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Abstract

Introduction: Estimating PM2.5 concentrations and their prediction uncertainties at a high 

spatiotemporal resolution is important for air pollution health effect studies. This is particularly 

challenging for California, which has high variability in natural (e.g, wildfires, dust) and 

anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) 

and land use.
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Methods: Using ensemble-based deep learning with big data fused from multiple sources we 

developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1km × 1km) and 

temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-

based full residual deep networks to model complex nonlinear interrelationships among PM2.5 

emission, transport and dispersion factors and other influential features. These included remote 

sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, 

impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume 

dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, 

temporal basis functions, time index). As one of the primary predictors of interest with substantial 

missing data in California related to bright surfaces, cloud cover and other known interferences, 

missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical 

distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT 

dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire 

Energetics and Emissions Research version 1.0 model.

Results: Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 

1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included 

M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial 

location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent 

test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high 

correlation (>0.8) and a low RMSE (<3 μg/m3). Statewide predictions indicated that our model can 

capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of 

variation indicated highest uncertainty over deciduous and mixed forests and open water land 

covers.

Conclusion: Our method can be generalized to other regions, including those having a mix of 

major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 

has previously been challenging to predict. Prediction uncertainty estimates can also inform 

further model development and measurement error evaluations in exposure and health studies.

Keywords

PM2.5; machine learning; air pollution exposure; wildfires; remote sensing; California; high 
spatiotemporal resolution

1. Introduction

Exposure to fine particulate matter with aerodynamic diameter smaller than 2.5μm (PM2.5) 

is associated with a range of acute and chronic adverse health effects (EPA 2017; WHO 

2013a, b) including mortality (Atkinson et al. 2014) and morbidity (Lu et al. 2015). Studies 

have documented PM2.5 effects on multiple organ systems and health outcomes including 

cardiovascular (Liang et al. 2014; Lippmann 2014), respiratory (Xing et al. 2016), 

atherosclerosis (Allen et al. 2012; Kunzli et al. 2010), birth outcomes (Yuan et al. 2019; Zhu 

et al. 2015), neurodevelopment and cognitive functions (Fu et al. 2019; Zheng et al. 2019). 

Accurate estimation of PM2.5 exposures at a high spatiotemporal resolution is important for 

evaluating its health effects, particularly at small temporal (days to weeks) and spatial 

(neighborhood) scales. Although many countries have a substantial network of regulatory 

Li et al. Page 2

Environ Int. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PM2.5 monitoring stations, their spatial coverage is still very limited in terms of accurately 

representing population exposures, especially in regions of the world that have complex 

spatiotemporal variability in emissions, topography, meteorology, land-use and population 

density, such as the state of California (CA) in the United States (US) (Lee 2019; Li et al. 

2015; Liu et al. 2009; Monn 2001).

The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the 

polar-orbiting TERRA and AQUA satellites, launched in in 2000 and 2002, respectively, 

provide daily aerosol optical depth (AOD) data which have been widely used to increase 

spatial coverage for estimating ground-level PM2.5 concentrations. AOD is a column-

integrated sum of total ambient particle extinction and is significantly correlated with 

ground/surface PM2.5 (Toth et al. 2014). MODIS AOD products generated using the early 

Dark Target (DT) and Deep Blue (DB) algorithms (spatial resolution: 3–10 km), and the 

recent Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm (spatial 

resolution: 1 km) have been used as reliable predictors of PM2.5 concentrations (Chu et al. 

2016). For example, the addition of satellite AOD improved the Pearson’s correlation 

between estimated and observed PM2.5 in the US by 0.3–0.6 (Chu et al. 2016; van 

Donkelaar et al. 2006) and over Massachusetts increased the model adjusted R2 by 0.31 (Liu 

et al. 2009).

MODIS AOD can also provide information on wildfires (Ichoku and Ellison 2014), an 

increasingly important area of study in California due to their increasing frequency, 

environmental damage and associated health impacts, particularly in terms of exacerbations 

of asthma and chronic obstructive pulmonary disease (Reid et al. 2016). However, MODIS 

AOD retrievals are unreliable in the presence of thick smoke plumes as they can be 

misclassified as cloud (Ichoku and Ellison 2014; Livingston et al. 2014). Retrievals are also 

difficult over bright reflective surfaces such as deserts and in the presence of snow, cloud 

cover or glint. The MAIAC algorithm was developed to overcome some of these retrieval 

data quality issues (Lyapustin et al. 2011), yet in complex terrains such as California, issues 

remain. For example we found 41% of daily MAIAC AOD were missing over California 

during 2000–2016 (Li et al. 2020), which can have considerable impact on applications of 

satellite AOD in PM2.5 estimation especially in the Western US (Chu et al. 2016). We 

recently developed a method using residual deep learning to reliably impute missing 

MAIAC AOD at a high spatial (1 km × 1 km) and temporal (weekly) resolution in California 

(Li et al. 2020) based on Modern-Era Retrospective analysis for Research and Applications 

Global Modeling Initiative Replay Simulation (M2GMI) AOD (Strode et al. 2019), 

meteorology, elevation and geographic coordinates with improved performance (mean test 

R2 0.94; independent test R2 with AErosol RObotic NETwork (AERONET) AOD: 0.69), 

compared with the existing imputation methods of MODIS AOD (Di et al. 2016; Kloog 

2016; Lv et al. 2016; Xiao et al. 2017).

Early studies using satellite AOD to estimate PM2.5 established the AOD-PM2.5 relationship 

using empirical statistical correlation (Gupta et al. 2006; Kloog et al. 2011), two stage 

generalized additive models (Liu et al. 2009) and land-use regression (LUR) plus Bayesian 

maximum entropy (BME) (Beckerman et al. 2013) with cross validation (CV) R2 of 

approximately 0.60–0.81 at a coarse spatial resolution (8.9–12 km). Later, mixed effects 
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models (Just et al. 2015; Lee et al. 2009; Lee et al. 2015; Xie et al. 2015) and geographically 

weighted regressions (GWR) (Bai et al. 2016; Guo et al. 2017; Hu et al. 2014) were widely 

used due to flexibility of allowing the AOD-PM2.5 relationship to vary in space and/or time. 

Recently, machine learning (ML) methods including random forests (Brokamp et al. 2017; 

Huang et al. 2018; Wei et al. 2019), feed-forward neural network (Biancofiore et al. 2017; 

Di et al. 2016; Feng et al. 2015) and ensemble learning (Di et al. 2019; Li et al. 2018) have 

been increasingly used in estimation of PM2.5 with improved performances (CV or test R2 

generally > 0.8). Although these existing methods achieved competent performance, 

compared with modern deep learning methods, LUR, generalized additive model (GAM) 

and mixed models have limitations in flexibility and learning capacity. Deep learning 

leverages multiple layers of artificial neural networks to progressively extract advanced 

features or representations from the model inputs. Due to the flexibility (unlimited hidden 

layers with their numbers of nodes) of network structure, a deep neural network has strong 

learning capacity to model non-linear associations and interactions among variables that can 

automatically extract advanced representations compared with many traditional ML 

algorithms, including GAM, support vector machine and Gaussian process regression 

(Goodfellow et al. 2016). Compared with random forests or other decision tree-based 

algorithms, deep neural networks do not require discretization of the input features, 

maintaining their full value ranges. Such discretization may lead to abrupt spatial variation 

in the predictions for the tree-based algorithms if limited training samples were used. On the 

other hand, the feed-forward neural network with deep hidden layers may have the issue of 

gradient vanishing during learning. Thus, residual learning may be employed to improve the 

learning (He et al. 2016a).

Although recent PM2.5 modeling efforts that have incorporated satellite AOD data with other 

variables achieved a high CV R2 of 0.80–0.86 (root mean square error (RMSE): 2.79–2.94 

μg/m3) for the contiguous US (Di et al. 2019; Di et al. 2016; Hu et al. 2017), considerable 

regional differences in model performance remain. Particularly, the southwestern or Pacific 

regions of US where CA is located had lower R2 (0.74–0.80) and higher RMSE (2.85–4.05 

μg/m3) than national averages or eastern regions of US. In California, PM2.5 concentrations 

are generally elevated in winter compared to summer due to high emissions of aerosol 

precursors, topography, and low mixing height (Toth et al. 2014; van Donkelaar et al. 2006). 

In winter, the surface PM2.5-satellite relationship is further complicated by aerosol vertical 

distribution, high relative humidity (Li et al. 2015) and high cloud and snow cover leading to 

a greater proportion of missing data. Throughout the year, the impact of wildfire smoke also 

presents challenges to the use of satellite observations for prediction of ground-level PM2.5 

in CA. Satellite AOD retrievals over smoke plumes are masked as cloud and discarded in 

some AOD products. For locations where AOD retrievals are not masked, there is difficulty 

in representing the vertical distribution of the smoke, as smoke may be present aloft and 

detected by satellite while having no impact on surface pollution. Therefore, accurate 

estimation of ground-level PM2.5 is particularly challenging for CA. Previous studies have 

overcome some challenges by omitting periods of high PM2.5 (Larsen et al. 2020), which is 

likely to exclude peak PM2.5 concentrations due to wildfire smoke. Given recent increases in 

wildfire event frequency (Dennison et al. 2014) and magnitude along with the substantial 

contribution of these events to enhanced PM2.5 (Larsen et al. 2020; Larsen et al. 2018), there 
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is a need to ensure that PM2.5 models used in exposure studies adequately represent wildfire 

smoke while also addressing the other challenges of air quality modeling that impact CA. In 

addition, there are no outputs of uncertainty for the estimated PM2.5 in most existing studies 

using ML methods (Chu et al. 2016) even though such uncertainty can inform the user on 

areas for model improvement, confidence in and variability of PM2.5 predictions, and can be 

used in downstream analyses of health effects to decrease the potential bias (Girguis et al. 

2019, 2020).

In this study we developed an ensemble-based deep learning model to estimate PM2.5 over 

CA by fusing multisource big data, including modeled dispersion of wildfire smoke. In 

ensemble learning, the autoencoder-based full residual deep network was used as a base 

model to model non-linear associations and complex interactions among the variables with 

the state-of-the-art performance, as demonstrated in our previous study (Li et al. 2020). In 

order to account for high variability of PM2.5 in CA, we used the imputed MAIAC AOD 

with the full spatial coverage, MERRA-2 GMI Replay Simulation (M2GMI) data, land use 

data, traffic variables, and modeled wildfire smoke plume dispersion. Based on MERRA2, 

M2GMI improves the representation of transport and chemistry with higher spatial and 

temporal resolution, compared with previous MERRA-2 simulations (Strode et al. 2019). In 

addition, meteorological variables were extracted from the high-resolution gridMET dataset 

(e.g., air temperature, surface shortwave radiation, specific humidity, precipitation, wind 

speed) (Abatzoglou 2011) and the background-scale M2GMI (e.g., planetary boundary layer 

height (PBLH), wind speeds at different altitudes, evaporation land) (Brauer et al. 2016; 

Randles et al. 2017). Other remotely sensed data (normalized difference vegetation index 

(NDVI), impervious surface and land cover) were also used. Geo-coordinates, temporal 

basis functions and time index were used to capture spatiotemporal trends in PM2.5 

concentration. Using the big data from multiple sources in a parallel computing 

environment, we conducted preprocessing, downscaling of various parameters to the target 

spatial scale (1km × 1km) aggregating daily into weekly data, training of the models and 

outputting gridded PM2.5 concentration and uncertainty estimates. By validation and 

comparison with PM2.5 contributed by wildfires smoke, this study shows the importance of a 

robust deep learning method and sufficient features (including wildfire smoke plumes) to 

capture spatiotemporal variability of PM2.5 for a large region with diverse aerosol emission 

sources, including wildfires, topography and meteorology. Our proposed method can be also 

applied to other similarly heterogeneous and complex regions.

Supplementary Table S1 provides a list and brief description of all acronyms used in this 

paper.

2. Materials

2.1. Study Domain

Our study domain (Fig. 1) is the state of California located between approximately −124°65’ 

and −114°13’ west to east longitude and between 32°51’ to 42°01’ north to south latitude. 

With an area of 423,970 km2, CA has heterogenous topography (desert surfaces, mountains, 

snow cover), aerosol emission sources (e.g., natural sources: wildfires and dust; 

anthropogenic sources: fossil fuel exhaust, agriculture, and biomass burning) and 
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meteorological processes (Fast et al. 2014). This subsequently results in differences in AOD 

(more reflective surfaces), the chemical composition of PM2.5 (more contribution of nitrate 

(Tolocka et al. 2001)) and seasonal variation in aerosol vertical distribution, compared to 

eastern states of the US (Fast et al. 2014; Li et al. 2015).

2.2. PM2.5 Measurements

We obtained daily PM2.5 measurements (2008–2017) from the United States Environmental 

Protection Agency (EPA) Air Quality System (AQS) (https://www.epa.gov/aqs) that were 

collected by state, local, and tribal air pollution control agencies. We also obtained spatially 

dense (267 locations) biweekly PM2.5 samples (2008–2009) from the University of Southern 

California Intra-Community Variability study 2 (ICV2). These samples were collected in 8 

southern California communities from Santa Barbara south to Riverside (Figure 1) using 

Harvard Cascade Impactors described in more detail in (Fruin et al. 2014). To temporally 

downscale biweekly ICV2 samples to weekly values, we derived a scaling ratio of weekly to 

biweekly means based on the AQS stations closest to the ICV sites. We chose to develop a 

PM2.5 model with weekly temporal resolution because this was the shortest exposure 

window needed for anticipated epidemiologic analyses of pregnancy outcomes. The AQS 

PM2.5 network includes both continuous monitoring and 24-hour sampling on a 1-in-6 day, 

1-in-3 day and everyday schedule. The 2008–2017 database provides daily PM2.5 

measurements for about half of days at the sites that measured PM2.5 for at least one year. 

Measurements alone would provide only 43% valid weekly values using EPA’s 75% 

completeness criteria at these sites. Linear regression models were developed to fill in 

missing daily values at most sites by using daily data from nearby sites (within 50 km) with 

significant data availability (more than 1 year of data). The median R2 was 0.74 (IQR=0.63 

to 0.83) for all regression models; two-thirds of daily estimates were made using “two-

nearby sites” regression models (median R2=0.77). Weekly values for model training and 

evaluation were developed using at least 5 daily measurements (allowing up to maximum of 

2 daily values estimated from the regression models). The fill in procedures increase the 

availability of complete weekly samples from 43% to 79% in the 2008–2017 period, with a 

trend of increasing completeness in the later years because of increased deployment of 

continuous monitors.

For weekly PM2.5 predictions we generated a fixed spatial grid of 1 km × 1 km over 

California using the Universal Transverse Mercator (UTM) zone 11N coordinate system 

(ellipsoid: World Geodetic System 1984, unit: meter).

2.3. Features

2.3.1 MAIAC AOD—As an advanced algorithm, MAIAC leverages a spatial and temporal 

algorithm to simultaneously retrieve atmospheric aerosols and bidirectional reflectance from 

MODIS data. Compared with the DT and DB algorithms, MAIAC further detects clouds and 

corrects atmospheric effects over both dark vegetated surfaces and bright desert targets to 

obtain better daily AOD values at a higher spatial resolution (1 km × 1 km) (Lyapustin et al. 

2018). The algorithm is also tuned to reduce masking of wildfire smoke as clouds (Lyapustin 

et al. 2012). We acquired MAIAC AOD (at 550 nm with quality assurance flags) covering 

California for 9 years (01/01/2008 to 12/31/2016) from MODIS TERRA and AQUA 

Li et al. Page 6

Environ Int. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.epa.gov/aqs
https://www.epa.gov/aqs


satellites that had equatorial crossing at about 10:30 AM and 1:30 PM local time, 

respectively, from a NASA ftp site (ftp://maiac@dataportal.nccs.nasa.gov/DataRelease; the 

website is inaccessible now). We obtained 2017 MAIAC AOD from the updated NASA 

website (https://lpdaac.usgs.gov/products/mcd19a2v006/) which had a change in the 

projection used from Alberts to the global Sinusoidal projection. Therefore, all the MAIAC 

AOD images were converted into the target projection of UTM Zone 11. The evaluation with 

AERONET measurements using co-located samples (Supplementary Table S2) showed 

consistency in MAIAC AOD between 2008–2016 and 2017 with a very small difference 

(Pearson’s correlation>0.91 with p-value<0.01). We used autoencoder-based residual deep 

network to impute missing MAIAC AOD with a high performance as described in our 

earlier work (Li et al. 2020).

2.3.2 Meteorology—Meteorological factors play very important roles in forming, 

dispersion and transport of PM2.5 at regional and local scales (Chu et al. 2016). We extracted 

meteorological parameters from daily high spatial resolution (~4 km, 1/24th degree) surface 

meteorological data for the gridMET of the contiguous US (http://www.climatologylab.org/

gridmet.html) (Abatzoglou 2011). These parameters include daily minimum air temperature 

(°C), maximum air temperature (°C), wind speed (meters/second, m/s), specific humidity 

(grams of vapor per kilogram of air, g/kg), daily mean downward shortwave radiation (watt/

meter2, w/m2) and accumulated precipitation (millimeters of rain per meter2 in 1 h, mm/m2). 

Weekly averages of the meteorological features were generated from daily values. Bilinear 

resampling was used to transform the meteorological data into the target UTM Zone 11 

projection.

2.3.3 MERRA-2 Global Modeling Initiative Replay Simulation—The MERRA-2 

Global Modeling Initiative output (publicly available from https://portal.nccs.nasa.gov/

datashare/merra2_gmi) is generated through the simulation for the atmospheric composition 

coupling MERRA2 meteorological fields (winds, temperature and pressure) with the Global 

Modeling Initiative (GMI)’s stratosphere-troposphere chemical mechanism. The simulation 

is interactively coupled to the Goddard Chemistry Aerosol Radiation and Transport module 

and includes similar emissions to what was used for MERRA-2 (NASA 2018; Strode et al. 

2019). From M2GMI bottom layer, we extracted 30 modeled gaseous air pollutants and 

particulate matter source contributions in the PM2.5 size fraction (including carbon 

monoxide, nitrogen dioxide and oxide, ozone, and mass concentrations of sea salt, nitrate, 

sulfur dioxide, ammonia, sulfate, organic carbon, dust, and black carbon), 12 meteorological 

parameters (including PBLH, air temperature, specific humidity, precipitation, wind speed) 

and 24 other parameters at ~50km spatial resolution. From 66 M2GMI variables, we 

selected 18 as predictors based either on their correlations (absolute value >= 0.05) with 

weekly PM2.5 concentration or plausible physical interpretation for their influence on PM2.5 

concentrations. Based on M2GMI wind speeds at 10 m and 50 m altitudes, we derived 

indicators of vertical stagnation and wind sheer/mechanical mixing as follows:

wstag = u50
2 + v50

2 − u10
2 + v10

2 (1)
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wmix = u10
2 + v10

2 − u2
2 + v2

2 (2)

where wstag is the indicator of stagnation, wmix is wind sheer/mechanical mixing, u10 is 10-

meter eastward wind speed, v10 is 10-meter northward wind speed, u2 is 2-meter eastward 

wind speed, v2 is 2-meter northward wind speed, u10 is 50-meter eastward wind speed, and 

v50 is 50-meter northward wind speed.

2.3.4 Wildfire Smoke Plume Dispersion Modeling—Wildfire smoke plumes can 

result in peak PM2.5 concentrations and considerably affect spatiotemporal variability of 

PM2.5 in California. We calculated ground-level PM2.5 from smoke using dispersion 

modeling of primary emissions of PM2.5 from wildfires, where emissions were determined 

from the Fire Energetics and Emissions Research version 1.0 (FEER.v1) model (Ichoku and 

Ellison 2014) with MODIS Aqua and Terra fire radiative power retrievals. To capture local 

impacts and long-range smoke transport, we estimated emissions from all fires in California 

and all large fires (>1000 acres) throughout the western U.S. and portions of Canada and 

Mexico. Fire area was calculated using ecoregion-specific per-detect area estimates, as in the 

2014 National Emissions Inventory (EPA 2018). To reduce computational requirements, we 

clustered all hotspots within 0.05° using the density-based DBSCAN methodology (Ester et 

al. 1996) and summed the emissions of clustered hotspots.

We modeled smoke dispersion using the Hybrid Single-Particle Lagrangian Integrated 

Trajectory (HYSPLIT) model (Stein et al. 2015) and calculated smoke injection height using 

the Sofiev et al. (2013) model. We distributed daily emissions totals using the hourly 

emissions profile using the WRAP time profile (Western Regional Air Partnership 2005), 

which estimates minimal emissions (<0.01%) between 8 PM and 9 AM, with peak 

emissions at 4 PM (17% of total emissions). Dispersion was driven using North American 

Mesoscale Forecasting System (NAM) 12 km gridded meteorological data, which was 

obtained from NOAA Air Resources Laboratory (https://www.ready.noaa.gov/archives.php). 

PM2.5 from smoke was carried over for up to 5 days from smoke release. The HYSPLIT 

model’s 100m surface layer concentrations were used as ground-level PM2.5 from smoke. 

We estimated resulting concentrations on the NAM 12km grid on an hourly time step. To 

prepare the data for subsequent modeling, we averaged the hourly data to weekly 

concentrations and further downscaled the weekly values from 12-km to 1-km resolution 

using bilinear interpolation.

2.3.5 Land Cover Variables—Land use parameters can capture PM2.5 emission 

sources and sinks and have been used in many studies. The National Land Cover Database 

(NLCD) (https://www.mrlc.gov) provides nationwide data on land cover and its change at a 

30m resolution. From the NLCD, we generated annual percent cover of each land cover 

class on the target modeling grid of 1 km (Yang et al. 2018). For each of 16 land cover 

classes (e.g., open water, developed with low intensity, developed with high intensity, barren 

land, grassland and cultivated crops etc.), we calculated the proportion of cover between 0 

and 1 of each class within 1km grid cells for each available year (2001, 2003, 2006, 2008, 

2011, 2013, and 2016), and linearly interpolated to annual values for unavailable years of 
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2001–2016. We used 2016 land cover data for 2017. For the PM2.5 modeling, we excluded 

the land cover types that were not as frequently observed in CA (<1%).

From the NLCD, we also extracted the surface imperviousness layer that represents urban 

impervious surfaces as a percentage of developed surface over every 30-meter pixel in the 

US for the years 2001, 2006, 2011, and 2016. We used similar linear interpolation to derive 

impervious surface percentage in missing years (also assuming no change for 2017).

We calculated monthly average NDVI using 16-day MODIS NDVI average values from 

NASA’s Aqua and Terra satellite (MOD13A2 V6 and MCD13A2 V6). The 16-day NDVI 

product was obtained on a 1km resolution grid, and we resampled the final monthly averages 

to the standard 1 km modeling grid described above.

2.3.6 Temporal Basis Functions—Using iterative singular value decomposition, we 

extracted four temporal basis functions (Finkenstadt et al. 2007) from the AQS PM2.5 

measurements of 10 years (2008–2017). As shown in our previous study (Li et al. 2019), 

four temporal basis functions represented the major temporal trend of PM2.5 concentrations 

from 2008 to 2017 for CA, and can be used in the models to capture long- and short-term 

temporal variability of PM2.5 over a complex and large region like CA.

2.3.7 Elevation, Geographic Coordinates and Time Index—We obtained 30 m 

resolution elevation from GoogleMaps API and calculated its average within each 1 km 

MAIAC grid cell. The central x and y coordinates of the target resolution of 1 × 1 km2 with 

the target projection were used to account for spatial variability. The day of year was used to 

account for seasonal variability and the year index was used to account for annual 

variability.

3. Methods

In order to model the non-linear associations and complex interactions among the features 

and PM2.5 concentration, an autoencoder-based full residual deep network was used in three 

phases: downscaling, imputation of missing AOD, and base model and ensemble learning.

Fig. 2 shows the flowchart of our PM2.5 modeling process in California. The model inputs 

include multisource heterogeneous data (Fig. 2-a). From one input (M2GMI variables) we 

derived vertical stagnation and wind sheer, and from the PM2.5 measurements we extracted 

four temporal basis functions (Sections 2.2-2.3). In order to have all regressors with the 

same projection and spatiotemporal resolution (1 km), preprocessing including resampling 

or downscaling, and imputation was performed for M2GMI variables and MAIAC AOD 

(Fig. 2-b, Section 3.1). Data cleaning, outlier filtering, AOD conversion and feature selection 

were also performed in preprocessing. With all data prepared, 100 residual deep network 

models were trained and validated (Section 3.2), ensemble predictions were made (Section 

3.3) and evaluated (Section 3.4), and feature importance quantification and model 

interpretation were conducted (Section 3.5) (Fig. 2-c). After the optimal models were 

obtained, 1 km resolution gridded daily surfaces of PM2.5 estimates with complete 
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spatiotemporal coverage over California were generated (Fig. 2-d; Section 4.4 for the 

results).

3.1. Preprocessing

Preprocessing includes data cleaning, removal of outliers, downscaling, imputing missing 

AOD, conversion of column MAIAC AOD to ground aerosol extinction coefficient, 

normalization and feature selection. In data cleaning, data quality flags (e.g., valid value 

range: (0, 3) for MAIAC AOD; (−1, 1) for NDVI; (0, 1) for land-use area proportion) were 

used to remove invalid values among each feature. The outer fence (NIST/SEMATECH 

2016) was used to filter outliers. The downscaling algorithm based on residual deep network 

(Li et al. 2020) was used to downscale M2GMI variables (~50km spatial resolution) to the 

target resolution (1 km). In our downscaling, spatial coordinates, elevation and gridMET 

variables were used as the features at the target resolution. In addition, missing MAIAC 

AODs were imputed using residual deep network (Li et al. 2020). Normalization by 

standardization was performed to ensure all the variables to be on a consistent scale, and to 

stabilize model training (Bhandari 2020). For feature selection, the features with a low, non-

statistically significant correlation (absolute value <0.02) with weekly PM2.5 concentrations 

were removed from the list of potential predictors. Physical interpretability and redundancy 

were then considered to filter out remaining features. For example, M2GMI variables in the 

PM2.5 size fraction or in the bottom surface layer were retained. M2GMI gases or other 

parameters were retained based on a priori knowledge of their physical or chemical 

relationship to PM2.5 formation or dispersion, or interpretability.

In addition, an empirical formula was used to convert satellite column AOD to surface 

aerosol extinction coefficient (Wang et al. 2010) adjusting for vertical distribution and 

effects of relative humidity as follows:

kg = τc ⋅ (1 − ℎ/100)g

HA
(3)

where kg is the converted surface-level aerosol extinction coefficient hypothesized to 

correlate more closely with ground measured PM2.5 than column AOD, τc is column 

satellite AOD (MAIAC AOD), HA is the scale height of aerosol, approximated by M2GMI 

PBLH (Koelemeijer et al. 2006), h is relative humidity (unit:%), and g is the empirical 

parameter to be optimized.

3.2. Base Model of Full Residual Deep Network

Full residual deep network was developed as the base model, which consists of the encoding 

layers (including the input layer and hidden layers with a decreasing number of nodes), the 

latent (coding) representation layer, the decoding layers, and the output layer (Fig. 3-a) (Li 

et al. 2020). In the autoencoder, the coding/latent layer is used to extract the representation 

from the input; each decoding layer has the same number of nodes corresponding to its 

symmetrical encoding layer. The latent layer has a compressed dimension to have a powerful 

representation for the input layer and help with efficient model training. Full residual 

connections in the autoencoder were introduced: each of the encoding layers has a shortcut 
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of identity mapping (residual connection) to its corresponding decoding layer to improve 

training and error back-propagation. Residual learning is an efficient method to 

appropriately increase the depth of the hidden layers without reduction in the performance. 

Inspired by the pyramidal cells in the cerebral cortex (Thomson 2010), residual learning 

utilizes shortcuts to jump over some layers, and thus reuse activations from a previous layer 

to reduce or avoid the problem of vanishing gradients (He et al. 2016b). Based on the 

encoding-decoding structure of autoencoder, full residual connections for all encoding layers 

and their corresponding decoding layers can be constructed in a nested way (Fig. 3-a) to 

considerably boost robustness in training and improve the generalization of the trained 

models, as demonstrated in our previous study (Li et al. 2020).

Given powerful capability to model the non-linear associations among the predictive features 

and the target variables, full residual deep network was used in three phases of this study: 

downscaling in preprocessing (Fig. 3-b), imputation of massive missing MAIAC AOD, and 

spatiotemporal estimation of PM2.5 concentrations. Our previous study (Li et al. 2020) 

describes the downscaling algorithm in detail (also used to downscale the M2GMI variables 

in this study) and imputation of missing MAIAC AOD of 2000–2016 over CA (validation 

with AERONET AOD: correlation = 0.83; R2 = 0.69). The same method was also used to 

impute missing MAIAC AOD of 2017 over CA.

For the output layer of PM2.5 spatiotemporal estimation, we used the following loss function 

of a single output (estimate of PM2.5 concentration):

l θw,b = ly y, fθW,b
y (X) + Ω θw,b (4)

where ly is the loss function of PM2.5 without regularization, ℓ(θW,b) is the final loss 

function with regularizer, W is the weight matrix, b is bias vector, θW,b are the parameters 

for W and b, y is the ground truth of the target variable (PM2.5 concentration), fθW,b
y (X) is 

the estimate of y by the trained model for the input matrix X, Ω(θW,b) is the regularizer of 

elastic net (Zou and Hastie 2005) that is defined as:

Ω θw, b = λ1 ∑
p ∈ θw,b

p + λ2 ∑
p ∈ θw,b

p2 (5)

where |·| is the absolute value operator, p is the parameter to be learned within θW,b, λ1 and 

λ2 are the weights assigned as the hyper-parameters for lasso and ridge regularizers. Their 

optimal solution can be retrieved using grid search (Chicco 2017).

Due to the relatively small sample size of the PM2.5 dataset in comparison with the satellite 

AOD dataset, the output of single parameter has a lower training bias and a better test 

performance than that of multiple parameters used in imputation of the MAIAC AOD (Li et 

al. 2020). An optimal network structure (the number of encoding layers and the number of 

nodes for each layer) was obtained using grid search.
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3.3. Bagging and Ensemble Predictions

Using the full residual deep network as the base model, bootstrap aggregating (bagging) was 

conducted to obtain ensemble predictions (Fig. 3-c). Bootstrap sampling was conducted for 

the data samples and partially for the features. By bootstrap, we used approximately 63.3% 

of the samples for training and the remaining 36.7% of the samples for testing. In total, we 

had 59 predictive features available for modeling. Of these features, 28 had statistically 

significant correlation (absolute value >0.1) with PM2.5 and were used as fixed predictors to 

keep the performance of the trained model above a certain level, and the remaining 31 

features were sampled with replacement (see Supplementary Table S3). On average, 

approximately 50 predictive features in total were used in a base model. The ensemble 

predictions were obtained using the weighted averages of all the predictions of all the trained 

base models:

xw =
∑i = 1

N wixi

∑i = 1
n wi

(6)

σ xw =
∑i = 1

N wi xi − xw
2

N′ − 1 ∑i = 1
N wi

N′

(7)

where wi is the weight assigned to model i (e.g., wi=1/RMSEi in our study), x is the weighed 

sum, N is the number of samples, N′ is the number of non-zero weights, xw is the ensemble 

weighted estimate and σ xw  is the estimate of standard deviation as an uncertainty metric 

for xw. From the estimated standard deviation, we derived the coefficient of variation 

through normalization by the predicted mean.

The bootstrap for the samples and the features was used to reduce the correlations among the 

trained models. In addition, we also introduced a small variation by sampling in a small 

interval ([−10, 10]) for the number of nodes for each hidden layer based on the optimal base 

model to reduce the correlation between the trained models. Theoretically, ensemble 

predictions with less standard error can be obtained by aggregating the outputs of the less 

correlated models. Assuming that εi is the error contained in each model’s predictions with 

the errors drawn from a zero-mean multivariate normal distribution (E ε2 = ν and 

E εiεj i ≠ j = c), the expected squared error of the ensemble predictor is:

E 1
mΣiεi

2
= 1

m2E ∑
i

εi2 + ∑
j ≠ i

εiεj = v
m + (m − 1)c

m (8)

where m is the number of models, c represents the correlation in the errors between different 

models. If c=0 (no correlation), the squared error is just 1
mν, indicating a linear decrease with 

the ensemble size. But if c=v (perfectly correlated, Pearson’s correlation=1), the ensemble 

error does not change (still v). Thus, the smaller the Pearson’s correlation, the smaller are 

the expected squared errors in the ensemble predictions.
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In ensemble learning, we have several hyper-parameters, ϑ(m,λ1,λ2,lr,nb) (m: the number of 

trained models; λ1 and λ2: the weight for lasso and ridge regularizers; lr: initial learning 

rate; nb: the sample size of a mini batch in training) to be solved. In our method, due to the 

high learning efficiency the mini-batch gradient descent was used to find an optimal 

solution. In this optimization the training samples are split into small batches, where each 

batch of samples is iteratively used to calculate model error and update model coefficients. 

The sample size (nb) of a mini batch is one of the important hyper-parameters for model 

training (Goodfellow et al. 2016). We used grid search to find an optimal solution for these 

parameters. We used the Spark big data platform for parallel data processing, ensemble 

training and grid search.

Another advantage of using ensemble learning to predict PM2.5 is that we can derive the 

coefficient of variation for the predicted PM2.5 as an uncertainty metric to inform the 

confidence degree of the predicted values.

In order to reduce the dependence between samples in each bootstrap, we used an effective 

stratification strategy. In this strategy, the samples were first divided into different groups 

based on the spatiotemporal factor of county id and month index; random shuffling and 

bootstrap were then conducted between different strata, and within each selected stratum. By 

merging all of the selected samples, we obtained the training samples for each bootstrap (the 

rest of the samples were used as the validation and test samples). As an improved version of 

non-overlapping simple block bootstrap that is generally used to bootstrap the samples in the 

time series data (Carlstein 1986), our method performed additional bootstrap sampling 

within each stratum. With the spatiotemporal stratification based on both county and month 

index, each stratum corresponded to a block, and the stratification method substantially 

reduced spatiotemporal dependence between blocks (strata). Compared with the original 

data, we obtained the training samples with less dependence between them. Sensitivity 

analyses were conducted to compare our stratification strategy and simple block bootstrap. 

In the simple block bootstrap, we first used K-Means to group the samples based on the 

coordinates and time index (week index) into 500 clusters (similar to the number of strata in 

our strategy), and then performed bootstrap at the block level and retrained the models.

3.4. Validation and Independent Test

By bootstrap between strata and within each stratum, we selected approximately 63.3% of 

the samples for training and validation, and the remaining 36.7% for independent test. Of the 

selected 63.3% of the samples, 80% were used in training and the remaining 20% were used 

in validation. The 36.7% of the total samples were used as the independent test.

In addition, we collected the time-series of PM2.5 measurements from four monitoring sites 

for independent tests (Fig. 1). Data from three AQS routine sites were used for site-based 

independent testing (i.e., excluded from model training and validation). The three AQS sites 

were selected to represent northern, eastern and central populated sub-regions of CA 

(compared the less populated western sub-region). For the southern sub-region, we used data 

from the University of Southern California (USC) Particle Instrumentation Unit monitoring 

site in Los Angeles (Shirmohammadi et al. 2016) as a third-party independent test. This data 

was collected as part of a fine particle characterization study described in more detail in 
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Shirmohammadi et al. (2016) and was not used in model training and validation. Briefly, the 

USC site is located about 3 km south of downtown Los Angeles, CA. Five-day integrated 

samples were collected every week from Monday to Friday, between July 2012 and 

February 2013, using Micro-Orifice Deposit Impactors (MOUDIs, Model 110 MSP 

Corporation). Collocated AQS data at three other nearby sites from the same study were 

used in a generalized additive model to adjust the bias in the PM2.5 measurements caused by 

the different instruments at the AQS sites and the USC monitoring site.

3.5. Feature Importance and Model Interpretation

In order to interpret the influence of key features in the trained models on performance, we 

used the Shapley Additive exPlanations (SHAP) tool (Lundberg and Lee 2017) to measure 

each predictor’s average contribution (feature significance) to our trained model. In addition, 

we used the individual conditional expectation (ICE) plot (Goldstein et al. 2015) with partial 

dependence plot (PDP) (Friedman 2001) to visualize the relationship between each 

predictive feature and the target variable (PM2.5 concentration). The PDP shows the 

marginal effect of one feature on the outcome of a trained model, and it can show whether 

the relationship between the target and a feature is linear, monotonic or more complex (non-

linear). ICE plots can visualize the dependence of the prediction on a feature for each 

instance separately, resulting in one dependence line per instance, compared to one line 

overall in PDP.

4. Results

4.1. Summary and Correlation

In total, we included 34,812 weekly PM2.5 samples among which, 34,005 routine samples 

were from 133 AQS sites, and 807 field samples were from 267 ICV2 locations (Fig. 1). The 

mean PM2.5 concentration over the study region was 10.41 μg/m3 (standard deviation: 6.21 

μg/m3) with higher values in winter than in summer (12.05 vs. 10.26 μg/m3) and higher 

values in southern California than in northern California (10.95 vs. 9.49 μg/m3) 

(Supplementary Fig. S1 for the boxplots and histograms of observed PM2.5 and MAIAC 

AOD). Unlike the eastern US, California has a seasonal variation of higher AOD in summer 

than in winter (0.10 vs. 0.06), opposite to that of PM2.5. Using Eq. (3) to convert MAIAC 

AOD to surface aerosol extinction coefficient with empirical parameter g=0.21, the 

correlation of MAIAC AOD with PM2.5 improved from 0.25 to 0.47.

In total, we had 59 predictive features (MAIAC AOD, 20 M2GMI variables, 16 land-use 

variables, 6 meteorological variables, wildfire smoke, 2 traffic variables, 5 coordinates, 

NDVI, elevation, year, day of year, 4 temporal basis functions) and selected about 50 

features for modeling in each bootstrap. The first 4 temporal basis functions were extracted 

from 133 AQS routine stations (Supplementary Fig. S2). Table 1 shows descriptive statistics 

for the feature in each category with an absolute correlation>0.1 with weekly PM2.5 and 

Supplementary Fig. S3 shows the bar plot for the correlation of these selected features.
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4.2. Optimal Base Model and Ensemble Learning

Through grid search we obtained an optimal benchmark structure with the encoding and 

latent layers having the numbers ([50, 128, 64, 32, 16]) of nodes for PM2.5 estimation. 

Correspondingly, we had eleven layers in total with one input layer, four encoding layers, 

one latent layer, four decoding layers, and one output layer. For the hyper-parameters 

ϑ(m,λ1,λ2,lr,nb) in our optimal solution, we obtained an optimal number (m=100) of trained 

models, an initial learning rate (lr=0.01), weights for elastic net (λ1=0.5 and λ2=0.5), and a 

mini batch size (nb=512). In total, we trained 100 base models with each having a change in 

the number of nodes for each hidden layer based on the benchmark network structure. In 

summary (Table 2), we obtained mean training R2 of 0.94 (range: 0.77 to 0.97) (mean 

training RMSE: 1.54 μg/m3, range: 1.03–3.02 μg/m3), and mean testing R2 of 0.82 (range: 

0.70 to 0.85) (mean testing RMSE: 2.70 μg/m3, range: 2.46–3.49 μg/m3) (Fig. 4).

Sensitivity analysis (Table 2 vs. Supplementary Table S4; Fig. 4 vs. Supplementary Fig. S4) 

showed better performance (mean test R2: 0.82 vs. 0.72; by an improvement of 10%) for our 

stratified sampling, compared with simple block bootstrap. For ensemble predictions 

(Supplementary Fig. S5) of simple block bootstrap, we obtained test R2 of 0.79, compared 

with the test R2 of 0.87 in our stratification method (an improvement of 8%).

The ICE and PDP results (Supplementary Fig. S6-S7) illustrate marginal associations or/and 

interactions of MAIAC AOD, carbon monoxide, wildfire smoke, black carbon surface mass 

concentration, coordinates, wind speed, and air temperature etc. with PM2.5. Plots are shown 

here for a single model (Model 1) and selected features that generally ranked among the 

highest predictive features across all 100 models.

For each single base model, we ranked the contribution of each predictor by calculating its 

SHAP value (Fig. 5-a for the top 20 features and Supplementary Fig. S8 for all the features). 

SHAP contributions were averaged over the 100 trained models (Fig. 5-b for the top 20 

features and Supplementary Fig. S9 for all the features). As shown in these figures, the top 

10 features across the 100 trained models included carbon monoxide, temporal basis 

function, coordinates (latitude, longitude, and their products), maximum temperature, 

MAIAC AOD, pressure, and sea salt surface PM2.5.

4.3 Evaluation

In ensemble learning, the ensemble predictions by 100 trained models had an improvement 

of approximately 5% over the average performance of the single base model based on the 

test R2 (0.87 vs. 0.82) (RMSE: 2.29 vs. 2.70 μg/m3) (Table 3). Increasing the number of 

models beyond 100 only improved model performance very slightly, but added training time 

substantially. Compared with a single base model, the ensemble predictions had few extreme 

values and outliers (Fig. 6 for the scatter plots of observed vs. predicted (a) or residual (b) 

PM2.5). The observed PM2.5 and ensemble predicted PM2.5 also presented very similar 

distributions (Supplementary Fig. S10 and S11 for their histograms and boxplots). The 

residuals of the ensemble predictions presented a normal distribution with mean close to 

zero and a small standard deviation (Supplementary Fig. S12). The autocorrelation was very 

low (mostly <0.08) between the residuals for most of lags (Supplementary Fig. S13), 
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indicating that spatiotemporal variability of PM2.5 in this study region was well captured by 

our models.

The times series of predicted PM2.5 for four sites (three routine AQS site and one USC site) 

in the independent test were shown in Fig. 7, and their R2 and RMSE were shown in Table 4 

(their locations shown in a, b, c and d of Fig. 1). The results show that the temporal 

(seasonal and yearly) trends and variations were well captured in the ensemble models (R2: 

0.67–0.87; RMSE: 1.80–2.81 μg/m3).

4.4 Surfaces of Predicted PM2.5 and Wildfires

The 1×1 km2 surfaces of weekly PM2.5 averages of ensemble predictions and their 

uncertainty (coefficient of variation) from 2008 to 2017 were generated based on bagging of 

the 100 trained models. The surfaces of four weeks in different seasons from 2008 to 2017 

were shown in Fig. 8 (a and b: a spring week of April 21–27, 2008; c and d: a summer week 

of July 16–22, 2012; e and f: an autumn week of September 14–20, 2015; g and h: a winter 

week of December 25–31, 2017). The predicted surfaces show reasonable variation of PM2.5 

concentration across different seasons and across CA. The coefficient of variation (Fig. 8 –b, 

d, f, and h) showed higher uncertainty (mean: 0.57, standard deviation: 0.39) over deciduous 

forest, mixed forest and water bodies (e.g., lakes) (Supplementary Fig. S14) or high altitude. 

This might be indirectly caused by false high AOD due to water, snow in winter (higher 

uncertainty in winter than in summer), cloud or other high reflectance. These uncertainty 

estimates provide a quantitative estimate of variability or confidence in predicted PM2.5 and 

can be incorporated into analyses examining measurement error in these predictions and its 

subsequent impact on health effect estimates in downstream (Girguis et al. 2019, 2020).

Historically wildfires in CA most frequently occur in summer and autumn. Fig. 8- c and e 

presents predicted surfaces of PM2.5 for two weeks impacted by wildfires (in summer and 

autumn with higher smoke PM2.5 concentrations in autumn) which presented different 

spatial distributions (summer: higher PM2.5 concentrations in the northeastern to mid sub-

region; autumn: higher PM2.5 concentrations in the mid-eastern sub-region). The spatial 

distribution of average ensemble predicted PM2.5 during these two wildfire weeks closely 

matched that of HYSPLIT-generated wildfire smoke PM2.5 (Fig. 8-c vs. Fig. 9-a; Fig. 8-e vs. 

Fig. 9-b). Also, see Supplementary Fig. S15 and S16 for the comparison between total 

predicted PM2.5 and wildfire smoke PM2.5 (HYSPLIT) for the weeks before and after the 

wildfire weeks. We observed similar patterns during wildfire impacted weeks in other years. 

We also compared the time series of observed (at smoke impacted sites), ensemble model 

predicted and HYSPLIT-derived PM2.5 for these two wildfire weeks and found that our 

model was able to sufficiently capture the PM2.5 temporal peaks caused by wildfires 

(Supplementary Fig. S17 and S18). These results demonstrated that our method can capture 

spatial distribution and temporal peaks of PM2.5 during wildfire smoke events.

5. Discussion

Spatiotemporal prediction of PM2.5 over a large heterogeneous region such as California 

with high variability in emission sources, land-use, topography, meteorology and population 

is challenging. Using multisource data integrated into an ensemble deep learning framework 
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we were able to capture temporal and spatial trends over the region, including weeks where 

wildfires were present. As far as we know, this study is one of the first to leverage a variety 

of big data sources including M2GMI variables and wildfire smoke PM2.5, and to use a 

residual deep learning to account for variability and improve estimation of PM2.5 in 

California. Comparatively, in a statewide mixed model (Lee et al. 2016) and two recent 

national models (Di et al. 2016; Hu et al. 2017), California obtained R2 of 0.66 to 0.80 

(RMSE: 2.85–5.69 μg/m3), lower than that of the eastern states of US. Our California-

specific models generally had improved performance with greater R2 (>7%) and lower 

RMSE (0.55–3.39 μg/m3).

Particular matter (PM) contains both primary PM directly emitted into the air and secondary 

PM formed in the air by chemical reactions and other mechanisms from precursors emitted 

by fuel combustion and other sources (EPA 2014). Regarding composition, fine particles are 

made up of multiple chemical components, including carbon, sulfate and nitrate compounds 

as well as crustal materials (e.g., soil, dust and ash). California has a mixture of major urban 

areas with dense traffic network and industrial facilities, rural areas with agriculture, deserts 

and intensive smoke events (e.g., wildfires), which results in multiple emission sources and 

complexity in constituents for PM2.5. In addition to observed and imputed MAIAC AOD (Li 

et al. 2020), we used traffic and/or land-use variables to account for the emission influence, 

as done in many studies (Beckerman et al. 2013; Di et al. 2019; Hu et al. 2017; Huang et al. 

2018; Zhai et al. 2018). But land-use variables lack temporal variation and only indirectly 

reflect the emission influence, thus making limited contribution to estimation of PM2.5. 

Several variables from the M2GMI dataset, not normally used in previous studies, made 

important contributions to explain the variability of PM2.5, as measured by the SHAP values. 

Carbon monoxide concentrations and O3 dry deposition were important predictors 

presumably because they broadly indicated the location and intensity of primary combustion 

sources and correlated with secondary formation of particles, respectively. Sea salt aerosol 

concentrations contributed perhaps because they distinguished coastal and inland aerosol 

characteristics. These variables were included along with variables like PM2.5 black carbon 

concentrations which were strongly suspected of explaining PM2.5 variability. Different 

from the MAIAC AOD, traffic and land-use variables, these M2GMI variables compensated 

the insufficiency in the data of emissions and constituents of PM2.5 for California and can be 

used as important predictors for estimation of PM2.5.

Meteorology also plays an important role in the formation and variability of particle matter 

(Tai et al. 2010). For example, air temperature, sunlight, water vapor and humidity can affect 

shifting between solid/liquid and gaseous phases; wind can transport fine particle over long 

distances; and planetary boundary layer (PBL) can play an important role in the turbulent 

mixing and vertical distribution of pollutants in the lower troposphere (Wang et al. 2019). 

The PBL height determines the volume available for pollution dispersion and transport, and 

significantly affects vertical structure and turbulent mixing that is responsible for variability 

of ground air quality. Undoubtedly, as a key input, PBLH is a critical variable that influences 

ground concentration of air pollutants including PM2.5 (Knote et al. 2015; Su et al. 2018). In 

our study, the gridMET dataset provided high-resolution meteorological parameters (air 

temperature, wind speed, humidity, shortwave radiation and precipitation) but lacked other 

important parameters such as PBLH and wind speed at different altitudes. Therefore, we 
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extracted the PBLH variable from M2GMI that was critically used in the conversion of 

column satellite AOD to ground aerosol extinction coefficient (improving the correlation 

between AOD and PM2.5 by 0.22), and estimation of PM2.5. In addition, we derived the 

indicator of stagnation and wind sheer/mechanical mixing from wind speeds at the altitudes 

of 2m, 10m and 50m. Wind sheer/mixing presented high correlation with PM2.5 compared 

with many other features. This study shows the important roles of the critical meteorological 

parameters, especially vertical ones, and pollutant concentrations from the M2GMI dataset 

in spatiotemporal estimation of PM2.5. The M2GMI dataset is available globally from 1980 

to 2018 and can be effectively used to obtain important parameters for estimation of PM2.5.

California has extensive wildfires each year that can result in peak PM2.5 concentration of 

smoke well beyond the typical range concentrations otherwise observed. Variability in 

spread and intensity of wildfire plumes can result in variability of spatial distribution of 

PM2.5 during the wildfire seasons (Thompson and Calkin 2011), as illustrated in the results. 

In this study, we incorporated wildfire smoke PM2.5 as a predictive feature to account for 

influence of wildfire events. Wildfire smoke PM2.5 was generated using a top down 

approach for emissions and then a bottom up approach for the HYSPLIT dispersion 

modeling, with coincident measurements of fire radiative power (FRP) and AOD of MODIS 

(Ichoku and Ellison 2014). The results show the consistency between our predicted PM2.5 

surfaces and smoke PM2.5 during the wildfire seasons. Few studies used the wildfire-related 

smoke feature to account for the influence of wildfire events, as ours (Chu et al. 2016). For 

California, wildfires are an important factor for spatiotemporal variability of PM2.5 and an 

important public health concern, and the direct inclusion of PM2.5 wildfire smoke in our 

model supports the representation of peak PM2.5 concentrations that can typically be missed 

by similar modeling approaches.

Given the big and heterogeneous data from multiple sources, we leveraged ensemble deep 

learning, i.e. bagging of the base residual deep network to model the complex non-linear 

associations and interactions among features and PM2.5. Residual learning was used in our 

models to boost the learning and improve the generalization. The autoencoder-based full 

residual deep network was demonstrated to be robust in non-linear modeling and our 

spatiotemporal imputation of MAIAC AOD (Li et al. 2020), and also used in downscaling of 

the M2GMI variables at a coarse spatial resolution to the target resolution of 1×1 km2 in this 

study. For spatiotemporal estimation of PM2.5, sensitivity analysis (Supplementary Table S5) 

shows that the base residual deep network improved testing R2 over GAM by 21% and over 

feed-forward neural network by 5%. Bootstrapping using stratification by a spatiotemporal 

factor (county id and month) to de-correlate the training samples was important for the 

improvement of the test performance of our method compared to a simple block bootstrap. 

In simple block bootstrapping, the samples in each block were interdependent, which 

resulted in poorer test performance. Further, bagging of 100 base residual deep networks 

improved the testing R2 over a single base model by 5% on average. The regular feed-

forward neural network has been commonly used in estimation of PM2.5 (Di et al. 2019; Di 

et al. 2016; Feng et al. 2015). Our ensemble method also generated the coefficient of 

variation of ensemble predictions as an uncertainty metric to inform error evaluation in 

exposure and health studies. Compared with recent existing methods, our method improved 

R2 for 2008–2017 estimation (with the coefficient of variation) of PM2.5 by at least 7%, 
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which shows that our method well accounted for spatiotemporal variability of PM2.5 for 

California with high variability of PM2.5.

This study has several limitations. First, multisource data at different resolutions (e.g., 

M2GMI variables and MAIAC AOD) were fused to obtain estimation of PM2.5 at the spatial 

resolution of 1 km. This inconsistency among spatial resolutions might introduce bias in 

estimation. We used the autoencoder-based residual deep network to downscale coarse-

resolution images to fine-resolution ones with the features of elevation and coordinates to 

capture spatial variability. With high test accuracy in downscaling, we could reduce the bias. 

Second, the uncertainty analysis showed high uncertainty (the coefficient of variation) over 

the land-use of deciduous and mixed forests, and water body (e.g., lakes, rivers) for 

predicted PM2.5. Since such predictions with high uncertainty made up a small proportion of 

all the pixel-level predictions in California and most subject locations for exposure 

estimation are likely located in more urbanized areas, away from the rural areas, we do not 

expect this pattern in uncertainties to introduce significant bias into the assessment of 

downstream population health effects. Third, our method generated weekly, not daily PM2.5 

at a spatial resolution of 1×1 km2 to ultimately support epidemiological studies of pregnancy 

outcomes; however, we are encouraged by its performance and expect that it can be adapted 

and generalized to daily resolution.

6. Conclusion

This study presents an ensemble deep learning method to fuse multisource heterogeneous 

big data to estimate PM2.5 over California, a large region with high variability in emissions, 

topography, meteorology, and wildfire events. To account for high spatiotemporal variability 

and complexity of PM2.5 across California and across 10 years from 2008 to 2017, we 

imputed massive missing MAIAC AOD, extracted factors related with the emissions and 

constituents, included critical meteorological factors (e.g., PBLH and wind speeds at 

different altitudes) from M2GMI, fused wildfire smoke, and included traffic and land-use 

variables as well as temporal basis functions. Elevation and the coordinates were also used 

to account for spatial variability. In this study, the full autoencoder residual deep network 

was used in downscaling to reduce the bias by the difference in spatial resolutions from 

multiple sources of data, imputation of massive missing MAIAC AOD due to cloud, snow 

and high surface reflectance, and as base models in ensemble deep learning to model the 

non-linear associations and complex interactions among the variables. Compared with the 

existing models for the California region, our method improved test R2 to 0.87 and reduced 

test RMSE to 2.29μg/m3. Prediction uncertainty estimates were derived, which can inform 

error assessment and model development in downstream evaluation of exposure and health 

effects of PM2.5. Regarding the multisource features and the non-linear modeling method of 

deep learning, this study has important implications for improving spatiotemporal PM2.5 

estimation over a large, heterogeneous region.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• California has high variability in PM2.5 sources, meteorology and topography

• We used ensemble deep learning with multisource big data to improve PM2.5 

estimates

• We reliably imputed missing satellite AOD and fused wildfire dispersion 

estimates

• Our model achieved high PM2.5 prediction performance with uncertainty 

estimates
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Fig 1. 
California study region showing sampling period PM2.5 averages at AQS and ICV2 

monitoring sites and four independent test sites (a, b, c and d)
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Fig 2. 
Flowchart of the PM2.5 modeling process in California
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Fig. 3. 
Autoencoder-based full residual deep network (a), downscaling (b) and ensemble learning 

(c).
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Fig. 4. 
Boxplots of training, validation and testing R2 (a) and RMSE in μg/m3 (b).
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Fig. 5. 
Bar plots of the feature importance of the top 20 features by SHAP (a. a single trained base 

model; b. averages of 100 trained models).
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Fig. 6. 
Scatter plots of observed vs. predicted PM2.5 (a) and observed vs. residual PM2.5 (b).
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Fig. 7. 
Time series of observed vs. predicted PM2.5 in the independent test.

Li et al. Page 33

Environ Int. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Li et al. Page 34

Environ Int. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Surfaces of ensemble predicted PM2.5 (a, c, e and g) and their the coefficient of variation (b, 

d, f and h) for four typical seasonal weeks in different years (a and b for spring week of 

2008; c and d for summer week of 2015; e and f for autumn week of 2015; g and h for 

winter week of 2017).
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Fig. 9. 
Distributions of HYSPLIT modeled wildfire smoke PM2.5 for two wildfire season weeks in 

2012 and 2015.
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Table 2.

Performance statistics of 100 trained models in ensemble learning

Training Validation
a

Testing
b

Mean Range Mean Range Mean Range

Sample size 17,629 4,407 12,776

R2 (range) 0.94 (0.77, 0.97) 0.82 (0.75, 0.85) 0.82 (0.70, 0.85)

RMSE (μg/m3) 1.54 (1.03, 3.02) 2.70 (2.49, 3.24) 2.70 (2.46, 3.49)

a
: the samples not used to train the models but used to validate the model (adjusting the hyper-parameters to get an optimal effect);

b
: the samples used to test the trained models (not used in training and validation).
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Table 3.

Performance of ensemble predictions in the independent test

All samples AQS samples USC ICV2 samples

Sample size 12,776 12,266 510

R2 (range) 0.87 0.87 0.82

RMSE (μg/m3) 2.29 2.30 2.70
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Table 4.

Performance for the time series in independent test

Site address Source #Time slices Correlation Mean PM2.5 

(μg/m3)
R2 RMSE 

(μg/m3)

a. 310 S. Main St., Red Bluff, CA AQS 171 0.82 9.88 0.67 2.36

b. 22601, Voss Av., Cupertino, CA AQS 162 0.90 8.70 0.76 1.80

c. 385 S. Coffee Av., Merced, CA AQS 329 0.93 13.32 0.87 2.81

d. University of Southern California Shirmohammadi et al. 
(2016)

34 0.92 13.04 0.78 2.55
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