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Downlink user selection and resource allocation for semi-elastic
flows in an OFDM cell

Chao Yang • Scott Jordan

� Springer Science+Business Media New York 2013

Abstract We are concerned with user selection and

resource allocation in wireless networks for semi-elastic

applications such as video conferencing. While many packet

scheduling algorithms have been proposed for elastic

applications, and many user selection algorithms have been

proposed for inelastic applications, little is known about

optimal user selection and resource allocation for semi-

elastic applications in wireless networks. We consider user

selection and allocation of downlink transmission power and

subcarriers in an orthogonal frequency division multiplexing

cellular system. We pose a utility maximization problem, but

find that direct solution is computationally intractable. We

first propose a method that makes joint decisions about user

selection and resource allocation by transforming the utility

function into a concave function so that convex optimization

techniques can be used, resulting in a complexity polynomial

in the number of users with a bounded duality gap. This

method can be implemented if the network communicates a

shadow price for power to power allocation modules, which

in turn communicate shadow prices for rate to individual

users. We then propose a method that makes separate deci-

sions about user selection and resource allocation, resulting

in a complexity linear in the number of users.

Keywords Communication system traffic control �
Cellular networks

1 Introduction

Use of video applications on cellular networks has mush-

roomed in recent years. It is now estimated that video

comprises one third of downstream North American mobile

Internet access peak period traffic [1]. Most of this video

traffic is streaming encoded using either Adobe Flash or

MPEG. Some of this video traffic is video conferencing,

e.g. Apple’s FaceTime for iPhones and Skype’s video con-

ferencing application for smartphones. All of the video

conferencing traffic and a sizeable portion of the video

streaming traffic is semi-elastic, meaning that these appli-

cations can cope with significant but limited variation in

throughput over short time periods.

Semi-elastic applications pose considerable challenges to

resource allocation in cellular networks, which have largely

been designed to support inelastic applications, e.g. constant

bit rate voice, and elastic applications, e.g. email and web-

browsing. Resource allocation in wireless networks is par-

ticularly sensitive to variation, since wireless networks not

only experience variation in demand but also variation in

capacity due to fluctuations in the wireless channel.

Resource allocation for inelastic applications has been

well studied. Inelastic applications can not withstand much

variation in short-term throughput over the duration of the

connection, since they typically require that a very high

percentage of packets be received within a fraction of a

second. The classic approach to wireless resource alloca-

tion for inelastic applications focuses on a decision of

which users should be active and thus consume wireless

resources. The most common approaches are to minimize

the usage of wireless resources (often power or channels)

given a set of active users. This is often referred as margin

adaption [2]. Another common approach is to allocate

resources based on the impact that these resources have
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upon application performance. Typically resources such as

carriers and power are mapped into rate, which is then

mapped into application utility. Since inelastic applications

can not withstand much short-term variation, utility usually

is modeled as rising quickly as performance reaches an

acceptable level. For instance, utility is often modeled as a

step function of rate, which reflects the requirement to

achieve a constant bit rate if this user is active. Resource

allocation usually attempts to maximize total user utility.

This again focuses on a decision of which users should be

active, and commonly the optimization requires some type

of bin-packing algorithm, see e.g. [3].

Resource allocation for elastic applications has also

been well studied. Elastic applications can withstand a

great deal of variation in short-term throughput over the

duration of the connection, since they are typically not very

interactive. Many of these applications measure perfor-

mance by completion time not by short-term throughput.

The classic approach to wireless resource allocation for

elastic applications chooses to make all users active and

thus focuses on the wireless resources each consumes. The

most common approaches are to maximize capacity, often

measured by total user throughput, and/or to minimize the

usage of wireless resources (often power or channels) given

a set of active users, see e.g. [4–7]. As with inelastic

applications, an alternate approach is to represent an

application’s satisfaction with its performance using a

utility function. Again, typically resources such as carriers

and power are mapped into rate, which is then mapped into

utility. Since elastic applications can withstand much short-

term variation, utility usually is modeled as an increasing

concave function of rate. Resource allocation again usually

attempts to maximize total user utility. As a consequence

of the concavity, however, convex optimization techniques

can often be used for elastic applications, and these tech-

niques can be used to design packet scheduling algorithms,

see e.g. [8–12].

In contrast, resource allocation in cellular networks for

semi-elastic applications has not been well studied. A few

papers have proposed modeling semi-elastic applications

using sigmoid utility function, which are convex at rates

less than a threshold and concave at rates above that

threshold. This shape is thought to reflect the nature of the

compression techniques used in semi-elastic applications,

which are designed to adjust to fluctuations provided that

short-term throughput remains above a threshold, but

which do not fail gracefully when short-term throughput

falls below that threshold. The convex portion of a sigmoid

utility function implies that resource allocation algorithms

for semi-elastic applications must decide which users

should be active, similar to those for inelastic applications.

However, the concave portion of a sigmoid utility function

implies that resource allocation algorithms for semi-elastic

applications must also decide which wireless resources

should be allocated to each active user, similar to those for

elastic applications. Lee et. al. [13] consider semi-elastic

applications in Code Division Multiple Access (CDMA)

systems. They propose first using pricing to select which

users should be active. They then use pricing again to

allocate power to these users. Hande et. al. [14] consider

semi-elastic applications in wireline systems. They ignore

user selection. They propose using pricing to allocate wir-

eline capacity, and give conditions under which the Nash

equilibrium using marginal cost pricing maximizes total

user utility. Cheung et. al. [15] consider wireless local area

networks with mixed elastic and semi-elastic applications.

They also use price based algorithms to allocate rate. Abbas

et. al. [16] propose a general framework, which is also based

on a pricing algorithm, to allocate bandwidth for elastic and

semi-elastic applications in the Internet. Jiong et. al. [17]

analyze bandwidth allocation problems for inelastic and

semi-elastic applications in wireless sensor networks.

We are concerned here with downlink resource alloca-

tion for semi-elastic applications in orthogonal frequency

division multiplexing (OFDM) cellular systems. In an

OFDM system, the broadband wireless channel is divided

into a set of orthogonal narrowband subcarriers, each of

which can be allocated to an individual user. The wireless

resources are thus comprised of both base station trans-

mission power and subcarriers. This makes the resource

allocation problem moderately more complex than the

CDMA system and other wireless systems considered in

[13, 15, 17] or the wireline system considered in [14, 16],

which consider allocation of a single type of resource

(power, rate, or bandwidth).

A reasonable conjecture is that it may be simple to

combine utility maximization based approaches to resource

allocation for inelastic applications and elastic applications

and arrive at a reasonable approach for semi-elastic

applications. However, as we discuss in detail below, such

an approach would require the combination of some type of

bin-packing algorithm with convex optimization tech-

niques, resulting in a mixed integer program that is com-

putationally prohibitive to solve.

In this paper, we propose two methods with moderate

complexity to allocate resources for semi-elastic applica-

tions. The first method jointly makes decisions about which

users should be active and what downlink power and

subcarriers to allocate to each such active user. The basic

idea is to solve the dual problem and we show how active

user selection, power allocation, and subcarrier allocation

can be efficiently accomplished using shadow cost pricing.

The computational complexity of the resulting algorithm is

polynomial in the number of users. Not surprisingly, the

resulting active user selection is suboptimal; however, we

present a bound on the corresponding duality gap.
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The second proposed method separates the decisions

about which users should be active and what downlink

power and subcarriers to allocate to each such active user.

The first stage focuses on active user selection, and uses a

greedy algorithm that attempts to ensure that every active

user will obtain a rate at least equal to the rate at the

maximum average utility. The second stage takes the active

user set as given and uses standard convex optimization

techniques to allocate power and subcarriers. Separating

the decisions reduces the computational complexity so that

it is now linear in the number of users. Of course, this

separation comes at the cost of a decrease in total user

utility, but we show in numerical examples that this

decrease is small except when the base station transmission

power is low enough that user blocking is high.

The rest of this paper is organized as follows. In Sect. 2,

we pose the problem and find that direct solution requires

solving a large set of fixed point equations. We turn to a

dual formulation in Sect. 3, and show that the complexity

can be reduced with a small loss in efficiency by distrib-

uting the resource allocation process amongst users, the

network, and intermediate power allocation modules. The

network allocates power and subcarriers, and charges

the power allocation module a shadow price for power. The

power allocation module translates this price per unit

power into a price per unit rate, and resells the system

resources to users. Users choose desired rates based on the

cost and the resulting utility. We pose an iterative algo-

rithm that determines near-optimal shadow prices. The

resulting algorithms are polynomial in the number of users

but less complex than direct solution of the primal prob-

lem. In Sect. 4, we derive properties of the resulting allo-

cation and a bound on the sub-optimality. We then propose

an algorithm in Sect. 5 with a complexity linear in the

number of users, by decomposing subcarrier allocation and

rate scheduling. Finally in Sect. 6 we show via simulation

that the performance of this latter algorithm is very close to

that of the dual iterative algorithm, with the principal loss

emanating from the simplified subcarrier allocation.

2 System model and problem formulation

We focus on the downlink of a single OFDM cell serving

K users, with N subcarriers. The bandwidth of each sub-

carrier is B which is assumed to be less than the coherence

bandwidth of the channel so that the channel response can

be considered flat [18] .1 The rate of user k on subcarrier

n in time slot t is:

rk;n;tðpk;n;tÞ ¼ B log2 1þ pk;n;t

H2
k;n;t

d2 þ I

 !
ð1Þ

where pk,n,t is the power allocated, Hk,n,t is the composite

channel fading which includes both the small scale fading

and pathloss, I is the interference power and d2 is the noise

power. The channel fading is assumed known at the base

station. The total rate of user k is:

Rk;t ¼
XN

n¼1

wk;n;trk;n;t ð2Þ

where wk,n,t is an indicator of subcarrier assignment, i.e.

wk,n,t = 1 if subcarrier n is allocated to user k in time slot

t and wk,n,t = 0 otherwise.

The natural optimization metric, as used in many pre-

vious papers, is total user utility. The utility of user k in

time slot t is assumed to be a function Uk(Rk,t) which maps

the rate Rk,t to the level of satisfaction perceived by the

application. From Eqs. (1) and (2), user k’s utility can be

represented as:

Uk

XN

n¼1

wk;nB log2 1þ pk;n;t �
H2

k;n

d2 þ I

 ! !
ð3Þ

In this paper, as with many in the literature, we focus on

a snapshot of the system, and thus for the remainder of the

paper, we drop the time t subscript on all variables for

simplicity of presentation. Consideration of the impact of

the variation of resource allocation over time remains a

topic for future research. We expect that there the results

presented here can be used to guide development of

connection access control, e.g. a measurement-based

method may admit users on the basis of an admitted

user’s expected utility, expected rate, and/or in what

percentage of slots an admitted user can be expected to be

active.

Denote the subcarrier allocation by a vector w = {wk,n},

and the power allocations by a vector p = {pk,n}. Maxi-

mization of total user utility can be represented as:

U�tot ¼ max
w;p

XK

k¼1

UkðRkÞ

s.t.
XK

k¼1

XN

n¼1

pk;n�PT ; pk;n� 0 8k; n

XK

k¼1

wk;n� 1 8n; wk;n ¼ 0 or 1 8k; n

ð4Þ

where PT is the total downlink power available to the base

station. User k’s rate Rk, given its allocated subcarriers and

power, can be found using (2). We call user k inactive in

the current time slot if Rk = 0, i.e. if the user has not been

allocated power and subcarriers.

1 A major advantage of OFDM is that each subcarrier can be

considered as flat fading. Aspects of frequency selective fading are

typically addressed at the physical layer.
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For elastic applications, it is often assumed that Uk is an

increasing concave function of the rate Rk. If the maximi-

zation was purely over power allocation, e.g. as in CDMA

systems, then the constraint set is convex, and thus the

optimization is a convex problem. Packet scheduling

algorithms have been proposed for elastic applications in

CDMA systems based on standard convex optimization

techniques, see e.g. [9, 11].

In OFDM systems, however, the integer constraints on

w are required to ensure that each subcarrier can be allo-

cated to at most one user. These constraints make this

optimization problem a mixed-integer program, which is

computationally intensive to solve. Some papers, see e.g.

[6], have proposed eliminating the integer constraints by

allowing subcarriers to be split between users, i.e. by

replacing wk,n = 0 or 1 V k, n with 0 � w � 1. For elastic

applications, the resulting optimization is then a convex

problem, and packet scheduling algorithms have been pro-

posed for elastic applications in OFDM systems based on

standard convex optimization techniques, see e.g. [10, 12].

For inelastic applications, in contrast, it is often assumed

that Uk is a step function of the rate Rk, i.e. utility is zero if

the rate is below a threshold and a positive constant if the

rate is above the threshold. As a result, convex optimiza-

tion techniques can not be directly applied in either CDMA

or OFDM systems. In CDMA systems, the step function

implies only one efficient choice for power allocation if a

user is active. In this case, the base station need only

identify the active user set (and corresponding transmission

powers). The general approach to such cases is bin-pack-

ing. However, the complexity of bin-packing algorithms is

high, and thus some papers have proposed identifying users

that should be active using pricing of power. The resulting

algorithms often select users that have high surplus, defined

as utility minus the cost of the allocated resources, see e.g.

[3, 19]. It is likely that a similar approach could be used in

OFDM systems.

For semi-elastic applications, however, utility is

assumed to be a sigmoid function as pictured in Fig. 1,

namely there exists an inflection point Rk
f such that Uk is

convex for Rk \ Rk
f and concave for Rk [ Rk

f . We denote

the tangent point rate at the maximum average utility by Rk
’ ,

namely R0k ¼ arg maxRk
Uk=Rk (Our notation is summa-

rized in Table 1.)

Semi-elastic applications in OFDM systems thus present

two difficulties: non-concavity of the utility function and

integer constraints on subcarrier allocation. To eliminate

the integer constraints, one could follow the lead of other

papers and allow subcarriers to be split between users:

replace wk,n = 0 or 1 V k, n by 0 � w � 1, define

sk,n = wk,npk,n as the power allocated to user k on subcar-

rier n, and change the power constraint to
P

k=1
K P

n=1
N

sk,n B PT. The constraint set thus becomes convex. The

new objective function is

XK

k¼1

Uk

XN

n¼1

wk;nB log2 1þ sk;n

wk;n
�

H2
k;n

d2 þ I

 ! !
ð5Þ

which is neither convex nor concave.

The Lagrange function is:

Jðw; s; l; mÞ

¼
XK

k¼1

Uk

XN

n¼1

wk;nB log2 1þ sk;n

wk;n
�

H2
k;n

d2 þ I

 ! !

þ l PT �
XK

k¼1

XN

n¼1

sk;n

 !
þ
XN

n¼1

mn 1�
XK

k¼1

wk;n

 !

where l and m are Lagrange multipliers for the power and

subcarrier constraints respectively.

If utility was concave, then convex optimization tech-

niques could be directly applied. Since utility is sigmoid,

they can not. It can be easily shown that the corresponding

Karush-Kuhn-Tucker necessary conditions lead to:

Uk

Duality
Gap

Rk
f Rk’ Rk

Fig. 1 Sigmoid utility function

Table 1 Notation

Notation Description

K number of users

N number of subcarriers

Hk,n composite channel fading of user k on subcarrier n

pk,n allocated power to user k on subcarrier n

rk,n rate of user k on subcarrier n

wk,n indicator of allocation of subcarrier n to user k

Rk rate of user k

B subcarrier bandwidth

PT downlink power of base station

I and d2 interference power and noise power

Uk utility function of user k

Rk
’ rate of user k at maximum average utility

Wireless Netw
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pk;n ¼
sk;n

wk;n
¼ BU0kðRkÞ

l ln 2
� d2 þ I

H2
k;n

 !þ
ð6Þ

oJ

owk;n
¼ BU0k Rkð Þ log2 1þ sk;n

wk;n

H2
k;n

d2 þ I

 !
� 1

ln 2

sk;n=wk;n

sk;n

wk;n
þ d2þI

H2
k;n

2
4

3
5

� mn

ð7Þ

where ðxÞþ,maxð0; xÞ and

U0k Rkð Þ ¼ U0k
PN
n¼1

wk;nB log2 1þ sk;n

wk;n
� H2

k;n

d2þI

� �� �
.

Subcarrier allocation is based on (7), which in turn

requires solving (6); however, direct solution of (6) requires

solving KN nonlinear fixed point equations. This is simpler

than solving the mixed integer programming problem but

nevertheless computationally difficult. Moreover, since

these equations are not sufficient conditions for optimality,

there may be multiple solutions which must be compared to

identify the optimal solution.

Alternately, one may try to apply the same techniques

used for inelastic applications. However, for semi-elastic

applications there are an infinite number of efficient choi-

ces for power allocation if a user is active. Thus bin-

packing algorithms can not be used.

We are thus motivated to look for a less computationally

complex but possibly sub-optimal solution.

3 Solution and algorithm based on dual decomposition

3.1 Dual formulation

Due to the computational complexity of solving even the

relaxed version of problem (4), in the remainder of the

paper we propose two methods with moderate complexity

to allocate resources for semi-elastic applications. In this

section, we present a method that jointly makes decisions

about which users should be active and what downlink

power and subcarriers to allocate to each such active user.

We propose to use a dual formulation, and identification of

an active user set, and allocation of downlink transmission

power and subcarriers to active users, can be accomplished

with a small loss in efficiency using an iterative search for

optimal shadow prices.

The idea, used previously for strictly concave utility

functions [20], is to decompose the allocation of power and

subcarriers and the determination of user rate Rk using an

intermediate variable dk as a lower bound on the achieved rate

Rk. Using this decomposition, problem (4) can be rewritten as:

max
w;p;d

XK

k¼1

UkðdkÞ ð8Þ

s.t.Rk � dk;
XK

k¼1

XN

n¼1

pk;n�PT ; pk;n� 0 8k; n

XK

k¼1

wk;n� 1 8n; wk;n ¼ 0 or 1 8k; n

where d represents {dk} and Rk is calculated using (2). User

k is thus active if and only if dk [ 0. The new problem (8)

must have the same solution as the original problem (4),

since Uk is an increasing function of dk, and thus at the

optimum dk = Rk.

A standard approach to reduce computational com-

plexity is to search for the optimal Lagrange multipliers

and to let them determine the optimal resource allocation

rather than to directly search for the optimal power and

subcarrier allocations. This can be done by posing a dual

problem, see e.g. [21]. Each subcarrier can be allocated to

at most one user; this requirement can be simply expressed

by defining a set A = {p s.t. V n, pk,n [ 0 for at most one

user k }, and thus wk,n = 1 if and only if pk,n [ 0. Within

this set, there is always a feasible solution to problem (8),

since dk can be set to an arbitrarily small value. This allows

us to incorporate the subcarrier assignments w into the

power allocations p. The Lagrange function of (8) is given

by:

Jðd; p; k; lÞ ¼
XK

k¼1

Uk dkð Þ þ l PT �
XK

k¼1

XN

n¼1

pk;n

 !

þ
XK

k¼1

kkðRk � dkÞ ð9Þ

where Rk is now given by Rk =
P

n=1
N rk,n with rk,n

determined by (1), k are the Lagrange multipliers for the

rate constraints, and l is the Lagrange multiplier for the

power constraint. The dual function is then given by:

Jðk; lÞ ¼ max
p2A;d

Jðd; p; k; lÞ

and the dual problem is to optimally choose the Lagrange

multipliers:

J
� ¼ min

k;l
Jðk; lÞ s.t. k � 0; l� 0 ð10Þ

The dual function can be decomposed into two pieces,

Jðk; lÞ ¼ f1ðkÞ þ f2ðk; lÞ; where:

f1ðkÞ ¼ max
d

XK

k¼1

UkðdkÞ � kkdkð Þ ð11Þ

f2ðk; lÞ ¼ max
p2A

XK

k¼1

kkRk þ l PT �
XK

k¼1

XN

n¼1

pk;n

 !" #
ð12Þ

The first piece of the dual function, f1ðkÞ; can be used to

determine the set of active users. If utility were strictly

concave, demand for rate would be a continuous and
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decreasing function of the Lagrange multiplier kk. For

sigmoid utility, however, the solution for (11) is not

continuous. Define kk ¼ dUkðRkÞ=dRkjðRk ¼ R
0
kÞ as the

slope of the utility curve at the tangent point rate. When

kk\kk; user k should be active and should be allocated a

rate dk [ Rk
’ that is a continuous and decreasing function of

kk. When kk ¼ kk; however, (11) produces a tie between

dk = 0 and dk = Rk
’ ; we break the tie using dk = 0 if

Rk = 0 and dk = Rk
’ otherwise. When kk [ kk; user

k should be inactive.

The second piece of the dual function, f2ðk; lÞ; can be

used to determine the power allocation. It can be further

decomposed into N independent problems:

f2ðk; lÞ ¼
XN

n¼1

f2;nðk; lÞ þ lPT

where

f2;nðk; lÞ ¼ max
p2A

XK

k¼1

kkrk;n � l
XK

k¼1

pk;n

 !
ð13Þ

Thus the dual problem (10) can be represented as:

J
� ¼ min

k;l
f1ðkÞ þ

XN

n¼1

f2;nðk; lÞ þ lPT

" #
ð14Þ

According to the first order condition qf2,n/qpk,n = 0, the

solution to the maximization in (13) is

pk;n ¼
Bkk

l ln 2
� d2 þ I

H2
k;n

 !þ
ð15Þ

Substituting (15) into (13) and simplifying we obtain

f2;nðk; lÞ ¼ max
k

Uk;n ð16Þ

where

Uk;n ¼ kkB log2

Bkk

l ln 2

H2
k;n

d2 þ I

 !" #þ
�l

Bkk

l ln 2
� d2 þ I

H2
k;n

 !þ

Use of the dual problem removes the need for a mixed

integer program by more elegantly satisfying the integer

constraints. Rather than treating subcarriers as a separate

allocation from power, subcarrier assignments are incorporated

into power allocations using the set A. The restriction that a

subcarrier can not be allocated to more than one user is

elegantly implemented in (16).

Use of the dual problem allows standard convex

optimization techniques to be used to create a resource

allocation. However, the solution to the dual problem

may not be the same as the solution to the primal

problem. Comparing the conditions for the solution to

the dual problem, Eqs. (15) and (16), with the conditions

for optimality of the primal problem, Eqs. (6) and (7),

we find that the only difference is that Uk
’ (Rk) in the

primal conditions has been replaced by kk in the dual

conditions.

If utility was concave, Uk
’ (Rk) = kk, and thus the primal

and dual solutions are identical. However, for sigmoid

utility, Uk
’ (Rk) = kk only when Rk [ Rk

’ , and thus the

primal and dual solutions are not identical if the primal

solution allocates a rate less than Rk
’ to any user, as

illustrated in Fig. 1. In this situation, the dual problem

generates a solution in which, following (11), such users

will choose a rate dk equal either to zero or Rk
’ . In the

literature on non-convex optimization, this discrepancy is

referred to as a duality gap [21]. In Sect. 4, we will show

that the duality gap is bounded.

3.2 Algorithm development

The decomposition also indicates a method of distributing

the optimization. The benefits of distributed optimization

are that the base station doesn’t need to know the exact

utility function of each user and this will reduce signalling

between the base station and users. The determination of

the desired rates d in (11) indicates a role for each user,

while the determination of Lagrange multiplier l in (14)

indicates a role for the network. These two roles must be

done in coordination. The decomposition suggests to us

that there should be an intermediate power allocation

module which determines the Lagrange multipliers k in

(14) and determines the powers p in (15). The communi-

cation between the users, power allocation module, and

network is illustrated in Fig. 2.

Each of these three roles has a local optimization to

accomplish. These can be done iteratively as follows,

where the iteration number is denoted by a superscript i.

(1) User k Algorithm: Given kk
i ,

diþ1
k ¼ arg maxdk

½UkðdkÞ � ki
kdk	

(2) Network Algorithm: Given tentative power and

subcarrier allocations p 2 A;

liþ1 ¼ ½li þ si
Bzi

B	
þ

where sB
i is a positive scalar stepsize, ½�	þ is the projection

on Rþ; and zB
i = sgn(

P
k=1
K P

n=1
N pk,n

i - PT).

Fig. 2 Communication

between user, power allocation

module, and network
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(3) Power Allocation Algorithm: Given target rates di

and Lagrange multiplier li, allocate p using (15) and

(16) and update kiþ1 as follows

kiþ1 ¼ ½ki þ si
Pzi

P	
þ

where sP
i is a positive scalar stepsize and zP

i is any feasible

direction that satisfies sgn(kk
i?1 - kk

i ) = sgn(dk
i - Rk

i ) V k.

This set of algorithms has an economic interpretation.

The Lagrange multipliers k can be interpreted as shadow

costs for rate. If user k is charged a price kk per unit rate,

then (11) states that the system should allocate rate so as to

maximize total user surplus, defined as total user utility

minus total user cost. The user k algorithm implements this

local optimization for user k. Similarly the Lagrange

multiplier l can be interpreted as a shadow cost for power.

The network algorithm iteratively adjusts each l by raising

it if the demand exceeds the supply, and lowering it if the

supply exceeds the demand.2

The job of the power allocation module is to purchase

power at a price l per unit power, and to resell it in the

form of rate to individual users. The power allocation

algorithm purchases power using (15) and (16), and itera-

tively adjusts each price kk by lowering it if the resulting

average rate exceeds the user’s purchased rate, and raising

it if the purchased rate exceeds the average rate.3 These

two actions can be interpreted as an attempt by the power

allocation module to maximize profit, defined as revenue

from users minus cost for power, as illustrated in (13).

3.3 Algorithm convergence and optimality

The solution to a dual formulation is not in general guar-

anteed to converge, and if it does converge it is not guar-

anteed to converge to the allocation that is optimal for the

primary problem. We address these issues in this subsec-

tion, first focussing on the optimality question.

In non-cooperative settings, a Nash equilibrium can be

defined as follows. Let x ¼ ðx1; . . .; xnÞ with xi 2 Si denote

the set of strategies of all players, called a strategy profile

vector, and let S ¼ S1 
 S2. . .
 Sn denote the possible set

of such strategies. Let f ¼ ðf1ðxÞ; . . .; fnðxÞÞ denote the

resulting payoff to each player. Denote by x-i a strategy

profile of all players except for player i.

Definition 1 [22] A strategy profile x� 2 S is a Nash

equilibrium of a game (S, f) if no unilateral deviation in

strategy by any single player is profitable for that player,

that is

8i; xi 2 Si; xi 6¼ x�i : fiðx�i ; x��iÞ[ fiðxi; x
�
�iÞ

Our setting forces users to cooperate, in an attempt to

maximize total user utility, by charging them prices.

Nevertheless, we can view each user, plus the network and

the power allocation, as a player. The Nash equilibrium of

these players formally defines the equilibrium of the user,

network, and power allocation algorithms. If the user,

network, and power allocation algorithms converge, then

they converge to the Nash equilibrium.
In general, the Nash equilibrium only guarantees that no

user can increase utility by unilaterally changing its target

rate. It does not necessarily guarantee that total utility is

maximized.

The duality gap between the dual and primal problems is

J
� � U�tot. For strictly concave utility functions, the duality

gap is always 0, and the dual problem always gives the

same solution as the primal problem; hence, development

of resource allocation algorithms based on the dual prob-

lem is relatively straightforward. However, for semi-elastic

flows utility is not concave. Our first lemma establishes

when, under sigmoid utility, the dual problem gives the

same solution as the primal problem:

Lemma 1 If
P

k=1
K P

n=1
N pk,n = PT and Rk = dk V k, then

J
� ¼ U�tot:

Proof Under the hypotheses, (9) gives Jðd; p; k; lÞ ¼PK
k¼1 Uk Rkð Þ; and thus (10) gives J

� ¼ U�tot:

The next theorem addresses when the Nash equilibrium

of the user, network, and power allocation algorithms

results in the optimal solution.

Denote the rates of the dual problem (10) at the Nash

equilibrium as fR�kg: Since from (11) user k will never

select a rate 0 \ dk \ Rk
’ , it follows from lemma 1 that the

duality gap is 0 if
P

k=1
K P

n=1
N pk,n = PT and R

�
k ¼ 0 or

R
�
k [ R

0
k 8k: As a consequence, the Nash equilibrium

maximizes total user utility:

Theorem 1 If there exists a Nash equilibrium for the

user, network and power allocation algorithms, then the

duality gap is 0 and the Nash equilibrium is the optimal

solution of the primary problem (4).

Proof At the Nash equilibrium
P

k=1
K P

n=1
N pk,n = PT and

R
�
k ¼ 0 or R

�
k [ R

0

k 8k; and thus the duality gap is 0.

Jðd; p; k; lÞ ¼
PK

k¼1 Uk Rkð Þ and the solution of dual

problem is the optimal solution of the primary problem (4).

h

We now turn to the issue of convergence. The challenge

is that the user, network, and power allocation algorithms

may not converge to a Nash equilibrium. This typically

would occur when the solution to the primal problem

2 Many optimization methods may be used; below we propose a

bisection method.
3 Many optimization methods may be used; below we propose a

subgradient method.
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includes at least one active user with a rate Rk below Rk
’ . In

this case, the duality gap is greater than 0, and the solution

to the dual problem does not satisfy the power constraints.

As a result, the algorithms may oscillate and not jointly

converge to an equilibrium point. The algorithms must thus

be modified to guarantee convergence.

One way is to force the algorithms to terminate by

placing limits on the shadow costs. For the power alloca-

tion algorithm, we propose a subgradient method with

bounds to update k:

kiþ1
k ¼ max½minðki

k þ si
Pðdi

k � Ri
kÞ; kkÞ; k	 ð17Þ

with a suitable choice of step size. The lower bound k can be

set to the slope of the utility function at the rate that would be

achieved if a single user were allocated all system resources.

In practice, the lower bound may be set by the base station at

a slightly higher level to decrease convergence time, but the

influence of lower bound on convergence time is very slight.

The duality gap will not be influenced by the lower bound.

The upper bound can be set to kk ¼ dUkðRkÞ=dRkjðRk ¼ R
0
kÞ:

If the utility function is not known by the base station, then

these bounds may require that some minimal information if

transmitted from the users to the base station. From (11), we

know if dk [ 0 the user should be active. Thus, the active

user set and resource allocation can be decided together.

If the problem were convex, then a diminishing step size

can guarantee convergence, see e.g. [23]. However, for

non-convex problems, convergence is not guaranteed;

indeed, Hande et. al. [14] show that similar algorithms may

fluctuate around the optimal point if a user’s allocated rate

is near the tangent point. Thus, here we force the iteration

for k to terminate when:

jkiþ1
k � ki

kj\d 8k or Riþ1
k ¼ Ri

k 8i ð18Þ

where d is a small constant.

For the update of l in the network algorithm, we pro-

pose a bisection algorithm:

If zi
B [ 0; then liþ1 ¼ ðli þ liÞ=2; liþ1 ¼ li; liþ1 ¼ li

else liþ1 ¼ ðli þ liÞ=2; liþ1 ¼ li; liþ1 ¼ li

ð19Þ

where the initial lower bound l0 can be set to a small

suitable constant and the initial upper bound l0 can be

derived from (17) as l0 ¼ maxk;n ðBkkH2
k;nÞ=½ðd

2 þ IÞ ln 2	:
The iteration for l is terminated when:

jliþ1 � lij\� ð20Þ

where � is a small constant.

We call the resulting algorithm, outlined in Table 2,

Dual Iteration Search (DIS). Our algorithm is based on

multi-layer decomposition. We first determine the optimal

price per unit power l, and then determine the optimal

prices per unit rate k:

If the Nash equilibrium of the user, network, and power

allocation algorithms without the bounds and stopping

rules introduced in (20), (17), and (18) exists, then the

previous theorem states that the result is optimal. If such a

Nash equilibrium does not exist, then the bounds and

stopping rules guarantee termination in finite time, but

result is likely not optimal. The suboptimality is caused by

a duality gap greater than 0, which occurs when the optimal

solution to the primal problem includes at least one active

user with a rate Rk below Rk
’ . In Sect. 4, this gap will be

analyzed in detail. In this situation, the solution to the dual

problem likely allocates such users a rate equal to Rk
’ .

However, this causes the power constraints of the primal

problem to be violated. The DIS algorithm will respond to

this constraint violation by raising the price per unit pow-

er l until the constraint is satisfied. As a result, the DIS

algorithm will allocate such users a rate below Rk
’ , but will

also allocate other users slightly lower rates than the

solution to the dual problem. The result of the DIS algo-

rithm thus approximately represents the dual solution

projected into the primal constraint set.

The complexity of subgradient updates is polynomial in

the dimension of the dual problem, and thus the complexity

of the DIS algorithm is polynomial in the number of users K.

4 Properties of the solution to the dual problem

To understand the results more thoroughly, in this section

we derive properties of the solution to the dual problem.

These properties concern power and subcarrier allocation,

the probability of outage, and the duality gap. The first two

properties characterize the power and subcarrier allocation

of the optimal solution to the dual problem.

Table 2 Dual iteration search

Initialize l0 ¼ l0; k0
k ¼ k 8k

Repeat

Repeat

Allocate subcarrier by (16)

Allocate power by (15)

Update l using (19)

Until (20)

If kiþ1
k ¼ kk

If Rk
i?1 = 0 then dk

i?1 = 0 Else dk
i?1 = Rk

’

Else calculate dk
i?1 by (11)

Update k using (17)

Until (18)
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Property 1 Power and subcarrier allocations are a func-

tion of the ratio of the optimal shadow costs, {kk/ l} and of

user channels {Hk,n}.

Proof Power and subcarrier allocation are determined by

maximization of Uk;n; given in (18). Because the shadow cost

for power, l is the same for all users, dividingUk;n by l gives:

Uk;n

l
¼ kk

l
B log2

Bkk

l ln 2

H2
k;n

d2 þ I

 !þ
� Bkk

l ln 2
� d2 þ I

H2
k;n

 !þ

ð21Þ

As a result, subcarrier allocation is a function of {kk/l} and

of {Hk,n}. Power allocation, as given by (15), is also a

function of {kk/l} and of {Hk,n}. h

The ratio of the optimal shadow costs, {kk/l}, has units

power per unit rate, and can be thought of as the efficiency

of power use.

Property 2 (a) If all users have the same composite

channel fading Hk,n
2 on subcarrier n, the subcarrier will be

allocated to the user(s) with the highest shadow cost for rate,

kk. (b) If all users have the same shadow cost for rate, kk,

subcarrier n will be allocated to the user(s) with the highest

composite channel fading Hk,n
2 on subcarrier n. (c) If all users

have the same product of shadow cost for rate and composite

channel fading on subcarrier n, kk Hk,n
2 , the subcarrier will be

allocated to the user(s) with the worst channel.

Proof

(a) The derivative of Uk;n to kk is

oUk;n

okk
¼ B log2

Bkk

l ln 2

H2
k;n

d2 þ I

 !þ
[ 0

Uk;n is an increasing function of kk. Thus under the same

channel fading condition, the user(s) with the highest kk

will be assigned subcarrier n.

(b) The derivative of Uk;n to Hk,n
2 is

oUk;n

oH2
k;n

¼ 2l
H2

k;n

Bkk

l ln 2
� d2 þ I

H2
k;n

 !
[ 0

Uk;n is an increasing function of Hk,n
2 . Hence if all the users

have the same kk, the user(s) with the highest Hk,n
2 will be

assigned subcarrier n.

(c) We further rearrange equation (24) as follows:

Uk;n

l
¼ 1

H2
k;n

BkkH2
k;n

l
log2

Bkk

l ln 2

H2
k;n

d2 þ I

 !þ"

�
BkkH2

k;n

l ln 2
� ðd2 þ IÞ

 !þ#

The user(s) with the lowest Hk,n
2 will have the highest Uk;n

and thus be assigned subcarrier n.

The next property concerns the probability of outage,

Pr(Rk = 0). Suppose the composite channel fading Hk,n
2

consists of a deterministic pathloss PLk and random small

scale fading ak,n
2 , i.e. Hk,n

2 = ak,n
2 / PLk. The probability of

outage can be related to the maximum average utility per

unit rate, kk ¼ dUkðRkÞ=dRkjðRk ¼ R
0
kÞ :

Property 3 Pr(Rk [ 0) is an increasing function of kk:

Proof Denote the relationship between Uk;n and ak,n
2 ,

given in (21), as Uk;nða2
k;nÞ: We would like to define the

inverse of this function, U�1
k̂;n

Uk;nða2
k;nÞ

� �
: When Uk;n [ 0;

Uk;n is a monotonically increasing function of ak,n
2 , and

thus Uk;n is a one-to-one function in this domain. However,

there may be multiple values of ak,n
2 for which Uk;nða2

k;nÞ ¼
0: However, Uk;n ¼ 0 if and only if pk,n = 0, and using (15)

it follows that Uk;n ¼ 0 if and only if ak;n�PLkl ln 2ðd2 þ IÞ=
ðBkkÞ: Thus if we define U�1

k;nð0Þ ¼ PLkl ln 2ðd2 þ IÞ=ðBkkÞ;
then Uk;nða2

k;nÞ is a one-to-one function and thus the inverse

U�1
k̂;n

Uk;nða2
k;nÞ

� �
exists.

In the dual problem, the event Rk = 0 occurs if and only

if kk ¼ kk: Thus:

PrðRk [ 0Þ ¼ N

Zþ1
U�1

k;nð0Þ

YK
k̂¼1;k̂ 6¼k

Zþ1
k=l

ZU�1

k̂;n
Uk;nða2

k;nÞð Þ

0

f ða2
k̂;n
Þda2

k̂;n

f ðkk̂=lÞdðkk̂=lÞf ða
2
k;nÞda2

k;n

ð22Þ

Since U�1
k̂;n

Uk;nða2
k;nÞ

� �
is an increasing function of kk

and U�1
k;nð0Þ is a decreasing function of kk; it follows that

Pr(Rk [ 0) is an increasing function of kk:

If the shadow cost per unit rate is low enough, a user

will be active and will likely achieve a rate above Rk
’ , the

rate at the maximum average utility. The probability of

outage thus depends critically on the maximum average

utility per unit rate, kk:

The final property provides a bound on the duality gap.

Let Rk
l denote the rate in the convex portion of user k’s

utility curve at which the marginal utility equals kk; i.e.

0 \ Rk
l \ Rk

f such that dUkðRkÞ=dRkjðRk ¼ Rl
kÞ ¼ kk: The

maximum duality gap for a particular user occurs when that

user achieves rate Rk
l . It can be shown that the duality gap

can be bounded by the sum of the differences between kkRl
k

and Uk(Rk
l ).
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Property 4 The duality gap satisfies J
� � U�tot �

PK
k¼1

kkRl
k � UkðRl

kÞ
� �

:

Proof Use ()* to denote the optimal solution of the ori-

ginal packet scheduling problem (4) and ()DIS to denote the

result of the DIS algorithm. It is straightforward that

JDIS� J
� �U�tot �

PK
k¼1 Uk RDIS

k

� �
¼ UDIS: It follows that

the duality gap between the dual and primal problems is

J
� � U�tot� JDIS � UDIS: We can thus establish a bound on

the duality gap if we can bound JDIS - UDIS.

The Lagrange function of the dual problem is given in

(9). The difference between the allocated power and the

available power approaches zero as the termination con-

dition � for the DIS algorithm approaches zero. It follows

that:

JDIS ¼
XK

k¼1

Uk dkð Þ þ
XK

k¼1

kkðRDIS
k � dkÞ

After the DIS algorithm terminates, denote by X1 the set

of users who achieved their desired rate, i.e. X1 ¼
fkjRDIS

k ¼ dkg; and denote by X2 the set of users who did

not achieve their desired rate, i.e. X2 ¼ fkjRDIS
k \dkg: For

users in X2; kk ¼ kk; dk = Rk
’ and UkðdkÞ ¼ kkR

0
k: It

follows that

JDIS ¼
X
k2X1

UkðdkÞ þ
X
k2X2

UkðdkÞ þ
X
k2X1

kkðRDIS
k � dkÞ

þ
X
k2X2

kkðRDIS
k � R

0

kÞ

¼
X
k2X1

UkðRDIS
k Þ þ

X
k2X2

kkRDIS
k ð23Þ

Similarly:

UDIS ¼
XK

k¼1

UkðRDIS
k Þ ¼

X
k2X1

UkðRDIS
k Þ þ

X
k2X2

UkðRDIS
k Þ

ð24Þ

Subtracting (24) from (23) gives us a bound:

J
� � U�tot� JDIS � UDIS ¼

X
k2X2

kkRDIS
k � UkðRDIS

k Þ
� �

The maximum occurs when X2 consists of all users and

when Rk
DIS = Rk

l V k. The property directly follows.

5 Heuristic search algorithm

The resource allocation algorithm proposed in the previous

two sections generates an allocation this is sub-optimal

with a bounded duality gap with a complexity that is

polynomial in the number of users K. In this section, we

seek an algorithm with reduced complexity at the cost of

some additional decrease in total user utility. The idea is to

separate the decisions about which users should be active

and what downlink power and subcarriers to allocate to

each such active user. The first stage will focus on active

user selection, and use a greedy algorithm that attempts to

ensure that every active user will obtain a rate at or above

the tangent point rate Rk
’ . The second stage will take the

active user set as given and use standard convex optimi-

zation techniques to allocate power and subcarriers.

This decomposition will come at the cost of some per-

formance, but we have reason to believe that this degrada-

tion should be relatively small. The reasoning is as follows.

If utility functions are concave, then total user utility is

maximized when all users are active. The optimal subcarrier

and power allocation can be accomplished using marginal

cost pricing. If utility functions are convex, then total user

utility is maximized when only a subset of users are active

and almost all active users are assigned their maximum rate.

A sigmoid utility function is convex for Rk \ Rk
f and

concave for Rk [ Rk
f . Total user utility is maximized when

only a subset of users are active and almost all active users

are assigned a rate above their rate at maximum average

utility Rk
’ . We can create a decomposition based on this

observation. If user selection and subcarrier allocation are

done first, and rate scheduling is then done based on the

results of the subcarrier allocation, then this reduces

complexity at the cost of performance. The complexity

reduction comes from not having to search simultaneously

for both types of shadow costs. The performance reduction

comes from no longer being able to consider subcarrier

allocation on the basis of the final assigned rate. However,

this performance reduction should be minor since it should

primarily affect the small number of users who in the

optimal allocation would be assigned rates below Rk
’ .

The first portion of the algorithm must identify users

who should be active. Recall from (11) that active users

will maximize user utility minus user cost. It follows that

except for a small number of users, if user k is active, it

should be assigned a rate not only above the inflection

point Rk
f but also above Rk

’ , the rate of user k at maximum

average utility. The algorithm should thus allocate sets of

subcarriers and power to attempt to ensure that active users

have rates Rk C Rk
’ . A simpler approach, for the purposes

of subcarrier assignment, is to assume that the total power

PT is divided equally among all subcarriers and to assign

sets of subcarriers to attempt to ensure that active users

have rates Rk C Rk
’ . However, even this approach is too

complex since it requires assigning multiple subcarriers at

a time.

For guidance, we look back to the DIS algorithm. If a

user currently has been allocated a rate Rk
i \ Rk

’ , then ki
k ¼
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kk: The power allocation problem (12) for such users thus

becomes

max
p2A

P
fkjRk\R

0
k
g
kkRk

s:t: PT �
PK
k¼1

PN
n¼1

pk;n ¼ 0

We thus adopt a greedy approach, while users have

Rk \ Rk
’ , by maximizing the weighted rate kkrk;n that can be

achieved on each subcarrier one at a time. This greedy

approach avoids the difficulties of bin-packing algorithms.

If there are sufficient subcarriers to move each user above

Rk
’ , then residual subcarriers can be assigned based on the

maximum incremental utility, as shadow cost pricing

would do. Such a subcarrier assignment algorithm is

shown in Table 3.

A further simplification of this algorithm can be

achieved, at some performance cost, by proceeding

sequentially through the subcarriers rather than searching

for the unassigned subcarrier with the highest marginal

rate. This algorithm is outlined in Table 4.

At the end of either of these algorithms only the sub-

carrier assignment is saved; the rates are discarded since

they were calculated on the basis of an equal power

assignment to each subcarrier. The rate scheduling portion

of the algorithm then follows. Recall from (13) that power

should be allocated so as to maximize the revenue from

selling rate minus the cost of power. This will be iteratively

done using steps of power of DP. Given the subcarrier

assignment, the rate scheduling should attempt to ensure

that each active user is ultimately assigned a rate of at

least Rk
’ . A greedy approach is to assign each increment of

power to the user with a rate less than Rk
’ that can gain the

greatest kkDrk;n where Drk;n ¼ rk;nðpk;n þ DPÞ � rk;nðpk;nÞ
and where rk;nð�Þ is determined by (1). If all users can be

assigned rates of at least Rk
’ , assign incremental power to

the user that can gain the greatest utility DUk;n ¼ UkðRk þ
Drk;nÞ � UkðRkÞ: Such a rate scheduling algorithm is out-

lined in Table 5.

We call the combination of the subcarrier assignment

algorithm in Table 3 with the rate scheduling algorithm in

Table 5 the heuristic search (HS) algorithm, and call the

combination of the sequential subcarrier assignment algo-

rithm in Table 4 with the rate scheduling algorithm in

Table 5 the heuristic sequential search (HSS) algorithm.

The complexity of the HS algorithm is OðKNðN þ 1Þ=2þ
NP=DPÞ: The complexity of the HSS algorithm is OðKN þ
NP=DPÞ: The complexity of both algorithms is linear in the

number of users; however the HS algorithm is more sen-

sitive to the number of subcarriers.

6 Simulation results

In this section, we examine via simulation the performance

of the dual iteration search (DIS) algorithm, the heuristic

search (HS) algorithm, and the simplified heuristic search

with sequential subcarrier allocation (HSS). For purposes

of the simulation, we set B = 20KHz. The channel fading

Table 3 Subcarrier assignment

Initialize Rk
0 = 0 V k and allocate power PT/N to each subcarrier.

C ¼ fnj subcarrier n has not been assignedg
Repeat

B ¼ fkjRi
k\R

0

kg
If B is not empty

Allocate subcarrier n to user

arg maxk2B maxn2C kkrk;n.

Else

Allocate subcarrier n to user

arg maxk maxn2C ½UkðRi
k þ rk;nÞ � UkðRi

kÞ	.
Update Rk

i?1 = Rk
i ? rk,n.

C ¼ fnj subcarrier nhas not been assignedg
Until C is empty

Table 4 Sequential subcarrier assignment

Initialize Rk
0 = 0 V k and allocate power PT/N to each subcarrier.

For n=1:N

B ¼ fkjRi
k\R

0

kg
If B is not empty

Allocate subcarrier n to user arg maxk2Bkkrk;n.

Else

Allocate subcarrier n to user

arg maxk [Uk(Rk
i ? rk,n) - Uk(Rk

i )].

Update Rk
i?1 = Rk

i ? rk,n.

End For

Table 5 Rate Scheduling

Initialize Rk
0 = 0 V k, pk,n = 0 V k, n.

Repeat

B ¼ fkjRi
k\R

0
kg

If B is not empty

Allocate power DP to user and subcarrier

arg maxfk2B;ngkkDrk;n:

Else

Allocate power DP to user and subcarrier

arg maxfk;ngDUk;n:

Update Riþ1
k ¼ Ri

k þ Drk;n:

Update PT ¼ PT � DP:

Until PT = 0.
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Hk,n is determined by an urban propagation model [24]4. As

with previous research on resource allocation, see e.g. [20],

the sum of the interference and noise power can be set to an

arbitrary level; we use I ? d2 = 1.5

Users have sigmoid utility functions of the form:

UkðRkÞ ¼
aR2

k ; if Rk\Rf
k

cðRk þ bÞd; else

�
ð25Þ

Two utility functions are used

Type 1: a ¼ ð5=6Þ1=3=25; b ¼ �25=6; c ¼ 1; d ¼ 1=3;

Rf
k ¼ 5kbps; R

0
k ¼ 6:25kbps; kk ¼ 0:2043:

Type 2: a ¼ 1=4 � ð2=5Þ1=3=ð12=5Þ2; b ¼ �2; c ¼ 1=4;

d ¼ 1=3; Rf
k ¼ 12=5kbps;R

0
k ¼ 3 kbps; kk ¼ 0:0833:

The parameters have been chosen so that these two

utility functions have different slope at the maximum

average utility point.

6.1 Users with identical pathlosses

In this section, we investigate the case in which all users

have identical pathlosses PLk = 1 (0 dB) V k, but inde-

pendent small scale fading. We simulate K = 10 users using

N = 500 subcarriers. The base station downlink power

budget PT is varied from 0.2 to 15, and for the heuristic

algorithms we use a power increment DP ¼ PT= 4; 000:

First consider the scenario that all the users have the

type 1 utility function. The total utility of all users under

each algorithm is shown in Fig. 3. We see that the total

utility is an increasing concave function of the power PT

for all three algorithms. This form is to be expected under

any reasonable algorithm. Greedy algorithms attempt to

allocate capacity in decreasing order of returns, with small

errors given by imperfect bin-packing.

It would be beneficial to have a comparison between the

DIS algorithm and the optimal solution to (4). Determi-

nation of the optimal solution is computationally prohibi-

tive, due to the requirement of solving a large set of fixed

point equations. However, we can construct an upper

bound using the dual problem. The DIS algorithm uses the

solution of the dual problem as an approximation to the

solution of the primal problem. The two solutions are

identical if the duality gap is zero. The duality gap exists

when the primal and dual problems disagree on users with

rates below Rk
’ . However, as discussed above, this dis-

agreement should be relatively small. Because Jðk; lÞ�
J
� �U�tot; substituting the solution of DIS algorithm into

(9) provides an upper bound on the optimal total user utility

of the original problem. In Fig. 3, the total user utility

achieved by DIS overlaps with this upper bound. We thus

conclude that the duality gap is near zero and that the total

user utility achieved by the DIS algorithm is equal to that

of the optimal solution.

We now move to consideration of the heuristic algo-

rithms. The performance reduction from the DIS algorithm

to the HS algorithm comes from no longer being able to

consider subcarrier allocation on the basis of the final

assigned rate. The magnitude of this reduction also depends

on disagreements between the DIS and HS algorithms on

which users are assigned rates below Rk
’ . We expect that the

HS algorithm will have only limited such disagreements

with the DIS algorithm, and thus the performance degra-

dation should be small. In the simulation, the HS algorithm

performs almost identically to the DIS algorithm, with

notable degradation only at small values of PT. In contrast,

the HSS algorithm, which reduces complexity further by

assigning subcarriers in sequence, does result in a perfor-

mance degradation of 10–20 %.

To further investigate these differences, in Table 6 we

show which users are assigned at least one subcarrier and

some power for the same range of PT. Users who achieve a

rate lower than Rk
’ are marked with a ‘‘-’’ superscript, and

users activated under the HS or HSS algorithms but not

under the DIS algorithm are written in parentheses. Under all

three algorithms, decreasing the power PT generally reduces

the set of active users, as expected. When PT C 5, all three

algorithms activate all 10 users. When PT = 1, both heu-

ristic algorithms make the mistake of activating user 1 (who

has the worst average channel) rather than allocating addi-

tional subcarriers and power to the other users. When

PT = 0.5, all three algorithms agree on not activating user 1

or user 8 (who has the second worst average channel) and on

assigning user 3 (who has the worst max channel gain among

Fig. 3 Simulation result of users with one kind of utility

4 Rayleigh channel with 6 paths with delays = [0, 0.2, 0.5, 1.6,2.3,5.0]

*10-6 sec and fading = [1, 0.3, 0.6, - 0.6, - 0.8, - 1]dB, generated

using the Matlab routine rayleighchan.
5 Power will scale linearly with I ? d2.
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active users) a rate lower than Rk
’ . However, when PT = 0.2,

the HS algorithm differs substantially from the DIS algo-

rithm on which users to activate as well as which single user

to assign a rate below Rk
’ ; it allocates subcarriers to user 5, 10

and try to ensure that R5 C R5
’ and R10 C R10

’ . In contrast the

DIS algorithm allocates these subcarriers to users 4 and 9 to

maximize profit.

To further investigate the duality gap, we increase the

number of users to 20 and focus on the scenario when the

total power PT is low. In Fig. 4, we show the total utility

performance. When total power is very low, the rates of

most active users are lower than the tangent rate and the

duality gap is significant. At higher (but still low) total

power, under DIS all users obtain a rate higher than the

tangent point; the duality gap decreases to zero when

PT = 0.6. In contrast, at similar power levels, the HS and

HSS algorithms continue to allocate rates lower than the

tangent point to some users. In low power regions, the

performance difference between the HS and HSS algorithms

is small. At higher power levels than shown, both DIS and

HS performance approach the upper bound, but HSS per-

formance continues to be lower than the upper bound.

We now consider a scenario in which the first five

users have type 1 utility functions and the next five users

have type 2 utility functions. Correspondingly, the

maximum average utility per unit rate kk of type 1 users

is higher than that of type 2 users. The total utility of all

users under each algorithm is shown in Fig. 5. The active

users are shown in Table 7. The upper bound is still

obtained by substituting the solution of DIS algorithm

into (9), which provides an upper bound on the optimal

total user utility of the original problem. When PT = 0.2,

resources are severely constrained and the only active

users are type 1. When PT = 0.5, DIS activates all type 1

users, except user 1 who has a bad channel; it also

activates user 9, but does not have enough resources to

get this user above R9
’ . In contrast, when all users have

identical utility functions, a greater number of type 2

users are active.

This scenario can also be used to illustrate property 4.

We set total power PT = 1 and run the simulation 10,000

time slots. We observe that the proportion of time slots in

which type 1 users are assigned zero rate is approximately

one half of that of type 2 users.

Table 6 Active users under various algorithms

DIS HS HSS

PT = 15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

PT = 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

PT = 5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

PT = 1 2, 3, 4, 5, 6, 7, 8, 9, 10 (1), 2, 3, 4, 5, 6, 7, 8, 9, 10 (1), 2, 3, 4, 5, 6, 7, 8, 9, 10

PT = 0.5 2, 3-, 4, 5, 6, 7, 9, 10 2, 3-, 4, 5, 6, 7, 9, 10 2, 3-, 4, 5, 6, 7, 9, 10

PT = 0.2 2, 4, 6-, 9 2, (5-), 6, (10) 2, 4, 6-, 9

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

 Upper Bound
 DIS
 HS
 HSS 

U
til

ity

P

Three lines overlap

Fig. 5 Simulation result of users with two kinds of utilities

 Upper Bound
 DIS
 HS 
 HSS

2

3

4

5

6

7

8

9

10

11

12

13

U
til

ity

0.2 0.3 0.4 0.5 0.6

P
T

Fig. 4 Simulation result of users with low power

Wireless Netw

123



6.2 Users with independent pathlosses

In this last subsection, we investigate the case in which

users have independent pathlosses and independent small

scale fading. Users are uniformly distributed in a circular

cell with radius 1km. The pathloss PL(x) = 10-2/x2 where

x is the distance from the user to the base station measured

in km.

We are interested in the relationship between the duality

gap and the scale of the network. As discussed above, the

duality gap exists when the primal and dual problems

disagree on users with rates below Rk
’ . the size of the

duality gap is related to the number of such users and on

the difference between kkRk and Uk(Rk) for each such user.

In property 4, we gave an upper bound on the duality gap

for the DIS algorithm. (The duality gap also affects the HS

and HSS algorithms, but can be most clearly illustrated

with the DIS algorithm.) We conjecture that the percentage

of users with rates below Rk
’ to be decreasing with the size

of the network.

To investigate this conjecture, we vary the number of

users, K, from 10 to 60. All users have type 1 utility

functions. We scale the number of subcarriers and the base

station downlink power linearly with the number of users:

N = 50K and PT = 0.05K. The ratio of users with rates

below Rk
’ under DIS over total active users as a function of

N is illustrated in Fig. 6. The conjecture appears to be

correct.

7 Conclusion and discussions

In this paper, we addressed user selection and resource

allocation in wireless networks for semi-elastic applica-

tions such as video conferencing. We posed a utility

maximization problem, and showed that the dual formu-

lation can be used to reduce complexity by exchanging

price and demand for power between a power allocation

module and the network, and by exchanging price and

demand for rate between users and the power allocation

module. By solving the dual problem, we can jointly decide

the user selection and resource allocation result. We also

proposed a heuristic algorithm that further reduces com-

plexity by decomposing the user selection, subcarrier

allocation and rate scheduling problems. The heuristic has

a computational complexity linear in the number of users,

and is shown by simulation to produce near-optimal results.

In future research, we will address call access control for

semi-elastic applications. We envision a system in which

CAC admits users if capacity is available and perhaps on the

basis of the resulting utility over time, and in which packet

scheduling maximizes instantaneous total utility of admit-

ted users, as accomplished here. We envision that the packet

scheduling algorithm will report back to CAC the resulting

outage rate of sigmoid users, and that CAC will use this

information when deciding whether to admit future users.
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