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Chromatin central<p>High resolution mapping of the proteomic environment and proteomic hyperlinks in fission and budding yeast reveals that divergent hyperlinks are due to gene duplications.</p>

Abstract

Background: Understanding the design logic of living systems requires the understanding and
comparison of proteomes. Proteomes define the commonalities between organisms more
precisely than genomic sequences. Because uncertainties remain regarding the accuracy of
proteomic data, several issues need to be resolved before comparative proteomics can be fruitful.

Results: The Saccharomyces cerevisiae proteome presents the highest quality proteomic data
available. To evaluate the accuracy of these data, we intensively mapped a proteomic environment,
termed 'Chromatin Central', which encompasses eight protein complexes, including the major
histone acetyltransferases and deacetylases, interconnected by twelve proteomic hyperlinks. Using
sequential tagging and a new method to eliminate background, we confirmed existing data but also
uncovered new subunits and three new complexes, including ASTRA, which we suggest is a widely
conserved aspect of telomeric maintenance, and two new variations of Rpd3 histone deacetylase
complexes. We also examined the same environment in fission yeast and found a very similar
architecture based on a scaffold of orthologues comprising about two-thirds of all proteins
involved, whereas the remaining one-third is less constrained. Notably, most of the divergent
hyperlinks were found to be due to gene duplications, hence providing a mechanism for the fixation
of gene duplications in evolution.

Conclusions: We define several prerequisites for comparative proteomics and apply them to
examine a proteomic environment in unprecedented detail. We suggest that high resolution
mapping of proteomic environments will deliver the highest quality data for comparative
proteomics.
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Background
Understanding the design logic of living systems is now
mainly based on genomics and DNA sequence comparisons.
Typically, protein comparisons are evaluated by sequence
alignments. However, living systems run programs that are
written both as passive information (the genome) and as
dynamic, molecular ecologies (the proteome). This dichot-
omy drives proteomic research because no living system can
be solely described by its DNA sequence. Accurate proteomic
maps are logically the next dataset required to complement
complete genome sequences. However, the generation of reli-
able proteomic data remains challenging [1-4].

The budding yeast, Saccharomyces cerevisiae, has led
eukaryotic research in several fields, particularly genomics,
reverse genetics, cell biology and proteomics. For proteomic
mapping, S. cerevisiae has been the main venue for the eval-
uation of various methodologies, which led to the clear con-
clusion that biochemical methods based on physiological
expression levels deliver the most accurate results. In con-
trast, bioinformatic, yeast two hybrid and overexpression
approaches generate less accurate data that require valida-
tion by a different means [1-4].

In contrast to a genome sequence, it is unlikely that a pro-
teomic map can ever be complete because proteomes change
in response to alterations of cellular condition. Proteomes
include a very large number of post-translational modifica-
tions that are inherently variable, as well as protein-protein
interactions that vary over a wide range of stabilities. Never-
theless, a proteome is based on a stable core of protein com-
plexes, which can be accurately mapped by biochemical
approaches [2]. Hence, an accurate proteomic map will be
based on the constellation of stable protein complexes for a
given cellular condition. The map then provides a scaffold
onto which transient interactions and post-translational
modifications can be organized. Thereby, proteomes can be
rationalized [5,6].

The quest to understand proteomes has led to the definition
of new perspectives and terms, such as a proteomic 'environ-
ment', which describes the local relationships within a group
of interacting proteins; 'hubs', which is applied to proteins
that interact with many other proteins [2]; and 'hyperlinks',
which is a term we applied to proteins that are present in
more than one stable protein complex [7]. Similarly, insight
into proteomes can be gleaned from comparative proteomics
[8]. However, without accurate proteomic maps, these new
terms and perspectives, particularly those derived from com-
parative proteomics, have limited meaning.

To map the budding yeast proteome accurately, methodolo-
gies for physiological expression and purification of tagged
proteins were developed based on gene targeting with the
tandem affinity purification (TAP) tag [9,10]. The high
throughput application of these methods by two different

groups led to the best proteomic map datasets for any cell,
whether prokaryotic or eukaryotic [11,12]. Collins et al. con-
solidated both datasets into one of even higher quality; never-
theless, they recommended more intensely focused data
gathering to evaluate accuracy [13].

Here we address the issue of proteomic accuracy by intense
exploration of a section of the budding yeast proteome that is
related to chromatin regulation. Chromatin is regulated by
multiprotein complexes, which dynamically target nucleo-
somes with a multitude of reversible modifications, such as
acetylation, methylation, phosphorylation and ubiquitination
(reviewed in [14]). Also, in budding yeast, many of these com-
plexes have been individually isolated and functionally char-
acterized, which provides a rich and detailed source of
reference information. Previously, we concluded that greater
accuracy can be attained by sequential tagging to reciprocally
validate interactions [10,15,16]. Sequential tagging of candi-
date interactors to map a proteomic environment has also
been termed proteomic navigation or SEAM (short for
Sequential rounds of Epitope tagging, Affinity isolation and
Mass spectrometry). For a low throughput approach, which
also permits a more intense focus on individual experiments,
sequential tagging will deliver improvements in accuracy.

Several other factors may reduce mapping accuracy. In the S.
cerevisiae proteome every fourth protein is apparently a pro-
teomic hyperlink [5]. That is, a member of more than one dis-
tinct protein complex. Hence, many pull-downs are mixtures
of completely or partially co-purified complexes, together
with other sub-stoichiometric and pair-wise interactors. Also,
sorting out background proteins from genuine interactors
remains challenging [5,17-19], especially when proteins are
identified by mass spectrometric techniques with enhanced
dynamic range, such as liquid chromatography tandem mass
spectrometry (LC-MS/MS) or LC matrix-assisted laser des-
orption/ionization mass spectrometry (MALDI) MS/MS,
which produce a large number of confident protein identifica-
tions in each pull-down. Furthermore, until recently, mass
spectrometric identifications have mostly neglected the quan-
titative aspect. It was (and, largely, still is) difficult to deter-
mine which proteins are bona fide members of a tagged
complex and, therefore, stoichiometric, and which interactors
are sub-stoichiometric. Here we address these issues to
develop refinements for improved accuracy of mapping,
including working criteria to identify common background
proteins and stoichiometric interactors.

Using the sequential strategy and these refinements, we
mapped a large proteomic environment that we term 'Chro-
matin Central' because it includes eight protein complexes
interconnected by hyperlinks encompassing the major his-
tone aceytyltransferases and deacetylases in budding yeast.
As evidence for mapping accuracy, we made several discover-
ies, including the identification of new subunits of known
complexes and new complexes.
Genome Biology 2008, 9:R167
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To exploit the quality of the map for comparative proteomics,
we then explored the same proteomic environment in the dis-
tantly related yeast Schizosaccharomyces pombe. This ena-
bled a detailed comparison of two highly accurate proteomic
environments to shed light on the evolution of proteomic
architecture.

Results
Establishing a proteomic environment
Our approach to charting proteomic environments relies
upon the sequential use of TAP and mass spectrometry to
identify stable protein assemblies. In a typical TAP pull-down
experiment, LC-MS/MS analysis identified over 500 proteins
containing stoichiometric and transient bona fide protein
interactors, along with a large number of background pro-
teins of diverse origin and abundance. To dissect the compo-
sition of complexes, we employed a layered data mining
approach. First, we sorted out common background proteins
and then distinguished proteins specifically enriched in the
TAP isolation using semi-quantitative estimates of their
abundance (Figure 1).

Common background proteins
A list was established based on background proteins from
proteins repetitively found in 20 diverse immunoaffinity
purifications (IPs) that were selected from three unrelated
projects, this project being one of those three. The other two
were based on mitotic cell cycle regulation and vesicle trans-
port. The tagged proteins and their known interactors, as well
as ribosomal proteins, were first removed from the 20 pri-
mary IP lists. Then, of more than 2,000 proteins identified in
these 20 IPs, 119 (Table S1 in Additional data file 1) were
defined as common background because they were found at
least once in each of the three independent projects. This list
of 119 includes proteins with molecular weights ranging from
11 to 250 kDa and expression levels of 100 to 106 molecules
per cell [20,21]. Most of these common background proteins
were cytoplasmic [21-23], including heat shock, translation
factors and abundant housekeeping enzymes. Once these
common background proteins were removed from a particu-
lar IP list, it was further refined using abundance index (A-
index) filtering.

Index of relative abundance
The absolute amounts of immunoprecipitated protein varies
between TAP purifications. However, within a purification,
members of a stable protein complex should be isolated in
approximately stoichiometric amounts and relatively
enriched compared to the other detected proteins. Abundant
background proteins are an exception; however, we always
removed them from the list at the very beginning of the data
processing routine as described above.

To estimate the relative abundance of individual proteins and
hence obtain an additional means to distinguish genuine

interactors from background, we used an arbitrary A-index. It
was calculated as a ratio of the total number of MS/MS spec-
tra acquired for a given protein (reported as 'matched queries'
for each MASCOT hit) to the number of unique peptide
sequences they matched. Essentially, the A-index is a relative
measure of the amounts of co-isolated proteins from the gel.
We applied it as a convenient way to distinguish bona fide
subunits of the tagged complex from background proteins
because they should be relatively enriched, compared to
background. In a series of preliminary experiments, we
observed that the A-index monotonously increased with
increasing amount of loaded proteins from 50 to 800 fmols.
When determined for six standard proteins of various molec-
ular weights and properties, the A-index varied within a 50%
margin at any given protein loading (Figure S1 in Additional
data file 2).

Selecting genuine interactions to determine protein complexes
Each protein complex was isolated several times within a
round of IP experiments that used different baits [10,15,16].
Hence, several independent IPs established the protein com-
plex composition or identified a hyperlink to another protein
assembly (Figure S2 in Additional data file 2). In turn, pro-
teins co-purified with a hyperlink and that did not belong to
the complex characterized in the current round were selected
as baits for the next sequential round. For S. cerevisiae,
within five IP rounds, 21 out of 26 pull downs from unique
baits were successful (for the full list of identified proteins,
see Table S2 in Additional data file 1). After the ribosomal
proteins were removed, a non-redundant list of proteins iden-
tified in all IPs, together with their A-indices, was assembled
into a master table containing 1,301 proteins in total (Table
S3 in Additional data file 1). Then we removed common back-
ground proteins and low abundant proteins whose A-indices
were equal to 1 and were identified only once in the total of 21
IPs.

The common background proteins listed in the master table
had an average A-index value of 1.4. We noticed that A-indi-
ces of more than 90% of background proteins were within
25% of the average, so we employed this empirical threshold
to further sort out experiment-specific background. Since
genuine interactors were supposed to be enriched in the IPs
compared to background proteins, we introduced an arbi-
trary cut-off of 1.75 for A-indices of genuine protein interac-
tions (Table S3 in Additional data file 1).

Proteins were recognized as stoichiometric core members of
complexes if they did not belong to common background,
were specifically enriched in corresponding IPs, and, most
importantly, were co-isolated with baits within the corre-
sponding round of sequential IPs (Figure 1). Potentially, these
criteria might have eliminated some transient (yet genuine)
interactors; however, we placed our priorities upon accuracy.
Although the chosen 25% margin might look arbitrary, the
entire approach was validated by a good concordance of the
Genome Biology 2008, 9:R167
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Data processing workflowFigure 1
Data processing workflow. The primary dataset is a complete list of proteins identified in IP experiments that were used to map the Chromatin Central 
proteomic environment in any of the two yeasts. After removal of ribosomal proteins, all hits together with their A-indices were compiled into a non-
redundant master table and grouped according to IP rounds. To accurately determine the scaffold protein complexes, we further removed from the 
master table proteins having A-index = 1 that were identified only in one IP experiment and common background proteins. Using the average A-index of 
background proteins as a selection threshold, the remaining proteins were sorted into two large groups: proteins enriched in corresponding IP 
experiments and proteins whose abundance remained at the background level. Proteins in the first group were considered as genuine interactors and 
were assigned to complexes, assuming IP experiments in which they were identified. From the second group, only proteins that were validated by a 
reciprocal IP experiment were assigned to the corresponding complexes.
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composition of protein complexes in S. cerevisiae Chromatin
Central with the published evidence, as described below.

Chromatin Central in S. cerevisiae
From 1,301 unique open reading frames (ORFs) in the master
table, only 63 proteins (less than 5% of all identified proteins)
matched the above selection criteria, comprising 9 stable pro-
tein complexes connected by 12 proteomic hyperlinks. Three
out of these nine (ASTRA (for ASsembly of Tel, Rvb and Atm-
like kinase), Snt2C and Sc_Rpd-LE (for Rpd3L expanded
with Set3C core); Figure 2) are reported here for the first
time, whereas the other six (complexes I-VI) have been char-
acterized previously (note that the prefixes Sc_ and Sp_ refer
to proteins from S. cerevisiae and S. pombe, respectively; the
suffix 'C' always refers to the protein complex).

Chromatin Central comprised four distinct protein assem-
blies, including: the histone deacetylase Rpd3p (Sc_Rpd3S,
Sc_Rpd3L [24,25], Sc_Rpd-LE and Sc_Snt2C); at least two
histone acetyltransferase complexes, Sc_NuA4 [26] and

SAGA/SLIK [27]; and two ATP-dependent chromatin remod-
eling complexes, Sc_Swr1C and Sc_Ino80C [28,29]. The
compositions of the individual protein complexes (Tables 1, 2,
3, 4, 5) were compared with previous reports. Surprisingly,
we found some discrepancies with data from the best pro-
teome maps even though they were also obtained by TAP tag-
ging [11,12]. In contrast, our results agree with several
publications describing the biochemical and functional char-
acterization of the individual complexes. In particular, com-
plexes I, V and VI are identical to the previously reported
Sc_Rpd3S, Sc_Swr1C and Sc_INO80C, respectively
[24,25,28,29].

In addition to the 12 known members of Sc_Rpd3L (complex
II) [24,25], we identified 2 novel subunits, including the 72
kDa protein Sc_Dot6p (ORF name YER088C) and its 59 kDa
homolog Sc_Tod6p (Twin of the Dot6; ORF name
YBL054W). Their sequences share 31% identity; 46% similar-
ity and both possess the chromatin specific SANT domain
[30]. Furthermore, the involvement of Sc_Dot6 in the regula-

Chromatin Central proteomic environment in S. cerevisiaeFigure 2
Chromatin Central proteomic environment in S. cerevisiae. Individual protein complexes are boxed; TAP-tagged subunits are indicated with asterisks. The 
proteomic hyperlinks (proteins shared between the individual complexes) are shown between the complexes in grey diamonds. The hyperlink from Tra1 
to the SAGA/SLIK complex is designated with a dashed line/filled arrow because it was not identified in this work, but inferred from published evidence. 
Gene names designated with a minus (-) symbol indicate that their TAP tagging/immunoaffinity purification failed. Several relatively abundant (A-index > 
1.75) pair-wise interactors, also identified in proteome-wide screens [101,102], are mapped onto the scheme (dashed line/unfilled arrow). Set3C complex 
was previously characterized by TAP-tagging method in [10].
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tion of telomere silencing has been indicated [31].

In addition to the 14 known members of Sc_NuA4 (complex
IV) [26,32], another new protein, the 72 kDa Sc_Yap1p (ORF
name YML007W), which is a member of a family of fungal
specific transcriptional activators, was identified as a subunit.
Within Sc_Set3C (complex III) [10] we also identified a new
member, the 55 kDa protein Sc_Tos4p (ORF name
YLR183C). It is a putative transcription factor of the forkhead
family. Tagging Sc_Tos4p pulled down the entire Sc_Set3C,
except for the hyperlink Sc_Hst1p [5] (also, see Figure S2 in
Additional data file 2 and Table S2 in Additional data file 1).

We identified 12 proteomic hyperlinks in Chromatin Central
(Figure 2). One of these proteins, the 422 kDa Sc_Tra1p (ORF
name YHR099W) is a core member of Sc_NuA4 and SAGA/
SLIK [27], effectively also hyperlinking these two acetyltrans-
ferase complexes into Chromatin Central. Our attempts to
TAP-tag Sc_Tra1p failed. However, Sc_Tra1p was co-purified
when other Sc_NuA4 and also ASTRA subunits were sequen-
tially tagged (Figure 2; also see Figure S2 in Additional data
file 2 and Table S2 in Additional data file 1).

Notably, core-subunits of the histone deacetylase complex
Sc_Set3C [10] were co-purified in sub-stoichiometric
amounts with subunits of the Sc_Rpd3L complex (Table S2 in
Additional data file 1). Sc_Set3C and Sc_Rpd3L complexes
regulate overlapping target genes [33-35] and synthetic lethal
screens have revealed genetic links between components of
these complexes [36].

Altogether, the composition of individual complexes in Chro-
matin Central accords well with the published biochemical
evidence. Furthermore, the sequential tagging approach
revealed four novel subunits in three previously characterized
complexes as well as three novel protein assemblies.

Chromatin Central in S. pombe
We next asked if the Chromatin Central environment is con-
served between the distantly related fungi S. cerevisiae and S.
pombe. In contrast to S. cerevisiae, no systematic biochemi-
cal isolation of protein complexes has yet been performed in
S. pombe; however, complexes can be isolated with essen-
tially the same TAP methodology with a similar success rate
[7,37]. We exploited the architecture of Chromatin Central in
S. cerevisiae to choose strategic baits for the work in S.
pombe. The closest homologues of six S. cerevisiae hyper-
links (products of CLR6, ALP13, YAF9, SWC4, RVB1, TRA1
and TRA2 genes) were subjected to TAP tagging and immu-
noaffinity isolation, followed by mass spectrometric identifi-
cation of corresponding interactors (Figure 3). For accuracy,
we also isolated complexes associated with three more con-
served subunits, encoded by PNG2, SWC2 and IES6. Thus,
the characterization of each complex relied upon at least two
independent TAP purifications targeting different baits.

As in the S. cerevisiae experiments, the identified proteins,
together with their A-indices, were combined into a master
table (Tables S2 and S4 in Additional data file 1). We also
compiled a list of 250 common background proteins for S.
pombe in the same way as we did for S. cerevisiae (Table S1 in

Table 1

Members of NuA4 histone acetylase complexes in the Chromatin Central proteomic environment

S. cerevisiae S. pombe Sequence comparison

Gene name ORF MW (kDa) Gene name ORF MW (kDa) Identity/similarity (%) Orthologue

TRA1 YHR099W 433 TRA2 SPAC1F5.11c 420 33/53 Gene duplication

VID21 YDR359C 112 VID21 SPCC1795.08c 112 23/40

EPL1 YFL024C 97 EPL1 SPCC830.05c 65 36/51

ARP4 YJL081C 55 ALP5 SPBP23A10.08 49 35/51

SWC4 YGR002C 55 SWC4 SPAC9G1.13c 47 30/44

ESA1 YOR244W 52 MST1 SPAC637.12c 54 56/71

YAF9 YNL107W 26 YAF9 SPAC17G8.07 25 45/64

ACT1 YFL039C 42 ACT1 SPBC32H8.12c 42 90/97

EAF3 YPR023C 45 ALP13 SPAC23H4.12 39 32/47

YNG2 YHR090C 32 PNG1 SPAC3G9.08 31 32/53

EAF7 YNL136W 49 EAF7 SPBC16A3.19 31 22/43

YAP1 YML007W 72 PAP1 SPAC1783.07c 62 26/41

EAF5 YEL018W 32 No orthologues in S. pombe

EAF6 YJR082C 13 Predicted orthologue SPAC6F6.09

BDF1 YLR399C 77 Predicted orthologue SPCC1450.02

BDC1 SPBC21D10.10 34 No orthologues in S. cerevisiae
Genome Biology 2008, 9:R167
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Table 2

Members of histone deacetylase complexes of the Chromatin Central proteomic environments

S. cerevisiae S. pombe Sequence comparison

Gene name ORF MW (kDa) Gene name ORF MW (kDa) Identity/similarity (%) Orthologue

Rpd3S/Clr6S RPD3 YNL330C 49 CLR6 SPBC36.05C 46 67/82

complexes SIN3 YOL004W 175 PST2 SPAC23C11.15 125 24/41 Gene duplication

RCO1 YMR075W 79 CPH2 SPAC2F7.07c 69 26/44

RCO1 YMR075W 79 CPH1 SPAC16C9.05 45 25/42 Gene duplication

EAF3 YPR023C 45 ALP13 SPAC23H4.12 39 32/47

UME1 YPL139C 51 Functional 
orthologue of prw1

PRW1 SPAC29A4.18 48 Functional 
orthologue of ume1

Rpd3L/Clr6L RPD3 YNL330C 49 CLR6 SPBC36.05C 46 67/82

complexes SIN3 YOL004W 175 PST1 SPBC12C2.10C 171 32/49

SIN3 YOL004W 175 PST3 SPBC1734.16C 133 27/44 Gene duplication

CTI6 YPL181W 57 CTI6 SPBC1685.08 46 28/44

PHO23 YNL097C 37 PNG2 SPBC1709.11c 35 29/45

RXT3 YDL076C 34 RXT3 SPCC1259.07 39 28/40

RXT2 YBR095C 49 RXT2 SPBC428.06c 27 Figure S3

SDS3 YIL084C 38 SDS3 SPAC25B8.02 31

DEP1 YAL013W 48 DEP1 SPBC21C3.02c 55 Figure S3

SAP30 YMR263W 23 No orthologues in S. 
pombe

UME6 YDR207C 91 No orthologues in S. 
pombe

DOT6 YER088C 72 No orthologues in S. 
pombe

TOD6 YBL054W 59 No orthologues in S. 
pombe

ASH1 YKL185W 66 No orthologues in S. 
pombe

UME1 YPL139C 51 Functional 
orthologue of prw1

PRW1 SPAC29A4.18 48 Functional 
orthologue of ume1

LAF1 SPAC14C4.12c 34 Predicted 
orthologues 
YAL034C* and 
YOR338W

LAF2 SPCC1682.13 31 Predicted 
orthologues 
YAL034C* and 
YOR338W

Snt2 complex SNT2 YGL131C 163 Predicted orthologue 
SPAC3H1.12c

ECM5 YMR176W 163 No orthologues in S. 
pombe

RPD3 YNL330C 49 SPBC36.05c
Genome Biology 2008, 9:R167
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Additional data file 1). Interestingly, the average A-index of
common background proteins was almost identical in both
yeasts (1.3 and 1.4 in the fission and budding yeasts, respec-
tively), and, therefore, we used the same conservative thresh-
old of 1.75 to define stoichiometric interactors.

Chromatin Central shows a very similar architecture in both
yeasts (Figures 2 and 4). To assess the similarities more
closely, we focused on orthologues, recognized by overall
sequence similarity (best hits in forward and reciprocal
BLAST searches) and similar composition of structural
domains (Tables 1, 2, 3, 4, 5). Altogether, in both Chromatin
Central environments we identified 47 pairs of confident
orthologues and six pairs with marginal confidence (Figure
S3 in Additional data file 2) out of a total of 139 proteins. For
other S. cerevisiae and S. pombe proteins, BLAST searches
identified no clear orthologous pairs (Tables 1, 2, 3, 4),
although some of them might be functional orthologues (such
as Sc_Ume1p and Sp_Prw1p).

More than half the subunits of Sc_Rpd3S and Sc_Rpd3L
(complexes I and II) are orthologous to the members of cor-
responding S. pombe complexes Sp_Clr6S and Sp_Clr6L;
however, we reveal (Figure 4 and Table 2) further similarities
than previously documented [38]. In addition to the previ-
ously reported subunits, we identified Sp_Cti6p, Sp_Rxt2p,
Sp_Rxt3p, Sp_Dep1p and Sp_Pst3p. Our study also revealed
that Sp_Clr6L, like Rpd3L in the budding yeast, is hyper-
linked to the NuA4 histone acetyltransferase complex via an
MRG-family protein, Sp_Alp13p.

Complex IV (Sp_NuA4) comprises orthologues of the 12 core
members of the Sc_NuA4 complex, including its catalytic
subunit Sp_Mst1p (ORF name SPAC637.12c) [39-41] (Table
1). Complexes V and VI include the closest homologues of the
S. cerevisiae ATP-dependent helicases Sc_Swr1p and
Sc_Ino80p (ORF names SPAC11E3.01c and SPAC29B12.01,
respectively), together with 20 subunits orthologous to mem-
bers of Sc_Swr1C and Sc_Ino80C (Table 3). The correspond-

ing chromatin remodeling complexes in S. cerevisiae catalyze
replacement of histone H2A with its variant Htz1p
[29,42,43]. Complexes V and VI in the fission yeast both asso-
ciate with Sp_Pht1p, which is the S. pombe orthologue of
Sc_Htz1p (Table S2 in Additional data file 1). Therefore, it is
likely that these S. pombe complexes (now called Sp_Swr1C
and Sp_Ino80C) are also H2A.z chaperones.

Interestingly, while characterizing the composition of
Sp_Ino80C, we identified a 17 kDa core subunit, whose gene
has not been annotated as an ORF in the S. pombe genome
(Figure S4 in Additional data file 2). The protein has no
homologues within the Saccharomyces genus, yet possesses
some remote similarity to a non-annotated genomic region in
Schizosaccharomyces japonicus. We call this newly discov-
ered S. pombe gene, IEC5 short for (Ino Eighty Complex sub-
unit 5 [GenBank:FJ493251]).

Complex VI, ASTRA, is the same as the orthologous complex
in S. cerevisiae except that the S. pombe genome encodes for
two Tra1 homologues and only one, Tra1, is present in ASTRA
(Table 4). The other, Tra2, is a subunit of Sp_NuA4 and pre-
sumably the S. pombe SAGA/SLIK complexes. In S.
cerevisiae, the single Tra1 was found in all three complexes.

As we observed in S. cerevisiae for Sc_Rpd3L, some
Sp_Set3C subunits co-purified in sub-stoichiometric
amounts with Sp_Clr6L and vice versa, when Sp_Set3p was
used as bait (Table S2 in Additional data file 1). Notably, the
three subunits (Sp_Snt1p, Sp_Hif2p, and Sp_Set3p) isolated
together with Clr6L are the orthologues of the three (Sc_Snt2,
Sc_Sif2, and Sc_Set3) isolated with Rpd3L. However, in con-
trast to the Sc_Set3C complex, which consists of eight subu-
nits, the Sp_Set3C complex contains only four proteins
(Table 2).

In a few instances we identified proteins with domains that
are not present in the corresponding orthologous complexes
in the other yeast, including Sp_Msc1p (ORF name

Set3 Complex SNT1 YCR033W 138 SNT1 SPAC22E12.19 75 25/44

HOS2 YGL194C 51 HDA1 SPAC3G9.07c 49 59/76

SIF2 YBR103W 59 HIF2 SPCC1235.09 63 22/41

SET3 YKR029C 85 SET3 SPAC22E12.11c 95 24/42

HOS4 YIL112W 124 No orthologues in S. 
pombe

CPH1 YDR155C 17 Predicted orthologue 
SPBC28F2.03*

HST1 YOL068C 58 Predicted orthologue 
SPBC16D10.07c

TOS4 YLR183C 55 Predicted orthologue 
SPAP14E8.02

*Detected with related bait(s) as a minor component (Table S4 in Additional data file 1).

Table 2 (Continued)

Members of histone deacetylase complexes of the Chromatin Central proteomic environments
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Table 3

Members of chromatin remodeling complexes of the Chromatin Central proteomic environment

S. cerevisiae S. pombe Sequence comparison

Gene name ORF MW (kDa) Gene name ORF MW (kDa) Identity/similarity (%) Orthologue

Swr1 SWR1 YDR334W 174 SWR1 SPAC11E3.01c 149 43/60

complex SWC2 YDR485C 90 SWC2 SPBP35G2.13C 36 24/45

BDF1 YLR399C 77 BDF1 SPCC1450.02 65 30/50

SWC4 YGR002C 55 SWC4 SPAC9G1.13c 47 30/44

ARP4 YJL081C 53 ALP5 SPBP23A10.08 49 35/51

RVB1 YDR190C 50 RVB1 SPAPB8E5.09 50 70/84

RVB2 YPL235W 51 RVB2 SPBC83.08 51 70/86

ARP6 YLR085C 50 ARP6 SPCC550.12 45 32/50

SWC5 YBR231C 34 SWC5 SPCC576.13 25 25/49

VPS71 YML041C 30 VPS71 SPBC29A3.05 16 30/45

YAF9 YNL107W 26 YAF9 SPAC17G8.07 25 45/64

ACT1 YFL039C 42 ACT1 SPBC32H8.12c 42 90/97

HTZ1 YOL012C 14 PHT1 SPBC11B10.10c 19 70/81

SWC3 YAL011w 73 SWC3 SPAC4H3.02c 45 Figure S3

SWC7 YLR385c 15 No orthologues in S. 
pombe

MSC1 SPAC343.11c 180 No orthologues in S. 
cerevisiae

INO80 INO80 YGL150C 171 INO80 SPAC29B12.01 183 45/60

complex ARP8 YOR141C 100 ARP8 SPAC664.02c 70 29/48

ARP5 YNL059C 88 ARP5 SPBC365.10 82 39/61

RVB1 YDR190C 50 RVB1 SPAPB8E5.09 50 70/84

RVB2 YPL235W 51 RVB2 SPBC83.08 51 70/86

ARP4 YJL081C 53 ALP5 SPBP23A10.08 49 35/51

HTZ1 YOL012C 14 PHT1 SPBC11B10.10c 19 70/81

IES6 YEL044W 19 IES6 SPAC222.04c 13 40/55

IES2 YNL215W 36 IES2 SPAC6B12.05c 34 Figure S3

IES4 YOR189W 13 IES4 SPAC23G3.04 21 Figure S3

ACT1 YFL039C 42 ACT1 SPBC32H8.12c 42 90/97

TAF14 YPL129w 27 Predicted orthologue 
SPAC22H12.02*

IES1 YFL013C 79 No orthologues in S. 
pombe

IES3 YLR052W 28 No orthologues in S. 
pombe

IES5 YER092W 14 No orthologues in S. 
pombe

NHP10 YDL002C 24 Predicted orthologues 
SPBC28F2.11 and 
SPAC57A10.09c

NHT1 SPAC10F6.08c 38 No orthologues in S. 
cerevisiae

IEC1 SPAC144.02 28 No orthologues in S. 
cerevisiae

IEC3 SPCC1259.04 18 No orthologues in S. 
cerevisiae

IEC5 New sequence, 
[GenBank:FJ493251]

17 No orthologues in S. 
cerevisiae

*Detected with related bait(s) as a minor component (Table S4 in Additional data file 1).
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SPAC343.11c), which is a member of the Sp_Swr1C complex.
The function of this protein is not known, although Ahmed et
al. [44] suggested that Msc1 is involved in chromatin regula-
tion and DNA damage response. Msc1 contains a remarkable
composition of domains, including three PHD fingers [45],
PLU-1 [46], zf-C5HC2, JmjC and JmjN [47]. It was recently
shown that the Msc1 PHD fingers act as an E3 ubiquitin ligase
[48], while in other proteins the JmjC domain mediates his-
tone demethylation [49]. None of the Sc_Swr1C subunits pos-
sess these domains or appears to be remotely similar to
Sp_Msc1 (Table S5 in Additional data file 2).

We identified nine hyperlinks within Chromatin Central in S.
pombe, all of which are orthologues to corresponding pro-
teins in the budding yeast. As our attempts to purify TRA2
failed (as they did in S. cerevisiae), it remains unclear if, sim-
ilar to the budding yeast, this protein is also shared between
Sp_NuA4 and an assembly orthologous to SAGA/SLIK [50].

Independent validation of functional relationships 
within Set3C and Swr1C complexes
We independently validated some of the novel proteomics

Table 4

Members of ASTRA complexes of the Chromatin Central proteomic environment

S. cerevisiae S. pombe Sequence comparison

Gene name ORF MW (kDa) Gene name ORF MW (kDa) Identity/similarity (%) Orthologue

TRA1 YHR099W 433 TRA1 SPBP16F5.03c 422 34/54

TTI1 YKL033W 119 TTI1 SPCC622.13c 125 21/41

TEL2 YGR099W 79 TEL2 SPAC458.03 99 23/43

RVB1 YDR190C 50 RVB1 SPAPB8E5.09 50 70/84

RVB2 YPL235W 51 RVB2 SPBC83.08 51 70/86

TTI2 YJR136C 49 TTI2 SPBC1604.17c 53 23/46

ASA1 YPR085c 51 ASA1 SPAC1006.02 41 Figure S3

Table 5

Other members of the Chromatin Central proteomic environment

S. cerevisiae S. pombe Sequence comparison

Gene name ORF MW (kDa) Gene name ORF MW (kDa) Identity/similarity (%)

TriC chaperonin-containing 
complexes

CCT1 YDR212w 60 CCT1 SPBC12D12.03 60 77/89

CCT2 YIL142w 57 CCT2 SPAC1D4.04 57 69/83

CCT3 YJL014W 59 CCT3 SPBC1A4.08c 58 69/83

CCT4 YDL143w 58 CCT4 SPBC106.06 57 67/83

CCT5 YJR064W 62 CCT5 SPAC1420.02c 59 64/82

CCT6 YDR188w 60 CCT6 SPBC646.11 59 60/76

CCT7 YJL111W 60 CCT7 SPBC25H2.12c 61 68/83

CCT8 YJL008c 62 CCT8 SPBC337.05c 60 53/73

Selected stoichiometric pair-wise 
Interactors*

BDF2 YDL070W 72

PIH1 YHR034C 40

TAH1 YCR060W 12

NOP5 YOR310C 60 NOP5 SPAC23G3.06 57

NAP11 SPCC364.06 44

NAP12 SPBC2D10.11c 43

KAP114 SPAC22H10.03c 111

CBF5 SPAC29A4.04C 53

*Corroborates previous publications [13,42,101,102].
Genome Biology 2008, 9:R167
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observations, namely the insights regarding Set3C and
Swr1C, using quantitative genetic interaction data from S.
cerevisiae [51] and S. pombe [52,53].

Our proteomic data suggest that Set3C contains a conserved
core complex of four proteins (Set3, Hos2, Snt1, and Sif2) and
physically interacts with Rpd3L in both S. cerevisiae and S.
pombe. To validate these findings, we compared the correla-
tion coefficients of genetic profiles of the two Set3C core com-
ponents in both yeasts (Sc_Set3 and Sc_Hos2; Sp_Set3 and
Sp_Hda1) against genetic profiles of a set of 239 direct
homologs in the two species. As expected, the correlation
between the two core members (Set3 and Hos2) and Sif2, is
well beyond the 90th percentile (Figure 5a), suggesting they
act in concert. In contrast Hst1, also a subunit of Sc_Set3C,
shows a much lower correlation, which is consistent with its
absence from the core complex (as was previously shown for
Sc_Hst1 [10]) or not being a part of the complex at all
(Sp_Hst1). Furthermore, correlation of the Set3C core with
the Sc_Rpd3L subunit Sp_Pho23 (Sp_Png2) is also high in
both yeasts and higher than the correlation with one of the
Rpd3S subunits (Rco1, Sp_Cph1). The functional division
within Sc_Set3C becomes even more obvious when
examining individual interactions of Set3C core and exten-
sion subunits. Members of the Set3C core display stronger
positive genetic interactions with each other, compared to the

Set3C extension subunits, and their genetic interaction pat-
terns differ from patterns of Swr1C, SAGA and Prefoldin
members (Figure 5b). Taken together, these data provide
genetic evidence that Sc_Set3C encompasses two functional
modules, one of which (Set3C core) interacts closely with
Rpd3L. This functional evidence corroborates our proteomic
mapping data, suggesting that the Set3C complex in S. pombe
is only represented by core subunits, while the orthologous
complex in S. cerevisiae has an extension of four extra subu-
nits. In both yeasts, the core Set3C interacts with Rpd3L to
form a distinct module referred to as Rpd3LE.

In S. pombe another complex, Swr1C, contains a newly iden-
tified subunit, Msc1. Its closest homolog in Sc_Ecm5 is not a
part of Swr1C in budding yeast. To independently validate
this finding, we examined and compared individual genetic
interactions of seven of the Swr1C subunits in both yeasts
with the genetic patterns of Sp_Msc1 (Sc_Ecm5). Consistent
with our proteomic data, Sp_Msc1, unlike Sc_Ecm5, shows
strong positive genetic interactions and a very similar pattern
to the other members of the complex (Figure 5c). Hence, pairs
of genetic profiles containing Sc_Ecm5/Sp_Msc1 and other
members of Swr1C show weak correlation in S. cerevisiae, but
strong correlation in S. pombe (Figure 5d). Taken together,
these genetic data confirm our proteomic mapping
observations.

Representative Coomassie stained polyacrylamide gels of immunoaffinity isolations used for deciphering the Chromatin Central environment in S. pombeFigure 3
Representative Coomassie stained polyacrylamide gels of immunoaffinity isolations used for deciphering the Chromatin Central environment in S. pombe. 
These baits were selected for IP experiments as plausible proteomic hyperlinks. Bands, in which corresponding proteins were identified by mass 
spectrometry, are indicated with arrows for each lane. The full list of identified proteins is presented in Table S4 in Additional data file 1.
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Discussion
By navigating a complex proteomic environment in two diver-
gent yeasts with high accuracy, we obtained a new level of pre-
cise insight into the comparative proteome and also extracted
several new and subtle discoveries.

Comparative profile of a proteomic environment
The overall architecture of Chromatin Central is the same in
the two yeasts; however, there is a surprising amount of vari-
ation in their subunit composition. For both yeasts, Chroma-
tin Central is based on the same eight complexes,
encompassing 53 orthologous protein pairs plus a further 33
proteins that appear to be species specific (23 in S. cerevisiae,
10 in S. pombe). Of these 33, three pairs have a very similar
composition of functional domains (Table S5 in Additional
data file 2). Hence, a very similar architecture is sustained by
a scaffold based on about two-thirds of all the proteins
involved, whereas the remaining one-third appears to be less
constrained.

Analyses of domain composition (Table S5 in Additional data
file 2) revealed that many subunits (19 in S. cerevisiae and 21
in S. pombe) possess bromo-, chromo-, SANT or PHD finger

domains, which can bind either methylated or acetylated his-
tones or other chromatin determinants [30,54-57], thus
potentially targeting their complexes to specific regions of
chromatin. Along with the seven enzymes in Chromatin Cen-
tral, these putative targeting subunits are the most highly
conserved subunits between the two yeasts. For example,
Sc_NuA4 and Sp_NuA4 complexes retain all four targeting
factors: the PHD fingers of Sc_Yng2/Sp_Png2; the bromodo-
mains of Sc_Bdf1/Sp_Bdc1 and the chromodomains of
Sc_Eaf3/Sp_Alp13 and Sc_Esa1/Sp_Mst1. Similarly, the dif-
ferent PHD finger subunits of Rpd3S and Rpd3L (Sc_Rco1
and Sp_Cph2 in Rpd3S/Clr6S; Sc_Cti6 and Sp_Cti6 as well
as Sc_Pho23 and Sp_Png2 in Rpd3L/Clr6L), which appear to
direct these complexes to differentially methylated nucleo-
somes [58], are conserved. Hence, almost half of the con-
served scaffold of Chromatin Central is based on proteins that
convey the functions of the environment, that is, the reading
and writing of the histone code.

Comparative proteomics and proteomic hyperlinks
In contrast to the conserved scaffold of Chromatin Central,
the proteomic hyperlinks appear to be less constrained. We
define proteomic hyperlinks, which are notable features of

Chromatin Central proteomic environment in S. pombeFigure 4
Chromatin Central proteomic environment in S. pombe. Individual protein complexes are boxed; color coding designates the protein complexes that are 
orthologous to the corresponding complexes in S. cerevisiae as shown in Figure 2. TAP-tagged subunits are designated by asterisks; minus (-) signs indicate 
that the IP experiment failed; proteomic hyperlinks are shown between the complexes in grey diamonds. Certain confident pair-wise interactors, discussed 
in the text, are designated with dashed arrows.
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Figure 5 (see legend on following page)
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proteomic environments, as proteins found as stoichiometric
subunits of more than one scaffold complex. Hyperlinks do
not physically connect complexes; rather, they could exist for
one of the following three reasons. First, hyperlinks might
reflect a common ancestry for two complexes. In Chromatin
Central, it is possible that Ino80C and Swr1C are examples of
complexes that share a common evolutionary origin because
they not only share four subunits, but also share a similar
function related to the histone variant H2A.z [43,59]. Second,
hyperlinks may play a functional role to co-ordinate two com-
plexes. If the hyperlink receives a signal via a post-transla-
tional modification, then two complexes should receive the
signal at the same time and, hence, be co-regulated. Con-
versely, if a hyperlink recognizes an epitope or target, then
both complexes will be coordinately recruited. In Chromatin
Central, the Rpd3S/NuA4 hyperlink Eaf3 plays a role in coor-
dinating these complexes [60]. Third, the hyperlink may be a
common tool recruited to the complex. In Chromatin Central,
the Rvb1/Rvb2 heterodimeric helicase is a good example to
consider. It is present in three complexes, Swr1C, Ino80C and
ASTRA, presumably because each requires a helicase for
action in chromatin.

Altogether, we distinguished 21 proteomics hyperlinks in
both Chromatin Central environments, 12 in S. cerevisiae and
9 in S. pombe (Figures 2 and 4; Table S6 in Additional data
file 1). These proteins display a variety of physicochemical
properties and domains (Table S5 in Additional data file 2
and Table S6 in Additional data file 1). For instance, in S. cer-
evisiae four hyperlink proteins are enzymes: Sc_Rvb1p and
Sc_Rvb2p are DNA helicases, Sc_ Rpd3p is a histone deacety-
lase, and Sc_Bdf1p is a protein kinase. Sc_Act1p and
Sc_Arp4p are cytoskeleton and structural proteins. Sc_Tra1p
belongs to a protein kinase family (although its catalytic activ-
ity has been questioned [61]), whereas no enzymatic activity
has been reported for the other three proteins, Sc_Eaf3p,
Sc_Yaf9p, Sc_Swc4p. Thus, the hyperlinks display diverse
functional roles. However, they are all members of highly
conserved protein families with clear homologues even in ver-
tebrates. Also, half of the S. cerevisiae hyperlinks (6 out of 12)

are essential, whereas only 3 essential genes were additionally
found among the other 73 members of the environment.

Of the twelve hyperlinks in S. cerevisiae Chromatin Central,
three are not conserved between the two yeasts. In two out of
these three cases, the lost hyperlink is due to gene duplication
or deletion. For Rpd3S and Rpd3L, Sin3 is a hyperlink in S.
cerevisiae, but in S. pombe, both Clr6S and Clr6L have a ded-
icated Sin3 homologue. In fact, S. pombe has three Sin3 par-
alogues, with Sp_Pst2p being exclusively found in Clr6S
whereas the other two homologues, Sp_Pst1p and Sp_Pst3p,
are exclusively found in Clr6L. For NuA4, SAGA/SLIK and
ASTRA, Tra1 is a hyperlink in S. cerevisiae, but in S. pombe,
the tra1 gene is duplicated with one paralogue present in
ASTRA and another in NuA4 and, presumably, SAGA/SLIK.
We have previously noted the same phenomenon regarding a
lost hyperlink. In S. cerevisiae, Swd2 hyperlinks Set1C and
CPF; however, in S. pombe these two complexes each have a
dedicated Swd2 paralogue, Swd2.1 and Swd 2.2. Notably,
deletion of the gene encoding Swd2.1 did not provoke Swd2.2
to occupy the missing position in Sp_Set1C [7]. In the third
case, Bdf1 is a hyperlink between NuA4 and Swr1C in S. cere-
visiae, but in S. pombe, it is replaced by two non-orthologous
proteins with a similar composition of domains (Tables 1 and
3; Table S5 in Additional data file 2).

Although we have documented only a few examples, this early
concordance between hyperlinks and gene duplications/dele-
tions is notable and indicates that a gene duplication in evo-
lution may be especially advantageous when it is a proteomic
hyperlink. Gene duplication permits the diversification of the
encoded protein. However, unless all genes encoding inter-
acting proteins, particularly members of the corresponding
protein complex, are also duplicated, diversification of the
duplicated protein will be constrained by the existing spec-
trum of protein-protein interactions [62]. If the duplicated
gene encodes a hyperlink, then diversification of the dupli-
cated protein will be less constrained because the duplica-
tions can associate and specialize with different complexes
(Figure 6). Therefore, the gene duplication of a hyperlink may
be more successful than other gene duplications. From a tech-

Genetic interactions support the proteomic observationsFigure 5 (continued)
Genetic interactions support the proteomic observations. (a) Scatter plots of correlation coefficients between genetic profiles for the two Set3C subunits, 
Set3 and Hos2, in S. cerevisiae and S. pombe across 239 direct homologs between the two species. In both species Sif2 (Hif2) is highly correlated with both 
Set3 and Hos2, consistent with its being a subunit of the core Set3C, whilst Hst1 (part of the Sc_Set3C extension) is uncorrelated with either Set3 or 
Hos2. Pho23 (Png2), a subunit of Rpd3C(L), correlates better with Set3 and Hos2 than does Rco1 (Cph1), a subunit of Rpd3C(S). The 90th percentile of 
the data is indicated. (b) Subunits of the core Set3C and Set3C extension show different genetic interaction patterns. Shown are genetic interactions 
between Set3C core and extension subunits and Swr1C, SAGA and Prefoldin subunits. Color-coding of the interaction magnitude (shown in the key) is as 
follows: shades of cyan indicate synthetic sick/lethal (negative) interactions typically observed between genes acting on parallel pathways; shades of yellow 
represent suppressive (positive) interactions seen primarily between genes acting on the same pathway and within stable protein complexes. (c) Msc1 in S. 
pombe is a member of Swr1C, while its S. cerevisiae ortholog (Ecm5) is not. Genetic profiles of members of the complex in the two species are shown with 
Msc1 and Ecm5 profiles aligned at the bottom. Genetic pattern of Msc1 is very similar to the rest of the complex and positive genetic interactions with the 
other members indicate that it is a bona fide member of Swr1C in S. pombe. Color-coding is as for (b). (d) A scatter plot of pair-wise correlation 
coefficients of genetic profiles of members of Swr1C in S. cerevisiae and S. pombe. Consistent with (c), data-points corresponding to pairs containing Msc1 
or Ecm5 form an outlier group and are strongly correlated in S. pombe, but not in S. cerevisiae.
Genome Biology 2008, 9:R167
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nical point of view, we suggest that the tagging of hyperlinks
as an entry point for mapping proteomic environments will be
a rewarding focus for mapping and understanding
proteomes.

New complexes in Chromatin Central
Despite the fact that this work was based on one of the most
intensely studied proteomic environments to date, we docu-
mented four new subunits in the six known complexes
(described above in Results). We also found three new com-
plexes, including two more containing the histone deacety-
lase Rpd3, to add to the recently described Rpd3S and Rpd3L
complexes [24,25].

We found the three-member Sc_Snt2 complex in an Rpd3-
TAP pull down. Subsequently, we validated the complex by
tagging Snt2 (Figure 7a). Sc_Snt2p and the other subunit,
Sc_Ecm5p, contain several domains involved in chromatin
regulation (Figure 7b). Sc_Snt2p (YGL131C) is one of 18
SANT domain-containing proteins in budding yeast and the
sixth identified in Chromatin Central (Table S5 in Additional
data file 2). Due to its JmjC domain, Sc_Ecm5p is a putative
histone demethylase. Its PHD fingers have been reported to
bind methylated H3K36 [58].

We did not find a complex similar to Sc_Snt2C in S. pombe.
Previously, we showed that the fission yeast orthologue of
Sc_Snt2p is also found in a complex with the JmjC domain
proteins Sp_Lid2p and Sp_Jmj3p [7,17]. However, these two
complexes, Sc_Snt2C and Sp_Lid2C, are very different. From

our IPs and Coomassie gels, we note that the Sc_Snt2C is
much less abundant than either Rpd3S or Rpd3L.

The second new Rpd3-containing complex, Rpd3-LE, also
contains a minor fraction of cellular Rpd3. Rpd3-LE is an
extension of the Rpd3L complex, which includes the core of
the Set3 complex. We have four reasons to be confident of this
assignment. First, we reciprocally observed the relationship
between Rpd3L and core Set3C in both yeasts. Second, in S.
cerevisiae we observed only the core proteins of Set3C, but
not the full eight-membered Set3C, associated with Rpd3L.
This accords with our previous dissection of Sc_Set3C, which
showed that the complex has a core of these four proteins
[10]. Third, Sp_Set3C consists of only the four core proteins
found in Sc_Set3C and does not include homologues of
Sc_Hst1p or Sc_Hos4p. It also does not include a homologue
of the cyclophilin Sc_Cph1p, which is required to fine-tune
the sporulation-specific activity of Sc_Set3C [10,63]. Fourth,
genetic interaction data clearly support the division of
Sc_Set3C into core and extension components, as well as the
interaction of the core with Rpd3L.

Taken together, these data indicate that Set3C has two ver-
sions, one that is small, common to both yeasts and interacts
with Rpd3L, and the another that is larger and specific to S.
cerevisiae. Sc_Set3C functions during vegetative growth to
regulate several inducible genes and to co-operate with Rpd3
[33-35]. It has also been shown to be a negative regulator dur-
ing meiosis [10]. Partly because transcriptional control of
meiosis appears to be poorly conserved [64], we suggest that
the vegetative functions in S. cerevisiae entirely relate to the
smaller complex.

We also discovered the ASTRA complex, which is composed
of orthologous subunits in both yeasts and contains a Tra1
member of the ATM-like kinase family (Figures 2, 4 and 7C,D;
Table 4). ASTRA includes the ATP-dependent DNA helicase
Rvb1/2 heterodimer, the telomere binding protein Tel2p
together with two uncharacterized Tel2-interacting proteins
(Tti1p and Tti2p), and a WD-repeat containing protein
(Asa1p) of unknown function in both yeasts.

Protein assemblies similar to ASTRA have not been identified
in other organisms. However, five subunits have clear human
homologues so the complex may be widespread. Further-
more, Sc_Tel2p, as well as the C. elegans (CLK-2 [65]) and
human (TELO [66]) orthologues are required for telomere
length regulation. Sc_Tel2p also influences telomere position
effect and interacts directly with double-stranded telomeric
DNA [67,68]. Recently, Hayashi et al. [69] suggested that a
Tel2-Tti1 heterodimer recognizes a common domain of phos-
phatidyl inositol 3-kinase related kinases (PIKK) in the fis-
sion yeast and is a component of multiple PIKK assemblies,
which corroborates our findings in S. cerevisiae (Table S2 in
Additional data file 1). Hence, we suggest that ASTRA is the
Tra-specific Tel2/CLK-2/TELO complex involved in telom-

Several divergent proteomic hyperlinks between S. cerevisiae and S. pombe are due to gene duplicationsFigure 6
Several divergent proteomic hyperlinks between S. cerevisiae and S. pombe 
are due to gene duplications. Hence, hyperlinks provide a mechanism for 
the fixation of gene duplications.
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Figure 7 (see legend on following page)
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eric chromatin regulation and will be found in many
eukaryotes.

The stringency of our protein selection criteria may have
excluded some lowly abundant interactors, as well as proteins
only interacting with a particular subunit of the complex,
rather than with the entire complex cores. This might include
several interesting possible further connections to Chromatin
Central (Tables S2, S3 and S4 in Additional data file 1). For
example, we observed several subunits of the SWI-SNF global
transcription activator complex [70-72], RSC chromatin
remodeling complex [72,73], Regulator of Nucleolar silencing
and Telophase exit (RENT) [74,75], Anaphase Promoting
Complex (APC) [37], cytoplasm to nucleus signaling com-
plexes TORC1 and TORC2 [69,76], the proteasome, DNA rep-
lication licensing complex [77], the CCR4/NOT transcription
complex [78] and various transcription factors.

The histone deacetylases Rpd3p and Clr6p pulled down the
complete TRiC chaperonin complex [79] in S. cerevisiae and
S. pombe, respectively (Figures 2 and 4; Tables S3 and S4 in
Additional data file 1). Similarly, TRiC was co-purified with
the Hos2 deacetylase complex Set3C in S. cerevisiae [5].
Hence, we suggest that TriC chaperonin activity is specifically
related to type I histone deacetylases.

Conclusion
Comparative proteomics remains undeveloped because the
generation of reliable proteomic data remains challenging. A
variety of candidate approaches using synthetic expression
libraries, bioinformatics, or high throughput methodologies
have been applied to tackle the challenge. The best datasets
have been acquired by affinity purification approaches based
on authentic expression levels. Strategies to apply this con-
clusion at a genome scale have been developed for yeast
[11,12] and are being developed for mammalian systems [80].
Based on the conclusions drawn here, we suggest that com-
parative proteomics will become a valuable complement for
proteomic mapping because it presents alternative ways to
validate data. Proteins interacting with Set3 illustrate this
point well. In S. cerevisiae, the interaction between Rpd3L
and the core of Set3C is sub-stoichiometric and obscured by
the existence of alternative Rpd3 and Set3 complexes. How-
ever, our reciprocal identification of the Rps3-LE complex in
both yeasts secures the observation, which was also sup-
ported by genetic interaction studies in both yeasts. Compar-
ative proteomics can also guide the investigation of new
proteomes. In particular, projecting yeast data onto mamma-

lian proteomes has relevance for medicine. Although the
available datasets are incomplete, protein assemblies that
are, apparently, orthologous to the yeast complexes NuA4,
Swr1C, INO80C and Set3C, along with Rpd3 interactors, have
been partially characterized (Figures S5 and S7 in Additional
data file 2) [81-92] and suggest a highly conserved proteomic
environment. Potentially, the orthologous complexes in
humans are hyperlinked into a similar scaffold architecture,
although different protein orthologues are recruited as hyper-
links. Because of multiple gene duplications, human assem-
blies are more complicated (such as hHDACs). However,
comparative proteomics can guide the search for missing
human subunits or even protein complexes, like the ASTRA
orthologue.

Our intense focus on a section of the S. cerevisiae proteome
also revealed new details. These further gains in proteomic
accuracy are partly due to recent performance improvements
delivered by LC-MS/MS. The improved capacity for protein
identification above background and noise in complex mix-
tures permits a greater ability to distinguish sub-stoichiomet-
ric interactors from background. This greater depth has
implications for biochemical practice in two ways. First, the
reliance on candidate approaches to map the proteome, such
as two-hybrid or bioinformatics, has been lessened because
affinity chromatography and mass spectrometry can be used
to deliver reliable sub-stoichiometric data, in addition to the
well established capacity to document stoichiometric interac-
tions. Second, classic biochemistry, which includes tagging
approaches like the TAP method, delivered highly purified
fractions based on multiple purification steps. However, weak
interactions were inevitably lost during multiple steps of puri-
fication. Now, a new logic is emerging based on minimizing
the biochemical procedure so that more weak and sub-stoi-
chiometric interactions are preserved. Although these less
purified preparations will have increased background, mass
spectrometry can now identify large numbers of proteins in
complex mixtures. Its combination with protein quantifica-
tion and bioinformatics should largely eliminate background
proteins, thus opening new paths to map proteomes accu-
rately at greater depth. Given greater accuracy, comparative
proteomics will become a leading source of insight into
eukaryotic cellular and developmental mechanics.

New protein complexes in Chromatin CentralFigure 7 (continued)
New protein complexes in Chromatin Central. (a) Immuno-isolation of the Sc_Snt2C complex and (b) domain structure of its subunits. (c) Immuno-
isolation of the Sp_ASTRA complex and (d) domain structure of its subunits. In (a, c), only the relevant protein bands are annotated. The full list of 
identified proteins is provided in Table S1 in Additional data file 1.
Genome Biology 2008, 9:R167
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Materials and methods
Epitope tagging of genes and isolation of protein 
complexes
Transformations for both yeasts were performed as described
[7,9]. Genes of interest were tagged by in-frame fusion of the
ORFs with a PCR generated targeting cassette encoding the
TAP-tag and a selectable marker. Correct cassette integra-
tions were confirmed by PCR and Western blot analysis. Two
S. cerevisiae strains with TAP-tagged genes YGR099W and
YJR136C were obtained from Euroscarf (Frankfurt am Main,
Germany). Breaking and extraction of yeast cells was per-
formed as described [7] with modifications [10]. Purified pro-
teins were concentrated according to Wessel and Fluegge [93]
and loaded onto one-dimensional gradient (6-18%) polyacry-
lamide gels.

Protein separation and in-gel digestion
Protein bands were visualized by staining with Coomassie.
Full lanes were cut into approximately 30-40 slices; to
enhance the detection dynamic range, visible bands were
always sliced separately. Excised gel plugs were cut into
approximately 1 mm × 1 mm × 1 mm cubes and in-gel
digested with sequencing grade modified porcine trypsin
(catalogue number V5111, Promega, Mannheim, Germany) as
described in [94]. Then, 1 l aliquots were withdrawn directly
from in-gel digests for the protein identification by MALDI
peptide mapping. The rest of the peptide material was
extracted from the gel pieces with 5% formic acid and ace-
tonitrile and recovered peptides dried down in a vacuum
centrifuge.

Protein identification by MALDI peptide mass mapping
Where specified, 1 l aliquots of in-gel digests were analyzed
on a REFLEX IV mass spectrometer (Bruker Daltonics,
Bremen, Germany) using AnchorChip probes (Bruker Dal-
tonics) as described in [95,96]. Peaks were manually selected
and their m/z searched against MSDB protein database of S.
cerevisiae or S. pombe species using MASCOT 2.0 software
(Matrix Science Ltd, London, UK), installed on a local two
CPU server. Mass tolerance was set to 50 ppm; variable mod-
ifications: oxidized methionines; one misscleavage per tryptic
peptide sequence was allowed. Spectra were calibrated exter-
nally using m/z of known abundant trypsin autolysis prod-
ucts as references. Protein hits whose MOWSE score exceed
the value of 51 (the threshold confidence score suggested by
MASCOT for p < 0.05 and the corresponding species-specific
database) were considered significant, but were only accepted
upon further manual inspection, which made sure that the m/
z of all major peaks in the spectrum matched the masses of
peptides from the corresponding protein sequences or known
tryptic autolysis products.

Protein identification by LC-MS/MS
Dried peptide extracts were re-dissolved in 20 l of 0.05% (v/
v) trifluoroacetic acid and 4 l were injected using a FAMOS
autosampler into a nanoLC-MS/MS Ultimate system

(Dionex, Amstersdam, The Netherlands) interfaced on-line to
a linear ion trap LTQ mass spectrometer (Thermo Fisher Sci-
entific, San Jose, CA, USA). The mobile phase was 95:5
H2O:acetonitrile (v/v) with 0.1% formic acid (solvent A) and
20:80 H2O:acetonitrile (v/v) with 0.1% formic acid (solvent
B, Lichrosolv grade). Peptides were first loaded onto a trap-
ping microcolumn C18 PepMAP100 (1 mm × 300 mm ID, 5
mm, Dionex) in 0.05% trifluoroacetic acid at a flow rate of 20
ml/minute. After 4 minutes they were back-flush eluted and
separated on a nanocolumn C18 PepMAP100 (15 cm × 75 m
ID, 3 m, Dionex, Sunnyville, CA, USA) at a flow rate of 200
nl/minute in the mobile phase gradient: from 5-20% of sol-
vent B in 20 minutes, 20-50% B in 16 minutes, 50-100% B in
5 minutes, 100% B during 10 minutes, and back to 5% B in 5
minutes; %B refers to the solvent B content (v/v) in A+B mix-
ture. Peptides were infused into the mass spectrometer via a
dynamic nanospray probe (Thermo Fisher Scientific) and
analyzed in positive mode. Uncoated needles Silicatip, 20 m
ID, 10 m tip (New Objective, Woburn, MA, USA) were used
with a spray voltage of 1.8 kV, and the capillary transfer tem-
perature was set to 200°C. In a typical data-dependent acqui-
sition cycle controlled by Xcalibur 1.4 software (Thermo
Fisher Scientific), the four most abundant precursor ions
detected in the full MS survey scan (m/z range of 350-1,500)
were isolated within a 4.0 amu window and fragmented. MS/
MS fragmentation was triggered by a minimum signal inten-
sity threshold of 500 counts and carried out at the normalized
collision energy of 35%. Spectra were acquired under auto-
matic gain control in one microscan for survey spectra and in
three microscans for MS/MS spectra with a maximal ion
injection time of 100 ms per each microscan. M/z of the frag-
mented precursors were then dynamically excluded for
another 60 s. No precompiled exclusion lists were applied.

MS/MS spectra were exported as dta (text format) files using
BioWorks 3.1 software (Thermo Fisher Scientific) under the
following settings: peptide mass range, 500-3,500 Da; mini-
mal total ion intensity threshold, 1,000; minimal number of
fragment ions, 15; precursor mass tolerance, 1.4 amu; group
scan, 1; minimum group count, 1.

Processing of MS/MS spectra and database searches
Dta files were merged into a single MASCOT generic format
(mgf) file and searched against a database of S. cerevisiae or
S. pombe proteins using MASCOT v.2.2 installed on a local
two CPU server. Tolerance for precursor and fragment
masses was 2.0 and 0.5 Da, respectively; instrument profile,
ESI-Trap; variable modification, oxidation (methionine);
allowed number of miscleavages, 1; peptide ion score cut-off,
15.

Hits were considered confident if two or more MS/MS spectra
matched the database sequences and their peptide ion scores
exceeded the value of 31 (the threshold score suggested by
MASCOT for confident matching of a single peptide sequence
at p < 0.05). For each identified protein, the number of
Genome Biology 2008, 9:R167
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matched peptides and of MS/MS spectra were exported from
MASCOT output to Excel spreadsheets using a script devel-
oped in-house, which further created a non-redundant list of
protein hits detected in all analyzed bands of the same IP
experiment. If the same protein was sequenced in several
bands, only the analysis that produced the highest number of
matched peptides and spectra was reported.

Protein identification in the S. pombe genome database
Where specified, recovered tryptic peptides were sequenced
de novo by nanoelectrospray tandem mass spectrometry on a
QSTAR Pulsar i quadrupole time-of-flight mass spectrometer
(MDS Sciex, Concord, Canada) as described [97]. MS/MS
spectra were interpreted manually using BioAnalyst QS v.1.1
software and candidate sequences searched against the
genomic sequence of S. pombe by the tblastn program at the
NCBI BLAST server. The search found, with several matched
peptides, a non-annotated segment at chromosome 1. Subse-
quently, the full length sequence of the gene was produced by
5'-RACE and determined at the DNA sequencing facility in
MPI CBG, Dresden.

Bioinformatic identification of orthologous genes
Protein sequence database searches were carried out using a
stand-alone version of NCBI-BLAST and the PSI-BLAST
(position-specific iterated BLAST) interface at the NCBI [98].
To identify orthologous genes in S. cerevisiae and S. pombe,
we performed automated BLAST searches using sequences of
all subunits of all identified complexes. Potential orthologues
were further evaluated by reciprocal BLAST searches using all
hits whose E-values were less than 10-fold higher than the E-
value of the best hit. Best hits in reciprocal searches were
regarded as orthologues. If no reciprocal best hit pair was
identified, PSI-BLAST searches were carried out against all
fungal sequences in the non-redundant protein database. E-
values and PSI-BLAST iterations for highly divergent ortho-
logues are shown in Figure S3 in Additional data file 2. Multi-
ple sequence alignments also shown in Figure S3 in
Additional data file 2 were done manually by using pair-wise
alignments produced by BLAST as a template. Residues that
were conserved in at least 75% of sequences are highlighted.
Identification of protein sequence domains was carried out
using a stand-alone version of the InterproScan software [99]
against the Superfamily and HMM-Pfam databases using
default settings.

Genetic interactions
Quantitative genetic interaction profiles in S. cerevisiae and
S. pombe were generated as described [51,100]. Pearson cor-
relation coefficients were calculated between all possible
pairs of genetic profiles for an overlapping set of genes in both
species and the data corresponding to Set3 and Hos2 (Hda1)
are presented as scatter plots in Figure 5.

Abbreviations
A-index: Abundance index; IP: immunoaffinity purification;
LC-MS/MS: liquid chromatography tandem mass spectrom-
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mass spectrometry; ORF: open reading frame; TAP: tandem
affinity purification.
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Additional data files
Additional data file 1 contains five worksheets. Table S1 lists
common background proteins observed in TAP experiments
in S. cerevisiae and S. pombe. Table S2 presents full lists of
proteins identified in all immunoprecipitation experiments in
both yeasts. Tables S3 and S4 are master tables of identified
proteins used for compiling Chromatin Central in S. cerevi-
siae and S. pombe, respectively. Table S6 lists physical prop-
erties and bioinformatic annotations of proteomics
hyperlinks. Additional data file 2 contains five figures and two
tables in pdf format. Figure S1 plots A-indices of six protein
standards versus corresponding protein loadings. Figure S2
presents gel images of immunoprecipitation experiments
used for compiling Chromatin Central in S. cerevisiae. Figure
S3 presents multiple sequence alignments for several mem-
bers of Chromatin Central in S. cerevisiae, whose similarity to
corresponding S. pombe proteins was marginal. Figure S4
presents mass spectrometric identification of the novel 17
kDa protein in S. pombe, its full-length amino acid sequence
and its alignment with the corresponding region of the
genome. Figure S5 presents a plausible molecular architec-
ture of the human Chromatin Central (partly supported by
already published evidence). Table S5 lists domain composi-
tion of orthologous complexes within Chromatin Central in
both yeasts. Table S7 lists plausible members of human Chro-
matin Central, considering their homology to corresponding
proteins in both yeast proteomic environments and published
evidences.
Additional data file 1Tables S1-S4 and S6Table S1: common background proteins observed in TAP experi-ments in S. cerevisiae and S. pombe. Table S2: full lists of proteins identified in all immunoprecipitation experiments in both yeasts. Tables S3: master table of identified proteins used for compiling Chromatin Central in S. cerevisiae. Table S4 master table of identi-fied proteins used for compiling Chromatin Central in S. pombe. Table S6: physical properties and bioinformatic annotations of pro-teomics hyperlinks.Click here for fileAdditional data file 2Figures S1-S5 and Tables S5 and S7Figure S1: A-indices of six protein standards versus corresponding protein loadings. Figure S2: gel images of immunoprecipitation experiments used for compiling Chromatin Central in S. cerevisiae. Figure S3: multiple sequence alignments for several members of Chromatin Central in S. cerevisiae, whose similarity to correspond-ing S. pombe proteins was marginal. Figure S4: mass spectrometric identification of the novel 17 kDa protein in S. pombe, its full-length amino acid sequence and its alignment with the correspond-ing region of the genome. Figure S5: a plausible molecular architec-ture of the human Chromatin Central (partly supported by already published evidence). Table S5: domain composition of orthologous complexes within Chromatin Central in both yeasts. Table S7: plau-sible members of human Chromatin Central, considering their homology to corresponding proteins in both yeast proteomic envi-ronments and other published evidences.Click here for file
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