
ized by comparisons between Agrobacterium tumefaciens
(ASE_00018) and several Chlamydia trachomatis mem-
bers. This alignment pattern is exemplified in Figure 13.
An interesting element-twist transformation is observed
here in hairpins P17 and P17.1 of ASE_00018, which
are mapped onto their corresponding hairpins P17.1 and
P17 in ASE_00070, respectively, via a subtree reordering
mapping operation. When examining the corresponding

tertiary structure information (Figure 13), we observe that
the loops of the hairpins P17 and P17.1 are engaged in
pseudoknots with loops L (named P6).

The Hammerhead Ribozyme family
Another type of homology detected by our tool is exem-
plified in the Hammerhead Ribozyme family, which is
characterized by two distinct transcript types, yielding the
same functional RNA (Figures 1a and14).

The Hammerhead Ribozyme, a derivative of several
self-cleaving satellite virus RNAs [54], is a single strand
RNA with autocatalytic capabilities. Naturally, it has a
highly specific self-cleavage site at C17, operating via
isomeration and rearrangement of the linkage phosphodi-
ester bond [55]. Furthermore, Birikh et al.[18] suggested
that the Hammerhead Ribozyme may undergo synthetic
modification by removing the loop of one of its helical
arms, thus making it catalytically active and able to cleave
other RNAs. Hammerheads are therefore widely used in
the biotechnological industry as biosensors, enzymes for
specific RNAs and gene discovery agents.

The tertiary structure of the minimal version of the
Hammerhead Ribozyme has been thoroughly studied by
[56,57]. It is composed of three base paired helices,

Figure 12 RNAse P type 1 Tertiary structural information. Tertiary structural information for ASE_00047 and ASE_00334, taken from the RNAse P
Database [53].

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 24 of 27
http://www.almob.org/content/8/1/13

(a)

(b)
Figure 13 RNAse P type 2 example. (a) An example of unordered alignment between two RNAse P RNAs: ASE_00018 and ASE_00070 with a
corrected p-value score of 3.117 × 10−6. Grey colored bases in the FRUUT alignment graphics represent deletions. P6 is a pseudoknot marking of
the tertiary structure information. (b) Tertiary structural information for ASE_00018 and ASE_00070, taken from the RNAse P Database [53].

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 25 of 27
http://www.almob.org/content/8/1/13

(a) (b)
Figure 14 Example 2 on the HammerHead family. Results on different modes of alignment between two Hammerhead RNAs: PDB_01077 (Type
I, left) and RFA_00433 (Type III, right) (a) A rooted ordered alignment between the two trees with a relative score of 0.2374. (b) A unrooted ordered
alignment between the two trees with a relative score of 0.5111.

entitled I, II, III, according to their position in the
sequence. There are highly conserved sequences within
the multi-loop between stem I and II (containing the
sequence box CUGA), between stem II and III (containing
the box GAAA) and between stem III and I (containing the
cleavage reaction site, C17). In nature, there are two types
of Hammerheads: type I, where stem I starts at the 5’ and
3’ ends of the strand, and type III, where stem III starts
at the 5’ and 3’ ends of the strand. As of today, no natural
type II Hammerhead has been found.

Due to the fact that the two natural Hammerhead types
share a conserved structure, though it is formed by two
distinct transcripts, we chose this family to demonstrate
the sensitivity gained by extending the classical rooted-
ordered RNA tree alignment to more flexible variants.
Our benchmark was based on 146 Hammerhead struc-
tures (86 of type I and 62 of type III), ranging across
various organisms, taken from the RNA Strand database
[50]. This yields a total of 10,585 pairs of trees, with tree
sizes ranging from 17 to 48 nodes, averaging at 25.5.

Each pair of trees T , S was compared in two modes to
obtain the corresponding scores and alignments: rooted-
ordered (RO) and unrooted-ordered (UO). Within each
mode, we used the relative score formula as described in
Section ‘Relative scoring’. We partitioned the tree pairs
into two groups, the first containing all pairs where both
members are from the same type (5377 pairs) and the sec-
ond group containing mixed pairs where the two members
in each pair belong to different types (5208 pairs). We cal-
culated the average relative score for each group in both
alignment modes. The results, summarized in Table 3,
show that the UO tree alignment mode is more sensitive
to the similarity between the two different Hammerhead

types than the RO mode. The similarity between Ham-
merhead structures of different types is not captured
by the classical rooted ordered alignment (Figure 14a).
However, when comparing the same pair using unrooted
ordered alignment, the similarity between the structures
is revealed, in line with the similarity of biological function
(Figure 14b).

Conclusions
In this paper we define the (unrooted unordered) Home-
omorphic Subtree Alignment (HSA) problem, as well as
additional three restricted variants of it: Ordered-HSA,
Rooted-HSA, and Ordered-Rooted-HSA. We focus on
the general (unrooted and unordered) HSA variant, and
present a cubic time algorithm for it.

The new algorithm is implemented as a tool (which
allows solving all four HSA variants) and is applied to
pairwise alignments of RNA secondary structures. Pre-
liminary experimental results over members of the RNAs
P and Hammerhead families show that the tool can be
used for detecting new structural similarities between
RNA molecules, which could not be detected by the clas-
sical rooted-ordered tree alignment methods. In order to
obtain an O(n3) running time of an otherwise O(n5) time

Table 3 A comparison of the RO and UO alignment modes

Mode \ Type Same type Different type

Rooted-Ordered (RO) 0.55 0.19

Unrooted-Ordered (UO) 0.56 0.35

A comparison of the RO and UO alignment modes on the two types of
Hammerhead structures. Each cell in the table represents the average over all
pairs in each group (same / different types).

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 26 of 27
http://www.almob.org/content/8/1/13

algorithm, we extend the All-Cavity Bipartite Matching
problem, previously defined by Kao et al., to the All-Pairs-
Cavity problem, give an efficient algorithm for it, and
show how to integrate it as a subroutine within our tree
alignment algorithm.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
NM participated in some parts of the algorithm construction, implemented
the software, participated in the writing of the manuscript and was in charge
of the data collection, the statistical model, the experimental results, and the
web tool. SZ contributed in all parts of the algorithm construction, participated
in the software implementation and in the writing of the manuscript. EK
participated in a preliminary version of this study. EB participated in the
statistical model and in the experimental results. YD participated in some parts
of the algorithm construction and in the overall checking of the text. MZU
conceived, designed and led the study, and participated in all parts of the
project, including the algorithm construction, the experimental results and the
writing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors are grateful to Naama Amir for pointing out challenges in
extending previous algorithms to allow deletions from both trees. This
research was partially supported by ISF grants 478/10 and 580/11, and by a
donation from the Moshe Yanai foundation.

Author details
1Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel. 2Department of Computer Science and Engineering, UC
San Diego, La Jolla, CA, USA.

Received: 20 December 2012 Accepted: 5 February 2013
Published: 16 April 2013

References

1. Agmon I, Auerbach T, Baram D, Bartels H, Bashan A, Berisio R, Fucini P,
Hansen H, Harms J, Kessler M, et al.: On peptide bond formation,
translocation, nascent protein progression and the regulatory
properties of ribosomes. Eur J Biochem 2003, 270(12):2543–2556.

2. Hofacker I: Vienna RNA secondary structure server. Nucleic Acids Res
2003, 31(13):3429.

3. Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R: RNAshapes:
anintegrated RNA analysis package based on abstract shapes.
Bioinformatics 2006, 22(4):500–503.

4. Höchsmann M, Toller T, Giegerich R, Kurtz S: Local similarity in RNA
secondary structures. In Bioinformatics Conference, 2003. CSB 2003.
Proceedings of the 2003 IEEE: IEEE; 2003:159–168.
doi:10.1109/CSB.2003.1227315.

5. Jiang T, Lin G, Ma B, Zhang K: A general edit distance between RNA
structures. J Comput Biol 2002, 9(2):371–388.

6. Zhang K, Wang L, Ma B: Computing similarity between RNA
structures. In Combinatorial Pattern Matching: Springer; 1999:281–293.

7. Bille P: A survey on tree edit distance and related problems. Theor
Comput Sci 2005, 337(1-3):217–239.

8. Jiang T, Wang L, Zhang K: Alignment of trees—an alternative to tree
edit. Theor Comput Sci 1995, 143:137–148.

9. Zhang K: Computing similarity between RNA secondary structures.
In INTSYS ’98: Proceedings of the IEEE International Joint Symposia on
Intelligence and Systems. Washington: IEEE Computer Society; 1998:126.

10. Le S, Nussinov R, Maizel J: Tree graphs of RNA secondary structures
and their comparisons. Comput Biomed Res 1989, 22(5):461–473.

11. Schirmer S, Giegerich R: Forest alignment with affine gaps and
anchors. In Combinatorial Pattern Matching: Springer; 2011:104–117.
doi:10.1007/978-3-642-21458-5_11.

12. Hofacker I, Fontana W, Stadler P, Bonhoeffer L, Tacker M, Schuster P: Fast
folding and comparison of RNA secondary structures. Monatshefte fur
Chemie/Chemical Monthly 1994, 125(2):167–188.

13. Liu J, Wang J, Hu J, Tian B: A method for aligning RNA secondary
structures and its application to RNA motif detection. BMC
Bioinformatics 2005, 6:89.

14. Blin G, Denise A, Dulucq S, Herrbach C, Touzet H: Alignments of RNA
structures. Comput Biol Bioinformatics, IEEE/ACM Trans 2010,
7(2):309–322.

15. Allali J, Sagot M: A multiple graph layers model with application to
RNA secondary structures comparison. In String Processing and
Information Retrieval: Springer; 2005:348–359. doi:10.1007/11575832_39.

16. Jan E: Divergent IRES elements in invertebrates. Virus Res 2006,
119:16–28.

17. Perreault J, Weinberg Z, Roth A, Popescu O, Chartrand P, Ferbeyre G,
Breaker R: Identification of hammerhead ribozymes in all domains of
life reveals novel structural variations. PLoS Comput Biol 2011,
7(5):e1002031.

18. Birikh K, Heaton P, Eckstein F: The structure, function and application
of the hammerhead ribozyme. Eur J Biochem 1997, 245:1–16.

19. Haas E, Brown J: Evolutionary variation in bacterial RNase P RNAs.
Nucleic Acids Res 1998, 26(18):4093–4099.

20. Zhang K, Jiang T: Some MAX SNP-hard results concerning unordered
labeled trees. Inf Process Lett 1994, 49(5):249–254.

21. Matula D: Subtree isomorphism in O(n5/2). Ann Discrete Math 1978,
2:91–106.

22. Shamir R, Tsur D: Faster subtree isomorphism. J Algorithms 1999,
33:267–280.

23. Chung M: O(n2.5) time algorithms for the subgraph homeomorphism
problem on trees. J Algorithms 1987, 8:106–112.

24. Reyner S: An analysis of a good algorithm for the subtree problem.
SIAM J Comput 1977, 6:730.

25. Valiente G: Constrained tree inclusion. J Discrete Algorithms 2005,
3(2-4):431–447.

26. Pinter RY, Rokhlenko O, Tsur D, Ziv-Ukelson M: Approximate labelled
subtree homeomorphism. J Discrete Algorithms 2008, 6(3):480 – 496.

27. Zhang K: A constrained edit distance between unordered labeled
trees. Algorithmica 1996, 15(3):205–222.

28. Kao M, Lam T, Sung W, Ting H: Cavity matchings, label compressions,
and unrooted evolutionary trees. SIAM J Comput 2000, 30(2):602–624.

29. Dinic E: On solution of two assignment problems. In Studies in Discrete
Optimization. Edited by Fridman A. Nauka. Moscow: Nauka; 1976:333–348.

30. Edmonds J, Karp R: Theoretical improvements in algorithmic
efficiency for network flow problems. J ACM (JACM) 1972,
19(2):248–264.

31. Fredman M, Tarjan R: Fibonacci heaps and their uses in improved
network optimization algorithms. J ACM (JACM) 1987, 34(3):596–615.

32. Gabow H, Tarjan R: Faster scaling algorithms for network problems.
SIAM J Comput 1989, 18:1013.

33. Orlin J, Ahuja R: New scaling algorithms for the assignment and
minimum mean cycle problems. Math Program 1992, 54:41–56.

34. Needleman S, Wunsch C etal: A general method applicable to the
search for similarities in the amino acid sequence of two proteins.
J Mol Biol 1970, 48(3):443–453.

35. Maes M: On a cyclic string-to-string correction problem. Inf Process
Lett 1990, 35(2):73–78.

36. Schmidt JP: All highest scoring paths in weighted grid graphs and
their application to finding all approximate repeats in strings. SIAM J
Comput 1998, 27(4):972–992.

37. Tiskin A: Semi-local string comparison: Algorithmic techniques and
applications. Math Comput Sci 2008, 1(4):571–603.

38. Zhang K: Algorithms for the constrained editing distance between
ordered labeled trees and related problems. Pattern Recognit 1995,
28(3):463–474.

39. Tarjan R: Data Structures and Network Algorithms, Volume 44: Society for,
Industrial Mathematics; 1983. doi:10.1137/1.9781611970265.fm.

40. Ahuja R, Magnanti T, Orlin J, Weihe K: Network flows: theory, algorithms
and applications. ZOR-Methods Models Oper Res 1995, 41(3):252–254.

http://dx.doi.org/10.1109/CSB.2003.1227315
http://dx.doi.org/10.1007/978-3-642-21458-5_11
http://dx.doi.org/10.1007/11575832_39
http://dx.doi.org/10.1137/1.9781611970265.fm

Milo et al. Algorithms for Molecular Biology 2013, 8:13 Page 27 of 27
http://www.almob.org/content/8/1/13

41. Blum M, Floyd R, Pratt V, Rivest R, Tarjan R: Time bounds for selection.
J Comput Syst Sci 1973, 7(4):448–461.

42. Dijkstra E: A note on two problems in connexion with graphs.
Numerische mathematik 1959, 1:269–271.

43. Lawler E: Combinatorial Optimization: Networks and Matroids. New York:
Holt,Rinehart and Winston; 1976.

44. Ford Jr L, Fulkerson D, Ziffer A: Flows in networks. Phys Today 1963, 16:54.
45. Shapiro B: An algorithm for comparing multiple RNA secondary

structures. Comput Appl Biosci 1986, 4(3):387–393.
46. Waterman M: Secondary structure of single-stranded nucleic acids.

Adv Math Suppl Studies 1978, 1:167–212.
47. Fontana W, Konings D, Stadler P, Schuster P: Statistics of RNA

secondary structures. Biopolymers 1993, 33(9):1389–1404.
48. Höchsmann M, Voss B, Giegerich R: Pure multiple RNA secondary

structure alignments: a progressive profile approach. IEEE Trans
Comput Biol Bioinformatics 2004, 1:53–62.

49. Klein R, Eddy S: RSEARCH: finding homologs of single structured RNA
sequences. BMC Bioinformatics 2003, 4:44.

50. Andronescu M, Bereg V, Hoos HH, Condon A: RNA STRAND: the RNA
secondary structure and statistical analysis database. BMC
Bioinformatics 2008, 9:340.

51. Massey Jr F: The Kolmogorov-Smirnov test for goodness of fit. J Am
Stat Assoc 1951, 46:68–78.

52. Pace NR, Brown JW: Evolutionary perspective on the structure and
function of ribonuclease P, a ribozyme. J Bacteriol 1995,
177(8):1919–1928.

53. Brown J: The ribonuclease P database. Nucleic Acids Res 1999, 27:314.
54. Murray J, Terwey D, Maloney L, Karpeisky A, Usman N, Beigelman L, Scott

W: The structural basis of hammerhead ribozyme self-cleavage. Cell
1998, 92(5):665–673.

55. Hean J, Weinberg M: The hammerhead ribozyme revisited: new
biological insights. In RNA and the Regulation of Gene Expression: A Hidden
Layer of Complexity. Edited by Morris KV: Caister Academic, Pr; 2008:1.

56. Pley H, Lindes D, DeLuca-Flaherty C, McKay D: Crystals of a
hammerhead ribozyme. J Biol Chem 1965, 268(26):6.

57. Scott W, Finch J, Klug A: The crystal structure of an all-RNA
hammerhead ribozyme. In Nucleic Acids Symposium Series, Volume 34:
IRL PRESS LTD; 1995:214–216.

doi:10.1186/1748-7188-8-13
Cite this article as: Milo et al.: Unrooted unordered homeomorphic subtree
alignment of RNA trees. Algorithms for Molecular Biology 2013 8:13.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Keywords

	Background
	Our contribution

	Preliminaries
	Tree notations
	Min-Cost bipartite matching
	The (generalized) Min-Cost bipartite matching problem (MCM)
	Cavity MCM
	Ordered MCM variants

	Homeomorphic subtree alignment
	Rooted and ordered alignments

	Algorithm for homeomorphic subtree alignment
	Recursive computation
	Time complexity of Algorithm 1
	Improving the time complexity

	Algorithms for bipartite matching problems
	Efficient algorithm for MCM
	Reducing MCM to Min-Cost Max-Flow
	Efficient computation and time complexity
	Additional practical improvements using sparsification

	Efficient algorithms for All-Cavity-MCM and All-Pairs-Cavity-MCM
	Time complexity of Algorithm 2

	Implementation details
	RNA tree representation
	Alignment cost function
	Relative scoring
	p-Value computation

	Results
	RNase P family
	The Hammerhead Ribozyme family

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

