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Berkeley, California
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ABSTRACT
' Factorization of fesiduesvof poles of the S matrix is derived

from the requiremeﬁtsiéf unitarity for partial wave helicity amplitudes.

Careful attention is given'to guestions of spin and the kinematic

sihguidriﬁies of the reiévant amplitudes, espécially at t = 0. Residues
g éf a pole in the fullApartial wave amplitude satiéfy facforization in
the simple form, Bia = Baa.Bbb’ In general, B can be Qritten'as

B =K»7, whére X contéins the standard kinematic singulafities of

the Hara-Wang type, plus thfesh®1d behavian,and vy 1is a reduced residue.
The K's for various mass classes are exhibited in a compact and con-
sigtent form énd the_corresponding factorization statements for the re-
duced residues are derived. ‘These‘factorizatioﬁ relations ére of the form,
X 7ia = Yan Y1’ ﬁhére X'-ié an_integer. The reduced residues are
analytic-in the néighborhood of thresholds and pseudothresholds, but may,
in the éase of conspiracies, cOnt;in poles at % = 0., Various examples
are presented.to illustrate thefuse of factorization. These include
LeBellac's argument on the behavior.of fhe pion residue at t = O. and

its circumvention with a type II conspiracy. Mandelstam’s treatment of
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Adler's self-cohsistency condition and PCAC rusing an M =1 pion is
diScussed ffém the &iewpoint:of factorization. Tt is shown that factor-
ization for an M =1 pion’seemé to imply smallness of.both "soft pion"
and "hard pion" amplitudes. The smallness of the latter casts some doubt
on the M =1 assignment for the pion. The final section considers the
nature of the relations Between amplitudes and the behavior -of the reduced

residues at t =0 for conspiracies with unequal masses.
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I. INTRODUCTION

The concept of factorization of the residues of Regge poles was.

discussed soon after the introduction of Regge pole ildeas into high

energy physics by Gell-Mann,l-Gribov and P'omeranchuk,2 and Charap and
3.

quires. Factorization of pole residues follows from unitarity and is
well known in nuclear physics (e.g., Brelt-Wigner resonance amplitudes
involving partial widths for the initial and final states). Early
applications in high energy physics included relations among the total :

cross sections for NN, ﬂN; ~and nt interactions at very high energies.l

Recently factorization has entered the general discussion of Regge pole ex-

change in inelastic processes,h and in conspiraCy and evasion,5 as well
as for specific reactions, such as the pion trajectory in hadronic’ process-;'
es,6 pion production7 8 and photoproduction9 of vector mesons.

The presence of spin and unedual mass kinematics complicates.the
discussion'of factorization considerably.v Rules of thumb deduced from"
simple examples (e.g., always attach a (t)% factor to the nlN vertex)

fail to hold in general. Questions arise as to exactly what part of the

amplitude satisfies factorization, etc. The purpose of this paper is to'_

present an elementary, but thorough, derivation of factorization and

.discussion of a number of examples. The separation of the kinematic

‘singularities atthresholm;and at t 0 and the definition of meromor-

phic reduced residues receive careful attention. Our approach here is

not the only one'possible. But it 1s one logilcally correct and consistent

. way to handle the complications of spin. The examples illustrate the
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interplay of factorization and conspiracy, and the complexities that arise
with daughter trajectories. No great originality is claimed; our purpose

is mainly pedagogical.

£ A
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II. DEFINITIONS AND UNITARiTY'FOR PARTTAL, WAVE AMPLITUDES .
We begin by giving definitions, a statement of unitarity and the
optical theorem. -Then we specialize to twq-body channels, introduce heli-

éity'amplitudes and thelr partial wave expansions, and finally obtain a _

statement of unitarity for partial waves.

'A. S-Matrix and the Feynman Amplitude
The S-matrix iéirealted to the invariant Feynman'amplitude

by
Sbé =-§g 1(2n) s(h)(pb P, ) 53 Q)

where a, b are 1abels containing all necessary information for
specification of the initial and final states, Na = [H(EE)] 2

, . a
is the reciprocal square root of the product of factors of 2E, one

for each particle in state a, and simllarly for state b. The word,

"state", 1s used to denote a certain number of various types of particles

" with definite momenta and spin projections, while the word, "channel",

1s used to denote the particle composition and their spin projections.

B. Unitarity and the Optical Theorem in Terms of M

Unitarity of S implies that

1 : 1(qua ab) - (Eﬂ) j{: 7”cb 7”3& (u)(P ) | ()

where the states a and b now satisfy the energy-momentum conserva-

tion requirement, p =p,, and E ‘means integration over -djp/(21r)3

C
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b
for each particle in the cﬁannel ¢ and sum over 81l channels c.
If the State a consists of two particles of masses m1 and
m, and h-momenta 12 and Py and the state b 1s chosen equgl to
a (i.e., forward elastic scattéring), then Eq. (2) becomes the optica;'

theorem,

1/ > 2 2 |
-Im 72&& = éjvé;l.pz) i R ‘Gtotal .» (3)_

“where o i1s the total cross section in chammel a. With
total v , . . :

Mon - -85 £,(),
(3) takes the more familiar form,

ot Im f (o ) =

= )

total
where Poyp W and 'fCM(OO) are the center of mass initial momentum,
total energy, and'forward non-spin flip scatﬁering amplitude, respectivée
1ly.

C. Two-Body Channels

If we restrict consideration to two-body processes, the sum oVer

states ¢ in Eq. (2) can be writt'en . - o T
(a’p & p ", -
(5)
(Qn) L(EE" ) o ' }
where the sum over é on the right is over distinct ﬁwo;body_channels

(including, for the present, sums over spin projections). Then the

right-hand side of Eq. (2) becomes
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c . !
L ) s m, 9

where P, is the céntér of mass momentum of the particles in state ¢
with total energy W. The statement of unitarity for two-body channels

then reads

uﬂi(mba B 7)]ab) = ZTJE_[TJL:E dgc,”[cb 772:&1. ' (7)

- where the sum on the right is over all open channels.

D. Unitarity for Helicity Amplitude Partial Waves

Conservation of angular momentum allows transformation of Eq.
'(7) into a se?afate eQuation for each partial wave of angulaf momentum
j. We will choosé the>helicityirepresentation and identify the channel
label  a as.standing for a definite pair éf particles (1, 2) with masses
(ml, mé), spins (sl, 82? and he}iéiﬁies (Kl, %2). Similarly b
représenﬁs particles (j, 4) with masses, spins and helicities, (mB, mu),
(s3, Sh)’ (KB, Xh). Where necessary morg specific labeling will be used.

The helicity amplitudes‘can be expanded in partial waves aslo

Mu-LGebobsliag @
3 a

where - Xa'=‘A1 - %?, xb = XB - xh and the rotation Rba transforms a

unit vector in fhé direction of Ei in the center of mass into a unit

vector in the direction of 35. Customarily, the Euler angles of Rba

are chosen to be .(@,'G, -@)}O. or (9, o, O),,ll or (0, 6, 0). But
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we keep it as Rba here in order to exploit the group property of

rotations in 1ntegrat1ng over angles.

&

On the left-hand side of Eq. (7) we also need an expansion of

%
7)Zab:

* : C e )
Mo, = Z (3 +3) (a|r|n) Dibka(Rbi) - (9)
. 3 _ : : v
Since R isbunitary, Di '(qu) = Di:(R)Q Therefore the left-hand side
of Eq (7) can be- Written
= bari Z(a + —) [(blFHa) - <aIFJ|b>] DJ &, (Bea) (10)-
a

. Substitution of partlal wave series like Eqs (8) and (9) into the right-

hand side of Eq. (7) glves

RES - Z Z (3+ DG+ elF ) (elplla) x1 ()

J:J
where T 1is the angular integral,
I aQ DJ ) pd ¥ ) N (12
- H AN (R, )

Now Rcb: can be-written as the product of two rotations, namély
-1 '
R b = Rba Rca'12 The group property of rotations thus allows us to

write - , . - _ | o

_ ~1' -1 1 s 1 3 ¥
1 LD - e fon o, e 4 e
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hogonality. integral for the D-funictions and. &

T becomes e

23+ xbx Rb ) D51 23+1 x kb

’*~1;:it=ft5"

EjWhen,ﬁhiSvVa}ue.Qf “1 s 1nserted 1nto Eq. (ll),vthe result is }_i‘*

g{FJlb) (ch }3>,DJ (13)5’*f5*ﬁ\

akbRb

"fEdpating the LHS from Eq (10) to the RHS from Eq (13), term by'u1“

e term 1n the summatlon over j; glves the partlal wave statement of

"X‘u_nlta,r_lty;' L e o

8wr[hol rlla) <aIF“lb>*}= %—Z Y el oy
‘ttTlme-reversal invariance . 1mp11es that (b[F [a) —-(a[Falb) Then.

(lh) becomes  4/f've KR ‘ "», -[_,--»:v] : .t
[(blF”a) - <blFJIa>} Z—Z <bIFJIc> <c|FJ|a> '_ (15)

H;eE.- Iarlty Conserv1ng Amplltudes :

i A further step can be taken 50 that parlty, as well as angular
v‘momentum and he11c1t1es, are well-deflned for the amplltudes enterlng
tvgl‘the statement of unltarlty. We deflne llnear comblnatlons of the partlal

- wave amplltudes as follows
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'ji s . ‘ sl+52-v
O P77 o) = (a9 gn) 2 n, ()
where ni is the intfinsic.pafity of particle i; si is its spin, and
v =0 (%J for j integer (odd»hélf infeger). These ampliﬁudes have
parity P ;,f(-l)j-v and so are appropriate for Regge theory 'since a
Regge pole amplitude is-equivalent to.é linear‘combination of partial
wavesﬁqf one or the other ofAthe pafity sequences.15 ‘

| Ihspeétion of Eq. (15) shows that unitarity can:be expressed for
the parity—conserving amplitudes as

sﬁi[wlﬁilw -*<bv|‘FJi’|a>*]-= Zﬁ,—z |70y (e[ la)  (26)
M _

c

The pafity-conserving amplitudes can equally well be written as linear
combinations of (bqula) and (~b]F'|a), rather than in terms of
(b‘FJ]a) and (bIFJ‘-a), where a minus sign denotes opposite helicities.

Thus it is clear thét an equally acceptable form is

| 8:ri[(b|Fji|a> - <b1F3iiaﬂ : Z%Z @lF e (elpdla). ()
e 'Kc ' ' _

In fact, Egs. (16) and (17) can be combined to give a statement of uni-

tarity entirely in terms of parity-cohserving partial-wave amplitudes:

“16ni [(_‘blei]a)~ <b1Fjﬂa>j Z;’Z ol (elrla) (18)
: " Kc . .

c

The left side of (18) is proportional to the imaginary part of the partial .
wave amplitude, while the right-hand side. itemizes the contributions from

the various open channels c.

(L P

-
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T{T. EXTENDED UNITARITY AND FACTORIZATION OF RESIDUES

¢

"A. Extended Unitarity

In the theory of the analytic S-matrix and Regge poles we
wish to generelize to complex angular momentum and complex energies.
" For this purpose it is necessary to extract certain kinematic factors,

e.g., (pp')Q, from the partial wave amplitudes before continuation in

angular momentum and/or energy. We thué‘write
T T P S
(o) = K (5, ©) T, (4, teie) | (19)

where ﬁe have exhibited the dependenee on t = WE, the square of the

~ center of massbenergy, explicitly, and nave indicated the physical

value (just above the unitarity cut) by +ie. The factor Kia is
an'expliqit kinematie function ef .j and t, . containiné threshold
factors like >(pp')j and other kinematic singularities specified in
defail in Section IV below. The tilde amplitudes %( are assumed to be
Hermitean anelytic and suitable for continuation in j and t. We first

consider physical t Values, but complex Jj. Then we have

J * _ il Y S . * _ * . .

(plrlla) = Kaa{Fia(J ) t+1e)] =K, 7 (G t-ie) (20)
where the last step follows from Hermitean analyticity. In Eq. (20)
- and subséduently we omit fhe parity superscript for simplicity of nota-~
tion. The meaning of (%t - ie€) in (20) is that a path is taken from the
position (t + ie) above the unitarity cut to the left to beyond the

lowest physical threshold branch point, around the branch poiﬂt
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counterclockwise andbbaCtho‘fhe right beloﬁ the{unitaritj eut to a
positioh Just below t + ie.”'Thus t T ie .are_pointsion the phyeical
‘sheet, above and below the real_axis. |
| We'noﬁ consider_complex energies. va t moves away from the
real axis_in en upward.direction, (t + ie) moves to aﬁ arbitrery
bosition .t on the phy31cal sheet, called sheet I. But (t - ie) moves

through the unltarlty branch cut. onto anothef sheet which we will call

'sheet II. For complex t . we denote a quantity § on sheet I and IT by

(E)I. and (g) ; respectlvely Wlth these definitions ‘the statement

of unltarlty, Eq. (18), has as its generallzatlon,
Kﬁa Fba(J’t) Kfa ba<3’t) ‘ : .
¥ ~TT
-g;rz Z K . FbC(J,t) K.q F 5 (3,%) (21)

Becauee of our definition of sheets I and II the right-hand side of Kq.
| (21) contains cenfributiens from_gil open channels. But it can be
shown that the‘discontinuity obtained by a counterclockwise circuit.
around one arbitrafy threshold bfanch point is given by-fhe appropriate

1l

term from the sum.

B. Factorization of Residues of a Pole

n perturbafion theory factorization is an automatic consequence
of the'concepts of vertices and propagators, with a definite coupling

constant attached to each vertex. Thus; for the processes, a - a,

I
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Db *.b,v and a - b, ﬁﬂe éontriﬁutions.from a siﬁgle particle intermediate
"staée (pble‘terms)”will be pfoééftionél respéctively to gae,v gbe,
and gagb.' Fgrthermore, the spih étruéture of the vertices at each end
of the intermediate particlé_line determines the helicity dependence for .
the initial and final statés separately. Thié means that a factorization
» prbperty will also hold for the pole contributions to the amplitudes of
an elastic reaction with different helicities.

| A correspohding“éﬁatemént‘of factorization follows in S-matrix
theory from unitarity. Our discussion parallels the original one of
Gribov and Pomeranchuk,2 but with genefalization to include spin. We
begin with the unitarity equation (21), but with sheet II defined by a
circuit around the.branch point éf a definite channel c, Then the sum
- over channels in (21) reduces to a single term and only the sum over the
helicitieslof channel ¢ remains. A slight distinétion needs to be
made between the ﬁnitarity equaéion when one of the chamnels (a,b) is
equal to c¢. and when it is not. We first consider a process, c.~> d,
where d is arbitfary; Then Eq. (21) can be written as

ch %gc = Z KZC"%’ii'(SC'C - ipc Kc’cﬁFJi:'c)
. C' : '

where we have used the subscripts ¢ and c¢' to indicate different
helicities in chanhel ¢, and we have introduced the phase space factor
P = pc/l6ﬁw. _The amplitudes on sheet II can be written in terms of

those on sheet I as
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v ~IT N .: / -1 3
Kae Fac = : : ch! ?ﬁgcf(S_ )c’c ' (22)

cf

A3

where S_l is the inverse of the finite-dimerisional symmetric matrix
(the s-matrix!),
(23)

. . ~MT
Sere = Bete ” }pc Kc'c c'e ’

For & process, a - b,' not dlrectly 1nvolv1ng channel ¢, the

unitarity: equatlon (21), plus Eq. (22), can be used to express the

amplltudes on sheet IT in terms of those on sheet I:

* "'II - -1 ~T
Kfa ba Kfa F'b * 1p : : : : Kﬁc" bc" (s )c"c' Ko’a Fc'a
(24)
We first assume that channel ‘¢ is spinless. Then Eqs. (22) and
(2&) do. not involve any sums over hellcltles Now suppose there is
a Regge pole of definite gquantum numbers on sheet II for J = a(t). This

. pole will occur in S_l ‘on the right-hand side of (24) and the residue

IT e g S _
ﬁba of Kﬁa will be of ﬁhe factorized form,
Y
Bba 1p (Kb bc) % (Kca Fca)

where o, is the residue of 571, The lsbel c merely denotes what
threshold branch point has been encircled and therefore defines sheet II.
By analytic contihuatioﬁ‘the residues can be oﬁtained on the physical

sheet. They satisfy the ﬁypicél factorization eqpation,l’e’B‘

> ‘ 3
B‘ba = gbb ﬁaa ‘ (25)
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We have thus established‘faétorization of Regge pole residues provided

‘that there exists at ieast one spinless two-body_chanhel which communicates

to the others.

If the particles in channel ¢ - possess spin'the threshold is degen-

erate, with the sub-channels of different helicity all having the same

mass. The sums over helicities in (22) and (24) now remain and the pole
in st at 3 =?a(t)“comes from det S = O. In order to prove factor-
ization of pole residues it is necessary to assume that the zero of

det 8 at § = a(t) is simple. This assumption, sometimes described as

the absence of "accidental degeneracy", is eminently plausible ~ it holds

'vin potential theory, and corresponds to the pole occurring in only one

15

eigenamplitude of the S-matrix. By imagining S - in diagonal form,
it is easy to see that a simplé zero of det S implies that only one

element of the diagonal _S-l -has the pole. Consequently the singular

part of the nondiagonal .S-l can be written in factorized form:

- -
(s l)c'c = —23:52 + regular

From Egs. (22) and (24) the residues of the pole are found to be

LI -
B N
| C Brg = 1P Gy G
where '
LT
Cx - ZE: Kic’ Fxc' éc'-

c'.

These residugs satisfy the general factorization statement,
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where now channel c¢ is not neceésarily the channel whose branch point
was encircled to get on to'shéét II.

Note that the PB's are the residues of the pole in théAfull
paftiai wave amplitudes, i.e., the coefficients of the Wigner D-functions
in Eq. (8). In order to be expiicit and careful about their kinematic
,éingularities'we'writé

Bba - Kﬁa "pa -

where the. kinematic factor ‘Kbé_ is defined in Eq. (19) and specified
in detail in the next Section, and “7bé is a reduced residue of the
Regge pole. The 9v's are residues in ﬁhe tilde amplitudes and so are

supposed to have good analytic properties. We will see that they are

t

normally analytic, but may contain poles at t = O.

: Spéciélization to the two common types of factorization can be
made easily. For clarity we'nbw’exhibit helicities explicitly, using
(@, @') for the helicities in channel a, etc. With c =a, d = b,

- [ '
(@, a') = (7, 7'), (& 8') = (B, B'), we obtain the familiar result

relating the residues for the brocesses, a—>b, a—+a and b - b: o

2
ba, ba - : -2 aa bb bb .
[K,BB';oa' 7186_';011'} = Yot s00r Tanto0r feeripst 7eeriest

(28) o

With . a

b=-c=4d buthelicities (a, a') = (y, 7') =(ap, @) and
(B, 8') = (5, &8') = (QB,.ah), we get the relation for elastic scattering

amplitudes of different helicities:
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'[K&ia = 7/aa :l - Kaa ' yaa
) .

[0 ozu,oz o, ‘o ozu;oz o e 2,051042 l 2,061 o

ea' aa -
x K _ (29)
5 h}03au a3au, Boz4

It should be emphasized that the factorlzatlon statements, (28) -
(29) hold for the products of the kinematic slngularlty factors K and
the-redueed residues y. For consistency, the threshold kinematic o
vsingularity structure on both sides ef'the equation must'be the same;
and, after cancellation ofbthese factors, the reduced residues must satis-
fy "analytic factorizstien”.evlﬁ practice this means that all powers of
the momenta-(ahd helicity-independent factors intrinsic to the pole
itself,ve.g., F(a + )) will cancel, leaving only integral powers of
'vt, of possibly W for fermion poles, in the relation for reduced
residﬁes. To aceomplish these ends care must be taken to include all
kin_ematically'necessary‘singularities and zeros in the K's. This

is spelled out in detail in the next Section.
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'Iv. KINEMATIC SINGULARITY FACTORS AND FACTORTZATION
FOR REDUCED RESIDUES
The kinematic singularity strﬁcture'of helicityvamplitudes'has
been investigated thoroughly from a number of points of view16fl7’18’19
- since the original work of Hara2o ana wang.el We will follow the notation
of Ref. 18 for the spécification of the singularity'stfucture; it corres-

ponds closely_to thévconventions of Gell-Mann et al].“5

A. Restricted Range of Helicity Values

We consider normal helicity ahplitudes with definite helicities
in the initial and final states. This means that the amplitudes are
 linear combinations of so-called parity conserving amblitudes:

| o Y] o 1A-ul
KBXM Xlkg(t 9, ) = {VE.COS-E; {Vﬁghsin —E]

l

B %), 0

where F' and F- are given by Eq. (15) of Ref. 18 or Eq; (2.7) of

Ref. 13, and are functions of the energy and zt = CoSs Ot; A= xl - A

. . _ " . .
and M = As - Xu. The amplitudes F~ are dominated for large Zy by

contributions from natural and unnatural parity éequences, respectively
(n=1%1). If either N or p is equal to zero, the correlation of
* with parity sequence is exact,. and not only an asymptotic property.

The pole whose residues enter the factorization equations has

a definite parity, and so occurs in either F+ br F, but not in
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bqth (to 1eadihg ordéfjin 'z;); This means that it is éﬁfficient to
choose both - A and ‘p non-negative.. Amplitudes or reéidues with
negative values ofb x' and/or Q paﬁ bé obtained from those with A,p 2 0O
by Symmetry_considefafiqns,'aé.is_diécuséed in Appendix D of Ref. 18.

This restriction on the ranges of A and p makes the discussion of

the kinematic singularities simpler and less confusing.

‘B. Different Kinematic Classes
The discussion of the kinematic factors Kga, ', is conveniently
v - _ B'sox :
divided into classes, according to the locations of the various thresholds.
For the.‘t-channel process,” a —+b with masses m, + m'a - mb + m'b,
kinematic'singularities oceur in géneral at the two normal thresholds,
: 2 2 - ' ' 2
t = (ma + m,a) ’ (mb + m'b) , at the»two_pseudothresholds, t = (ma -m'g )
(mb.- m'b) > and at t = 0. If there are equalities among the masses,
some of the five singular points can coincide. We Will not consider
"chance" equalities, such as (m_ - m' )2.= (mb +m' )2. Furthermore,
_ a a b
we assume that two particles of the same mass have the same spin, al-
though the parities may be different (e.g., NN and ON). We distinguish
the following four classes ‘(E and U _stand‘for equal and unequal
masses, respectively):
1 1 m!
1. U-~1U [ma‘f m' 5 om f m b]
The point t = O is distinct from the thresholds. Tt is
possible, however, that the initial and final thresholds

might coinéide.
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. ) . - _ ' . ..‘ '
2. E->U [ma =m', mb.fim b]

The initial pseudothreshold is at t = 0.
. v = - m!
3. E->E [rn.a m'_, m =m b]
Both pseudothresholds are at t = O, Dbut the mass, spin and
parities of the equal mass particles in the initial state
may be different from those in the final state.

4, E-E

This-clésé is thgvsame as 3, but with the same masses, spins
rana‘paritiés'initially and finally. |
These. four classeé inélﬁde ail the common situationé. .Fér a general
discussion of the kiﬁematic éingularities, inciuding>"¢hance” equalities
of.threshoids, seé ﬁhevpaper by Kotanski}9 |
For the éfocess, a - b, we introduce the folléwing ﬁotation:
(a) Kinematiés; t, Py Py arg the square of the total energy,
| the magnitﬁdeé of the initial momenta and the final momenta
in fhe center of mass frame, respectively.
(b) 'Parities; Ny = 0oy 'hg = ”5”u are the products of the
intrinsic parities of fhe particles in the initial and final
"states; respectivel&. N = i 1 denotes.the parity sequence
(P = (;1}FVn) :of.the pole. N =+ 1 (-1) is called natural
.v(ﬁnnaturaD parity.
(c) Spins: v(sa,_g’a) ~and (sb; s'b) are the intrinsic spins
6f the pafticles in the channels a ‘and b, respectively.
(@) Helicities: (o, ') and (B,B") are the helicities in the

-initial and final stétes, respectively. %a =q -~ a',
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N ;'3 -B'. m= min[%a, XB]. .(Remember that

NN B O, by choicg.)

max[%h,vxb], n =

C. Kinematic Factofs and Factorization of Reduced Residues for U - U!

The factors. Kpa 16-21

contain the standard kinematic singularities
and also the threshold behavior, (papby”*m, where a(t) is the trajectory

oflthg Regge pole. For . U - U', we have

" _ba h 1\ | m o, \O-m a_ b
KBB’;ODZ' ﬁ/—t—') -(tpapb) (papb) K&

where 'KOa K;b is the kinematic singularity factor for %a = %b = 0,

" and is clearly factoriiable._.Explicitly,l8
- I e
a . 2 2 2 2
K =1t - (m +m' ) t - (m ~-m' )
o T T a a } ] a |
(32)
—-. . _:Eli r~ 1_?_?2
b RENY=1 > S 5
K=~ = Lt - (mb +m b) ] f (mb m b) ]
where
. ' o g' +s -v
1 a a
- el - - -
Ay = S T 5 g _§<;' ﬂﬂa( l); ' )
o o ”: 8' -s -v
b ot M) ) »
. _ : : 33
‘ s!'_ +s, -V
. 1 b b
— 1] - - -
By _"sb'+ s'y é’(l nnb( 1) )
- . sl -8 -V
1 : b b )
_ 1 - - -
Bp =8y + 87y E(; (1) )
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In writing tﬁese expressions we. have assumed that ma < m'a, m, < m'b, .
In Eq. (31) the \f; singularity is different from that genera11y quoted, 16-21 _
namely (l/V€3m+n. The reason for the difference is discussed in Ref. 18;
‘above their Eq. (2#). For U~ U' the normal helicity axhplitude, Eq. (30),
in general is regular and finite at t =0, The \/;— singularity in g |
Kba is preéeht merely'tg compensate for.the W/;- behavior coming from
[Sin(gt/zikk'”l ‘as.a conseéueﬁce of cosvat -1 as t - O.' This is
speiled out in deéailvin'Sect: vD. |

Inspection of Eq. (31) shows that K°° itself is factorizable:

3 N | _ ,
ba. _ a _a_.al , N o, b
s = | OB ® n) K} [ 2] o)
This means the kinematic factors in Eq. (28) and in (29) cancel out and

leave the reduced residues for v-UuU ‘satisfying the factofization

relation,

2 ' : o
[722';006'] * Yon 300 722';66' | : 9)
Eq. (35) hOlds,ofdburse,‘ﬁn‘thetabsence of spin, regardless of the masses.
It was first explicitly derived fér U *_U" processes with spin by
Frautschi and Jones.7 R | |
Tt is worthwhile to note here that the treatﬁent of thié'Section
can be applie&.almoét without change to unequal'mass processes involving
photons, €.8., ﬁA‘*A7ﬂ, Yo ?'7K#, or in the following Section to the
unequal mass side of processes like NN - v, ‘7ﬁ. The kinematic

singularities for. photon amplitudes are discussed by Ader, Capdeville
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and Navelet.22 One finds that,.if channel b consists of a photon and a

7’

b o
are the same, with, K~ given by Eq. (32) with By = By = 5, @and

o . - ‘ : -5,
m', = 0. That is, Kob(photon + particle) = Gt pb) P This

‘massive particle of spin s the  structures of Egs. (31) and (36)

singularity can be"understood.simplyvin terms of the multipolarity of

vphoton transitions.25

D. Kinématic Factors and Factorization of Reduced Residues for E -~ U

For E - U we must consider separately Kba, K and K°P,

With mé = m’é4 . the kinematic-factors areu’l6’2l

vKSZ';oa' (\E)gm (papb)a (%;)AN Ko]D '
o R Ay
S = (20
() ()
' %a-xbfm)

Y - 28
a

il

o
Ko smpt

2
()
x]
()
U
il

=

—

]
[}

n, (-1)
. /s

and Ay is given by Eq. (33) with s = s's KOb is given by Eq. (32).
Tt should be remarked that K??' dogs'not follow from the singularify
structure given by Cohen;Tanhoﬁdji, Morel and Naveletl6 in their

 Table X . - They give the maximﬁm singularity, independent of

parify. For a definite un their-reguiafized amplitudes may have

zeros at p, = 0. The correct kinematic behavior at a normal threshold

is always given by the first factors on the right in Eq. (32), regardless
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of the masses. Another point worthy of note is that, for E = E,
K has the same form whether or not the helicities are the same
initially and finally. For U~ U, K°° can be generalized to the sit-
vation of different helicities initially and finally by inspection of
Eq. (34) with a = b.
When the kinematic factdrs,'(56), are inserted into Eq. (28) the
result for E - T is v v
. . | ) . ' 2 . . . N
x { _ba T aa bb : -
T Yat it U = Yt eamt YRRt .pat
: pB’ o0 o foatioot TBBT;BBT
where _ E . S S  (37)

T

We see that-the.pdwers of momenta all“cancel, but that there remains

an integral power of t on thevleft;hand éide.zu

E. 'KinematiC'Factors and Factorization of Reduced Residues for E - E!

and E - E

oL .A‘ 3 .. - ,.‘ - ' N -‘ '

| For the -situation with mo=m'_, .m.b m " but m.a f mb,
the kinematic factor 'Kpa is given byl

' - - a- ‘a-B

o K‘;g’_';ou' .:L'\V?)yv (Pa),. i (p,) N vv |
e o - > (38)
.y=§[1 - naﬂb(-l)m'ﬁrw'],

and. AN, BN' are given by Eq. (33) with VS, = s', s =5s';.




UCRL-18261

-23- a;AN

| . v Q=B |
The factors _K?a_-and Kpb are Ko = (pég) s Kpb = (pbg) .
Combining these eXpressions with Eq. (28), we obtain the reduced residue

relation for E = E':
ty 7ba 2= a8, 7bb (39)
BR';o0! ot ;o' 'BRT;BB! g
Note that the limit m =m (all four masses equal). is allowable

here, and-the caseé of the same particles initially and finally is included

in (38) wifh,hﬂang = 1.
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V. EXAMPLES GF FACTORIZATION AND ITS CONSEQUENCES
. In this Section we present-some examples- of factorization that
hopefully clarify the interrelationships of factorization, kinematié

singularities, different conspiracy schemes and daughter trajectories.

" A. ILeBellac's Ekample.
LeBellac6 demonstrated the>use of factorization for stateménts about
the behaﬁior of residues pf the pion'trajectofy in various procésses ét
g ; O.A The baéic idea is that aﬁomélous‘behavipr,.e.g., conspiracy
'insfead of evasion,‘in'one process Will; because of factoriZafion,
propagate and give anomalous behavior (of an inve?se type) in some other
proceés. The reactions cpnsidered by LeBellac are NN ; ﬁp; NN - ﬁN,A
e ~> #7P, ﬁA-5 ﬁp and _ﬁA-* NA. The first three processes are relate&_
by faéfarizatibnvof the ”E »'ﬁ c;asé (Sect. IVDﬁ, while the last three
are of the U= U' class (-Sect.IVC). We consider helicities Mg =N =
KA = % ' and A = xp = 0. Fﬁrfhefmore, we consider in this Section that
the pion tfajectory is a leading trajectory,fi.e., & parent. This was
LeBellac's éssumption, and seems 1ikely in nature. In the nexf Secﬁiop
we will show how LeBellac'slcoﬁclusions are éltered if the pién is
assumed to be‘the daughter of an Aiflike'parent wifh Whiéh it'conspifes.
With A, =_%b = m.ﬁ n-= O- and 7 = -1 ‘wevfind from Egs. (37)
that the pioﬁ’éAredyced residués for NN - P, NN - NN and e = [P
are related by .
. 2_ o
1 [nm—‘._ ﬁN] _ i\I'Nf-— NN _xpe np
00;++ ++;++ 00;00

t (40)

At
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‘Under our assumptions the reduced residues are analytic in the neighbor-

hood of t = O. This means that 7ggf;§N ‘must be proportional to some

positivé'power of t. We thus write

. npé—'.i\l-l\T-:_ t‘—:rrp<—'1-\]-1\1
00;++ 00;++
Note that factorization has-cénverted a l/ Vt kinematic singularity
(see Egs.” (36)) into a \/t  kinematic singularity. The kinematic
o i oy
structure of the residues of L. L. Wang, shown in her Egs. (18a) and

(18b), have this factorization requirement built in. Eq. (40) now becomes

% [—np«-NN] N 7,1\]1\T<.—-N1\T 7,:rp<.— 1§¢] (hl)
"00;++ +45++ 00; 00
e g - » e i 25
There is evidence from np charge exchange scattering that the

residue 7§§T;§N does not vanish at t = 0, as expected from pertur-
._) - .

bation theory or normal (evasive) Regge poles. Within the framework

of Regge poles alone, it is necessary to in\;oke some type of "conspiracy,"
e.g., to postulate the existence of another tra,jectory ac(t) with all
the same quantum numbers',as the pion, except parity, and to demand that
'ac(o) = aﬁ(,o). This is cal;ed type IIT conspiracy in the notation of
Freedman and Wang26 and 'M‘; 1 conspiracy in the notation of Toller.g7
e T

l ‘does not vanish at t = O, factorization, ( 41), forces
4

NP NP
7’00;00 to be proportional to +t.

Now consider factorization for NA - 70, NA -»NA and P P,

From Eq. (35) we have
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- 12 — = '
o NA NL&— NA _npe mtp Lo
1. =7 . roo o (R)
}/ oo;++ ++;++ ‘00300 _

With the conclusion that 7ﬂp+7“p
00300

oc t, and the requirement of 
analyticity of the reduced residiles near f = 0, we sée that both
the otherfresidueé in (42) must also be proportional to t. We have
.Vthus reached the éoncluéion of-LeBellacﬁ The non-spin-flip resi@ue for
the reaction ﬁ[réﬁp. must vanish at t =.0. Siﬁce_the pion trajectory
is believed to be importahf for this reaction and A =0 is known
fromlthe decay densibty maﬁrix elements to be dominant, we are led to
~expect a dip in thé-cross section in the forward direction.
This powerful conclusion stemming from factorization (the lack of

-a dip ét t =0 in np -charge_exchange fbrces a-dip in the inelastic
reaction, =N —>pﬁﬂ)__is especially curious because the data on
N - pA do notbsupport it. There are difficulties and ambiguities_
_associatéd with the finite widths of the p and the A and the
inaccessibility of the point & = 0. Buf a recent énalysis at 8 GeV/028
.shdws, not & dip in the érosé section at small momentum transfers, but

rather a rise for A_2 £2 mﬂg. '

B. If the Pion Were a Daughter; the A3 and its Daughter

Because of the basic nature of factorization of pole residues
it is'important to find loopholes in ILeBellac's argument if the data
do not sﬁpport its conclusions. There are,‘of course, -many ways out.

The pion may not dominate processes like o = pN and =N - pA at
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high enefgies and'very small momentum transfers; the contributions of

"Regge cuts may mask the behavior of the pole residues, etc. But we

discuss here circumstances by which the above conclusions are modified,
still within the framework of Regge poles alone.
We consider the residues‘of a Regge pole with the quantum numbers

of the pion, denoted by D, 'and also its parent, denoted by A.. The

" parent trajectory ‘aA(t) ‘and the.daughter trajectory Qb(t) are related

at t =0 by:.qA(O)E{L ob(O).= @ - 1. Both trajectories contribute
to. various amplitudes in the processes involved in LeBellac's argumeht.
Consequently we must look in more detail at the different feactions in

order to determine the interconnections among the parént and daughter

+ Tesgidues at t = 0.

Consider first §v - F. Tﬁe D-pole contributes to the two
amplitudes, @, ¥'(++!T|++) _andv ®, = (++|T]|--), while the A-pole
contributes to P = (+-]T]+-) ana @h = (+-]T]|-+). The kinematic -
structure of the amplitudes”is given by K in Eq. (36) with Ay = 0.
The asymptotic forms of the amplitudes are therefore _

71()1)&)' l-+ev—i1r(1]j(vt) . o (%)

NCACHEDIN | sin = (%) %

o —> o | (13)
(1) -ina, (t) a, (t)
2 Y A 1\l A Sy A

o> P(gAz'tT+1) 2, (t) (O‘A(t) * zt) T 2, &) | {5,
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N l "
A(t) - Zt ’ ) N
Pj —D» P, - L ~.
RO |
A »zt

The superscripgg(l) on the residues identifies them as residues for

'ﬁN - NN. The facﬁers of qA(t) in ¢% corfesﬁgnq to chopsing<sense

at the "nonseqse-nonsense":point, J =0. In Eq. (43) we have kept

the first-order éofrectiohs‘to the leading'térms'for the 'A—bole>becau§é

they'have thé?éame s-dependence aﬁ t = 0 as the D-pole céntributioﬁs.

At t = O the amplitudes satisfy a GGMW relation, >
Op == - P [t =0]

Unless all the amplitudes vanish at t = 0 (evasion), the residues must
. be related (type iI conspiracy) according to

ST 2 . S
(3 (1) . ' ' -
A (0) = 'Ei;ff 7 (0) ﬁ (k)

In.thé process w0 S xp (denoted by superscript (2)) both

parent and daughter poles contribute to the amplitude foo-oo"‘From’
. . . 4 .A
Egs. (31)-(33) ﬁe see that the kinematic singularity of this amplitude
. . . o , a
(with 7 = -1) -is 1/(htpip) times the threshold behavior, (pip) .

The asymptotic form of the contribution from the A-pole can thus be
written |

1 7f\?)(t) L ey () (2:92 )

o W
(a) _ “t
foo;ozﬁ>vT2 P(aA(t)+l) sin = aA(t) =

- (15)
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with corrections of order Zt* . Here
2 2 2 é 2
bt Po = [t - 2( mp Yo+ (m " - m ")
and
: N -
2 - _ T
2 Pnp_zt s + 5%

Keeping only the 0(1/s)  corrections to the leading power, Eq. (45)
reads

foo;oo 12 P(QA(t)fl) sin w @, (t) 2st
o (46)

For the daughter pole we keep only the leading power of s. 1Its
contribution is-

: vi (2) ' | ~iner (t) a. (t)
(D) 1 7p () [1+»e D (s)D PR I

00; 00 72 P(aD(t)+l)L. sin aD(t) s

o
' ' 2 2 2
~ For unequal masses, T —9(m -m ) as. t -0 and the

contribution of the A-pole dlverges as l/t with s-dependence;
a,-1

s A . In order that the complete amplitude foo;oo npt be singular at
t. = 0 it is necessary that the leading contribution of the daughter ﬁole
cancel the offending part of (h6). This is the daughter mechanism-of |
Freedman and waﬂg?6'for ensuring Regge behavior at t = O for the
.U’-aU"class of mésses. The daughter residues fég)(t) ‘is therefore

" related to the parent residue ( )(t) in the following way:



UCRL-18261

-30-
v (’m 2 . 2)2 ,
(2)(t) — % P 7 (2)(0) + regular part ()4‘8)

s t-
o]

Here:wé seé-tﬁe first obvious difference from the discussion of the
rreceding Seqﬁion. The_reéidue Bf the pibndikeDiin np - xp is now not
analyticvat £'=.b, but instéad‘has'a pole. Evidently the argument
leading from Eq. (40) to (41) no longer.holds.

To complete the discussion we must now consider -the feaction,
| —éﬂb.v Thé D-poie and A-pole cbntriﬁute to the amplitudes foo;++

and T respectlvely, as well as to others with x f O that -

00; += 2

are of no 1nterest to us here. With the kinematic singularity (56)

find the asymptotlc form of the contrlbutlon of the D-pole to £

v 00;++
tp be ' ' _
R I i (t) - (t)
S ST P N T )QD (49)
oo,++ W/-— P(a (t)+1) | sin = aD(t) ‘ t s, .
Similafly the A—pole contribution to fo§'+- is
;I}mpﬁpsingt_' 20 (t)VE)(t) ;e‘"im (t) < )a p () -1
00; +~ TS, P(aA(t)+l) L sin n & (t).}§ |
(50)

At t = O the two amplitudes satisfy a conspiracy relation

{actually a pseudothreshold relation) of the'form,BO

f - — Q,
00 ++ sine oo +- =0 ) . (51)
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This constraint requires.the residues in (49) and (50) to be related

)

at t = O:

Pl - L w? - 02 7o) (52)

The factorization.eqpatioﬁs for the reduced residues of both
the A-pole and the pionic D-pole can now be written down and com-
pared., From Eq. (37), remembering that for the A-pole the NN system

has helicities (+, -), Wwe obtain

2 N
[7&3)] = 7&1) '7&?) - o (53)

where ﬁhe'superscfipts (1,2,3)l refer respectively to the processeé,
NN NN, np »>np and NN S Ap. Similarly for the residues of the
.D-pole, we have A

L [6)2 | W e |

T [7D ] AN A (54)
Eq; (54) is jﬁst évrewriting of Eg. (40).  As has already been mentioned,
the pole at t‘= 0 in 7%2), giyen by Eq. (h8), removes the necessity
for 7é5) tdlbé proportional to %, ‘and'Eq. (41) does not hold. 1In
the_second part of LeBellac's argument, the three U -u’ processes,
ﬁA.—’ﬁp,. NA - WA, and mwp —np, have reduced residues of the D-pole
related according to Eq. (42). Now each residue has a Freedman-Wang pole
at t =0 andfnoﬁhing crucial can be said about the "pionic"” residues
because of the presence of its parent.31

Tt can be verified easily that the connections, (i), (48), and

(52), between parent and-daughter residues at t = O make Egs. (53)
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énd (54) equivalent at that point. We thus have the circumstance that
conspiracy relationsin E —-E and E - U processes, plus factorization,
determine thé:feéidues of the daughter trajectory ina U —U Dprocess.
Given the exiétencelofvdaughters,»we can thus "prove" Regge'asymptbtic be~

havior at t.: 0 for unequai'masses;_ Alternatively, if an A. ‘trajectory

1

exists, thén analytiéity arguments for the amplitudes of wp —wp

demand the existence.of‘its daﬁghﬁer (nét the pion), with a residue
satisfying Eq. (L18). Then a natural solution of Egs. (53) and (5%)

is for both 751) and 7%5) _té be finite at +© = 0. This results

from & parent-daughter conspiracy, and is no less reasonable than the
"no.conspiracy" solution in which yél),a:fte,' 7é5> ac t. In fact,

the following'possibility éannot be ruled ou.t.52 Suppose fhat‘the pion
has M= 1 (i;e;, has a parity.doublet partner at t = 0). Then LeBeliac's
arguments of'ééct.>VA étill hold for the pion's residues. ASsume that |
the pion, the .Al, and its daughtér all contribute to the‘reactions

NN —xp and ﬁ23~9ﬁp, énd that the A.l and its daughter‘copspife as
indicated above. Then the very forward cross section for =l — pll will

be controlled byrthe Aj-.cdntribution and the pion-daughter interference
(the pion’s contfibution vanishes at t = 0),  giving a finite érdss
section at t = O Dbut peaking somewhat awéy from t = 0, as is apparéntly
.observed.. For‘ 7N f>p£; the Ai-pion.interferéhce_term'will dominate

fhe forward cross section. Since the pion residue_vanisheé at’ t=0

from factorization, the interference term can give the forward peaking.

A relatively detailed model like this can bnly be tested by accurate



UCRL~18261
-3%-
data up to the highest momenta (in order to check the s~-dependences in

detail, as well as the t-dependences).

C. M=1 Pion

33

Mandélstam has discuésed the connection between congpiracy

- theory and - PCAC and the‘éommutation relations for axial vector charges.
HeVShéwed that for zero maSs.pions the assumption of a type III conspiracy
for the pi§n (M = 1 pion in Toller;s nétation)vis sufficient to establish

3L

the Adier self—consistency cohdition, from which one can go on to
_treét ﬁhe Aaler-Weisberger relation and thé commufation relations for
_axial'vectbr_Cﬁargeé. ‘We consider here what factorization says about these
matters.. The result turns out_to be unpléaéant for thé hypothesis of
M=1 for tﬁe pion. As was first noted by.Mandelstam himself,35
factorization for an M:= 1 pién seems to force "hard" pion amplitudes
as well as "soft" pion amblitudes to be small. The latter is Adler's
self—éonsistenéy, but the former is not wanted.

Fifst we establish a generalization of LeBeilac's result of
Section VA; :Consider the process NN - BB', where B, B' are'any
pair of pafticleé of unequal mass coupled to the pion. For the pion
residue the net héiicityvin the W state is A = O.of necessity. We
will also choose kb = 0 so that we deal with "sense-sense" amplitudes
fof the pion. Fof“these amplitudes,‘with m=n= 0, the various

reduced residues are all analytic at t = O, provided the pion is a

. leading trajectory.v For these choices of helicifies, Eq. (37) becomes
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1fBBlefi]?  Wi-fv _BB'<EB' (55)
I RS f_7++;++ [FVNIIN . o
For an evasive M = 0) pion and a consPiring (M ='l) pion we obtain

the following results for the behaviors of the residues t = O:

e TV BB I BB'¢ BB'
'7++;++ - A\ ++ M AN
M=0 S R |
M=1 ... .1 t ot

by means of thé U »U factorization equation, Eq. (35), we establish

that, for a general procéés; AB —aCD,>-in which the masses are unequal,

R O

~ provided the pion has M= 1. Note that (56) applies only to residues with.

m=n= 0. FQE cher helicities, conspiracies can cause the residues.

for U —=U" to hav¢~poles at 't =iO. This is discuséed in Section VE;
Before commenting on the significance of (56) in a discussion of

Adler self-consistency, wevexaMine the-éorresponding results when B and

B' have equal masses (and spins, but not the same parities). The process

is NN - BB', with 'mb'= mfb. The relevant equations are (38) and (39).

_Again.consider‘ ~only  the "sense-sense" amplitudes with B = B' = A.
" We assume an M =1 pion (7++T;% cc 1 near t = 0). The results for
, s A :
: » +

various channels are tabulated below. The notation is VN(% )s NP(%.),

7(07), o(0"), v@T), a@), A3 ) aG).
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| o) ) P o
Channel t BB') T\t AN -+ £ Y
W +1 o 1 1
M +1 E 1 | 1
Vv +1 1 1
) -1 1 | %
b
2 .1 1 . £
p ' . .
bilo] -1 . _ 1 t
" VA -1 1 v ot
It should be noted that if 7BB %_NN is taken as proportional to tn,v
! ! ) ' . _
then 7BB G_BB will be proportional to the tabulated value times
t n' We have assumed that there are no extra zeros.
The tabulated behaviors illustrate the general result that for
: 2s :
b ' » - . BB'« BB' B
nb(-}) = +.1 (~1) +the pion r§31due ZXWIEN @ 1 (t) near t =0

provided m = m! and M ='1. For' M= 0 (no conspiraéy in TN —>ﬁN);

b
the behavior is just the“opposite. The significance fdr the Adler
self-consistency condition can be seen from Fig. 1, which shows schematical-
1y the pion péle_ébntributionvfor processes like‘ ﬁNP _’ﬁNpZ The
particle W, for example, caﬁ be thbught‘of as a nucleon plus a zero

P ' TN «~Wn ' :
mass pion. Then the residue ¥ p P ig proportional to the square
of the pibﬁQAQCleon scattering amplitude (withcﬁé'éero mass pion at
threshold). Since the residue is proportional to t. for small t, the
pion-nucleon scaftering amplitude must be profortional to v-tpole =M,

and so vanish in the limit of zero mass pions. Similar conclusions

about the pion-pion and other pion scattering amplitudes can be drawn
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from consideration of. ﬂG:—éﬂO, etc. This is the Adler self-consistency
condition for pion séattering processes.

| ‘ Mandéistam's der;vation is based bn detailed arguments of e
dimensional sjmmetry‘and -M = 1 for zero mass pions coupled to equal
mass particles. We see>hefe that invocation of a t = Oj conspiraéy
between the pion and a scalérvparticle in DN —aﬁN, Plué factorization,

is all that igvactually necessary to obtain Mandelstam's version of the
‘PCAC results.:‘FurthefﬁQre; we learn that the equal mass requirement'is
not necessar&..»Indeed, Eq. (56) gives_ﬁs_mofé than we ﬁant. It implies .
that ali pioh'amplitudes are in some sense small (zero in the limit of
m -0). It ;sAdifficult, of course, to give quantitative. meaning to the
word "small" since.something proportional to- t as t -0 can stili be
very large at t :vmﬁe. Until this sort of question isvclafified,.Eq. (56)
does not destroy the significance of Mandelstam's origihal afgumehts,'butv

it does cast a‘cioud'ovér them.

. D. Zeros in Residues away from t = O

A reléped question is the so-called "moving zefpﬁ in the pion
residue:at smail negative t._.If has been'drgued by Arbab and Daéh?5
that the zefo in the pion residue at © = O. for sense-Seﬁse coupling in
v —9ﬁN, required of a ggzg-mass M=1 fion; movgé élightly'away !
from t = O when the symmetry is broken by the small finite mass of the
actual pion. Emﬁirically such a?zero is'found.necessary at t= -(i.5 -
2.0) mﬂ2 vin.the phehomenological fitting of n-p charge excha‘ngeg5 .and

pion photoproducticm?6 at high energies. It hés also been deduced from
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»fiﬂite energy sﬁm rules for‘photoproduction.37

| We wish té make a relatively trivial observation conéerning this
and other pbssible'zeroé in residues aWay from t = 0. The various factor-
ization\relations, Eqs. (35), (37), (39), involve only the reduced residues
and perhaps powers of t. This means that a lihear zero in the residues
for ‘ﬁN ~9ﬁN,¥i.e., '7???;§N e (t - to), will propagate into all
reactions, whether elastic or inelastic, Whether equal or unequal mass.
But if the zero in NN — IN is quadratic, then it can appear as a linear
‘zero in a process like NN —9n7; and be ébSené in U —»U reactions. The
Jatter possibilityvis perhaps morévreaéonablé and-ié apparently supported
by data on inelastic reactions believed tovbe do@inéted by.piohrexchange,
although one caﬁ qpestion ﬁhether other éontributions might not mask
the effectujg Tﬁe possible relation between "moving zeros" that might
reéuit from a'breakiﬁg of:thé'h~dimensional‘symmetry (by either the finite
mass of the pion or the inequality of the masses of the external particles)
and the fixed zeros at +t = O that result from factdrization is a topic
beyond the'sgope of these nqtés. It is perhaps of significance that for

. o N
an M = 1 pion all residues seem to vanish at or near t = O.

" Anothér examplé’of zeros in residues at physical. t values is af-
forded by the d#ﬁrajectory.' The crosé-over phenomenon in the differen—
tial cross sections for vpp and Eb: elastic scattering is interpreted
vin terms of a;linear:zero in the non-hélicity flip residues of the -
)2.58

trajectory at -t = -0.15 (GeV/c A linear zero in pp elastic

scattering implies, via factorization, a linear zero in all  residues,
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as first noted by Philliﬁs and Rarita. The difficulties with such

‘consequences can be traced in the literature.

.E. Conspiracies at t =0 for U -U' Processes

For equal mass processes (E - E or E -7U) conspiracies
at t = 0. caﬁ;involVe eithér ﬁrajectories of the same'parity
séquencé-(type II;‘e.g., parent éhd déughteTZVés in.Sect. VB) or
vtrajeCtories_of opposite parity sequénces (type III, e.g.,. np -%‘pn25
and 7N'4‘ﬂﬁ56). Fbr unegual masses, ﬁhe'moét dbvibus_cénspiracy is
the parent—daughtérvcbnsﬁiracyrof Fréédman and Wang 26, With the
aaughter reéi@ues having. poles at. t.= 0 (e.g., Eq. (MB)). But
thefe is still another type of conspiracy fof u - U proceéges, also
resulting in fesi&ﬁes singular at t = 0, but involving trajectories of
oppbsite paritiés; |

Our starting point is the fact that for U —U' the full helicity.
amplitudésvare régular in the neighborhood -of t = O.- The connection
between the full amplitudes and the so-called parity-coﬁserving amplitudes
is given by Eq.'(BO); With the conventions of Sect; IVA on theirang¢8 of
~helicities the two he11c1ty amplitudes £ . and f

%3”4" M Mhyi My

can be written

m+n

k3ku’ féV§~COS ) 6/——s1n——) F‘_f F_]
| | (57)

o g._m~n g M .
SENEETE L SVE cos?t) (\/E sin—éz) [+ - r)
7 5 h! 2 =~
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where § is an”inessential phase factor that can be read off from Eq.
(15) of Ref.;lB and m and n are defined at the end of Sect. IVB.

For U -U', cos ©

L 2t 1 +0(t) as t -0, the sign depending on

the sign of (le,- m22)(m32:- mug). For definiteness we assume that the
maéses are such as to give the positive‘sigﬁ; the argument can be changed
triviall& for the other choice. The half-angle factors in Eq. (57) give
the following omall t behavior:
fx3xu;xlx2 o 0/5-)m'é [F+ +f?j|
‘ (58)

B ® OG- F“]
MMMy, L
. _ . +
Without conspiracy, the various Regge poles contributing to F
rand F  have different s-dependences at t = 0. Hence the necessary t
behavior must.occur fér each'pble separately. In 6rder that ¢ .
. : . xBKu,xlké-

be regular near t = O we must then"have no-higher singularity than

1 .‘l m-n o . - ) ' : 0
F' ) , f A . 0l oo L ‘et
)7 A = e,
o : (59)
! o . .

The t = 0 singularity in F'ois just that given by Eq. (31). The

consequence is that one helicity'amplitude is finite at t = O while

the other vanishes as +. This is called the normal behavior. Note

that wniformly less singular behavior for dynamical reésons is always

possible. But we do not consider that possibility here.
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If ‘on the other hand, ‘we admit consp1rac1es between Regge
_tragectorles of opp051te parlty sequences, the normal result, (59),

need not:occurh Suppose that we w1sh to have the small t behavior,

o t¥; £ @ t (60)
%M’M"z T R R " |
where D. and q are non-negatlve integers. Then, from (58) we conclude

that |

. . _ b N . 2 - .
[F 5] « ofF 2™
[F+ . F-] . W )Qq-m-n

_ This can be arrangedjby having
+ 1 m+n-2q, . .'
F© (Vﬁ;) ' 5. S : (61)

but demanding that

- . +n-2q o0t : :
[F + F (T—)n p- q o (62)
. " At ~- :
the curly bracket g1v1ng the small t dependence of [F + F ] .
-Compar;son'of‘(6l) with (51) shows that (61) is equivalent to having

.ﬁhe_reduced residue functions of‘the‘cqnspiring poles'singular at

_t:‘-q; S o A
D e (T e

Condition (62) requires that ¥ = - ¥ to order 2P0 pecause or

alt)

the t-dependence in s » as well as in 7(t), this means that
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(61)
_.@.j___ {tn’q 7(+)(ti = -._ij,_._[tn'q 7(-)(1;1
at® | |, ot o 20

fdr j=0,1,2,+«¢,(n+p-=-q-~-1). These conditions on the conspiring
trajectories dnd their residues will guarantee the small +t  Dbehavior
assumed in (60). In contrast to the E >E or E —U conspiracies,
the amplitudes f . and f, , . are not related at t = 0
MMM, A e

simply through .a common residue value. The value of the amplitude

is given by the residues of the conspiring poles, while

f7‘5xu5 i 1')‘é
sl

L)

depends on the (o + p - g)th ‘derivatives of the trajectories,

),

and o and of the residues, 7\*) and 7(*). Tmis makes the
U - U conspiracy qualitativéiy different from the.equal mass situations
and 1is probabiyvresponsible for the confﬁsion on_whethef or not conspiracies
at t =0 océur‘for'uheqﬁal masses. - |

' Withvﬁﬁis type of donspiracy the residues entering the factoriza-
tion Eq. (BS)Zﬁeed'not be analytié'near t = 0, but may possess poles
as shown in (65). | :

- Various versions of the Lorentz pole model give pértial speciF
fication of the exponents, p and q in Eq. (60). The model of
b3

Cosenza, Sciarrino and Toller gives g¢=M-m O, and n - M for
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1\

MzZm m>M2n, and n > M, respectively, where M is the Lorentz

pole quantum number. It is not clear, howeVer, what their model predicts
. o . . . : Ll
for p. Results in agreement with Ref. 43 have been obtained by LeBellac
. 45 o .

and. also by'DiVecehia,vDrago and Paciello, - using faetorization arguments
and the-specificetion ef a "minimal" solution of the analyticity and |
factorizatioﬁ requirements. The model of Bitar and 'I‘ind];eLF6 has a
correlafion between the small t dependence and the asyﬁptotic S~
dependence of the t-channei amplitudes. TFor the terms in the amplitﬁde

. 4
F M yehavior (in ¥ ), one finds p=M - m and

_.wiﬁh the norﬁai S
‘ p=0 for ‘M z2m and m >N, fespectively, while ¢q = MA- m, O, and

n -VM for:'ﬁ z'm, m>Mz n, and 'n >M, respectively. This
corresponds to the equality of trajectories and residues in (64) for

J ='O,.,.,(h—l)v or (M-l), whichever ie smaller. In Bitar and Tindle's

model there ere, however, terms with p =g = 0 and less than the

leading power of s.
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:Dlaérams sh§w1ﬁg the plon“pblé.coﬁfriﬁutloﬁ to fhéwiﬁl;;E )
:'process, NPN —>NPN, ' o, gcm’ and AV ->AV ‘I'he "partlcles
'}.N , c and A can be‘ thought of’ comp051tes of a zero masé _;plon', %

at threshold and N:. ﬂ' and .VU‘respectlvely; 4Thejre51dues ; _-v*:;
Of the Plon pole are proportlonal to the square ovf the «, nN, o

iﬁﬂ and ﬂV elastlc scatterlng amplltudes  7
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