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OPEN

ORIGINAL ARTICLE

D-serine levels in Alzheimer’s disease: implications for novel
biomarker development
C Madeira1,8, MV Lourenco2,8, C Vargas-Lopes1, CK Suemoto3, CO Brandão4, T Reis4, REP Leite5, J Laks4, W Jacob-Filho3,
CA Pasqualucci5, LT Grinberg5,6, ST Ferreira2,7,9 and R Panizzutti1,4,9

Alzheimer’s disease (AD) is a severe neurodegenerative disorder still in search of effective methods of diagnosis. Altered levels of
the NMDA receptor co-agonist, D-serine, have been associated with neurological disorders, including schizophrenia and epilepsy.
However, whether D-serine levels are deregulated in AD remains elusive. Here, we first measured D-serine levels in post-mortem
hippocampal and cortical samples from nondemented subjects (n= 8) and AD patients (n= 14). We next determined D-serine levels
in experimental models of AD, including wild-type rats and mice that received intracerebroventricular injections of amyloid-β
oligomers, and APP/PS1 transgenic mice. Finally, we assessed D-serine levels in the cerebrospinal fluid (CSF) of 21 patients with a
diagnosis of probable AD, as compared with patients with normal pressure hydrocephalus (n= 9), major depression (n= 9) and
healthy controls (n= 10), and results were contrasted with CSF amyloid-β/tau AD biomarkers. D-serine levels were higher in the
hippocampus and parietal cortex of AD patients than in control subjects. Levels of both D-serine and serine racemase, the enzyme
responsible for D-serine production, were elevated in experimental models of AD. Significantly, D-serine levels were higher in the
CSF of probable AD patients than in non-cognitively impaired subject groups. Combining D-serine levels to the amyloid/tau index
remarkably increased the sensitivity and specificity of diagnosis of probable AD in our cohort. Our results show that increased brain
and CSF D-serine levels are associated with AD. CSF D-serine levels discriminated between nondemented and AD patients in our
cohort and might constitute a novel candidate biomarker for early AD diagnosis.

Translational Psychiatry (2015) 5, e561; doi:10.1038/tp.2015.52; published online 5 May 2015

INTRODUCTION
Alzheimer’s disease (AD) is a complex neurological disorder
characterized by progressive memory loss and cognitive impair-
ment. AD neuropathology includes brain deposition of amyloid
plaques, neurofibrillary tangles and significant synapse loss.1,2 AD
remains as a largely idiopathic disorder, although mounting
evidence suggests that levels of amyloid-β oligomers (AβOs) build
up in patient brains to cause synapse failure and memory loss.3,4

Currently, diagnosis of probable AD is based on neuropsycho-
logical testing, fluid biomarker assessment and brain imaging,5–9

but diagnosis of the earliest stages of AD, before major brain
damage takes place, is still challenging. In order to improve
diagnostics and to allow treatment to be initiated at the earliest
possible stage, there is an urgent need to incorporate biomarkers
capable of detecting disease onset or at early stages. In this
context, cerebrospinal fluid (CSF) levels of amyloid-β1–42 (Aβ42),
total tau protein and hyperphosphorylated tau (p-tau) have now
been included in diagnostic guidelines.6,10 Such CSF biomarkers
have been advocated for research purposes, but sensitivity and
specificity issues have generally raised concerns about their
widespread clinical application.5,6,11

Aberrant activation of glutamate receptors of the N-methyl-D-
aspartate subtype (NMDARs) has been associated with synapse
dysfunction and neurotoxicity in AD.12–17 Accordingly, memantine
(an open-channel blocker of NMDARs) has been approved for
clinical use in patients with moderate-to-severe AD.18 D-serine is
the main co-agonist at NMDARs in frontal brain areas19–21 and has
been implicated in NMDAR-mediated neurotoxicity.22 Consistent
with a possible role in pathological states, in vitro studies have
shown increased release of D-serine from both glial and neuronal
cells and NMDAR activation under injury, in particular in AD model
systems.23,24 On the other hand, exogenous D-serine administra-
tion may improve behavioral deficits in experimental models25,26

and may act as a NMDAR antagonist under some circumstances.27

Literature reports on changes in D-serine levels in AD brains
have been controversial. Early studies reported unaltered D-serine
levels in the frontal and parietal cortices of AD patients,28–30

whereas another study found increased D-serine levels in the CSF
of AD patients compared with healthy controls.31

The goal of the current study was to investigate whether D-
serine levels are deregulated in AD, and to assess its potential as a
novel biomarker in AD. We initially investigated D-serine levels in
post-mortem AD brains in comparison with brains from
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cognitively intact control subjects. To determine whether there
was a causal relationship between AβO toxicity and D-serine levels,
we next studied D-serine levels in cellular and animal models of
AD. Finally, we collected CSF and measured D-serine levels in
patients with probable AD, major depression or hydrocephalus
and healthy controls. Results showed elevated D-serine levels in
brain tissue from AD patients in comparison with controls. In
experimental models, we found that Aβ oligomers caused
elevations in D-serine levels, likely via upregulation of serine
racemase (SR). Further, we found increased D-serine levels in the
CSF of patients with probable AD. Incorporation of D-serine
measurements into the amyloid-tau biomarker index significantly
increased diagnostic sensitivity and specificity in our cohort,
suggesting that CSF D-serine determination may constitute a
simple and effective manner to improve in vivo diagnosis of AD.

MATERIALS AND METHODS
Study approval
Experiments using human samples were approved by local ethics
committees from each participating institution. All study subjects or their
next-of-kin (in the case of post-mortem samples) provided written
informed consent for study participation. Experiments in animals
were approved by the Institutional Animal Care and Use Committee
of the Federal University of Rio de Janeiro (protocols # IBqM 022, 041
and 055).

Post-mortem samples
Post-mortem tissue samples were obtained from the Brain Bank of the
Brazilian Aging Brain Study Group,32 School of Medicine of the University
of Sao Paulo. Brains were obtained from the Sao Paulo Autopsy Service,
after written informed consent. We studied 17 cases with a neuropatho-
logical diagnosis of AD confirmed for the presence of pathological
hallmarks by an experienced neuropathologist, and 12 cases without
neuropathological changes. The clinical dementia rating (CDR) was
determined by a validated interview conducted with the informant
caregiver.33,34 The control group consisted of cases with CDR= 0, whereas
the AD group included cases with CDR ranging from 1 to 3. Demographic
characteristics of those groups are presented in Table 1. More detailed
information on individual subjects is provided in Supplementary Table 1.

CSF samples
Twenty-one patients with probable AD were recruited from the AD Center
at the Institute of Psychiatry of the Federal University of Rio de Janeiro
(IPUB/UFRJ). Patients with probable AD were diagnosed according to the
National Institute of Neurological and Communicative Disorders and Stroke
(NINCDS-ADRDA) and the Diagnostic and Statistical Manual of Mental
Disorders, 4th edition criteria, using a combination of clinical evaluation,
neuropsychological testing and biomarker (Aβ and total tau protein)
assessment, as described.35 Nine nondemented patients diagnosed with
major depression according to Diagnostic and Statistical Manual of Mental
Disorders, 4th edition criteria were also recruited at IPUB/UFRJ. Ten healthy
control subjects and nine patients with normal pressure hydrocephalus,
diagnosed according to the International Classification of Diseases, 10th

edition, were recruited at the Neurolife Laboratory, a private clinic
specialized in CSF analysis in the city of Rio de Janeiro. Patients were

subjected to the mini-mental state exam to assess cognitive performance.
All patients included in the study were older than 60 years of age.
Exclusion criteria for all groups included psychiatric and neurological
diagnoses other than AD and major depression, any unstable clinical
diagnoses, cigarette smoking (more than 10 packs per year) and alcohol
abuse. CSF samples were collected through lumbar puncture in the L3–4 or
L4–5 interspace and were immediately stored at − 80 °C. All lumbar
punctures were performed around 1100 hours in order to minimize
possible circadian fluctuations in the concentrations of analytes.
Demographic characteristics for the four subject groups are presented in

Table 1. More detailed information on individual subjects is provided in
Supplementary Table 2. Studied groups were significantly different in
terms of gender distribution. However, D-serine levels were similar
between males and females across diagnostic groups (c2 = 0.23; P=0.63)
(Supplementary Figure 1).
Psychotropic medication used by probable AD patients included

rivastigmine (47.6%; n=10), risperidone (38.1%; n= 8), memantine
(28.6%; n= 6), donepezil (23.8%; n=5), clonazepam (19.0%; n=4),
citalopram (4.8%; n= 1), trazodone (4.8%; n= 1), biperiden (4.8%; n=1),
escitalopram (4.8%; n= 1) and mirtazapine (4.8%; n=1). Two (9.5%)
patients with probable AD were not taking any medication at the time of
the study. None of the medications used showed any significant effect on
CSF D-serine levels (Supplementary Table 3).

Biochemical analyses of human samples
Post-mortem tissue was homogenized in buffer containing 20mM Tris-HCl
(pH 7.4), 2 mM EDTA and a cocktail of protease inhibitors (Roche complete
mini, Basel, Switzerland). D-serine, L-serine and glycine levels in tissue
homogenates, CSF and culture media were measured by high-
performance liquid chromatography as previously described.36,37 Amino-
acid concentrations were expressed per gram of total proteins in tissue
homogenates or as actual concentration in CSF and culture media.
CSF levels of p-tau, total tau protein and Aβ42 were measured

using commercially available enzyme-linked immunosorbent assays
(ELISA INNOTEST p-tau181, INNOTEST htau, INNOTEST β-amyloid(1-42) kits,
respectively; Innogenetics, Gent, Belgium) according to manufacturer’s
instructions. The INNOTEST amyloid/tau index (IATI) was calculated as:

IATI ¼ Aβ42= 240þ 1:18 � t - tauð Þ ð1Þ

Soluble AβOs
AβOs were prepared weekly from synthetic Aβ1–42 (American Peptide,
Sunnyvale, CA, USA), and were routinely characterized by size-exclusion
chromatography and, occasionally, by western immunoblots and transmis-
sion electron microscopy, as previously described.38,39 Oligomers were
stored at 4 oC and were used within 48 h of preparation.

Mature hippocampal cultures
Primary rat embryo hippocampal neuronal cultures, prepared and
developed in Neurobasal medium supplemented with B27 (Invitrogen,
Carlsbad, CA, USA) and antibiotics according to established procedures,16

were used after 18–21 days in vitro. Cultures were exposed for 24 h to
500 nM AβOs or an equivalent volume of vehicle (2% dimethyl sulfoxide in
phosphate-buffered saline) at 37 °C.

Animals
C57Bl/6 wild-type (WT) mice were obtained from the animal facility at
CECAL/FIOCRUZ (Rio de Janeiro, Brazil). Three-month-old mice received a
single intracerebroventricular injection of either vehicle (2% dimethyl
sulfoxide in phosphate-buffered saline) or Aβ oligomers (10 pmol total Aβ,
corresponding to 45 ng) as described.40,41 After 8 days, animals were killed
and had their hippocampi collected for D-serine analysis.
APPSwe/PS1ΔE9 transgenic mice on a C57Bl/6 background42 were

obtained from the Jackson Laboratories (Bar Harbor, ME, USA). WT littermates
were used as controls. For D-serine assessment in APP/PS1 brains, nine
animals aged 14–16 months were used per experimental group.
Surgical procedures in adult male Wistar rats were performed as

described,43 with slight modifications. A sagittal incision was made on the
scalp and a small craniotomy was performed unilaterally to implant a
cannula in the hippocampus (A/P: − 3.0 mm; L: 1.5 mm; D/V: 3.5 mm). After
7–10 days of recovery from surgery, animals were chronically injected with
1 μg of AβOs or vehicle (2% dimethyl sulfoxide in saline; 3–5 μl per

Table 1. Demographic characteristics of individual subjects in
post-mortem analysis

Control Alzheimer’s disease Statistics

Age, years (range)a 74.7 (11.5) 80.9 (4.7) 2.60 (0.09)
Sex, male/femaleb 7/5 6/11 1.56 (0.46)
Post-mortem Interval, ha 14.2 (3.2) 12.4 (3.5) 1.20 (0.31)

Abbreviation: ANOVA, analysis of variance. Values are presented as means
(s.d.). Statistical significance is given by aOne-way ANOVA, F (P-value). bX2-
test (P-value).
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injection) once a week for 5 weeks. Rats were euthanized and samples
collected 3 days after the last AβO injection.
In all experiments, animals were caged in groups of five with controlled

room temperature and humidity. Animals had free access to food/water
and were under a 12-h light/dark cycle.

Biochemical analyses in experimental models
Homogenates from hippocampi or primary neuronal cultures were
prepared in RIPA buffer (25mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40,
1% sodium deoxycholate, 0.1% SDS, 5 mM EDTA and 1% Triton X-100)
containing protease and phosphatase inhibitor cocktails (Thermo-Pierce,
Rockford, IL, USA). Protein concentration was determined by the BCA assay
(Thermo-Pierce). Homogenates or conditioned media were treated with
trichloroacetic acid (5% final concentration) to precipitate proteins and
extract free amino acids. Samples were centrifuged (20 000 g for 5 min), the
supernatants were extracted three times with water-saturated diethyl
ether to remove trichloroacetic acid and amino acids were measured by
high-performance liquid chromatography, as described.36,37,44

For western blot analysis, soluble lysates (30 μg protein applied per lane)
were resolved on 10% SDS-polyacrylamide gel electrophoresis, electro-
transferred onto nitrocellulose membranes and probed using anti-serine
racemase antibody (BD Biosciences, San Jose, CA, USA; 1:500). β-actin
(Abcam, Cambridge, UK; 1:50 000) was used as a loading control.
Immunoblots were developed with SuperSignal West Femto Maximum
Sensitivity substrate (Thermo Scientific, Waltham, MA, USA) and imaged on
photographic film.
For determination of SR messenger RNA levels in primary neuronal

cultures exposed to vehicle or AβOs, total RNA was extracted with Trizol
(Life Technologies, Carlsbad, CA, USA). RNA characterization and com-
plementary DNA synthesis were performed as described.38,41 Quantitative
reverse transcription-PCR protocols were performed using specific primers
for SR (forward 5ʹ-TAGCGGGACAAGGGACAATT-3ʹ; reverse 5ʹ-TGCATACTT
GATTTCATCTTCCGTG-3ʹ) and β-actin (forward 5ʹ-GTCTTCCCCTCCATCG
TG-3ʹ; reverse 5ʹ-AGGATGCCTCTCTTGCTCTG-3′), as described.41 Results
were analyzed according to the 2-(ΔΔCt) method45 and are shown
normalized by levels in vehicle-treated cultures.

Statistical analyses
Results from human samples are presented as means ± s.d., except for
analysis of covariance results, which are presented as means± s.e. The
distributions of D-serine and L-serine levels were evaluated for normalcy,
and winsorized means were calculated if outliers were present. For
D-serine, we adjusted one outlier in the data set for the hippocampus and
two outliers in the data set for the occipital cortex in the AD group. For
L-serine, we adjusted one outlier in the CSF study data set in the AD group
and two outliers in the hydrocephalus group; one outlier in the
hippocampus data set, one in the parietal cortex data set and one in the
occipital cortex in the AD group. For glycine, we adjusted one outlier in the
CSF study data set in the AD group. Statistical significances of differences
between groups were determined by analysis of covariance followed by
Bonferroni’s multiple comparison tests. Associations between measures
were analyzed by Pearson’s bivariate correlation. Effect size was measured
by Cohen’s test, and post hoc statistical power analysis was performed
using G Power (University of Dusseldorf; available at http://www.gpower.

hhu.de46) to determine the minimal sample size that would be required for
a duplication effect under our conditions.
In experimental studies, analyses were performed with GraphPad Prism

(La Jolla, CA, USA) and data sets were assessed for normality prior to
significance determination. Values are expressed as means± s.e.m., unless
otherwise stated. Significance was set at 5% in two-sided tests.

RESULTS
Brain D-serine levels in neuropathologically confirmed AD
We initially investigated D-serine levels in post-mortem samples
from three brain regions: hippocampus, parietal and occipital
cortices. Cases were divided in two groups: controls (cases without
clinical dementia or neuropathology) and AD (cases with clinical
signs of dementia and neuropathology typical of full-blown AD).
Demographic characteristics of cases are presented in Table 1.
Because the AD group was significantly older (80.9 ± 4.7 years)
than the control group (74.7 ± 11.5 years), age was entered as a
covariate in the analyses.
After adjustment for age, D-serine levels were significantly

higher in AD brains compared with controls in both the
hippocampus (Figure 1a) and parietal cortex (Figure 1b), two
regions severely affected by AD. In contrast, D-serine levels were
not significantly different between groups in the occipital cortex,
an area more resistant to AD pathology (Figure 1c). Glycine levels
were unchanged in the hippocampus and occipital cortex, but
were fairly elevated in the parietal cortex of AD patients in
comparison with controls (Table 2). No significant differences
between groups were observed in brain levels of L-serine and total
serine (Table 2). Results demonstrate that D-serine levels are
elevated in post-mortem brain regions affected by AD.

Soluble AβOs increase D-serine levels in hippocampal cultures
To gain insight into the mechanism underlying elevated D-serine
levels in AD brains, we examined the impact of soluble AβOs,
which accumulate in AD brains and are thought to trigger synapse
failure, on D-serine levels in cultured hippocampal neurons.
Exposure of cultures to AβOs (500 nM) for 24 h significantly
increased D-serine levels in conditioned medium compared with
vehicle-treated cultures (Figure 2a). We next looked at messenger
RNA and protein levels of SR, the enzyme responsible for synthesis
of D-serine.47,48 AβOs increased SR at both messenger RNA
(Figure 2b) and protein levels (Figure 2c) in hippocampal cultures,
likely explaining the increase in D-serine release to the medium in
such cultures.

D-serine is elevated in the brains of AβO-injected rodents and of
APP/PS1 transgenic mice
To determine whether AβΟ− induced upregulation of D-serine
levels occurs in vivo, we chronically injected AβOs into rat

Figure 1. D-serine levels are increased in Alzheimer’s disease (AD) post-mortem brain tissue. D-serine levels in the hippocampus (a), parietal
cortex (b) and occipital cortex (c) of post-mortem samples from control (Ctrl) and AD subjects. Values are presented as nmol of D-serine per g
of wet tissue (WT). Horizontal lines represent mean values for each diagnostic group. Data points correspond to individual values. Statistical
significance is given by the Student’s t-test (*Po0.05; NS, not significant).
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hippocampi for 5 weeks (see Materials and methods). AβOs
increased hippocampal D-serine levels compared with levels
measured in hippocampi of vehicle-injected rats (Figure 3a). We
next examined WT C57Bl/6 mice that received a single intracer-
ebroventricular injection of either vehicle or 10 pmol AβOs,
recently shown to cause memory/behavioral impairments.40,41

We found significantly increased D-serine levels in the hippocampi
of AβO-injected mice compared with vehicle-injected animals
(Figure 3b). Importantly, levels of L-serine (Supplementary Figure
2a) and glycine (Supplementary Figure 2b), another NMDAR co-
agonist, were unaltered by AβO injection, likely not reflecting a
global deregulation of amino-acid levels triggered by AβOs.
Further, we measured D-serine levels in the brains of APPSwe,

PS1ΔE9 (APP/PS1) mice, which harbor transgenes for human
amyloid precursor protein (APP) bearing the Swedish mutation
and a mutant form of presenilin 1 (PS1). These animals display
elevated Aβ levels and develop age-related cognitive

Table 2. Amino-acid levels in post-mortem brain tissue samples

Amino acid (nmol g− 1

WT)
Control AD ANCOVA F

(P-value)

Hippocampus
D-serine 18.1 (5.1) 33.0 (4.0)a 9.00 (0.001)*
L-serine 1371 (234) 1061 (175) 0.56 (0.58)
Total serine 1388 (243) 1270 (182) 0.11 (0.90)
Glycine 1191 (255.6) 1017 (249) 1.05 (0.13)

Parietal cortex
D-serine 11.8 (5.44) 36.2 (4.43)a 6.08 (0.013)*
L-serine 2453 (390) 2434 (308) 0.54 (0.60)
Total serine 2465 (388) 2473 (307) 0.54 (0.60)
Glycine 3679 (57.2) 4058

(140.1)
6.00 (0.0005)*

Occipital cortex
D-serine 1.73 (0.34) 1.76 (0.29) 0.49 (0.62)
L-serine 75.0 (17.1) 110.5 (14.4) 2.53 (0.10)
Total serine 76.7 (22.2) 128.4 (18.7) 2.02 (0.16)
Glycine 194(43.7) 284.5

(202.2)
21.42 (0.23)

Abbreviations: AD, Alzheimer’s disease; ANCOVA, analysis of covariance;
WT, wet tissue. Values are presented as means (s.e.). P-values were given by
ANCOVA using age as covariate, followed by the Bonferroni adjustment for
multiple comparisons. Asterisks indicate statistically significant differences.
aAD significantly different from control (Po0.05).

Figure 2. Amyloid-β oligomers (AβOs) increase D-serine and serine racemase (SR) levels in hippocampal cultures. Primary rat hippocampal
neuronal cultures were exposed to 500 nM AβOs or vehicle (2% dimethyl sulfoxide in phosphate-buffered saline) for 24 h. (a) AβOs increased
extracellular levels of D-serine. (b and c) AβOs increased total levels of SR messenger RNA (mRNA) (b) and protein (c). D-serine was measured by
high-performance liquid chromatography and its values were corrected by total protein content in the analyzed samples. SR protein levels
were detected by western blotting, using β-actin as a loading control. *Po0.05 (Student’s t-test), statistical significance was assessed in
comparison with control. Results are expressed as means± s.e.m. of three independent experiments (each carried out in triplicate wells) with
different neuronal cultures.

Figure 3. Amyloid-β oligomers (AβOs) increase hippocampal D-serine
and serine racemase (SR) levels in vivo. (a) AβOs increased D-serine
levels in hippocampal homogenates of rats that received intrahip-
pocampal injections of AβOs (1 μg) or vehicle (2% dimethyl sulfoxide
in phosphate-buffered saline) once a week for 5 weeks (n= 8 veh;
n= 7 AβOs), as analyzed 3 days after the last injection. (b) D-serine
content is increased in the hippocampi of mice that received a
single intracerebroventricular injection of AβOs (10 pmol, or 45 ng).
D-serine levels were measured 8 days post injection (n= 10 per
group). (c and d) Thirteen- to fourteen-month-old APPSwe/PS1ΔE9
(APP/PS1) transgenic mice showed increased hippocampal levels of
D-serine (c) and SR (d) compared with wild-type (WT) mice (n= 8 per
group). D-serine was measured by high-performance liquid chroma-
tography and its values were corrected by total protein (ptn)
content in the analyzed samples. SR protein levels were detected by
western blotting using β-actin as the loading control. *Po0.05;
**Po0.01 (Student’s t-test), statistical significances were assessed in
comparison with controls. Results are presented as means± s.e.m. of
individuals.
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deficits.42,49,50 In harmony with our hypothesis, we found
markedly increased hippocampal D-serine levels in APP/PS1 mice
compared with WT littermates (Figure 3c). This was accompanied
by increased SR levels in the hippocampus (Figure 3d). Levels of
L-serine (Supplementary Figure 2c) and glycine (Supplementary
Figure 2d) were similar in WT and APP/PS1 mice. Results thus
establish that AβOs instigate increases in hippocampal D-serine
and SR levels in vivo.

CSF levels of D-serine in patients with probable AD
Given our findings in post-mortem brains and in experimental
models of AD, we next investigated whether CSF levels of D-serine

were altered in a group of patients with probable AD, as
compared with healthy controls, patients with major depression
or patients with hydrocephalus. Remarkably, mean D-serine levels
in probable AD patients were approximately fivefold higher than
in healthy controls, and about twofold higher than in the
depression and hydrocephalus patient groups (Figure 4a and
Table 3), yielding an effect size (d, Cohen’s test) of 7.1 between
controls and probable AD subjects. Mean D-serine levels in the
major depression and hydrocephalus groups were also signifi-
cantly higher than in healthy controls (Figure 4a and Table 3).
Further, when biomarker combination (IATI) was used to separate
AD from non-AD cases (using either 0.83, 0.96 or 1.246 as cutoffs,

Figure 4. Increased cerebrospinal fluid (CSF) levels of D-serine in patients with probable Alzheimer’s disease (AD). (a) CSF levels of D-serine in
healthy controls (Ctrl) and in patients with probable AD, major depressive disorder (MDD) or hydrocephalus (Hydro). Statistical significance
was assessed by one-way analysis of variance (ANOVA) followed by Bonferroni adjustment for multiple comparisons. (b) CSF D-serine levels
(μmol l− 1) in non-AD (white circles for INNOTEST amyloid/tau index (IATI)-based classification; blue circles for neuropsychological assessment)
and AD cases (black circles for IATI-based classification; red circles for neuropsychological assessment) using different IATI cutoffs (0.83; 0.96;
1.24). Horizontal bars represent mean values for each group. ***Po0.001; Student’s t-test. (c) CSF levels of D-serine as a function of the mini-
mental state exam (MMSE). (d) CSF levels of D-serine as a function of CDR scores. Horizontal lines represent mean values for each CDR group.
Data points correspond to individual values. Statistical significance is given by one-way ANOVA followed by Bonferroni adjustment for
selected groups: CDR 0.5, 1, 2 and 3 versus CDR 0. (e) CSF levels of D-serine as a function of IATI across subject groups. (f) Receiver-operating
characteristic curves for diagnostic based on IATI alone (blue line) or IATI/D-ser levels (red line), showing increased sensitivity and specificity
when D-serine is added to the calculation. *Po0.05; ***Po0.001. CDR, clinical dementia rating score; NPA, neuropsychological assessment.
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in accordance with previous studies that used cutoffs of o0.8,
o1.0 or o1.2 for AD diagnosis51–54), CSF D-serine levels were
again significantly different from non-AD patients (Figure 4b).
Remarkably, cases clinically diagnosed as probable AD by
neuropsychological assessment had higher CSF D-serine levels
(Figure 4b) than nondemented patients. In addition, total serine
levels (that is, D-serine+L-serine) were higher in AD and major
depression compared with healthy controls (Table 3), whereas L-
serine levels did not differ significantly between groups (Table 3).
CSF glycine levels were not significantly different between AD and
control groups (Table 3).
As expected, mean mini-mental state exam scores were

significantly lower in the AD group compared with the other
patient groups (Table 4). Interestingly, individual D-serine levels
across all subjects, regardless of diagnosis, were negatively
correlated to the mini-mental state exam score (Figure 4c). We
further investigated how D-serine levels correlated to dementia by
separating subjects into groups stratified by CDR scores. The CDR
0 (cognitively normal) group showed significantly lower levels of
D-serine than the groups with CDR 0.5, 1, 2 and 3 (Figure 4d). It is
interesting to note that D-serine levels were already elevated in
patients with a CDR score of 0.5, typically associated with pre-
dementia mild cognitive impairment.

CSF D-serine versus amyloid/tau biomarkers of AD
IATI is a score that combines CSF Aβ42 and total tau protein levels,
and has been proposed as a biomarker to assist in the diagnosis of
AD.51 As expected, the mean IATI score was significantly lower in
the AD group than in the other three groups (Table 4).
Interestingly, individual D-serine levels were negatively associated
with IATI scores (Figure 4e).
To explore the potential of D-serine as a biomarker, we

compared CSF D-serine levels and IATI scores on their specificity
and sensitivity for the diagnosis of probable AD in our cohort.
Using the cutoff of 1.246, IATI showed 81.4% sensitivity and 94.4%
specificity (in good agreement with published values55), whereas
determination of CSF D-serine levels (using a cutoff of

9.82 μmol l− 1) afforded 92.9% sensitivity and 85.7% specificity
for AD. Remarkably, combined use of both IATI and CSF D-serine
levels (that is, calculating an IATI/ D-serine ratio, and using a cutoff
of 0.14) resulted in significantly increased sensitivity (96.3%) and
specificity (100%) for the diagnosis of probable AD. Increased
sensitivities and specificities were also obtained by inclusion of D-
serine determination using lower IATI cutoff values
(Supplementary Table 4). Receiver-operating characteristic curves
for IATI alone and IATI/ D-serine are shown in Figure 4f.

DISCUSSION
We identified elevated levels of D-serine in post-mortem samples
from brain regions involved in disease progression in neuropatho-
logically confirmed AD cases. Pathological changes in AD usually
spread from limbic structures, comprising the hippocampal
formation, to associative areas such as the posterior parietal
cortex, and only later reach primary neocortical areas, such as the
striate cortex in the occipital lobe.56,57 Consistent with this pattern,
we found increased D-serine levels in the hippocampus and
parietal cortex of AD brains compared with nondemented
controls, but no differences in the occipital cortex. Noteworthy,
three early studies using post-mortem frontal or temporal cortical
tissue failed to detect altered D-serine levels between AD and
controls.28–30 Those findings, when contrasted to our results
stratified by regions and CDR, raise the possibility that D-serine
elevation is not a widespread event in AD brains, but rather occurs
in a region-specific manner according to disease progression.
These observations are consistent with a scenario in which
regional elevations in D-serine levels trigger localized deregulation
of NMDAR-dependent synaptic plasticity and, ultimately, NMDAR-
related excitotoxicity and neuronal injury, culminating in cognitive
decline in AD.
To gain insight into the underlying mechanisms leading to

increased D-serine levels in the AD brain, we next investigated D-
serine levels in AD model systems. AβOs build up in AD brains58–60

and are thought to trigger toxic mechanisms leading to synapse

Table 3. Amino-acids levels in CSF samples

Amino acid (μmol l− 1) Control Alzheimer’s disease Depression Hydrocephalus ANOVA F (P-value)

D-serine 2.45 (0.65) 12.32 (0.44)a 5.14 (3.28)b 5.08 (1.22)c 68.79 (0.0001)*
L-serine 27.52 (9.28) 30.86 (4.99) 35.75 (11.68) 29.27 (13.15) 1.40 (0.26)
Total serine 29.97 (9.02) 43.07 (4.22)d 42.88 (11.24)e 34.36 (12.43) 6.70 (0.001)*
Glycine 291.6 (68.36) 336.9 (39.21) 322.9 (44.95) 258.2 (18.11)f,g 7.22 (0.0005)*

Abbreviations: AD, Alzheimer’s disease; ANOVA, analysis of covariance; CSF, cerebrospinal fluid. Values are presented as means (s.d.). P-values were given by
one-way ANOVA followed by the Bonferroni adjustment for multiple comparisons. Asterisks indicate statistically significant differences. aAD significantly
different from control, depression and hydrocephalus (P= 0.0001). bDepression significantly different from control (P= 0.0001). cHydrocephalus significantly
different from control (P= 0.03). dAD significantly different from control (P= 0.002). eDepression significantly different from control (P= 0.01). fHydrocephalus
significantly different from AD (P= 0.005). gHydrocephalus significantly different from depression (P= 0.005).

Table 4. Demographic, clinical and biomarker characteristics of CSF donor subjects

Control Alzheimer’s disease Depression Hydrocephalus Statistics

Age, years 70.7 (6.3) 72.1 (8.4) 69.8 (5.8) 74.6 (7.4) 0.71 (0.55)
Sex, male/female 2/8 9/12 0/9 5/4 5.90 (0.01)*
Education, years 7.9 (5.1) 4.8 (4.8) 2.7 (2.6) 7.6 (5.7) 2.66 (0.06)
MMSE 27.1 (1.3) 12.7 (6.2)a 24.4 (2.2) 27.2 (1.8) 39.66 (0.0001)*
Disease duration, months NA 44.8 (28.2) NA 24.7 (13.6) NA
IATI 1.95 (0.40) 0.74 (0.34)a 1.58 (0.62) 1.67 (0.56) 18.29 (0.0001)*

Abbreviations: ANOVA, analysis of variance; CSF, cerebrospinal fluid; IATI, INNOTEST amyloid tau index; MMSE, mini-mental state examination; NA, not
applicable. Values are presented as means (s.d.). Statistical significance presented as F (P-value) based on one-way ANOVA followed by the Bonferroni
adjustment for multiple comparisons, except for sex, which is given by the X2-test (P-value). Asterisks indicate statistically significant differences. aAD
significantly different from control, hydrocephalus and depression groups (P= 0.0001).
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failure in AD,3 including aberrant NMDAR function,15–17 increased
glutamate release17,24 and impaired synaptic plasticity.13,61 We
now report that D-serine is elevated in the extracellular medium of
hippocampal cultures exposed to AβOs and in the hippocampi of
rodents that received brain injections of AβOs. Furthermore, APP/
PS1 mice, which display age-dependent AD pathology and
memory impairment, showed markedly increased brain D-serine
levels. Consistently, increased SR levels were also verified in both
AβO-exposed cultures and transgenic rodent brains likely
explaining elevated D-serine content in vitro and in vivo. Impor-
tantly, elevations in D-serine content do not appear to reflect a
general deregulation of neuroactive amino-acid levels, as levels of
neither L-serine nor of the NMDAR co-agonist, glycine, were
altered in the hippocampus and CSF of AD cases and in AβO-
injected mice or APP/PS1 mice. These observations suggest a
causal relationship between AβO accumulation and D-serine
increases in AD brains.
Abnormal NMDAR function is thought to underlie, at least in

part, AD pathogenesis,4,12,17,62,63 and AβOs impair NMDAR-
dependent synaptic plasticity and instigate NMDAR-mediated
synapse loss and oxidative stress.13,15,16,61,64 Thus, our finding of
elevated levels of D-serine, the main co-agonist at NMDARs in
frontal brain regions, points to a novel mechanism by which AβOs
may trigger synapse dysfunction and memory impairment.
Importantly, AD brains present reduced levels of NMDAR65–67 in

areas that are relevant for disease progression. Therefore, it is
tempting to speculate that increased D-serine levels could
comprise an initial adaptive response to maintain proper
neurotransmission. However, given that NMDAR function appears
to be overactivated in AD,12 elevated D-serine could contribute to
an excitotoxic scenario, worsening AD neuropathological
outcomes.
Whether and how increased levels of D-serine participate in

cognitive and behavioral outcomes in AD is still unknown. D-serine
administration has been shown to promote synaptogenesis and to
have memory-enhancing effects.25,68,69 Conversely, excessive D-
serine levels were shown to mediate NMDAR-dependent late-
phase apoptosis70 and to contribute to neurological insults, such
as excitotoxicity and brain ischemia.22 Further, a recent report
suggested that D-serine might act as a NMDAR antagonist under
some circumstances.27 Therefore, a fine regulation of D-serine
levels is required for maintaining proper synaptic homeostasis and
function. Future experimental studies may unravel the role of D-
serine in synapse dysfunction and neurotoxicity in AD.
The main finding of the current study is that CSF levels of D-

serine are significantly higher in patients diagnosed with probable
AD than in nondemented subjects, suggesting that D-serine could
be a novel AD biomarker. Importantly, the significant correlation
between increased D-serine content in the CSF and poorer
cognitive performance in the mini-mental state exam suggests
that D-serine determination could comprise a powerful diagnostic
tool in conjunction with assessment of cognitive decline. As CSF D-
serine is already significantly elevated in patients with CDR 0.5,
this might facilitate diagnosis of AD-related cognitive decline at an
early stage of cognitive impairment, and permit interventional
approaches at a phase in which disease could still be modifiable.
The fact that CSF levels of D-serine are also elevated in

depression and hydrocephalus, compared with control subjects,
might suggest that D-serine would not be a specific AD biomarker.
We note, however, that D-serine levels in AD are clearly and
significantly higher than in depression or hydrocephalus, allowing
definition of a cutoff value that discriminates between those
disorders. Further, combination of CSF D-serine measurements
with the validated IATI biomarker yielded 100% specificity in our
cohort. Our results suggest that CSF D-serine levels adequately
discriminate AD from non-AD cases when used in combination
with different IATI cutoff values, and correlate well with
neuropsychological diagnosis. Results thus indicate that

determination of CSF D-serine levels could improve diagnostic
accuracy in AD. Nonetheless, as a pilot study, replication of these
findings in other cohorts would make a strong case for the
incorporation of D-serine levels in a panel of CSF biomarkers
for AD.
It is interesting to note that elevated D-serine levels in

depression might be related to late development of AD.
Depression is often clinically associated with AD.71,72 It has
recently been shown that AD and depression share common
mechanisms, and that both memory loss and depressive-like
symptoms are instigated by AβOs in mice.40 Because AβOs
increase brain D-serine levels, it is plausible that elevated levels of
D-serine in AD and depression are both consequences of the
neurotoxic impact of Aβ. This interesting hypothesis deserves
further investigation and might open new avenues for studying
the pathogenesis of AD-linked disorders.
In conclusion, our results show that AD patients have increased

levels of D-serine in the CSF and in specific brain regions, and that
this appears to be triggered by the action of soluble AβOs in the
brain. CSF D-serine levels are strongly correlated with memory
impairment and could constitute an effective diagnostic tool for
probable AD. A limitation of this study is the cohort size and
heterogeneity, although these factors did not compromise
robustness of our findings, as indicated by statistical power
analyses with adequate sample sizes. Our present study consti-
tutes a novel and encouraging effort toward improved AD
diagnostics. Nevertheless, despite the current statistically robust
results, we acknowledge that this is a pilot investigation and, thus,
a larger prospective clinical study is warranted to extend the
validity of our results.
The field of AD diagnostics still suffers from the lack of accurate

and efficient biomarkers. This may be attributed, in part, to the
complex nature of this disease. Nonetheless, very recent
approaches have provided advances in establishing clearer and
more efficient strategies for biomarker-based diagnosis. For
example, a recent paper by Lehmann et al.55 proposed a new
diagnostic scale that might be translated into clinical applications
in the near future. Furthermore, other recent efforts have unveiled
a number of promising CSF biomarkers, including AβOs, double-
stranded RNA-dependent protein kinase and other neuronal injury
markers.73–77 Combined use of those biomarkers and others
currently in development with determination of CSF D-serine
concentrations could constitute a valuable strategy to increase
sensitivity and specificity in the diagnosis of AD.
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