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Abstract 

In this paper we study empirically the behavior of algorithm structure-based abduction 
(SAB) which was developed in the framework of constraint networks [5], by comparing it with 
a model-based diagnosis algorithm MBD, similar to algorithm GDE [3]. The distinguishing 
features of algorithm SAB are that it exploits the structure of the constraint network and that 
it is most efficient when the problem contains no cycles. The performance of both algorithms 
is tested on a family of parametrized acyclic combinational circuits for the task of finding all 
minimal-cardinality diagnoses. The results show that due to its exponential complexity for . 
large circuits MBD can run out of space and time, while SAB is able to compute the diagnoses 
for those same circuits. Unlike MBD, SAB appears to be insensitive to variations in the circuit 
types and input probabilities. For small circuits, the average time for MBD relative to SAB 
seems to be proportional to the number of conflicts relative to the number of diagnoses. 

1 Introduction 

Generally speaking, diagnosis is a form of abduction or inference to the best explanation. Ex
planations are those minimal sets of value instantiations that are consistent with the model and 
the observations, and best explanations are those that optimize some desirability measure. Some 
common measures are minimal cardinality [10], parsimonious covering theory [15], most probable 
explanation [14], and minimal cost proofs [l]. 

Cost-based abduction is a variant of weighted abduction that was devised for interpretation 
of natural language [11]. A well-defined relation between cost-based abduction and belief revision 
in probabilistic networks has been shown [1], and algorithms based on linear constraint networks 
have been proposed [18]. Diagnosis can be viewed as a variant of cost-based abduction formulated 
as an optimization task in the framework of constraint networks [5], [4], [9]. The advantage of 
that problem formulation is that all algorithms and heuristics developed within that framework 
can be exploited. In particular, when a constraint network is acyclic, an algorithm exists for 
finding an optimal solution in linear time [6]. Tailoring this algorithm to diagnosis results in an 
algorithm called structure-based abduction (SAB) [5], which will be investigated empirically here. 
This paper presents preliminary results comparing the performance of SAB with a model-based 
diagnosis GDE-like algorithm [3], called MBD, on the the diagnostic task of finding all minimal
cardinality diagnoses. 

1This work was supported in part by the NSF (grant IRI-9157636), the Air Force Office of Scientific Research 
(grant AFOSR 900136), Toshiba of America, GE corporate R&D, and Xerox Palo Alto Research Center. 



Note that since SAB is applicable only to tree-like circuits while MBD is general, the comparison 
may seem somewhat inappropriate. However, SAB can be extended to a general sound and complete 
algorithm via tree-clustering algorithm with complexity bound which is exponential in the size of 
the largest cluster. Moreover, MBD, is normally implemented, as a sound but incomplete algorithm 
since it uses constraint propagation as its basic inference mechanism. For the type of circuits 
considered here, both algorithms are sound and complete. 

The structure of the paper is as follows. Section 2 reviews basic definitions of model-based 
diagnosis and presents algorithm MBD. Section 3 formulates diagnosis as optimization of constraint 
networks and describes algorithm SAB. Section 4 presents empirical results , and section 5 provides 
concluding remarks. 

2 Model-Based Diagnosis 

Following [2] we define model-based diagnosis in terms of a triple (SD, COM PS, OBS) where 

1. SD, the system description, is a set of first-order sentences; 

2. COM PS, the system components, is a finite set of constants; 

3. OBS is a finite set of first-order sentences. 

Each constant c E COMPS is associated with abnormal literals ab(c) or •ab(c), where ab(c) 
means "c is abnormal" while •ab(c) means "c is ok". A conflict set for (SD, COMPS, OBS) is a 
set CONF ~COMPS such that 

SD u OBS u [ /\ •ab(c)] 
cECONF 

is inconsistent. A conflict set for (SD, COM PS, OBS) is minimal iff no proper subset of it is a 
conflict set for (SD, C 0 MPS, 0 BS). A conflict set C 0 NF corresponds to a clause, 

V ab(c) 
cECONF 

called a conflict, which is entailed by SD U OBS. 
Intuitively, a diagnosis is a truth assignment for each abnormal literal (ab or •ab) which is con

sistent with the model and the observations. Formally, let ~~COM PS, and let 1>(~, COM PS) 
stand for the conjunction 

[ /\ ab(c)] A [ /\ •ab(c)] 
cEA cECOMPS-6 

A formula 1>(~, COM PS) is a diagnosis for (SD,COM PS,OBS) iff 

SD u OBS U {1J(~, COMPS)} 

is satisfiable. 
We say that an assignment V =vis a prediction with respect to a set of assumptions 1J(~, COM PS) 

if it is a prime implicate of SDUOBSvU1>(~, COMPS) where OBSv is all observations excluding 
the one involving V. 

2 



Figure 1: Algorithm MBD 

Input (SD, COM PS, OBS); SD is represented as a set of value inference rules; OBS is a value 
assignment for a subset of variables in SD. 

Output All minimal-cardinality diagnoses. 

Initialization For each variable assigned a value in OBS assert a prediction with that value in all 
environments. 

Description 

1. For each (variable, value) pair find all minimal environments that entail it. 

2. For each (variable, value) that conflicts with the observation declare all its minimal 
environments as conflict sets. Call the collection of conflict sets F. 

3. Output all minimal-cardinality covers of F. 

Algorithm MBD, presented in Fig. 1, is a variant of algorithm GDE [3) given in very high level 
pseudo code. It works as a three-step process: In step 1, predictions are computed by a form 
of constraint propagation (value inference), which although generally incomplete, is complete for 
restricted languages such as trees and Horn theories. In step 2, all support labels associated with 
predictions that conflict with the observations are identified as conflict sets (nogoods). In step 3, 
all minimal-cardinality diagnoses are computed as the minimal-cardinality covers of all the conflict 
sets. 

The worst-case time and space complexity for finding all minimal supports and all minimal 
conflict sets is clearly exponential in IC 0 MPS I· Since the task of finding a minimal cover to a set 
of subsets is known to be NP-complete (even when each subset has at most two elements) [8), the 
resulting worst-case complexity of the algorithm is likely to be (if P # NP) doubly exponential. 

3 ·Diagnosis as Optimization 

In this section we show that a diagnosis can be formulated as an optimization task over a con
straint network. Given a set of variables X 1 , ... , Xn each having a finite set of domain values 
dom(X1 ), ... , dom(Xn), a constraint network CN is a set of relations {ri, ... ,rm}, called constraints, 
each defined on a subset of variables Si, ... , Sm. A relation over a subset of variables Xi1 , ••• ,Xi; is a 
subset of the cartesian products of their domains, and a solution to C N is an assignment of a value 
to each variable satisfying all the constraints. A constraint network can be associated with the set 
of all its solutions. Formally, 

sol(CN) = {t = (X1 = X1, ... , Xn = Xn)IVj, ts; Er;}, 

when ts stands for the projection of a tuple t on a subset of variables S. Frequently, solutions of 
. constraint networks can be assigned different costs as dictated by the application. A simple cost 
function would associate a cost c(X = x) with each value of a variable and defj.ne the cost of a 
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Figure 2: A circuit and its dual graph 

solution to be the sum costs of all its values. Given a constraint network and a cost function, the 
optimization task is to find a solution having an optimal cost (largest or smallest). 

To capture the diagnosis task as constraint optimization, we map the triple 
(SD, COM PS, OBS) into a relational framework. The system description SD will be described in 
terms of two sets of variables: the system variables Xi, ... , Xn, which are the inputs and outputs of all 
components, with their associated finite domain values dom(X1), ... , dom(Xn), and the assumption 
variables A = {A1, ... , Am}· The observations OBS translates to forcing value assignments for 
the corresponding variables. Each assumption variable Aj is associated with component Cj and 
describes the component's functioning status. In the simplest case, these are bi-valued variables 
indicating whether the component is normal (value 0) or abnormal (value 1). In the more involved 
case, they can index different fault models. Each component Cj E COM PS is associated with a 
constraint rj describing its input-output behaviors under all its normal and abnormal conditions. 
Thus, the constraint rj is defined over the set Rj = {Aj} U Sj, where Sj is the set of input and 
output variables for component Cj. Non-zero costs are associated with assumption variables only. 
An abnormal component is assigned a cost of 1 [i.e., c(A = 1) = 1], while a normal component has 
a zero cost [i.e., c(A = 0) = O]. 

Given a model description and a set of observations, the diagnosis task is to construct an 
explanation, namely, a solution (X1 = xi, ... , Xn = Xn, A1 = ai, ... , Am = am) that is consistent 
with the observations. The cost of an explanation is the sum of the costs associated with the 
assumption variables. That is, 

C({X1 = Xi, ••. ,Xn = Xn,A1 = a1, ... ,Am =am})= 2: c(Aj = aj). (1) 
AjEA 

· Clearly, the task of finding a minimal-cardinali ty diagnosis corresponds to finding a minimal solution 
of a constraint network as defined above. 

The topology of a constraint network can be depicted by using the notion of its dual graph. A 
dual graph (called an "intersection graph" in database theory [12]) represents each constraint by a 
node (called a c-variable) and associates a labeled arc with any two nodes that share variables. The 
arcs are labeled by the shared variables. If the dual constraint graph is a tree (called a join tree) 
or can be transformed into a tree by removing redundant arcs (in linear time), then the constraint 
network is said to be acyclic [12]. In that case, a consistent solution or an optimal solution can be 
assembled in linear time. It is also known that a cyclic constraint network can be transformed into 
an acyclic constraint network by forming larger clusters of c-variables, but because the efficiency of 
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Table 1: Constraint AND-1 

Al Vl V2 V3 Cost 
0 0 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 1 1 0 
1 x x x 1 

this procedure is exponential in the size of the largest cluster generated, it is appropriate only for 
problems having a small induced width (for details see (7]). 

Example 3.1 Consider the circuit in Fig. 2, which has two AND-gates AND-1, AND-2 connected 
to an OR-gate OR-1. We model this circuit using three bi-valued assumption variables, A1 , A2 , A3 , 

whose values indicate whether AND-1, AND-2, and OR-1, respectively, are working normally or ab
normally. Constraint AND-1 is given in Table 1, where the values marked with an X correspond 
to "don't care" conditions (either 0 or 1). Given the set of observations {Vl = 0, V2 = 1, V4 = 
1, V5 = 1, V7 = 0}, there are two best explanations, both having cost 1. 

{VI= 0, V2 = 1, V3 = 0, V4 = 1, V5 = 1, V6 = 0, V7 = 0, Al = 0, A2 = 1, A3 = O} 

corresponding to a single-fault AND-2, and 

{VI= 0, V2 = 1, V3 = 0, V4 = 1, V5 = 1, V6 = 1, V7 = O,Al = O,A2 = O,A3 = 1} 

corresponding to a single-fault OR-1. Notice that multiple-fault explanations also exist, but they 
have higher costs. 

Fig. 3 gives the SAB algorithm for an acyclic constraint network. In the bottom-up step, pointers 
are created from each tuple t of a parent node to each of a set of minimizing tuples for each child 
node (see Fig. 4). The complexity of the bottom-up phase of the algorithm is O(n · t · logt), where 
n is the number of c-variables and t is the number of tuples. Details about the algorithm and 
arguments for correctness are given in (5], (6). 

4 Empirical Evaluation 

4.1 Method 

We consider the parametrized circuit b(p, k), shown in Fig. 5·, having n = 2k - 1 components and 
k layers numbered 1, 2, .. , k from the leaves to the root. The component types are independent 
random variables and are either AND or OR gates. A component in an odd (even) layer is an AND 
(OR) with probability p, OR (AND) with probability 1 - p. 2 The circuit b(p, k) is acyclic but can 
have a worst-case exponential number of minimal conflicts. 3 

2A special case of the circuit, b(l,k), was developed by [17]. 
3 Although the number of conflicts can be exponential for certain inputs, this does not imply that it is the case 

for most inputs. 
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Figure 3: Algorithm SAB 

Input An acyclic constraint network T having variables X = {Xi, ... , Xn}, assumption variables 
A = { A1, ... , Am}, a cost function c, and relations { ri, ... , rm} defined on the sets R1 , ..• , Rm, 
where Rj = {Aj} U Sh and Sj C X (j=l, ... ,m). 

Output One (or all) minimum cost solution(s). 

Description 

1. (Bottom-up) Compute weights: 
If Rj is a leaf in T, then for each tuple t E ri we define the weight mapping w(t) = c(tA,)· 
If Rj is a parent in T, then for each tuple t E rj we define the weight mapping 

w(t) = c(tA,) + L min,,er;l"R·nR ·=tR nR w(s) 
' , • J 

i:chi/d(j) 

2. (Top-Bottom) Generate minimum-cost solution(s) by following the pointers of a 
minimum-weight tuple from root to leaves. 

For every circuit, we generate inputs as independent random variables with each input being 
1 with probability q and 0 with probability 1 - q. Then the correct output is determined and 
reversed. The observation for every problem consists of the inputs and the faulty output. We feed 
the same batch of problems to both SAB and MBD and record the performance measures of each 
algorithm. For MBD limits are placed on space and time to protect against exponential demand 
on those resources. If the limits are reached MBD, is forced to halt before a solution is returned. 

For MBD, we recorded the number of predictions and the number of conflict sets, as well as 
the CPU time. We also measured performance by counting basic operations, which are defined as 
either a value inference or a test for a set covering. For SAB, we computed the CPU time and the 
number of consistency checks. In addition, the number of minimal-cardinality diagnoses for each 
problem instance was recorded. Each experiment consists of M( = 2) circuit instances with, N( = 5) 
observations for each circuit. The performance measures are averaged over the N · M problem 
instances. Circuits considered have components ranging from 3 to 511. 

4.2 Results 

The results of the experiments are given in Figs. 6 and 7, which show the average CPU times used 
by SAB and MBD for computing all minimal-cardinality diagnoses. In Fig. 6, the input probability 
is varied while the type probability is fixed at 0.2. In Fig. 7 the type probability is varied while the 
input probability is fixed at 0.5. The figures show that MBD soon becomes inefficient for computing 
the diagnoses for moderately sized circuits. Points not shown for MBD correspond to circuit sizes 
for which MBD failed on all problem instances, because its space (or time) requirement exceeded 
available resources. For such problems, the space required by MBD's caching during the prediction 

6 



Figure 4: Each tuple t points to the minimizing tuples of the child nodes 

phase had exhausted the available resource limit, set at 10,000 predictions. Other points shown for 
MBD give the average CPU seconds over the solved-problem instances. 

To get around the space problem of the ATMS caching, a variant of MBD was implemented 
that determined the conflict sets one at a time while computing the diagnoses via set covering. 
This variant is essentially Reiter's algorithm, DIAGNOSE [16]. Although DIAGNOSE eliminated 
the space problem, its time performance turned out- to be much worse than MBD and it became 
inefficient in time (exceeding limits set at 3000 seconds) on the same problems for which MBD was 
inefficient in space. As can be observed from Figs. 6, and 7, MBD's performance is sensitive to 
the type of the randomly generated circuits and to the probability of the inputs. For circuits of 
size 63 components and type probability 0.2, changing the input probability from 0 to 0.8 resulted 
in a change in the average CPU seconds from 71.5 to 19.5 for MBD and 6.95 to 8.04 for SAB. 
The coefficient of variation (the ratio of the standard deviation to the mean) of the CPU seconds 
is also an order of magnitude higher for MBD than for SAB (around 50% for MBD and 53 for 
SAB.) Figs. 6, and 7 also show that for small sized circuits the MBD's average performance is 
comparable to SAB's. Fig. 6 shows that for input probability close to 0 or 1, MBD is generally 
slower than SAB. On the other hand, as Fig. 7 shows, for input probability 0.5, MBD is very close 
to SAB. Based on these empirical results, it appears that MBD's performance is closely related to 
the number of conflicts, while SAB's is closely related to the number of diagnoses. On average, 
the time performance of MBD relative to SAB degrades as the number of conflicts relative to the 

~ 
~ . . . . . 

Figure 5: A parametrized circuit b(p, k), which is a binary tree with k layers numbered 1, 2, ... , k 
from the leaves to the root. Components are either AND-gates or OR-gates, with p being the 
probability of an AND for odd layers, OR for even layers. 
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Figure 6: Average CPU seconds for different input probabilities 

number of diagnoses increases. Fig. 8 shows the average number of conflicts and diagnoses for two 
cases: one where SAB is faster (type probability 0.2 and input probability 0), and the other where 
MBD is faster (type probability 0 and input probability 0.5). The figure clearly shows that MBD 
is at a disadvantage with respect to SAB when there is a large number of conflict sets but a small 
number of minimal-cardinality covers. On the other hand, MBD is at an advantage with respect to 
SAB when the number of conflicts is small while the number of diagnoses is relatively large. 

5 Summary and Conclusions 

The primary motivation for this work was to demonstrate that for some classes of problems the 
tasks of diagnosis and abduction can be accomplished efficiently by exploiting the structure of the 
problem. To that end, we have implemented algorithm SAB, which finds the minimal-cardinality 
diagnoses and is applicable to acyclic-problem instances. Since the performance of our algorithm is 
time and space linear (while the performance of the general GDE-like algorithm, MBD, is doubly 
exponential), we expected to show a significant performance gain. 

Our preliminary results indicate that for a class of randomly generated acyclic circuits, algorithm 
SAB is superior to MBD for most problem instances. Depending on the circuit type and the input 
probabilities, there exists a critical circuit size (in the order of 100 components) beyond which 
MBD becomes inefficient in space and time and thus diagnoses cannot be computed (for at least 
one generated problem). Unlike MBD, SAB was able to compute the diagnoses for all circuit 
sizes studied (3 to 511 components) and all problem instances. In comparison to SAB, MBD was 
markedly sensitive to variations in the probabilities of the inputs and the types of circuits studied. 
For smaller circuit sizes, the performances of MBD and SAB were found to be very comparable, 
with each being relatively faster in some instances and relatively slower in others. In general, MBD 
seems to be at a disadvantage with respect to SAB when the number of conflict sets is large while 
the number of minimal-cardinality covers is samll. On the other hand, MBD is at an advantage with 
respect to SAB when the number of conflicts is small while the number of diagnoses is relatively 
large. 

8 



Input Prob 0.5 

Type Prob = 0.0 
400 

Type Prob = 0 .8 

100 0 - sAB 350 -sAB 

--MBD • --MBD 

800 I 300 

Ul I Ul 
'Cl '2 250 i:: I 0 600 0 
u ~ 200 Q) I Ul Ul 

::i I ~ 150 a. 400 u u 
I 100 

200 I so 

0 
100 200 300 400 500 600 

0 
100 200 300 400 500 600 

# components t Components 

Figure 7: Average CPU seconds for different type probabilities 

We regard the present results as preliminary and plan to extend this investigation in various 
directions. First, we will investigate other acyclic circuits with minimal-cardinality diagnoses of 
cardinality higher than 1. Second, we will experiment with additional MBD variants, addressing 
fault models and focusing tactics. In particular, we will investigate the role of the weights of 
assumption variables in SAB. Finally, and perhaps most importantly, we will apply the algorithm 
to cyclic problems using tree clustering as a preprocessing phase. Applying tree clustering to cyclic 
circuits is known to be exponential in the clique sizes [7]. However, even when relatively expensive, 
it might be worthwhile to do tree clustering once so that all future diagnosis tasks will be relatively 
easy. This will be tested empirically on series-parallel circuits [13] whose width is known to be 2 and 
for which clustering is only cubic in time and space, as well as on problems having larger clusters. 
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