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A Dissociation between Categorization and Similarity to Exemplars 
 

Nolan Conaway and Kenneth J. Kurtz  
Department of Psychology, Binghamton University 

Binghamton, NY 13905 USA 
 
 

Abstract 

Research in category learning has been dominated by a 
‘reference point’ view in which items are classified based on 
attention-weighted similarity to reference points (e.g., 
prototypes, exemplars, clusters) in a multidimensional space. 
Although much work has attempted to distinguish between 
particular types of reference point models, they share a core 
design principle that items will be classified as belonging to 
the category of the most proximal reference point(s). In this 
paper, we present an original experiment challenging this 
distance assumption. After classification training on a 
modified XOR category structure, we find that many learners 
generalize their category knowledge to novel exemplars in a 
manner that violates the distance assumption. This pattern of 
performance reveals a fundamental limitation in the reference 
point framework and suggests that stimulus generalization is 
not a reliable foundation for explaining human category 
learning. 

Keywords: categorization, generalization, formal modeling 

Introduction 
The history of research on human category learning is rich 
and complex. Whereas early studies explored the capacity 
for human learners to acquire rule-defined concepts (i.e., 
Bruner, Goodnow, & Austin, 1956), current research and 
theory is now largely centered around a ‘reference-point’ 
framework, where learners are thought to master categories 
by learning to associate stored perceptual referents (e.g., 
prototypes, exemplars) with individual categories. 
Reference point models of categorization (e.g., Kruschke, 
1992; Love et al., 2004; Nosofsky, 1986; Smith & Minda, 
2000) have enjoyed wide success in explaining human 
behavior, and are widely considered a definitive account of 
how categories are learned, represented, and applied.  

Although specific reference point models differ from one 
another in a variety of ways, they tend to make generally 
similar representational and process assumptions. Chiefly, 
all reference point models assume that categories are 
represented by one or more points in a psychological space. 
On the extremes, a prototype model represents each 
category in terms of its central tendency, i.e., the average 
across known members, while an exemplar model would 
represent the category in terms of the individual items 
themselves. Successful reference point models employ a 
selective attentional mechanism that allows them to weight 
the importance of each stimulus dimension (Medin & 
Schaffer, 1978; Kruschke, 1992). 

Discrepancies between reference point models have been 
the subject of extensive debate (e.g., Homa, 1984; 
Nosofsky, 1992; Smith & Minda, 2000), but at present we 
are interested in their common design principle: that 

learners categorize based on proximity to reference points 
associated with category responses. More specifically, 
reference point models assume that classification decisions 
are based on computing the similarity of a presented cue to 
stored reference points, typically following an inverse 
exponential function of geometric distance (Shepard, 1987). 

An important feature of these models is that similarity can 
be attentionally-mediated, but the inescapable commitment 
is to stimulus generalization (Nosofsky, 1986). Although 
legitimate concerns have been raised about the validity of 
this distance assumption in psychological models (Medin, 
Goldstone, & Gentner, 1993; Rips, 1989), reference point 
accounts have remained leaders in the field of category 
learning due to superior quantitative fits to behavioral data 
(e.g., Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky et 
al., 1994a). Indeed, there exist few examples of empirical 
phenomena in the artificial classification learning paradigm 
that are not well described in terms of distance to reference 
points. 

The Current Study 
We report an original experiment challenging the idea that 
people make classification responses using distance to 
stored reference points. Our experiment is based on specific 
predictions made by two contemporary models: ALCOVE 
(Kruschke, 1992), and DIVA (Kurtz, 2007). ALCOVE is an 
adaptive network model that straightforwardly embodies the 
central tenets of the reference point framework: ALCOVE 
uses error-driven learning to optimize attention weights 
mediating the similarity computation and association 
weights between the exemplar-based reference points and 
category nodes. ALCOVE has been tested thoroughly for its 
ability to account for behavioral data (Kruschke, 1992, 
1993; Nosofsky et al., 1994a) and has remained a leading 
account of human category learning since its publication. 

DIVA (Kurtz 2007) offers a similarity-based alternative 
to the reference point framework by representing statistical 
models of categories in a DIVergent Autoencoder. Rather 
than learning to associate reference points with category 
responses, DIVA learns how to correctly reconstruct 
presented cues on their category channels. Classification 
decisions are made based on the reconstructive error 
observed across category channels – if one of DIVA’s 
channels is able to reconstruct a cue without much 
distortion, then the cue will likely be classified as a member 
of that category. 

Both models rely on a form of similarity to guide 
classification (ALCOVE uses attention-weighted distance to 
exemplar reference points; DIVA uses a more implicit form 
of similarity in that inputs are more likely to be successfully 
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reconstructed if they are like known category members), 
and accordingly their predictions are often very much alike. 
However, the models differ in their commitment to 
distance-based classification. Since DIVA does not use 
reference points to represent categories, its responses can 
diverge from predictions made by distance-based accounts 
of categorization. We can therefore apply the two models to 
generate predictions about human classification 
performance relative to the distance assumption. 

A Priori Simulations 
In a set of a priori simulations using DIVA and ALCOVE, 
we compared generalization predictions after training on a 
variant of the well-known exclusive-OR (XOR) category 
structure. XOR categories are commonly studied in learning 
and machine learning research alike, and are defined by a 
logical rule operating across two or more dimensions. For 
example, one category might consist of white squares (00) 
and black circles (11), and the contrast category would then 
consist of black squares (10) and white circles (01).  

XOR categories have played an important role in the 
literature on human category learning. In a classic study, 
Shepard, Hovland, & Jenkins (1961) measured the number 
of errors made during classification training on six 
elemental category types comprised of eight exemplars that 
vary in three binary dimensions. The second category type 
(Type II) represents the logical XOR structure over two 
dimensions, with a third irrelevant dimension. Shepard et al. 
found that Type II was learned second quickest of the six 
elemental category types—it was even learned more quickly 
than the Type IV categories which are linearly separable and 
adhere to a minimal version of family-resemblance (Rosch 
& Mervis, 1975). Formal modeling work later explained the 
ease of acquisition differences in terms of selective attention 
(Nosofsky et al., 1994a): by learning to ignore the irrelevant 
dimension, ALCOVE was the only model that could predict 
a strong Type II advantage. Subsequently, fitting the 
observed Type II advantage has been a leading benchmark 
for formal models of category learning. 

In a detailed investigation of the Type II advantage, Kurtz 
et al. (2013) found that the ease of Type II acquisition varies 
markedly based on a number of methodological factors. For 

example, Type II learning was faster when learners are 
provided instructions that encourage rule formation and 
when stimulus dimensions are more easily verbalizable. 
Kurtz et al. (2013) argue for a revision of the general SHJ 
ordering along with recognition that models should be able 
to account for systematic variability in Type II acquisition 

To date, nearly all work on XOR has represented the 
categories using binary stimulus dimensions. These stimulus 
sets, however, are limited by the lack of a generalization set. 
Consequently, it is difficult to satisfactorily address the role 
of distance in classification. Instead, we employ a two-
dimensional, continuous adaptation of the XOR structure 
(see Figure 1) that maintains the overall logical structure of 
the categories while providing a generalization set.  

In our simulations, DIVA and ALCOVE were tested for 
generalization performance after training on the continuous 
XOR categories. We observed that the two models 
generalized similarly and the predicted classification 
responses for both models were consistent with the distance 
assumption. However, we also tested a novel variation in 
which the trained set included a partial version of one of the 
categories (i.e., one of the four quadrants was left untrained, 
as in Figure 1) along with a standard version of the other 
category. We found that DIVA often generalizes as if it had 
been trained on the full version of XOR. That is, DIVA 
often makes the prediction that the ‘one-quadrant’ category 
generalizes to exemplars in the untrained quadrant. This 
prediction is particularly interesting because the critical test 
items are closer to the members of the ‘two-quadrant’ 
category: the central exemplar in the untrained quadrant is, 
on average, 1.67 city blocks away from members of the 
two-quadrant category, and 3 blocks away from members of 
the one-quadrant category (consistent results arise using a 
Euclidean metric, though we used a cityblock metric for the 
current study). Accordingly, reference point models like 
ALCOVE have no ability to produce this pattern of 
results—they instead predict that generalization will be 
based on the more proximal exemplars belonging to the 
two-quadrant category.  

Behavioral Experiment 
We designed a straightforward study to test the predictions 

Figure 1. Left. Sample stimuli. Middle. Continuous, two-dimensional XOR categories. Right. Partial XOR categories.  
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made by DIVA and ALCOVE about generalization 
performance after learning the partial-XOR structure. 
Specifically, we were interested in the extent to which 
human learners would generalize the one-quadrant category 
to an untrained area of the stimulus space that is spatially 
closer to members of the two-quadrant category.  

It is worth noting that our goal here is not just another 
example of the ‘which model wins’ approach. Instead, we 
are using these models to test assumptions about how 
classification decisions are reached: whereas ALCOVE 
presumes that responses are exclusively distance-based, 
DIVA is not theoretically committed to the distance 
assumption. We therefore use the models to evaluate the 
validity of the distance assumption in the psychology of 
category learning. 
 
Participants and Materials. 61 undergraduates from 
Binghamton University participated in fulfillment of a 
course requirement. Stimuli were squares varying in shading 
and size (see Figure 1 for samples). These dimensions were 
chosen in order to maintain compatibility with ‘standard’ 
materials used in experiments involving XOR categories 
(e.g., Nosofsky et al., 1994a; Shepard et al., 1961). 
Exemplars were automatically generated at 7 positions on 
each dimension (7 shading * 7 line spacing = 49 examples). 
The assignment between perceptual and conceptual 
dimensions was randomly counterbalanced across 
participants. 
 
Procedure. Each participant was randomly assigned to 
receive training on either the full or partial XOR category 
structure. In both conditions, participants completed 96 
training trials (12 blocks consisting of the 8 training 
examples). In order to equate block size in the partial 
condition, the one-quadrant category exemplars were 
presented twice within each block. This way of handling the 
unbalanced category structure raises the issue of exemplar 
presentation frequency (Nosofsky, 1988), though little is 

known about how presentation frequency affects 
generalization. After training, participants completed 49 
generalization trials consisting of items sampled at 7 
positions on each dimension. All of the training examples 
were included (intermixed). 

Participants were informed that there would be test trials 
prior to beginning the experiment. The instructions did not 
encourage learners to engage in hypothesis testing to 
discover a rule. On each trial, a single stimulus was 
presented on a computer screen and learners were prompted 
to make a classification decision by clicking one of two 
buttons (labeled ‘Alpha’ and ‘Beta’). During the training 
phase, learners were given feedback on their selection. 
Feedback was not provided during the generalization phase. 

 
Results. One participant was excluded from analysis due to 
experimenter error leaving 30 participants in each condition. 

Not surprisingly, the two category structures differed in 
terms of ease of acquisition (see Figure 2). Specifically, the 
partial XOR categories were learned more quickly than the 
full XOR categories, t(58) = 4.06, p<0.001, d=1.03. 
However, most of the learners in both conditions showed 
evidence of mastery of the categories by the end of training. 

Our primary focus is on the generalization data. Each 
participant’s set of responses in the test phase yields a 7x7 
generalization gradient of classification performance. These 
data revealed a variety of individual differences in 
classification strategies. To formally profile each learner’s 
generalization responses, we compared each gradient to a 
set of templates or idealized gradients representing idealized 
patterns of responses under different possible classification 
strategies. Each learner was profiled based on finding the 
template that best matched their performance according to a 
mean-squared error, MSE, metric.  

In the full XOR condition, we identified two prevalent 
generalization profiles: 1) systematic XOR responses, 
reflecting mastery of the categories (Learners), and 2) 
random responses, reflecting failure to master the categories 
(Non-Learners). This dichotomy fits nicely with evidence 
from Kurtz et al. (2013) that XOR learning is bimodal—
most learners either fully master the categories or do not 
figure them out at all. 

We identified four profiles of partial XOR generalization: 
1) Extrapolation-Based generalization in which the one-
quadrant category is extended to the untrained quadrant, 2) 
50/50 generalization, in which the learner randomly 
classifies exemplars in the untrained quadrant, but has 
mastered the categories otherwise, 3) Proximity-Based 
generalization, in which the learner extends the proximal 
two-quadrant category to the untrained quadrant, and 4) 
Non-learner generalization, reflecting the random 
performance of a non-learner. 

The profile distribution for each category type is 
displayed in Table 1. We observed a substantial number of 
non-learners in the full XOR condition. These learners are 
interesting in that they achieved a reasonably high level of 
accuracy (81%) in the last block of training, but their poor 

Training Block 

Accuracy 

Figure 2. Aggregate training accuracy for the 
partial and full XOR categories.  
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generalization performance suggests that a memorization 
strategy may have been used (particularly given the small 
size of the training set). An intriguing implication is that 
there exists a type of exemplar memorization that is 
effective during learning, but that fails to support systematic 
generalization. It is not clear how stimulus generalization 
would account for this pattern. 

Nearly all of the successful learners in the partial XOR 
condition exhibited ether extrapolation-based (9/30) or 
proximity-based (19/30) generalization. This distribution is 
of great interest: the presence of extrapolation-based 
generalization suggests that classification responses are not 
always reached by comparing a presented cue to known 
reference points. In other words, these learners generalize 
with blatant disregard for proximity to exemplars. 
Aggregated generalization gradients for the extrapolation-
based and proximity-based profiles are depicted in Figure 2.  
 
Summary. To begin, we found that the partial XOR 
category structure was acquired more easily than full XOR. 
This result is interesting given previous work showing that 
linearly separable classifications are not always more 
quickly acquired that non-linearly separable ones (Medin & 
Schwanenflugel, 1981). In this experiment, the linearly 
separable partial XOR categories were learned more 
quickly.  

Our result of primary interest was that many learners who 
were trained on the partial XOR categories generalized the 
one-quadrant category to the untrained quadrant. The 
presence of this extrapolation-based generalization shows 
that people do not universally make classification decisions 
based on distance to stored reference points—exemplars in 
the untrained quadrant are more proximal to members of the 
two-quadrant category. Since this is the central tenet of 
reference point theories of categorization, these results pose 
a significant challenge. In the following section, we 
formally evaluate DIVA and ALCOVE for their ability to fit 
these behavioral results.  

Simulations 
The overall goal of the following simulations is to evaluate 
the range of predictions made by DIVA and ALCOVE 

about generalization following training on the full and 
partial XOR categories. It is important to note that these 
models are conventionally applied to explain aggregated 
data. In this case, however, we are testing the models on 
their ability to match an individual differences 
distribution—we are interested in whether either model can 
explain the distribution of generalization profiles that was 
observed behaviorally (Table 1). 
 
Procedure. For both models, we generated a large number 
of predictions using a wide range of parameter values. We 
searched over the predictions made by different parameter 
values using a ‘grid-search’ method where each model was 
initialized 30 times (corresponding to the number of 
participants in each condition) at each search point. We fit 
DIVA over four parameters: number of hidden units, 
learning rate, initial weight range, and a focusing parameter, 
β (Conaway & Kurtz, 2014). Likewise, we fit ALCOVE 
over its specificity constant, association learning rate, 
attention learning rate, and response mapping constant. Note 
that although we allowed both models to use attentional 
mechanisms, all dimensions are equally relevant in the 
categories we tested. By profiling the predictions made by 
each initialization, we can create a distribution of predicted 
generalization profiles that are linked to particular 
parameterizations. We are then able to assess the quality of 
each parameterization’s predictions relative to our 
behavioral findings.  

Our training and generalization procedure was identical to 
the one we used in our behavioral data. After training on full 
XOR, each initialization was profiled based on its match to 
the Learner and Non-Learner profiles. After training on 
partial XOR, we profiled each generalization gradient based 
on its match to the Extrapolation-Based, 50/50, Proximity-
Based, and Non-Learner profiles. 
 
Results. Both ALCOVE and DIVA provided a full account 
of the Full XOR data. In particular, both models were able 
to match the rate of non-learners identified at the 
generalization phase. Both models were able to do so under 
a wide range of parameterizations. 

The models, however, diverged substantially when they 
were trained on the partial categories. Notably, and as 
predicted, we were unable to find any parameterization of 
ALCOVE that could produce extrapolation-based 
generalization. Instead, ALCOVE commonly produced 
proximity-based and 50/50 generalization gradients. 
ALCOVE’s generalization was highly dependent on its 
parameter values: for example, the model was more likely to 
produce 50/50 gradients when the specificity value was 
large.  

These results confirm our earlier simulations and 
theoretical analysis. ALCOVE can only produce 
classification responses based on distance to exemplar 
reference points, so the model will never be able to extend 
the one-quadrant category to exemplars that are more 
proximal to the two-quadrant category. Accordingly, 

Figure 3. Aggregate generalization gradients for the 
extrapolation (left) and proximity (right) profiles in the 

partial XOR condition. 
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ALCOVE provides a sharply limited and unsatisfactory 
account of generalization in the partial XOR condition. 

As expected, DIVA commonly predicted extrapolation-
based gradients after training on the partial categories. The 
model was most likely to generalize from the one-quadrant 
category to the untrained area with a moderate to larger 
number of hidden units (3–10), a small to moderate learning 
rate (<= 0.5), and a large initial weight range (>= 1.5). No 
parameterization produced a strong majority of 
extrapolation-based gradients: in our simulations DIVA 
predicted a maximum of 16/30 extrapolation-based 
gradients. Nonetheless, DIVA’s ability to produce this 
generalization profile sets the model apart from traditional 
reference point models that are limited to distance-based 
classification. Table 1 displays the best predictions made by 
each model (minimizing the mean-squared error, MSE, 
between the observed and predicted frequencies of each 
generalization profile). 

 
Table 1. Observed and predicted generalization profile 

frequencies.  
     
  Obs. ALCOVE DIVA 

Full 
XOR 

Learner 19 19 19 
Non-Learner 11 11 11 

Partial 
XOR 

Extrapolation 9 0 8 
50/50 1 0 0 
Proximity 19 23 17 
Non-Learner 1 7 5 

 
Summary. Both models were able to accurately predict 
generalization after training on the full XOR categories. 
However, ALCOVE was unable to explain extrapolation-
based generalization following training on the partial 
categories. DIVA provides a good account of the full 
distribution of generalization profiles observed behaviorally. 
This calls into question the reduction of human category 
learning to stimulus generalization that is inherent in 
reference point models. 

Discussion 
Theoretical work in human category learning has been 
closely tied to a reference point framework. Although 
reference point models differ from one another in a variety 
of ways, they share a common assumption: classification 
decisions are reached by comparing presented cues to one or 
more reference points. That is, all reference point models 
assume that classification decisions are based on distance. 

In this paper, we reported an experiment that directly 
tested the distance assumption. Learners were given 
classification training on one of two versions of the 
exclusive-Or (XOR) categories. In the full XOR condition, 
the XOR categories were represented in a continuous, two 
dimensional stimulus space. In the partial XOR condition, 
one of the four quadrants was left untrained.  

Most importantly, after classification training on the 
partial XOR categories, we found that a sizable proportion 

of learners (9/30) generalized according to the pattern of full 
XOR. That is, these learners extrapolated the one-quadrant 
category to novel exemplars that were actually more 
proximal, or similar, to members of the two-quadrant 
category. In doing so, these extrapolation-based learners 
violated the distance assumption, showing that classification 
is not always based on distance to known reference points. 

We used formal simulations with ALCOVE (Kruschke, 
1992) to show that traditional reference point models could 
not account for the presence of the extrapolation-based 
generalization profile in our data. Because these models are 
limited to classification based on distance to stored 
reference points, they are unable to extend the partial 
category into the untrained quadrant. As such, we expect 
this limitation to be shared by any standard reference point 
account including prototype models (Smith & Minda, 2000) 
and adaptive cluster models (Love, Medin, & Gureckis, 
2004). The extrapolation-based generalization we observed 
is therefore a significant challenge to the assumptions 
underlying reference point models. 

We contrasted ALCOVE’s simulations with predictions 
made by DIVA (Kurtz, 2007), which is not a reference point 
model and is therefore not limited to classification based on 
distance. We observed that DIVA could produce 
extrapolation-based generalization after training on the 
partial categories, providing a full account of the 
generalization data.  

Learning More Than Reference Points 
Many of our partial XOR learners do not appear to have 
represented the categories using reference points in the input 
space (e.g., prototypes, exemplars, adaptive clusters). 
Further work will be needed to determine exactly what these 
individuals did learn, though their generalization responses 
indicate that, through training on the partial categories, they 
acquired a category representation that is consistent with the 
logical structure of XOR (i.e., white squares and black 
circles versus black squares and white circles). That is, our 
learners may have represented the partial categories using a 
rule, rather than similarity.  

Given this interpretation, it is possible that rule-based 
models of category learning (i.e., RULEX; Nosofsky et al, 
1994b; Nosofsky & Palmeri, 1998) can provide an account 
of the generalization we observed in the partial XOR 
condition. However, the simplest rules that characterize the 
two categories would not appear to offer a systematic basis 
for generalizing to the untrained quadrant. Hybrid or 
multiple-systems models that incorporate rule-based 
learning components (Ashby et al., 1998; Erickson & 
Kruschke, 1998) might be able to produce extrapolation-
based generalization, but this would have to be despite the 
use of a category structure that requires information 
integration.  

Alternatively, our simulation results with DIVA suggest 
that models may not need to represent rules explicitly in 
order to capture the patterns of generalization observed 
behaviorally. Although DIVA does not explicitly learn 
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rules, the model was able successfully to produce 
extrapolation-based generalization—it is therefore possible 
that the model is able to approximate rule knowledge 
through training on the partial XOR categories. Clearly, 
more work is needed to formally describe the knowledge 
that DIVA acquires through training on partial XOR. 

Finally, it is important to note that the critical result arises 
in only a subset of the sample (9/30). However, we believe 
it is important for models to provide an explanation of the 
full set of commonly occurring profiles, and preferably 
provides a basis for explaining the variability. While 
reference point models can account for the majority result 
(proximity-based generalization), we found that DIVA can 
correctly predict the occurrence of both proximity and 
extrapolation-based generalization. These results are best 
explained outside of the reference point framework. In sum, 
by measuring generalization, removing the complicating 
factor of attention, avoiding aggregated outcomes, and 
putting a novel twist on an old favorite (XOR), we provide a 
clear demonstration of the need to look beyond similarity to 
reference points in explaining human categorization. 
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