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On the assessment of spatial resolution of PET systems with 
iterative image reconstruction

Kuang Gong, Simon R Cherry, and Jinyi Qi
Department of Biomedical Engineering, University of California, Davis, CA, USA

Abstract

Spatial resolution is an important metric for performance characterization in PET systems. 

Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as 

filtered backprojection, and can be performed by reconstructing a point source scan and 

calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the 

widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial 

resolution using an iterative reconstruction algorithm. However, the task can be difficult because 

the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially 

enhance the apparent spatial resolution if a point source image is reconstructed without any 

background. Thus, it was recommended that a background should be added to the point source 

data before reconstruction for resolution measurement. However, there has been no detailed study 

on the effect of the point source contrast on the measured spatial resolution. Here we use point 

source scans from a preclinical PET scanner to investigate the relationship between measured 

spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an 

isolated point source is predictive of the ability of the system to resolve two adjacent point 

sources. Our results indicate that when the point source contrast is below a certain threshold, the 

measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM 

monotonically decreases with increasing point source contrast. In addition, the measured FWHM 

also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, 

when measuring system resolution with an iterative reconstruction algorithm, we recommend 

using a low-contrast point source and a fixed number of iterations.
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1. Introduction

Positron emission tomography (PET) produces a three dimensional image of the functional 

processes in the body through the injection of a radioactive tracer. Spatial resolution of PET 

is an important parameter which has to be accurately measured to achieve the clinical 

performance in oncology, such as lesion detection (Bal et al 2014, Polycarpou et al 2014), 

tumor delineation (Cheebsumon et al 2011, Hofheinz et al 2013) and therapy monitoring 
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(Martí-Climent et al 2014), neurology (Aguiar et al 2008, Mourik et al 2010, Bowen et al 
2013), and cardiology (Mohy-Ud-Din et al 2015). Hence when the performance of a PET 

system is evaluated, measuring the spatial resolution is an important task (Bao et al 2009, 
Visser et al 2009, Constantinescu and Mukherjee 2009, Popota et al 2012). As recommended 

by the NEMA standards for both clinical and small animal PET systems (NEMA 2008, 
2012), the standard way to characterize the image resolution of a PET system is through 

point source measurements at different locations. Spatial resolution is measured by 

reconstructing point source scans using the filtered backprojection (FBP) algorithm and 

calculating the FWHM from the profiles along the radial and tangential directions. As the 

FBP algorithm is linear, the measured spatial resolution is independent of any activity 

distribution in the background. Apart from a point source, other phantoms like a line source 

(DeGrado et al 1994), a cylinder phantom (Lodge et al 2009) can also be used to measure 

the spatial resolution of a PET system.

In recent years, iterative reconstruction algorithms have become the method of choice for 

PET image reconstruction because of their ability to accurately model the system response 

and Poisson noise. There is a mismatch between measured point source resolution using the 

FBP algorithm and real data reconstruction using an iterative method. Furthermore, for 

system designs that have irregular geometry or missing data, the FBP algorithm cannot be 

applied without first filling in the missing data (Loukiala et al 2010, Tuna et al 2010, 
Goertzen et al 2012). These issues make it desirable to measure the achievable spatial 

resolution of a PET system using an iterative reconstruction algorithm directly. However, 

measuring spatial resolution for an iterative algorithm can be difficult because the commonly 

used maximum likelihood (ML) and maximum a posteriori (MAP) reconstruction 

algorithms for PET are nonlinear and object dependent (Liow and Strother 1993, Yao et al 
2000). In practical implementations, it has been observed that the non-negativity constraint 

used in these algorithms can artificially enhance the apparent spatial resolution if a point 

source image is reconstructed without any background activity (Yang et al 2004). It has also 

been noted that the spatial resolution measured in air is highly dependent on the pixel size 

and has limitations when being used to evaluate system resolution (Aguiar et al 2010, 
Alessio et al 2010). While it has been recommended that a non-zero background be added to 

the point source data before reconstruction in order to minimize these effects, there has been 

no detailed study about the effect of the point source contrast level on the measured spatial 

resolution. As the measured resolution can be contrast dependent, it can result in 

inconsistent measurements among studies. In addition, due to the nonlinearity of many 

iterative reconstruction methods, a question may arise about whether the FWHM computed 

from a single point source truly reflects the system ability to resolve two adjacent points, 

which is the original definition of spatial resolution (Goodman 2005).

In this work we use point source scans from a preclinical PET scanner in conjunction with 

maximum-likelihood image reconstruction to investigate: (1) the effect of the point source 

contrast on the measured spatial resolution, and (2) whether the reconstruction of an isolated 

point source is predictive of the ability of the system to resolve two adjacent point sources.
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2. Methods

2.1. FWHM measurement

A 0.3 mm Na-22 point source encapsulated in Lucite with activity of 132 μCi was scanned 

in an Inveon preclinical PET scanner (Siemens, Knoxville, TN) at (−15 mm,−15 mm) in the 

central axial plane as shown in figure 1(a). The crystal size of the Inveon scanner is about 

1.59 mm and the 2D sinogram size is 128 (radialbins) × 160 (angles). The total number of 

events collected in the 2D sinogram was 73 312 and the estimated random fraction was less 

than 0.1%.

To evaluate the effect of point source contrast on measured spatial resolution, we simulated 

the background sinogram by forward projecting a uniform background with different activity 

concentrations using the system matrix, and then superimposed the background projection 

data onto the point source data before reconstruction. Since the purpose of adding the 

background is to reduce the nonlinear response and the effect of non-negativity constraint, 

there is no need to introduce Poisson noise in the background data. Maximum-likelihood 

image reconstruction was then performed using 5000 iterations of the preconditioned 

conjugate gradient (PCG) algorithm (Qi et al 1998). Only standard normalization was 

applied in the reconstruction. The system matrix used during forward projection and 

reconstruction includes a geometric projection matrix and a sinogram blurring matrix 

(Tohme and Qi 2009). The image matrix size was 1005 × 1005 and the pixel size was 0.1 

mm. A small pixel size was used to increase the accuracy of FWHM measurements. 

Reconstruction of the background sinogram was also performed, and was subtracted from 

the result of the combined reconstruction to produce the point source only image. Profiles 

were drawn through the peak of the point source and linear interpolation was performed 

between neighboring pixels to measure the FWHM along the radial and tangential 

directions. No curve fitting was performed because the pixel size was much smaller than the 

expected FWHM. Negative values were not considered in the FWHM calculation. In our 

implementation, the point source contrast was defined as

(1)

Here the reconstructed point peak intensity refers to the peak intensity of the point source in 

the reconstructed image before subtracting the background. For comparison, 2D FBP 

reconstruction using the standard software on the scanner was performed with a pixel size of 

0.097 mm. To show the 2D results presented here are applicable to other conditions, fully 

3D maximum-likelihood expectation-maximization (MLEM) reconstruction of a point 

source at the center of the FOV was also performed with different background values. The 

image matrix size in the 3D reconstruction was 256 × 256 × 161 with a voxel size of 0.194 × 

0.194 × 0.796 mm3.

2.2. Resolvability of adjacent points

The second goal of this study is to determine whether the reconstruction of an isolated point 

source can be used to predict the ability of the system to resolve two adjacent hot spots. In 

order to do this, we scanned the point source at two additional positions, one at (−16 mm,
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−14 mm) and the other at (−14 mm, −14 mm), as shown in figure 1(b). These two new point 

sources are separated from the original point source by 1.4 mm, the former in the tangential 

direction and the latter in the radial direction. For each pair of point sources, we 

reconstructed images generated from two different methods of combination: (1) reconstruct 

the two point sources independently and then combine them together in the image space; 

and (2) combine the point source sinograms and reconstruct the two point sources together. 

For both methods, sinograms were reconstructed after adding different level of background 

values. To quantify the difference between the two reconstruction methods, the valley-to-

peak ratio (VPR) of the two point sources was measured for comparison.

3. Results

3.1. FWHM measurement

Figure 2 shows the tangential FWHM as a function of point source contrast at different 

numbers of iterations. This figure presents an overview of the influence of contrast and 

iteration number on the FWHM measurement. First, we see that the FWHM decreases with 

increasing number of iterations. Second, at a fixed iteration, the FWHM increases with 

decreasing contrast, then remains stable after a certain threshold is reached. To better 

visualize this trend, figure 3(a) plots the FWHM at iteration 5000 for different contrast 

levels. It can be seen from this figure that when the contrast is below 0.1 (i.e., log10 

(contrast)< −1), the FWHM remains stable. This phenomenon is also evident when looking 

at the reconstructed point source images of different contrasts shown in figure 4. These 

findings tell us that without adding a background to the point source, the measured FWHM 

is much lower than the measured FWHM with a background. For example, when the 

contrast is 1000 (similar to the no background case), as shown in figure 3(a), the measured 

FWHM is 0.2 mm, much smaller than the resolution obtained at a lower contrast. Thus the 

FWHM measured without background is often unrealistic. Similar trend was also observed 

for the FWHM measurement from the fully 3D ML EM reconstruction as shown in figure 

3(b), indicating that the findings are applicable to other imaging situations. For comparison, 

the 2D FBP reconstruction is shown in figure 4(e). The measured radial FWHM is 2.17 mm 

and the tangential FWHM is 1.67 mm, both of which match the previous published values at 

the radial offset of 21 mm (Bao et al 2009, Constantinescu and Mukherjee 2009, Visser et al 
2009).

3.2. Resolvability of adjacent points

Figure 5 compares the sum of individual reconstructions (top row) and the reconstructions of 

the summed sinogram (bottom row) at three contrast levels for the tangentially separated 

point sources. Tangential profiles for the cases with the two background levels are shown in 

figure 6. From the images and the profiles we can see that only when the contrast is low, the 

summed reconstruction of individual point sources is similar to the reconstruction of the 

summed sinogram. To quantify the difference between the two reconstructions, we 

calculated the VPR and plot them in figure 7. We can see that at high contrast level, the 

summed image has a lower VPR than the reconstruction of the summed sinogram, indicating 

that the point source resolution overestimates the system ability to resolve two adjacent hot 

spots. At lower contrast levels, both images achieve similar VPR, so the reconstructed point 
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source image is a good prediction of the system ability to resolve two adjacent hot spots. 

This means that the measured FWHM at low contrast can tell the system’s ability to 

distinguish small objects while at high contrast it cannot. Additionally, we see that the 

threshold (about 0.1) below which both images achieve similar VPR is the same as the 

threshold below which the FWHM remains stable. Hence when the contrast is below a 

threshold (about 0.1) the measured FWHM is indicative of the resolvability of the system.

3.3. Effect of resolution modeling

In the above studies, a sinogram domain blurring matrix was used to model the detector 

response. Here we examine the effect of the resolution modeling on resolution measurement 

by comparing the reconstruction results with and without the blurring matrix. Both the 

MLEM and PCG algorithms were studied. The FWHM values measured at 500 iteration and 

5000 iteration are shown in figure 8. It is interesting to see that at 500 iteration the FWHM 

with the blurring matrix can be worse than that without the blurring matrix for a low-

contrast point source. The trend is the same for PCG and MLEM, although MLEM requires 

a higher contrast to realize the resolution improvement by resolution modeling because it 

converges slower than PCG. The reason for this seemingly counter-intuitive result is that 

resolution modeling makes the system equation more ill-conditioned, which slows down the 

convergence speed of both the PCG and MLEM algorithms. Therefore, the benefit of 

resolution model at early iterations is not improvement of spatial resolution, but reduction of 

noise. At 5000 iteration, we see that both algorithms provide consistently better FWHM with 

the sinogram blurring matrix than without the blurring matrix across all contrast levels, 

which is consistent with the expectation.

4. Discussion

Our study has shown that the measured FWHM of an iterative reconstruction algorithm can 

be greatly influenced by the point source contrast and number of iterations. In particular, at 

high contrast (or no background) the measured FWHM has the potential to be rendered 

meaningless as it can approach the voxel size at a very large number of iterations. Also, for 

high contrast cases, the measured system FWHM cannot represent the system’s ability to 

distinguish two objects. We note that apart from the non-negativity constraint, the 

nonlinearity of the iterative methods used here is another factor that causes contrast-

dependent resolution. This can be seen from the point spread functions in figures 4(b)-(d). In 

all three cases, the added background value is large enough to make the elements in the 

iterative update equation all be positive, but we still obtained different FWHM values. While 

non-negativity constraint can be removed from reconstruction algorithms, nonlinearity is 

inherent to the Poisson likelihood function and cannot be avoided in statistically based PET 

reconstruction. The same applies to (penalized) weighted least squares (WLS) 

reconstructions in which the weights are data dependent (Fessler 1994). While there are 

linear iterative algorithms based on the least squares, such as ART, they are not commonly 

used for PET reconstruction because they result in higher noise in reconstructed images. 

Therefore, it is important to use a low-contrast point source embedded in a background 

when measuring spatial resolution using an statistically based iterative reconstruction 

method. While the measured FWHM may be larger than that of a source with a higher 
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contrast, the result provides a lower bound of the system resolvability that can be used to 

compare different PET scanners. In real applications, a look-up table (e.g. figure 2) can be 

provided to estimate the extent of spatial blurring for a given hot spot based on its contrast 

and the specific reconstruction algorithm. For applications that require a contrast-

independent resolution, one may have to use a linear algorithm with sacrifice in noise.

The results in figure 3 show that the contrast threshold of 0.1 holds for both 2D 

reconstruction with 0.1 mm pixels and 3D reconstruction with larger voxels. These voxel 

sizes are consistent with the NEMA standard (NEMA 2012), which recommends using 

voxel size no more than one third of the expected FWHM in all three dimensions for 

resolution measurements. As an extreme case, we also performed reconstructions with 0.5 

mm pixels (data not shown) and found the same threshold. Therefore, the threshold appears 

to be independent of the voxel size as long as it is less than one third of the expected 

FWHM.

5. Conclusion

In this work, we have studied the dependence of measured spatial resolution on point source 

contrast and system modeling. To minimize the variation in the measured FWHM value for 

system performance evaluation, we recommend that the reconstructed point source contrast 

should be lower than 0.1, i.e. the reconstructed peak intensity of the point source with 

background should be less than 110% of the background activity, based on the results in this 

study. In addition, because the measured FWHM depends on the reconstruction algorithm 

and number of iterations, it is also important to use the same algorithm and same number of 

iterations when comparing different systems.
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Figure 1. 
(a) The location of the point source that was used to measure the FWHM. (b) The location 

of the point source pairs in the radial and the tangential directions.
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Figure 2. 
The measured tangential FWHM at different contrast levels and different number of 

iterations using PCG algorithm.
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Figure 3. 
(a) The measured tangential FWHM at different contrast levels for 2D reconstruction using 

5000 iterations of the PCG algorithm. (b) The measured tangential FWHM at different 

contrast levels for 3D reconstruction of a point source at the center using 500 iterations of 

the MLEM algorithm.
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Figure 4. 
The reconstructed point source image at iteration 5000 with different contrast (C) levels: (a) 

C = 196, (b) C = 7.2, (c) C = 0.44, (d) C = 0.04. The 2D FBP reconstruction is shown in (e). 

The physical size of each image patch is 4.2 mm × 4.2 mm. Each colormap is scaled to 

range from the minimum to the maximum of the respective image.
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Figure 5. 
The sum of individual reconstructions (top row) and the reconstructions of the summed 

sinograms (bottom row) at three contrast levels. The two points are separated by 1.4 mm 

tangentially. (a) Background = 0. (b) Background = 0.064. (c) Background = 2.0. (d) 

Background = 0. (e) Background = 0.064. (f) Background = 2.0.
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Figure 6. 
Tangential profiles through the reconstructed images in figure 5. The numbers in the legend 

correspond to the background values.
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Figure 7. 
Comparison of the valley-to-peak ratio (VPR) between the summed reconstructions and 

reconstruction of the summed sinograms: (a) radial direction and (b) tangential direction. 

The measured FWHM values are also shown.
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Figure 8. 
Comparison between reconstructions with and without the blurring matrix. Results of both 

the PCG and MLEM algorithm are shown. (a) Iteration 500, Radial. (b) Iteration 500, 

Tangential. (c) Iteration 5000, Radial. (d) Iteration 5000, Tangential.
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