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Probabilistic assessment of cloud fraction using Bayesian blending
of independent datasets: Feasibility study of a new method

Samuel S.P. Shen,1 Max Velado,1 Richard C. J. Somerville,2 and Gabriel J. Kooperman2

Received 16 October 2012; revised 8 April 2013; accepted 10 April 2013; published 28 May 2013.

[1] We describe and evaluate a novel method to blend two observed cloud fraction (CF)
datasets through Bayesian posterior estimation. The research reported here is a feasibility
study designed to explore the method. In this proof-of-concept study, we illustrate the
approach using specific observational datasets from the U. S. Department of Energy
Atmospheric Radiation Measurement Program’s Southern Great Plains site in the central
United States, but the method is quite general and is readily applicable to other datasets.
The total sky image (TSI) camera observations are used to determine the prior distribution.
A regression model and the active remote sensing of clouds (ARSCL) radar/lidar
observations are used to determine the likelihood function. The posterior estimate is a
probability density function (pdf) of the CF whose mean is taken to be the optimal blend of
the two observations. The data at hourly, daily, 5-day, monthly, and annual time scales are
considered. Some physical and probabilistic properties of the CFs are explored from
radar/lidar, camera, and satellite observations and from simulations using the Community
Atmosphere Model (CAM5). Our results imply that (a) the Beta distribution is a reasonable
model for CF for both short- and long-time means, the 5-day data are skewed right, and the
annual data are almost normally distributed, and (b) the Bayesian method developed
successfully yields a pdf of CF, rather than a deterministic CF value, and it is feasible to
blend the TSI and ARSCL data with a capability for bias correction.

Citation: Shen, S. S. P., M. Velado, R. C. J. Somerville, and G. J. Kooperman (2013), Probabilistic assessment of cloud
fraction using Bayesian blending of independent datasets: Feasibility study of a new method, J. Geophys. Res. Atmos., 118,
4644–4656, doi:10.1002/jgrd.50408.

1. Introduction

[2] The U. S. Department of Energy’s Atmospheric
Radiation Measurement (ARM) program was established
to improve our understanding of cloud processes and the
atmospheric radiation budget for climate change assessment
and prediction [Stokes and Schwartz, 1994; Ackerman and
Stokes, 2003]. Cloud fraction (CF) is a critical parameter
in climate models. It affects the balance of the solar energy
input to the climate system and the long wave radiation
emitted by the Earth [Bass et al., 2010; Ramanathan et al.,
1989; Trenberth et al., 2009]. Both gridded numerical
climate model data and satellite remote sensing data need
to be compared with station-based in situ observations [Xi
et al., 2010]. The representativeness of a point observation
to a grid volume, the accuracy of the grid-volume or grid-
point modeling output, and the reliability of the satellite

pixel data for moving and broken clouds all require careful
scrutiny [Bar-Or et al., 2010]. Instrument and retrieval
algorithm improvements, multi-instrumental observations,
numerical model simulations, and optimal blending of
different datasets are all appropriate ways to improve reli-
able estimation of cloud parameters for climate modeling
and other applications. A suite of mathematical methods
needs to be developed to carry out the needed optimal data
analysis. The purpose of this paper is to introduce a Bayesian
blending method that combines two ground-based observa-
tions to form a probabilistic CF measure at the ARM Southern
Great Plains (SGP) site.
[3] A geometric definition of CF for climate models is the

percentage of sky area (from the local nadir view) which is
covered by clouds [Qian et al., 2012; Kassianov et al.,
2005]. This snapshot geometric definition is difficult to
implement using an in situ observation over a large region
[Xie et al., 2010; Xi et al., 2010]. A physically more useful
definition of CF is the ratio of the space-time cloud volume
to the entire space-time atmospheric volume for a given area
and period of time [Xi et al., 2010]. The complexity of cloud
patches comes from their characteristics: irregular in spatial
geometry, discontinuous in time, and varying in both loca-
tion and time. Furthermore, the space-time cloud volume
may not be a mathematically simply connected domain,
because clouds can have irregular spatial geometry for dif-
ferent types of clouds, discontinuities in both space and time
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for broken clouds, and vague spatial and temporal bound-
aries, especially for thin clouds. It is well known that clouds
are extremely difficult to observe, because they have both
spatial and temporal complexity [Bar-Or et al., 2010].
Many outstanding issues exist concerning observations of
CFs by different instruments and comparisons between
observational data and model simulations [Qian et al., 2012;
Xi et al., 2010; Xie et al., 2010; Kassianov et al., 2005]. These
issues and our incomplete understanding of cloud processes
limit our ability to represent clouds and their climate effects
realistically in global climate models (GCMs).
[4] All the available CF datasets have strengths and

weaknesses. In this paper, we have chosen to employ
two specific datasets. However, we are well aware of the
shortcomings of these data [Kassianov et al., 2011], and
we refer readers to that paper and references in it as an
introduction to the large amount of literature on that topic.
Our objective here is not to assess the strengths and weak-
nesses of these datasets. In the research reported in this
paper, we emphasize that we have instead elected to use
these two datasets simply for convenience in this proof-
of-concept research, in order to illustrate the method that
we have devised and to explore its feasibility and proper-
ties. This paper focuses on developing a probabilistic mea-
sure of CF by using a Bayesian blending of the data from
two ground instruments: Total Sky Image (TSI) camera
and Active Remote Sensing of Clouds (ARSCL) radar/li-
dar. We will justify our point observation results with grid
box observations and modeling by using the gridded data
from NOAA Geostationary Operational Environmental
Satellite-8 (GOES8) and from NCAR Community Atmo-
sphere Model Version 5 (CAM5). Our base data are the
daytime hourly data of TSI and ARSCL. In our Bayesian
blending procedure, the prior distribution is constructed
from the TSI data, and the ARSCL data help build the
likelihood function via a linear regression procedure. The
posterior estimate is a probability density function (pdf)
which blends the two observations. The GOES8 and
CAM5 data are used for the results comparison and
analysis.
[5] The paper is organized as follows: section 2 describes

the data, section 3 describes the method, our results and
conclusions are presented in section 4, and some discussion
and concluding remarks are offered in section 5.

2. Data

[6] The first CF dataset is the observations by the TSI
camera, which has a 352 � 288 pixel resolution and can
measure the CF during daylight [Morris, 2005]. It retrieves
CF as the ratio of the number of cloud cover pixels to the
101,376 total field-of-view (FOV) pixels, i.e., 101,376 =
352 � 288, when the local solar elevation angle (i.e., the
angle between the sun direction and the horizon) is greater
than or equal to 10 degrees. Thus, the TSI measures the day-
time CF. The daytime length varies according to seasons.
The camera sampling rate is one image per 30 s. Here, we
use the 2000–2009 hourly climate model best estimate
(CMBE) dataset [Xie et al., 2010]. This hourly dataset was
aggregated from the 30-s data. This value added product is
the CF of the plane viewed from nadir direction [Xie et al.,
2010; Kassianov et al., 2005]. The plane is thus tangent to
the TSI hemispheric dome FOV at the highest point from
the TSI’s Earth surface location. The nadir view CF is a cor-
rection to the CF directly obtained from the hemispheric
dome FOV of TSI [Kassianov et al., 2005].
[7] The second observational dataset is the 1996–2009

hourly daytime ARSCL radar/lidar data, which are derived
from the observations of a millimeter wave cloud radar and a
micropulse lidar [Clothiaux et al., 2001; Xie et al., 2010].
Here, the daytime is synchronized with the TSI daytime, i.e.,
the ARSCL data are used for analysis only during the time
when TSI data exist. Due to the nature of radar and lidar instru-
ments, the ARSCL data are along a very narrow FOV of well
less than 1o around zenith, compared to the TSI hemispheric
dome FOV extending 160o also around zenith. Thus, unlike
TSI, the ARSCL CF has to be approximated by temporal
cloud averages. The original temporal grid is at 10-s resolution
(Table 1 of Xie et al. [2010]). The hourly data are an aggrega-
tion of these 10-s data. The ARSCL CF is defined as the ratio
of the number of cloud covering temporal intervals to the total
temporal intervals in a given time period [Xi et al., 2010],
which is 1 h for the data we use here. Thus, the ARSCL CF
definition using the temporal ratio represents the frequency
of cloud occurrence [Qian et al., 2012] and is hence different
from the CF defined by the TSI instrument. The latter uses the
spatial ratio of cloud covered area divided by the total area of
the FOV (projected on the plane from the nadir view)
[Kassianov et al., 2005]. Because radar radio waves and lidar

Table 1. Mean, Variance, Skewness, and Kurtosis of the 5-Day and Annual Cloud Fraction Data Over SGP Based on the TSI CF Data
and BPE Results

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

5-Day
m(BPE) 0.3575 0.4128 0.4699 0.4633 0.4443 0.4381 0.3820 0.4651 0.4222 0.4226
m (TSI) 0.3490 0.4012 0.4831 0.4808 0.4443 0.4309 0.3840 0.4475 0.4111 0.4264
s(BPE) 0.2583 0.2530 0.2386 0.2379 0.2134 0.2358 0.2357 0.2805 0.2088 0.2171
s (TSI) 0.2355 0.2244 0.2263 0.2163 0.1985 0.2266 0.2105 0.2563 0.1992 0.2210
g3(BPE) 0.5831 0.2635 0.2078 0.3628 0.0182 0.1119 0.2894 0.2044 0.1593 0.1647
g3(TSI) 0.7289 0.4110 0.1720 0.3884 0.2107 0.3422 0.4696 0.2458 0.2437 0.3705
g4(BPE) �0.5865 �1.1695 �1.1171 �0.7128 �0.7527 �0.8706 �0.9044 �1.2105 �0.6534 �0.7202
g4 (TSI) �0.2520 �0.7598 �0.7134 �0.5180 �0.2223 �0.5297 �0.6387 �0.9652 �0.4186 �0.3385

Annual
m(BPE) 0.3147 0.3924 0.4534 0.4774 0.4391 0.4627 0.4013 0.4659 0.4266 0.4434
s(BPE) 0.0344 0.0348 0.0350 0.0353 0.0352 0.0354 0.0356 0.0352 0.0353 .0352
g3(BPE) 0.0825 0.0446 0.0230 0.0053 0.0229 0.0084 0.0331 0.0122 0.0259 .0204
g4(BPE) �0.0158 �0.0181 �0.0185 �0.0192 �0.0190 0.0194 �0.0197 �0.0191 �0.0192 �0.0191
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laser beams can reach high altitudes, the ARSCL CF data for
SGP are a function of both height and time, while the TSI
CF data are not a function of the cloud height. In addition,
the ARSCL radar/lidar products also include additional cloud
parameters: cloud top height, cloud bottom height, liquid
water content, and others [Xi et al., 2010]. Here, we focus on
examining the vertically integrated CF, comparing these verti-
cally integrated ARSCL data with the TSI data, and develop-
ing a probabilistic method to blend the two datasets together
with the final product data described by CF pdfs rather than
fixed CF values. For comparison purposes, only the ARSCL
daytime data are used.
[8] Cloud movement, generation, and dissipation can

result in a dramatic variation of CF over the SGP region
within an hour. Thus, strictly speaking, the hourly CF for a
given ground area should be defined as the ratio of the
space-time cloud volume to the total space-time volume
[Xi et al., 2010], rather than a single snapshot of the spatial
cloud cover fraction. The radar and camera observations of
CF are approximations to this space-time cloud ratio. The
hourly camera data is the average CF from the 120 snapshots
within the TSI FOV. The hourly ARSCL CF data are

defined as the ratio of the total number of 10-s temporal
intervals with cloud presence between ground level and 14
km height to the 360 total 10-s temporal intervals making
up 1 h [Xi et al., 2010; Qian et al., 2012]. However, because
of the different CF definitions and the different FOVs
between radar and camera instruments, the CFs of the cam-
era and radar are not the same, although the instruments are
colocated at the same SGP site, namely Lamont, Oklahoma,
USA (36� 36’ 18.0" N, 97� 29’ 6.0" W). Instrumental sensi-
tivities or errors also contribute to the differences. The dif-
ferences become smaller when considering a long-time
mean. For example, the 5-day or monthly ARSCL and TSI
data are better approximations to a representative mean
space-time CF than the hourly data. Compared with hourly
or daily data, the 5-day and monthly ARSCL and TSI data
are less scattered with a significant correlation of 0.84.
Figure 1 shows scatter plots and two-dimensional frequency
plots of ARSCL vs. TSI data for the SGP site at hourly,
daily, 5-day, and monthly time scales for TSI and ARSCL
during the common observational period: 2000–2009. For
hourly data, Figure 1a shows many more ones (i.e., overcast
sky) for ARSCL than for TSI, because for the short time

(a)

(c) (d)

(b)

Figure 1. Scatter plots of TSI camera and ARSCL radar daytime cloud fraction data at different time
scales: (a) hourly, (b) daily, (c) 5-day, and (d) monthly. Two-dimensional frequency plots of TSI camera
and ARSCL radar daytime cloud fraction data at different time scales: (e) hourly, (f) daily, (g) 5-day, and
(h) monthly. The two-dimensional resolution is 0.1� 0.1. The legend indicates the number of points in
each 0.1� 0.1 grid box.
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average, the pencil radar observation (i.e., 0� FOV) is likely
to render either 0 or 1, while the TSI camera has a 160� FOV
and has a larger spatial coverage than ARSCL radar. Even
for TSI, most of the observations are either 0 or 1, because
the edges of cloud clusters are often not in the TSI’s FOV
(see Figure 2). Figure 1a reveals that a large number of
points are near TSI zeros and ARSCL ones. In order to
clearly show the number of points in these domains, we have
included two-dimensional frequency plots as Figures 1e–h,
corresponding to the time scales in Figures 1a–d. Figure 1e
shows that most data points are in these domains. This high
frequency of occurrence of either 0 or 1 for the hourly data
implies a possible good fit for a Beta distribution
Beta (a,b)(x), which has a bimodal shape with peaks at
x = 0 and x = 1 when the shape parameters a and b are in
the interval (0,1). The mathematical expression of the pdf
of a Beta distribution is

Beta a; bð Þ xð Þ ¼ Γ aþ bð Þ
Γ að ÞΓ bð Þ xa�1 1� xð Þb�1 (1)

where Γ is a Gamma function of shape parameters a and b
and is independent of random variable x. The mean and stan-
dard deviation of the random variable x are mB = a/(a+ b)
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Figure 2. Histogram of the hourly TSI cloud fraction data
and its Beta distribution fitting.
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and sB ¼ ab
aþbð Þ2 aþbþ1ð Þ½ �

� �1=2

. The positive values of the

shape parameters depend on the time scales of the observations.
When the time scale is short, say one hour, the parameters are
less than 1 and Beta (a,b)(x) have large values near the end
points of (0,1) because of the negative exponent in xa� 1 and
(1� x)b� 1. These peaks near the end points of (0,1) are shown
in Figure 2 for the histogram and Beta (a,b)(x) fitting of the
hourly TSI data. As the time scale becomes longer, the shape
parameters become larger than 1. Consequently, the Beta distri-
bution approaches a normal distribution with mean mB and
standard deviation sB. See Figure 3 for the histogram and
Beta (1.69,2.25)(x) fitting of the 5-day TSI data. Although the
5-day distribution is not yet normal, its peak is close to the
midpoint of (0,1) and not near the end points.
[9] For daily data (Figure 1b), many scatter points are near

the point (1,1), indicating that both TSI and ARSCL are ef-
fective in observing the case of a whole day of overcast sky.
For many nearly clear-sky conditions detected by TSI (i.e.,
TSI CF =0), many nonzero ARSCL values exist, ranging
from 0.1 to 0.6. For many nearly overcast sky conditions
detected by ARSCL (i.e., ARSCL CF= 1), the TSI CF
values vary in the range (0.8, 1.0). Figure 2, the SGP CF
scatter plot of ARSCL vs. TSI, of Qian et al. [2012] also
demonstrates the same properties of ARSCL overestimation
relative to TSI. Examining the 5-day data (Figure 1c), TSI
and ARSCL data are highly correlated, but once again,
ARSCL still overestimates CF, particularly for nearly clear
skies. The behavior of the scatter plot and 2D frequency plot
for a longer time average is similar to that of the 5-day plot.
As an example, Figures 1d and 1h show the scatter plot and
2D frequency plot, respectively, for the monthly data.
[10] Although the scatterplots are less scattered for longer

time scales, the correlation coefficients between the TSI and
ARSCL data change very little over the range of time scales
from hourly to daily, 5-day, and monthly. The numerical
values are 0.79 (hourly), 0.85 (daily), 0.84 (5-day), and
0.81 (monthly). Despite this small variation in correlation,

the reduced number of points for longer time scales indicates
significant correlations between the two datasets at longer
time scales. Therefore, Figure 1 implies that at a longer time
scale, both TSI and ARSCL are able to measure the strictly
defined space-time CF. This asymptotic behavior as time
scale increases was also explored by Xi et al. [2010] who
compared GOES8 satellite observations with 35 Hz Milli-
meter Wavelength Radar results.

3. Method

[11] We will now describe the Bayesian method to blend
the TSI and ARSCL data at the time scale at which the
two approximately measure the same parameter: space-
time CF. The result will be a Bayesian blended probabilistic
measure of CFs.
[12] The Bayesian method is developed based on Bayes’

theorem, sometimes called Bayes’ law for conditional prob-
ability, which is commonly included in textbooks for
elementary undergraduate statistics courses [e.g., Johnson,
2010]. With today’s continuing advances in computer
power, the Bayesian method is undergoing rapid develop-
ment. It has already become a powerful data analysis tool
and has been applied to a wide range of problems. For an
introduction to the Bayesian method, see [Albert, 2009].
The Bayesian method for climate data analysis has already
been used by many researchers [e.g., McFarlane et al.,
2002; Coelho et al., 2004; Chiu and Petty, 2006]. Although
every Bayesian approach is based on the same Bayes’ theo-
rem, there are numerous ways to carry out the calculation
steps for particular types of application problems. The nov-
elties of a new Bayesian method are typically in the proce-
dures for constructing prior distributions and likelihood
functions, as well as the development of creative numerical
techniques for massive computations. The novelty of the
method presented in this paper lies in our specific ways of
constructing prior distribution and likelihood functions for
TSI and ARSCL. Next, we describe our procedures of
constructing the prior distribution, likelihood function, and
posterior distribution for CFs from TSI and ARSCL.
[13] For the construction of the prior distribution, different

kinds of prior models have been considered in the past. For
example, Chiu and Petty [2006] fitted a lognormal model,
while McFarlane et al. [2002] used the Gaussian distribu-
tion. Here, we will fit TSI CF data to a Beta distribution
using the moment method. The TSI statistical moments
computed for 5-day data for each year are shown in Table 1.
[14] Let us consider the 5-day CF as an example. Let θ be

a random variable, representing CF from TSI. We estimate a
Beta pdf for θ using the method of moments (see Chapter 9
of Wackerly et al. [2008]). The first four statistical moments
of each year for a few selected time scales are shown in
Table 1.
[15] For the entire 10 years from 2000 to 2009, Figure 3

shows a histogram of TSI 5-day data and our fitted Beta
density function, which is the prior distribution p(θ) =Beta
(1.69,2.25)(θ), a formula explicitly described in equation (1).
Here, the parameters a =1.69 and b=2.25 are computed from
the sample mean and standard deviation of 730 five-day
data from 1 January 2000 to 31 December 2009 excluding
29 February. The mean is 0.4282, and the standard deviation
is 0.2204.
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Figure 3. Histogram of the 5-day TSI cloud fraction data
and its Beta distribution fitting.
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[16] For a specific 5-day TSI datum, say, days 1 to 5 of
2003, the parameters a and b are determined by the 5-day
TSI datum as the mean and the TSI standard deviation of
the year 2003 shown in Table 1. Thus, each 5-day TSI CF
corresponds to a prior distribution with the mean equal to
the 5-day CF datum and the standard deviation and higher
moments estimated from the 73 five-day data in that year.
[17] One may notice a dramatic difference between the

two histograms shown in Figure 2 for hourly data and
Figure 3 for 5-day data. The hourly data have a bimodal
distribution with peaks at 0 or 1, while the 5-day data follow
a uni-modal distribution due to the long-time average.
According to the central limit theorem (see Chapter 7 of
Wackerly et al. [2008]), the mean of large samples ap-
proaches a normal distribution. The 5-day mean CF is much
closer to a normal distribution than the 1-h mean. Still, the
5-day data are skewed right with more frequent occurrence
of less than 50% CFs. We judge that this is probably the
reality for the SGP cloud characteristics: more frequent
occurrence of clear moments or partially cloudy times than
of overcast or very cloudy times.
[18] In summary, our prior distribution is modeled by a

Beta distribution. The position(s) of the peak(s) move from
the end points toward the midpoint as time scales become
longer.
[19] For the construction of the likelihood function, we

use both ARSCL and TSI CF data and a regression proce-
dure. The likelihood function is often referred to as the for-
ward model in the community of satellite data retrieval
[McFarlane et al., 2002; Chiu and Petty, 2006]. The likeli-
hood function may be modeled by incorporating some phys-
ical understanding via mathematical or statistical models
determined by physical properties or data. Here, we choose
to use ARSCL and TSI data to build a regression model,
whose residual is normally distributed. This normal distribu-
tion acts as the forward model, whose variance is fixed for a
given year and whose mean is the 5-day ARSCL datum.
Each year thus has 73 likelihood functions corresponding
to the 73 five-day data values. The computational details of
this construction are explained below.
[20] Let X represent the second observation given the

prior CF distribution. Regression is used to model X for a
given CF θ [Graybill and Iyer, 1994]:

x θ ¼ b0 þ b1θþ e; e � N 0;s2
� �

;
�� (2)

where e is the regression model error with a standard devia-
tion equal to s. This equation describes the radar CF given
the TSI camera observation. The regression coefficients
(b0, b1) were calculated by fitting a linear regression model
between TSI and ARSCL data for each year, e.g., the year
2000 had its own regression coefficients for the 5-day aver-
ages. The same procedure was done for the monthly aver-
ages. Thus, for the 5-day averages, each year has 73 data
points for calculating the regression coefficients; for the
monthly averages, each year has 12 data points for regres-
sion. For the annual average, however, we have only 10 data
points from 2000 to 2009, so we have only one pair of coef-
ficients for the annual time scale. Table 2 shows these
regression coefficients (b0, b1) and the standard deviation
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Figure 4. (a) Likelihood function for different values of x
and θ. (b) The normalization factor m(x).

Table 2. The Regression Coefficients (b0, b1) and Standard
Deviations s of the Regression for the 5-day Averages and
Monthly Average CFa

5-Day Monthly

Year b0 b1 s b0 b1 s

2000 0.1265 1.0108 0.1035 0.1034 0.9853 0.0722
2001 0.0567 0.8504 0.1595 �0.1223 1.4523 0.1282
2002 0.1313 0.7805 0.1502 0.1871 0.8575 0.0501
2003 0.2499 0.7132 0.1070 0.2057 0.7730 0.0535
2004 0.1431 0.9005 0.1394 0.1046 0.9893 0.1034
2005 0.2582 0.7454 0.1228 0.2313 0.8064 0.0344
2006 0.1843 0.9340 0.0971 0.1594 1.0006 0.0494
2007 0.1440 0.8788 0.1135 0.0730 1.0268 0.0469
2008 0.1255 0.9818 0.0818 0.1692 0.8710 0.0530
2009 0.1103 0.9799 0.0611 0.1332 0.9306 0.0284

aThe values of b0, b1 and s for the yearly average CFs from 2000 to 2009
are 0.2538, 0.6429 and 0.0376, respectively.
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s of the regression residual for the two time scales: 5-day
and monthly. Thus, the explicit expression of a likelihood
function f(x|θ) ~N(b0 + b1θ, s

2)(x) is

f xjθð Þ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp � x� b0 � b1θð Þ2

2s2

" #
(3)

[21] Figure 4a shows the likelihood function for the 5-day
ARSCL and TSI data for the year 2003. For each fixed θ, x is
normally distributed, and the mean is b0 + b1θ= 0.2499 +
0.7132θ, while the standard deviation is s= 0.1070.

Figure 4a’s likelihood function was plotted based on a
100 � 100 grid on the x - θ plane.
[22] If TSI and ARSCL have statistically identical obser-

vations, then b0 = 0 and b1 = 1, implying the likelihood func-
tion equal to N(θ,s2)(x). This kind of likelihood function is
often found in the literature (e.g., Chiu and Petty [2006],
McFarlane et al. [2002]). In this case, the posterior distribu-
tion will be independent of the choice of which data are used
for prior and which data for likelihood. However, Table 2
shows that b1 often deviates far away from 1. The smallest
b1 = 0.7454 is from the 2005 five-day data, and the largest
b1 = 1.0108 is from the 2001 monthly data. b0 is always
positive except in the 2001 monthly data (b0 =� 0.1223
for 2001). A nonzero b0 value implies the existence of bias
in either TSI data or ARSCL data or both. According to
Figure 1c, there are two bias possibilities: (a) ARSCL yields
an overestimate of CF for the nearly clear sky and an under-
estimate for the heavily covered sky, and (b) TSI yields an
overestimate for the heavily covered sky and an underesti-
mate for the nearly clear sky. We agnostically chose TSI
data for constructing the prior distribution and ARSCL data
for the likelihood in this study. The accuracy and error
assessment of TSI and ARSCL data are still under investiga-
tion for various applications, including climate model vali-
dation and parameterization [Qian et al., 2012; Xie et al.,
2010]. We thus do not assert here which prior distribution
or which likelihood function is superior. Instead, we attempt
to describe a methodology to derive a pdf for every pair of
TSI and ARSCL data.
[23] The likelihood function developed this way is

applied to 5-day, monthly, and annual data. Further investi-
gation would be needed to determine whether this model is
applicable to the hourly data, because there is strong
nonstationarity at this time scale, for which model (2) may
become invalid. A moving time window method may be
adopted for an approximation of piecewise stationarity
[Shen et al., 2012].
[24] The third step is to apply Bayes’ theorem of condi-

tional probability. For a given TSI CF datum, the prior
distribution p(θ) is determined. For the corresponding
ARSCL CF datum for the same time and location, the like-
lihood function is determined. The Bayes’ formula yields
the Bayesian posterior estimate (BPE)

p θjxð Þ ¼ p θð Þf xjθð Þ
m xð Þ (4)

where m(x)is a normalization factor equal to

m xð Þ ¼
Z1
0

p θð Þf x θj Þdθ:ð (5)

[25] This normalization factor is also called the marginal
distribution and can be numerically computed. See Figure 4b
for the shape of this function. The posterior density function
p(θ│ x) given in equation (4) is the probabilistic estimate of
the CF based on two observations, an assumption of the
prior distribution, and a regression analysis. Thus, the CF
is no longer expressed in terms of a single fixed value.
Instead, it is described by a pdf given by equation (4). See
Figures 5 and 6 for some examples of pdf outputs.
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Figure 5. Posterior distribution of the cloud fraction
(a) when the ARSCL datum is 0.5 for 5-day CF, and (b) when
the ARSCL datum is 0.5 for annual CF.
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[26] Various kinds of statistical properties can be calcu-
lated from these pdfs. The commonly used properties are
the mean, standard deviation, skewness, and kurtosis, which
are related to the first four central moments. These four
statistics are calculated using the following formulas via
numerical integrations:

m1 ¼
Z1
0

θp θ xj Þdθ meanð Þð (6)

s2 ¼
Z1
0

θ � m1ð Þ2p θjxð Þdθ
2
4

3
5
1=2

standard deviationð Þ (7)

g3 ¼
Z1
0

θ � m1
s2

� 	3

p θ xj Þdθ skewnessð Þð

(8)

g4 ¼
Z1
0

θ � m1
s2

� 	4

p θ xj Þdθ � 3 kurtosisð Þð (9)

[27] Table 1 shows numerical examples calculated from
the above four formulas.

4. Results and Conclusions

[28] The BPE method yields a probabilistic output from
two observations according to formula (4). Figure 5 shows
a posterior distribution of θ for a given radar observation
x = 0.5 for the year 2003 at a 5-day scale and annual scale,
respectively. The posterior distribution is not symmetric for
either scale. According to Table 1 calculated from posterior
estimates, the mean, standard deviation, skewness, and
kurtosis of CF in 2003 are 0.4633, 0.2379, 0.3628, and
�0.7128 for the 5-day data, and 0.4774, 0.0353, 0.0053,
and �0.0192 for the annual data. These are positively
skewed, i.e., skewed right with preference to less cloudy
skies.
[29] Figure 6 shows the CF pdf for the SGP site for the

10-year period of 2000–2009 obtained with the BPE
approach for two time scales: 5-day and annual. Figure 6a
shows the posterior distribution of the average of the 5-day
data for each year. The annual 5-day data are the average of
the 73 five-day data of each year. The first four moments of
the 5-day TSI CF data are shown in Table 1. We also calcu-
lated the first four moments of ARSCL CF data (not shown
in this paper). The BPE procedure produced the posterior dis-
tributions shown in Figure 6a. The distributions are centered
around 0.3–0.5. For a single mode in the middle of an interval,
the posterior distribution is close to being symmetric around
the mean although it is not normal. Due to the short time scale,
the mean varies from year to year, ranging from a minimum of
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Figure 6. The posterior distribution of the cloud fraction of each year from 2000 to 2009 at the SGP site
(a) for 5-day CF as the mean of the 73 five-day CF values, and (b) for annual CF.
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0.3575 in 2000 to a maximum of 0.4699 in 2002 (see Table 1).
The standard deviations have little change from year to year,
remaining around 0.23. The distributions are almost symmet-
ric and slightly positively skewed. The three most skewed
years are 2000, 2003, and 2006. The least skewed year is
2004 whose distribution is almost symmetric.
[30] The kurtoses for both 5-day and annual data are neg-

ative, which implies a platykurtic distribution, i.e., one that
is less peaked than a normal distribution. The 5-day data
have larger absolute values of negative kurtosis, hence the
pdf shapes are flatter, while the annual data’s kurtosis values
are closer to 0 and the pdf shapes’ peakedness is close to that
of normal (see Table 1 and Figure 6). The least peaked year
for the 5-day data is 2007 with a kurtosis equal to �1.2105.
[31] At the annual time scale, we should not expect too

much inter-annual variation of cloud statistical properties. It
is thus not surprising that the CF pdfs in Figure 6b show sim-
ilar shapes. The standard deviations are almost a constant at
around 0.03 in the 10 years and are about 15% of those of
the 5-day data. The skewness is also small since the distribu-
tion for the annual data is almost symmetric. The maximum
is 0.0825 in 2000 and the minimum is 0.0053 in 2003. The
positive skewness implies that the distributions are all slightly
skewed right, indicating a less-than-0.5 CF preference.
[32] Besides estimating the pdf of the annual mean of the

5-day CF, we can also calculate the posterior distribution
for any given 5-day, say, 181st–185th days (i.e., 37th 5-day
data each year) of each year from 2000 to 2009 (see

Figure 7). We use the 5-day datum of a given year as the
mean and the standard deviation of the year to approximate
the standard deviation of the sample 181st–185th days of the
same year. The TSI and ARSCL data for the 181st–185th

days for all the ten years are (2000: 0.3862, 0.5174),
(2001: 0.3016, 0.4306), (2002: 0.7819, 0.7924), (2003:
0.1377, 0.1795), (2004: 0.4885, 0.5614), (2005: 0.3473,
0.4451), (2006: 0.2695, 0.3978), (2007: 0.7202, 0.8861),
(2008: 0.2852, 0.3752), and (2009: 0.4376, 0.5273). The
37th 5-day data for 2005 and 2009 were missing from
CMBE dataset and were replaced by the data of the 5-day
nearest to 37th: 32nd for 2005 and 32nd for 2009. With the
mean and standard deviation, the Beta distribution’s param-
eters a and b can be determined, and hence the prior distri-
bution is determined. The parameters for the likelihood
function model are the same for the entire year 2003 with
b0 = 0.2499, b1 = 0.7132, s= 0.1070 (see Table 2). When
the ARSCL 5-day datum for 181st–185th days of each year
is given (i.e., a given x value, denoted by x2), the likelihood
function f(x2|θ) is uniquely determined, and the posterior
distribution p(θ|x2) can then be determined by equation (4)
via a numerical integration for finding m(x2). The posterior
distributions for the 181st–185th days are shown in Figure 7
for each year from 2000 to 2009. Some distributions are
obviously asymmetric. The figures appear to imply that
(a) when the posterior CF mean is large, then the posterior
distribution is skewed left (e.g., years 2002, 2007), (b) when
the posterior CF mean is small, then the posterior distribution

(b)

0
6

2000

0
6

2001

0
6

2002

0
6

2003

D
en

si
ty

0
6

2004

0
6

2005

0
6

2006

0
6

2007

Theta

0
6

0.0 0.2 0.4 0.6 0.8 1.0

2008

Theta

0
6

0.0 0.2 0.4 0.6 0.8 1.0

2009

Figure 6. (continued)
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Figure 7. The posterior distribution of the cloud fraction of each year from 2000 to 2009 at the SGP site
for the 181st – 185th days mean CF.
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is skewed right (e.g., years 2001, 2003, 2005, 2006, 2008),
and (c) when the posterior CF mean is near 0.5, then the pos-
terior distribution is close to being normal (e.g., years 2000,
2004, 2009). These agree with our physical intuition: the
CF has a high frequency of occurrence around the actually
observed values.
[33] The results shown in Figures 6 and 7 and Table 1 dem-

onstrate the advantage of the BPE approach over the tradi-
tional minimum mean square error approach [North et al.,
1991]. The traditional method is a least-squares procedure that
can yield an optimal mean under a normal distribution
assumption. The BPE approach thus yields much more
information, including the pdf (which may be asymmetric
as in the case of the 5-day CF) and other statistical properties
of the estimated parameters. In the parameterization process
of ensemble climate modeling, the pdf is critical for
implementing the method of importance sampling. The
peaked frequency of a parameter should be sampled more
often than the tail distribution part of a parameter. Thus, our
results here show a proof-of-concept example for stochastic
parameterization for ensemble climate modeling procedures.
[34] According to Xi et al. [2010], simply making a direct

real-time comparison between a point observation (ARSCL)
and an areal observation (e.g., TSI and GOES8) or modeling
result (e.g., CAM5) is inconsistent, since the point and area
measurements in a very short time interval are observing
different physical quantities. However, their work indicates
that it is feasible to check the climatology and other long-

term means from different observations or models for
consistency validation. Further, probabilistic assessment by
comparing pdfs will make sense. We explored the GOES8
and CAM5 CF data for the purposes of comparing them with
the TSI and ARSCL data and with our BPE estimate. Our
previously described results also provide evidence that it is
useful to explore the probabilistic properties of the CFs from
GOES8 and CAM5 data. For probability distribution, we
have analyzed the summer months: June, July, and August
in 2000–2009. Both ARSCL and GOES8 had 30 samples,
where a sample is a monthly mean value, and we have used
3 months from each of the 10 years. TSI missed 3 months
and had only 27 samples. CAM5 uses the grid point that is
closest to the SGP site. Figure 8 compares the histograms
and the fitted Beta distributions of GOES8, CAM5, TSI,
and ARSCL summer CF data for 10 years (2000–2009).
The pdfs were computed using the moment method. Two
time scales are examined: monthly and 5-day.
[35] For the monthly data in June, July, and August, TSI,

ARSCL, and GOES8 (see Figure 7’s left column) have a mean
of about 0.3–0.5 and are skewed right. The distributions of TSI
and GOES8 appear very similar to each other, presumably
because both of them have a large FOV, and the CFs from both
instruments are defined in the same way as the areal fraction of
clouds, although GOES8’s FOV is much larger. One may
notice that the monthly observed CFs are less than 0.8. This
is expected since it is unlikely that almost overcast daytimes
can persist for a month at SGP in the summer. It is quite
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surprising that the distribution of monthly CAM5 data exhibits
a certain degree of similarity to that of GOES and TSI,
although the former is skewed left while the GOES and TSI
are skewed right, and furthermore, CAM5 shows the existence
of nearly overcast months with CF> 0.8. The CAM5 results
have a higher mean of about 0.6–0.7 and are skewed left.
The left column of Figure 8 and the above analysis indicate
more frequent overcast or nearly overcast days in CAM5
results in the summer than in the observations.
[36] For the 5-day data in late June and early July, we

chose nine 5-day intervals (161st–165th days counting from
January 1 with exclusion of 29 February, and 166th–170th

days, 171st–175th days, 176th–180th days, 181st–185th days,
186th–190th days, 191st–195th days, 196th–200th days, and
201st–205th days). The full sample size is thus 90 for TSI,
ARSCL, GOES8, and CAM5. The histograms on the right
column were computed from the full samples. Again, the
three distributions of observations from TSI, ARSCL, and
GOES8 exhibit a certain degree of similarity (Figure 8, right
panels). The peak frequencies of TSI, ARSCL, and GOES8
CFs are all near 0.4. TSI has the lowest CF mean value and
is skewed right. The ARSCL distribution is the flattest. The
GOES8 distribution is similar to TSI, but has fewer overcast
days with a CF greater than 0.9 and also has fewer clear days
with a CF less than 0.1. This result is not unexpected,
because GOES8 has a large FOV and hence often reflects
an average of overcast and clear areas. On the other hand,
CAM5 CF exhibits a dramatically different distribution. It
is strongly skewed left and has a larger mean CF value. A
surprising feature is its peak frequency near 1.0, indicating
many overcast times that persist for 5 days or longer.
[37] The above preliminary comparisons for similar and dif-

ferent features between CAM5 CFs and those from observa-
tions imply the necessity of detailed comparative studies on
climate models’ cloud parameterization and observed CFs.
For a more comprehensive comparison among the CFs from
TSI, ARSCL, and AR4 models, see Qian et al. [2012].

5. Discussion and Concluding Remarks

[38] We have introduced a BPE approach to optimally
blend different CF datasets. To illustrate the approach, we
have employed CF data obtained from the TSI camera and
the ARSCL radar-lidar observations at the ARM SGP site.
Both datasets have shortcomings, and we employ them only
as sample datasets to illustrate the method and to evaluate its
applicability, without making any claims as to the strengths
and weaknesses of these datasets in comparison to products
from other available observational technologies. This proof-
of-concept study shows the feasibility of the BPE method.
The method is applicable to non-Gaussian prior distribu-
tions and is different from the traditional least-squares
approach, which assumes the normal distribution of both
prior and likelihood functions. Since our likelihood function
is constructed by a regression between two observations,
our method thus helps correct systematic bias in either
observation. When the correction is very large, the posterior
estimate may become an extrapolation of the two observa-
tions. The analysis of the summer probabilistic distribution
of the SGP CFs demonstrates the consistency between the
CAM5 model CF and the observed CF from ARSCL,

TSI, and GOES8 in the monthly scale, as well as the incon-
sistency in the 5-day scale. Our results imply the following:
(a) CF is best defined as a space-time percentage of the
cloud volume with respect to the total space-time volume,
(b) the Beta distribution is a reasonable model for the CF
for both short and long-time means, and (c) it is feasible to
blend TSI and ARSCL data using our BPE procedure of
constructing the prior CF using a Beta distribution and the
likelihood function using a regression, in order to construct
a CF pdf for various diagnostic and modeling applications.
[39] Given the above comparison of results from different

observations and blending, it is still an open question as to
how best to effectively compare “pencil” observations, such
as ARSCL, with the grid box data of GOES8 and GCM. The
randomization method of [North et al., 1994] for accessing
the ground truth errors of the TRMM satellite compared with
the ground rain gauge observations might be an effective
approach. The error will then be determined by the spectral
properties of the covariance function of the CF. When a
simple diffusive CF model is assumed, it will be possible
to calculate the spectra analytically, which can lead to an
analytic expression of the ground truth error.
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