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RESEARCH ARTICLE
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Abstract

Ambient temperature is a critical environmental factor for all living organisms. It was likely

an important selective force as modern humans recently colonized temperate and cold Eur-

asian environments. Nevertheless, as of yet we have limited evidence of local adaptation to

ambient temperature in populations from those environments. To shed light on this question,

we exploit the fact that humans are a cosmopolitan species that inhabit territories under a

wide range of temperatures. Focusing on cold perception–which is central to thermoregula-

tion and survival in cold environments–we show evidence of recent local adaptation on

TRPM8. This gene encodes for a cation channel that is, to date, the only temperature recep-

tor known to mediate an endogenous response to moderate cold. The upstream variant

rs10166942 shows extreme population differentiation, with frequencies that range from 5%

in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribu-

tion). When all populations are jointly analyzed, allele frequencies correlate with latitude and

temperature beyond what can be explained by shared ancestry and population substruc-

ture. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in

Africa, while positive selection raised its frequency to different degrees in Eurasian popula-

tions, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive

selection, in agreement with ancient DNA showing high frequency of the allele in Europe

3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral

allele is protective of migraine. This debilitating disorder varies in prevalence across human

populations, with highest prevalence in individuals of European descent–precisely the popu-

lation with the highest frequency of rs10166942 derived allele. We thus hypothesize that

local adaptation on previously neutral standing variation may have contributed to the genetic

differences that exist in the prevalence of migraine among human populations today.
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Author summary

Some human populations were likely under strong pressure to adapt biologically to cold

climates during their colonization of non-African territories in the last 50,000 years. Such

putative adaptations required genetic variation in genes that could mediate adaptive

responses to cold. TRPM8 is potentially one such gene, being the only known receptor for

the sensation of moderate cold temperature. We show that a likely regulatory genetic vari-

ant nearby TRPM8 has several signatures of positive selection raising its frequency in Eur-

asian populations during the last 25,000 years. While the genetic variant was and is rare in

Africa, it is now common outside of Africa, with frequencies that strongly correlate with

latitude and are highest in northern European populations. Interestingly, this same

genetic variant has previously been strongly associated with migraine. This suggests that

adaptation to cold has potentially contributed to the variation in migraine prevalence that

exists among human groups today.

Introduction

While human ancestors lived in Africa for millions of years, their successful colonization of

colder environments outside of Africa is relatively recent, occurring during the last ~50,000

years. A number of novel genetic adaptations in populations that settled extreme polar envi-

ronments are documented [1–3]. This includes an allele in the gene CPT1A, which encodes a

protein involved in the regulation of mitochondrial oxidation of fatty acids, in Northern Sibe-

rian populations [1, 2], and several alleles in genes involved in fatty acid metabolism in Green-

landers [3, 4]. These genetic changes likely represent adaptations to the highly specialized diets

of these specific populations, which are rich in fatty acids. However, the putative adaptations

to temperature and climate are largely unresolved.

Even in non-polar environments, temperatures range substantially across human habitats.

For example, average annual temperature is 28˚C in Nigeria (home to the Yoruba) and only

6˚C in Finland, with differences most pronounced from December to February (29˚C in in

Nigeria and -4˚C in Finland). These temperature differences illustrate the habitat changes

experienced by early human groups as they migrated north. Local adaptation has significantly

contributed to population differentiation that exists among human populations [5]. So it is rea-

sonable to expect that besides genetic adaptations to selective factors that correlate with cli-

mate, such as diet [1–3] and subsistence strategy [6], or pathogens [7] and their load [8],

humans may harbor direct genetic adaptations to temperature and other climatic factors [6, 9].

Thermosensation (the sensation of innocuous environmental temperature) is crucial for

thermoregulation (the process that maintains core body temperature) and is mediated by

warm and cold receptor nerves that innervate the skin. At the molecular level, temperature

sensation is due to the activation of transient receptor potential (TRP) ion channels. Among

the few TRPs with clear thermoregulatory role (reviewed in [10]), only TRP cation channel

subfamily M member 8 (TRPM8) is broadly agreed to play a central role in cold sensation and

subsequent physiological thermoregulation [11–17]. TRPM8 is expressed in pain and tempera-

ture-sensitive neurons of the dorsal root ganglia [15], and at lower levels in other tissues such

as prostate and liver [10, 18]. From approximately 15˚C to 30˚C the channel passes a mixed

inward cationic current with strength inversely proportional to temperature. Interestingly, it is

also activated by natural ligands such as menthol [17, 19] and is responsible for the local cool-

ing sensation of mint-containing products [19]. Proof of its physiological role in thermoregu-

lation is that its deletion diminishes responses to cold [11–13] including behavioral responses
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to innocuous cool, noxious cold, injury-evoked cold hypersensitivity and cooling-mediated

analgesia [20]. In fact, TRPM8 is the only well-stablished cold receptor and, as such, a prime

candidate to have mediated putative adaptations to cool and cold environments. Strikingly, it

was recently shown that a few substitutions in the TRPM8 transmembrane domain are respon-

sible for the reduced sensitivity to cold of two different hibernating rodents, when compared

with non-hibernating species [21]. This further points to TRPM8 as the most obvious candi-

date to investigate cold adaptation in humans.

TRPM8, located on the short arm of human chromosome 2, harbors genetic diversity with

potential functional and phenotypic consequences. Specifically, a single-nucleotide polymor-

phism (SNP; rs10166942, C/T, chr2:234825093 in hg19) upstream of the gene is predicted to

alter transcription factor binding [22] and shows genetic association with phenotypic varia-

tion. The SNP is strongly associated with migraine in Europeans, with the ancestral C allele

being protective of migraine with and without aura [23–26] with an effect that is among the

largest in the genome (e.g. odds ratio = 0.89–0.99, p-value = 1.0 x 10−23 in [25]). The precise

molecular mechanism for this association remains unknown, although TRPM8 likely plays

a role in pain perception at least with noxious cold stimuli and peripheral inflammation

(reviewed in [27, 28]), and the channel mediates the analgesic effect of menthol in acute and

inflammatory pain [29]. Interestingly, migraine leads to increased pain perception of non-nox-

ious cold temperature [30] and ingestion of cold water can in some cases trigger migraine [31],

providing possible links between TRPM8’s mediated cold perception and some aspects of

migraine. Of note, rs10166942 has also been recently associated with irritable bowel syndrome

(IBS) with constipation in Swedish cohorts (odds ratio = 1.91, p-value = 5.1 x 10−05) [22]. This

result suggests a possible gastrointestinal function for TRPM8 and rs10166942, although the

sample sizes were small, the association has not yet been replicated, and the putative molecular

mechanisms remain unknown.

TRPM8’s role in cold perception and thermoregulation, together with its role in tempera-

ture adaptation in hibernating rodents, suggest that TRPM8 has the potential to mediate adap-

tations to cold ambient temperature in humans. Here, we use a combination of genetic

methods to resolve the evolutionary history of TRPM8 in human populations, and show strong

evidence for local adaptation that correlates with latitude and temperature.

Results

To investigate the recent evolutionary history of TRPM8, we focused on the rs10166942 SNP

following several lines of evidence that suggest functional relevance. The first one is association

with disease, as the ancestral C allele shows strong association with reduced risk of migraine

[24] that has been consistently replicated in different populations e.g. [23, 25, 26, 32], although

the molecular mechanism responsible for these associations remains unknown. This is most

likely due to the restricted tissue expression of the gene and the temperature/ligand-dependent

activation of the protein, which severely hamper experimental functional assays (S1 Fig)–as,

for example, typical genome-wide experiments are run under basal conditions [33]. It is worth

noting that computational predictions suggest rs10166942 alters transcription factor binding

[22]. The very specific tissue expression of the gene makes it extremely challenging to test this

prediction experimentally, but a regulatory function fits well the location of the SNP, which

sits ~1 kb upstream of TRPM8. We note that no neighboring SNP in high linkage disequilib-

rium (LD) shows stronger evidence of association with migraine [24] or functionality (S2 Fig)

than rs10166942. Thus, rs10166942 remains as the most likely functional variant in this geno-

mic region and we chose it as our target variant–with the understanding that we cannot
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discard the possibility that it tags another functional variant in this locus which would, how-

ever, share its genetic signatures.

Latitude and TRPM8-rs10166942

The rs10166942 variant shows interesting patterns of allele frequencies in the 1000 Genomes

populations (hereafter 1KGP) [34] (Fig 1A, Table 1). The derived T allele is not introgressed

(not in identified introgressed segments [35] and absent in the sequenced Neandertals and

Denisovan genomes [36–38]), and levels of linked variation indicate that it originated in Africa

(S3 and S4 Figs, S1 Table). Still, its frequency today is just 5% in the equatorial YRI, but it

reaches intermediate frequencies in Asia and up to 88% frequency in the northern European

Finnish (Fig 1A, Table 1). Frequencies of the rs10166942 T allele in South Asia are on average

0.48, closer to those in East Asia (0.36) than in Europe (0.83), in contrast with the patterns of

shared ancestry–genome-wide South Asian populations are closer to Europeans than to East

Asians (S5 Fig) [34]. Together, allele frequencies paint a seemingly latitudinal cline of allele fre-

quencies (Fig 1A, Table 1).

We tested this hypothesis using linear models and, because of the thermoregulatory role

of TRPM8, included temperature as a covariate. We tested, using a Phylogenetic Generalized

Least Square (PGLS) [39] analysis, to what extent shared ancestry, latitude and annual aver-

age temperature predict the observed allele frequency in each population. PGLS is an exten-

sion of the general linear model that analyzes the impact of one or several predictor variables

(here, latitude and temperature) on a single response variable (allele frequencies) while con-

trolling for the phylogenetic signal (the correlation in allele frequencies across populations

due to shared ancestry) [40]. We first performed a model comparison between a null model

(only ancestry information) and a full model (which includes latitude and temperature as

predictor variables). The full model explains the data significantly better than the null model

Fig 1. Overview of the populations used and their allele frequencies for rs10166942, average temperature, and FST

signatures. (A) Geographic location of the 1KGP populations used, with the derived allele frequency of the rs10166942

allele in pie charts (T allele in color according to population), and their latitude. (B) In columns, annual mean

temperature at the geographic location of each population, the level of FST-based population differentiation with YRI,

the log10 empirical P-value of this FST value, and the proportion of SNPs in the 65 kb target region with an empirical P-

value lower than 0.05.

https://doi.org/10.1371/journal.pgen.1007298.g001
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(χ2 = 13.04, df = 2, P-value = 0.001). When we then assessed the influence of each predictor

with multi model inference, the null model again receives weak support (Table 2). The high-

est support is for the model with latitude, followed closely by the model with latitude and

temperature; together, they make up the 95% best model confidence set (Table 2), placing

latitude alone or combined with temperature as a better predictor of rs10166942 T allele fre-

quency than shared ancestry. The correlation between allele frequency and latitude in this

model is evident in Fig 2A. We also used a Generalized Linear Mixed Model (GLMM),

which uses one-dimensional ancestry information but allows non-linear fits to the data and

can use genotype data. This confirmed the significant latitude correlation, with and without

temperature, in 1KGP data (Fig 2B; Table 2). In addition, we confirmed this result using 110

populations of the Simons Genome Diversity Project (SGDP) dataset (Supplemental Data 1)

[41], which provide a much denser worldwide population sample (Fig 2C, S6 Fig, Table 2).

Further, the significant correlation remains when only Eurasian populations are analyzed

(in the SGDP dataset, where the number of populations allows this analysis), showing that

the inference is not driven by the low frequency of the T allele in African populations

(Table 2).

Latitude is thus a strong predictor of genotype–that is, of the presence and frequency of the

rs10166942 T allele in a given population. Temperature is a weaker predictor, perhaps because

it is less stable over time. Available genomic data from prehistoric Eurasians (ages 3,000 to

Table 1. Overview of populations and signatures of natural selection. Geographic coordinates (in degrees), mean annual temperature (in degrees Celsius), and the fre-

quency and signatures of selection for the rs10166942 T allele (empirical P-value), per population, ordered by latitude. DAF: derived allele frequency. Continents: (EUR)

Europe, (EAS) East Asia, (SAS) South Asia, (AFR) Africa.

Population Continent Latitude Longitude Temperature DAF FST FST P-value XP-EHH P value iHS P-value

FIN EUR 60,25N 24,75E 5.7 0.87 0.805 0.0002 0.205 0.166

GBR EUR 54,75N 1,25W 10.0 0.80 0.724 0.0006 0.287 0.304

CEU EUR 50,75N 4,25E 10.7 0.82 0.751 0.0004 0.228 0.36

TSI EUR 43,25N 11,25E 14.2 0.84 0.778 0.0002 0.26 0.622

IBS EUR 40,25N 3,25W 14.9 0.80 0.733 0.0004 0.291 0.656

CHB EAS 39,75N 116,25E 13.4 0.39 0.279 0.0550 0.939 0.219

JPT EAS 35,25N 139,25E 14.8 0.45 0.349 0.0356 0.947 0.593

PJL SAS 31,25N 74,25E 25.3 0.57 0.472 0.0066 0.651 0.869

BEB SAS 23,25N 90,25E 26.1 0.52 0.428 0.0102 0.605 0.8

GIH SAS 23,25N 72,75E 27.7 0.53 0.437 0.0101 0.587 0.821

CHS EAS 22,25N 114,25E 23.4 0.36 0.254 0.0666 0.927 0.161

CDX EAS 22,25N 100,25E 19.2 0.30 0.184 0.1051 0.895 0.926

ITU SAS 16,75N 80,75E 28.6 0.39 0.278 0.0367 0.804 0.952

GWD AFR 13,25N 16,25W 27.2 0.06 -0.007 0.8610 NAb 0.39

KHV EAS 10,25N 106,25E 28.2 0.30 0.193 0.0953 0.938 0.69

ESN AFR 6,75N 6,25E 27.0 0.04 -0.007 0.8046 NAb NAc

STU SAS 9,25N 80,25E 28.5 0.37 0.262 0.0411 0.866 0.626

MSL AFR 7,75N 11,25W 26.6 0.03 -0.005 0.6836 NAb NAc

YRI AFR 7,25N 3,75E 27.6 0.05 NAa NAa NAa, b 0.699

LWK AFR 0,75N 34,75E 20.5 0.07 -0.002 0.6912 NAb 0.901

a Not calculated because YRI was used as background population.
b XP-EHH not calculated within Africa.
c Allele frequency did not meet criteria (see Methods).

https://doi.org/10.1371/journal.pgen.1007298.t001
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8,500 years old [42, 43]) show no significant support for any predictor (Materials and methods;

S7 Fig), although the low number and restricted geographic origin of these ancient samples

markedly hamper the analysis. In any case, ancient DNA suggests that the derived rs10166942

T allele was already at high frequencies in pre-historic European groups that include Hunter-

Gatherers (frequency 81%), Farmers (77%), Steppe pastoralists (71%) and possibly Paleo-Eski-

mos from Greenland (the available genome is T homozygote) [43].

Signatures of positive selection at TRPM8-rs10166942

The observation that rs10166942 frequencies are better explained by latitude than population

history, with extremely high frequencies of the T allele in Northern Europe, raises the possibil-

ity that adaptation to north Eurasian environments resulted in increased frequency of this

TRPM8 allele. We first explored signatures of local positive selection using FST, a measure of

population differentiation to the equatorial YRI population. rs10166942 is among the most

strongly differentiated SNPs genome-wide between YRI and not only all European popula-

tions (GBR, FIN, IBS, TSI, CEU; empirical P-values = 0.0002–0.0006), but also all South Asian

(STU, ITU, GIH, BEB, PJL; P-values = 0.041–0.007), and one East Asian (JPT; P-value =

0.0356) population (Fig 1B, Table 1). The high FST signature extends for ~65 kb in the

upstream half of TRPM8 and, due to LD, some SNPs show comparable signatures, but only

rs10166942 has been associated with a phenotype (S8 Fig). FST sharply declines beyond the

65kb upstream portion of TRPM8, probably due to recombination (S8 and S9 Figs). Although

non-African populations show relatively high LD in the locus (S9 Fig), LD-based statistics

show weak evidence of population-specific (XP-EHH [44]) or incomplete (iHS [45]) selective

sweeps on a new advantageous mutation at rs10166942 and nearby SNPs (Table 1, S8 Fig).

Table 2. PGLS and GLMM analysis. All models considered, ordered by their fit (Model rank). Three measures of model support are shown: AIC, delta AIC, and Akaike

weight. The cumulative probability are shown together with the resulting confidence set (models that together provide just over 0.95 cumulative probability; indicated by

‘yes’). Results are shown for the 1KGP in PGLS and GLMM analyses, the SGDP in a GLMM analysis, and the SGDP using only the Eurasian populations in a GLMM

analysis.

Models� Model Rank AIC delta AIC weight AIC cumulative Pr. confid. Set k#

1KGP

PGLS

Null+Lat. 1 -49.43 0 0.504 0.504 yes 5

Null+Temp.+Lat. 2 -49.186 0.244 0.446 0.95 yes 6

Null+Temp. 3 -44.147 5.283 0.036 0.986 no 5

Null 4 -42.255 7.175 0.014 1 no 4

1KGP

GLMM

Null+Temp.+Lat. 1 1929.2 0 0.510 0.510 yes 6

Null+Lat. 2 1929.3 0.09 0.488 0.997 yes 5

Null+Temp. 3 1939.8 10.633 0.003 1 no 5

Null 4 1946.2 16.964 0 1 no 4

SGDP

GLMM

Null+Temp.+Lat. 1 435.206 0 0.943 0.943 yes 6

Null+Lat. 2 440.841 5.635 0.056 1 yes 5

Null+Temp. 3 451.699 16.494 0 1 no 5

Null 4 452.458 17.252 0 1 no 4

SGDP

Eurasia

GLMM

Null+Lat. 1 301.301 0 0.582 0.581 yes 5

Null+Temp.+Lat. 2 302.35 1.05 0.344 0.926 yes 6

Null+Temp. 3 305.874 4.574 0.059 0.985 yes 5

Null 4 308.611 7.311 0.015 1 no 4

�Models: Lat. . .Latitude; Temp. . .Temperature
# k: number of estimated parameters

https://doi.org/10.1371/journal.pgen.1007298.t002
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Evolutionary history of TRPM8-rs10166942

The combination of unusually high FST values with ordinary LD patterns suggests that this

locus evolved under recent, local positive selection but possibly not under a classical hard

selective sweep. We formally evaluated this possibility using an Approximate Bayesian Com-

putation (ABC) approach, which allows us to assess the probability of different evolutionary

models and their associated parameters [46]. In the ABC analysis we used the summary statis-

tics XP-EHH [44], Fay and Wu’s H [47], Tajima’s D [48], FST [49] and derived-allele-fre-

quency, for different sections of the TRPM8 locus (Methods) and as in [7, 50], to differentiate

between three models: selection from standing variation (SSV), selection from a de novo vari-

ant (SDN), and a neutral model (NTR) (Fig 3A).

We have high power to identify the correct evolutionary model (the fraction of correctly

assigned simulations is 96% for SDN, 81% for SSV, and 96% for NTR) with high sensitivity

and specificity (S2 Table). Across all populations, the ABC results consistently favor the SSV

model (Fig 3B). Bayes factors (Bayesian measure of confidence) range from 4.6 to over 500

(Table 3), representing strong to decisive evidence for the SSV model [51]. Only in KHV (2nd

most southern non-African population) the model choice result is inconclusive, although the

Fig 2. Correlation between latitude and derived allele frequency. Correlation of the frequency of the rs10166942 T allele

with latitude. The fitted function (dashed line) results for the 1KGP data from (A) the PGLS and (B) GLMM analysis. (C)

Results of the best model in the GLMM analysis of the SGDP dataset. The fitted response is shown as gridded surface, and

the dots represent the average frequency of the rs10166942 T allele per cell of the gridded surface. Points above the surface

are filled, points below are open. The volume of the points corresponds to the number of populations per cell.

https://doi.org/10.1371/journal.pgen.1007298.g002
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SSV model still has the strongest support (Fig 3B). Interestingly, the support for the SSV

model correlates moderately (almost significantly) with latitude (Pearson correlation r = 0.49,

p = 0.06) because the signatures of selection are stronger at higher latitudes, as expected if the

selective advantage of the T allele grew with latitude.

Data from prehistoric Eurasians indicate that rs10166942 had reached appreciable fre-

quency at least 3,000 years ago. It is thus possible that selection ceased sometime in the past.

We evaluated this possibility with an additional ABC model selection analysis with halted SDN
and halted SSV models, where the allele became neutral 3,000 years ago. Power to distinguish

these two models is similar to the power to distinguish the original SDN and SSV models (S4

Table). This analysis supports the halted SSV model over the halted SDN and NTR models,

with similar posterior probabilities and Bayes factors as above (S10 Fig; S5 Table). We note,

however, that there is very little power to distinguish the original and halted SSV models (or

Fig 3. ABC analysis. (A) Graphical representation of the three models (SSV, SDN, NTR) and their associated parameters. Birth of

the allele and start time of selection are shown by black and red lines, respectively. The range of the prior distribution for time of

selection start is depicted by a star and a blue line. A double headed arrow indicates population migration. (B) Posterior

probabilities for each model and population. (C) Prior distribution of each parameter as a histogram. Posterior distribution of the

SSV model parameters as a line for each population.

https://doi.org/10.1371/journal.pgen.1007298.g003
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the original and halted SDN models; S6 Table), as expected given their extreme similarity in

signatures of selection (Table 3 and S5 Table). In any case, in all our analyses an SSV model

receives stronger support than neutrality or SDN models.

The ABC framework allows estimation of the parameters of the SSV model (Table 3),

although these always have large confidence intervals so median point estimates should be

taken with caution. Because the ABC analyses provide no evidence for selection ceasing, we

report the estimates based on the original SSV model. We infer that selection started about

26,000 years ago on an allele that was at a moderate frequency (the estimate, 7.5%, is close

to its current frequency in western Africa) (Table 3) and was moderately favorable in Asia

(sNon-Africa = 0.28%). In Europe, we could not confidently infer the strength of selection as this

parameter’s posterior distribution is quite flat (Fig 3C). This is because selection coefficients

higher than 0.5 lead to almost identical summary statistic distributions (S11 Fig). However,

selection strength was likely higher than 0.5 in European populations (posterior probabil-

ity = 0.88), whereas in Asian populations there is little support for such high selection (poste-

rior probability = 0.12). Together, the ABC results provide strong evidence for positive

selection on neutral standing variation in all non-African populations, albeit with different

selection intensities in different human groups.

Discussion

Here we present evidence that the derived T allele of rs10166942 in TRPM8 rose in frequency

due to positive selection in a latitude-related manner. We note that while rs10166942 T is the

most likely target of selection, we cannot discard that selection targeted an unknown, strongly

linked allele–but this should not substantially affect our inferences. The SNP shows unusually

high levels of population differentiation–it is among the 0.02% most differentiated alleles

between the Yoruba and Finnish populations. Although there is a distinctive signature of high

LD in the region in non-Africans, the patterns do not show clear evidence of an incomplete,

hard sweep of positive selection. In fact, we infer that the derived T allele appeared in Africa

Table 3. ABC results of the SSV model for each population. Bayes factor (measure of confidence) and the resulting posterior probability (Post. Prob.) for the SSV

model in each population, ordered by latitude. t0: time when selection starts; SNA: selection strength in non-African population; fsel: frequency of allele at selection start.

The median of the posterior distribution of each inferred parameter is shown together with its 95% confidence interval (2.5%–97.5%).

Population Bayes Factor Post. Prob. t0 (in years) SNA (in %) fsel (in %)

median 2.5% 97.5% median 2.5% 97.5% median 2.5% 97.5%

FIN 9.6 0.906 35055 22052 49881 1.238 0.304 2.430 0.078 0.010 0.189

GBR 588.3 0.998 29783 21384 49231 1.352 0.333 2.456 0.075 0.012 0.182

CEU 474.8 0.998 31390 21311 49593 1.453 0.346 2.425 0.080 0.012 0.187

TSI 23.3 0.959 36789 22088 50000 1.418 0.304 2.446 0.111 0.018 0.194

IBS 17.5 0.946 32558 21520 49666 1.209 0.250 2.409 0.090 0.012 0.191

CHB 81.8 0.988 24,529 21067 47771 0.270 0.045 0.693 0.081 0.008 0.191

JPT 25.8 0.963 25509 21103 48685 0.269 0.050 0.734 0.080 0.008 0.193

PJL 70 0.986 25017 21101 48055 0.378 0.109 2.100 0.077 0.006 0.192

BEB 7.4 0.882 26887 21118 48393 0.293 0.075 0.713 0.082 0.006 0.193

GIH 17.4 0.946 26,298 21122 48234 0.314 0.087 0.836 0.079 0.006 0.192

CHS 220.9 0.996 24407 21047 47586 0.271 0.049 0.711 0.079 0.007 0.189

CDX 4.6 0.823 26438 21088 47862 0.234 0.033 1.103 0.075 0.005 0.187

ITU 10.6 0.914 26,297 21100 48424 0.249 0.041 0.991 0.073 0.005 0.189

KHV 3.1 0.755 26399 21110 48452 0.204 0.025 1.041 0.075 0.005 0.186

STU 14.4 0.935 26024 21097 48491 0.249 0.041 0.009 0.071 0.005 0.188

https://doi.org/10.1371/journal.pgen.1007298.t003
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and segregated neutrally, and only after the out-of-Africa migration did moderate positive

selection raise the standing T allele frequency in non-African populations. ABC parameter

inferences have large confidence intervals, but our point estimates indicate that selection

began about 26,000 years ago, incidentally coinciding with the last glacial maximum around

26,500 years ago [52]. According to our results, selection was moderate in Asian populations

and probably stronger in Europeans. This agrees with data on prehistoric humans, which indi-

cates that rs10166942 was already at high frequency over 3,000 years ago.

Latitude, with or without temperature, predicts the rs10166942 allele frequency better than

population history (the full phylogeny for PGLS, pairwise differentiation for GLMM) in both

the 1KGP and SGDP datasets. Together with the FST signatures and ABC inferences, this sug-

gests positive selection along a latitudinal cline raising the frequency of the rs10166942 T allele.

We note, however, that even under comparable environmental pressure for one factor, alleles

do not necessarily reach similar frequencies across populations, as many other factors differ

and contribute to the overall allele-frequency. In fact, while the latitudinal cline is significant

latitude and frequency do not correlate perfectly, so additional environmental factors may be

at play (perhaps in Asian populations; Fig 1, S6 Fig).

TRPM8 is the only known receptor to mediate the perception of moderate cold tempera-

ture in humans (reviewed in [10]), and it has been shown to mediate the adaptive reduction of

cold sensitivity in two different hibernating rodents [21]. Thus, it is likely that cold tempera-

tures in northern latitudes were the driver of positive selection in this locus. While the precise

functional effect of rs10166942 remains unknown, in large part due to the difficulties associ-

ated with studying TRPM8 expression (see Results), the SNP falls 1kb upstream of the gene

and has been predicted to have a regulatory role [22]. It is thus possible that variation in

rs10166942 affects expression levels of TRPM8, which in turn affects cold sensation. The fact

that overall current average temperature is a weaker predictor of allele frequency than latitude

could be due to the considerable fluctuations of temperature over time (here, thousands of

years) and the fact that the recorded data (monthly averages) is not particularly informative

for long-term selective pressures. Latitude is strongly correlated with numerous other aspects

of climate and is likely a good proxy for the long-term effects of climate in each of the human

populations analyzed, perhaps even better than current temperature. It remains possible that

other unknown functions of TRPM8 have mediated the allele frequency change, for example

on the gastrointestinal system as discussed above [22].

Migraine is a debilitating neurological disorder that affects millions of people worldwide

[53], and rs10166942 is among the most strongly associated SNPs with migraine risk genome-

wide [23–26]. While several non-genetic traits increase the individual risk of migraine, notably

being of middle age, female, suffering high stress levels, and having a low socio-economic sta-

tus [54, 55], genetics play an important role. In fact, migraine is a highly heritable (34%–57%

heritability [56]) yet polygenic disease [25]. Given the association between the rs10166942 C

allele and low risk of migraine, the adaptive local rise in frequency of the T allele (due to direct

positive selection or linkage to a selected site) could have contributed, to some extent, to differ-

ences in migraine prevalence in certain human groups. This agrees with epidemiological data:

according to the World Health Organization, migraine shows low prevalence in Africa, highest

prevalence in Europe, and intermediate prevalence in the Asian countries at intermediate lati-

tudes among the two [53, 57]. In fact, migraine prevalence correlates with the evidence of posi-

tive selection and the frequency of the T allele: DAF at rs10166942 shows a positive correlation

with migraine prevalence (Pearson’s rho = 0.61), although the correlation is not significant (P-

value = 0.11) perhaps because we have comparable genetic [34] and migraine [57] data for

only eight countries (S7 Table). Biases in disease reporting can strongly affect prevalence dif-

ferences among countries, and with them this correlation result. But in the USA migraine
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prevalence has consistently been shown to be higher for European-Americans than African-

Americans after non-genetic confounding factors are accounted for [57, 58]. Thus, while the

putative influence of rs10166942 in migraine risk is moderate, and additional factors are likely

at play, local adaptation in TRPM8 may have contributed to modify, by yet unknown molecu-

lar mechanisms, pain-related phenotypes in human populations.

Materials & methods

The rs10166942 T allele

The variant rs10166942 is located ~1 kb upstream of the TRPM8 gene. We used a combination

of bioinformatics tools to investigate possible functional effects of rs10166942 and it neighbor-

ing variants in high linkage disequilibrium (LD). We explored the predicted effects on protein

sequence using variant effect predictor (VEP) [59], focusing on the non-synonymous and

splice-site SNPs, as well as indels annotated in the 1KGP. We explored effects on gene expres-

sion using Regulome DB annotations [60], GTEx data [61] and basal root ganglion RNA-Seq

data (kindly provided by G. Gisselmann) [62].

Modern genomes

To investigate the patterns of genetic diversity of TRPM8 we used genome-wide genotype data

from the 1KGP phase III [34]. African ancestry: ESN (Esan in Nigeria), GWD (Gambian

(Mandinka) in Western Divisions in Gambia), YRI (Yoruba in Ibadan, Nigeria), LWK (Luhya

in Webuye, Kenya), MSL (Mende in Sierra Leone), ASW (African Ancestry in Southwest

USA), ACB (African Caribbean in Barbados); European ancestry: GBR (British from England

and Scotland), CEU (Utah Residents, USA, with Northern and Western European ancestry),

FIN (Finnish from Finland), TSI (Toscani in Italia), IBS (Iberian Populations in Spain); East

Asian ancestry: CHS (Southern Han Chinese), CHB (Han Chinese in Beijing, China), JPT

(Japanese in Toyko, Japan), CDX (Chinese Dai in Xishuangbanna, China), KHV (Kinh in Ho

Chi Minh City, Vietnam); South Asian ancestry: BEB (Bengali in Bangladesh), GIH (Gujarati

Indians in Houston, USA), ITU (Indian Telugu in the UK), PJL (Punjabi in Lahore, Pakistan),

STU (Sri Lankan Tamil in the UK). The American populations from the 1KGP have recent

admixture with Europeans [63], and thus are not suited for our analysis and were excluded.

Across the 22 populations the lowest sample size is 61 (ASW), so to minimise power differ-

ences among populations we randomly down-sampled each population to 61 unrelated

individuals.

We also used the genetic data from the 142 populations of the SGDP project dataset,

together with their meta-information (including geographic location) [41]. For the geographic

location, in the southern hemisphere we used the absolute value of the latitude. Most popula-

tions have high coverage whole-genome sequencing data for two representative individuals, so

we used two individuals from each ‘Panel C’ population with a sample size of at least two (110

populations).

Early Eurasian genomes

Ancient genomes were used to infer the frequency of rs10166942 T in different pre-historic

human populations. The genotype data from ancient paleo-eskimo individuals from the Saq-

qaq culture [64] were obtained from the Danish bioinformatics center. Data on early Europe-

ans [42] was downloaded from the Reich lab webpage. We transformed the binary eigenstrat

file to a vcf using eigenstrat2vcf.py and extracted the genotype information for rs10166942.

Age information was extracted from Supplementary Data 1 in [42]. After filtering, we were
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able to genotype 79 ancient individuals for rs10166942. These individuals lived in Eurasia

3,000 to 8,500 years ago and represent three different ancestry groups: Hunter-Gatherers (8

individuals), Early Farmers (33 individuals), and Steppe pastoralists (38 individuals).

Origin of the rs10166942 T allele

We inferred the likely place of origin for the rs10166942 T allele by analysing haplotypes carry-

ing the derived T allele, as levels of linked variation should be highest in the population closest

to the one where it appeared. Since no homozygous T/T individuals are present in several of

the 1KGP populations, we relied on the phased haplotypes across the 65kb region of interest.

We calculated pi after removing derived haplotypes with evidence of recombination with

ancestral rs10166942 C allele (S1 Table).

Latitude and temperature estimates

In order to investigate the correlation of allele frequencies with latitude and temperature, we

jointly analysed genetic, latitude, and temperature information. For modern humans, we esti-

mated the absolute latitude of the location of each population according to Wikipedia and

Google Maps (Table 1). The CEU population, of central European ancestry, was assigned the

coordinates of Brussels. For early modern humans, latitude information was extracted from

Supplementary Data 1 in [42] and updated when necessary (e.g., some individuals lacked geo-

graphic coordinates or had problems with the longitude/latitude information).

Temperature time series information was extracted for 2001–2010 from a 0.5˚x0.5˚ grid

matrix assembled at the Climate Research Unit of the University of East Anglia (version 3.23;

[65]). Data is available since 1960, but we used only the time series from 2001–2010 to guaran-

tee comparable and high-quality estimates across populations. Using the geographic coordi-

nates of each population we extracted annual mean temperatures.

Phylogenetic Generalized Least Squares (PGLS)

To investigate to what extent shared ancestry, latitude and temperature predict rs10166942 T

allele frequency in each population we used two different linear models. We first used a PGLS

analysis [40], which can account for the full phylogenetic signal (the population relationships)

present in our data [39]. The response variable is the mean derived allele frequency of the

rs10166942 T allele per population. We first conducted a null/full model comparison. The null

model contains only the shared ancestry information (the ‘phylogeny’); here, we used the full

pairwise FST matrix averaged across all positions polymorphic in that particular population

pair. Following Weir and Cockerham, we calculated the genome-wide average FST between

two populations as the “ratio of averages” (equation 10 in [49]). A neighbor-joining (NJ) tree

was calculated using a matrix of the pairwise FST values with the R package ape [66], and

rooted using ‘mid-point’ rooting with Archaeopteryx [67]. The full model includes additional

predictor variables: latitude and annual mean temperature. In order to achieve convergence of

the model we z-transformed each predictor. We excluded populations one at a time and com-

pared the model estimates derived from the subsets with those obtained from the full data set,

which revealed the model to have good stability. We assessed for the full model whether

the assumptions of normally distributed and homogenous residuals were fulfilled by visual

inspection of a QQ-plot of the residuals and residuals plotted against fitted values [68], which

revealed no issues with these assumptions. As an overall test of the effect of the two test predic-

tors (latitude and annual mean temperature), we compared the fit of the full model with that of

the null model [69] using a likelihood ratio test [70].
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We then performed a multi-model inference [71] to compare the null model and all possi-

ble models that could be constructed with the two test predictors (four models in total). To

quantify the relative performance of each model, we used Akaike’s Information Criterion

(AIC, corrected for small samples) as a measure of model fit penalized for model complexity,

and determined Akaike weights as a measure of the support a model received compared to all

other models in the set [71]. In practice, we use the Akaike weights to derive the 95% best

model confidence (comprising the truly best model in the model set with a probability of 0.95)

and also to determine Akaike weights for the individual predictors by summing the Akaike

weights of the models comprising them. To infer the overall relevance of predictors in the

model set we determined whether the null model was included in the 95% best model confi-

dence set [72]. The analysis was conducted in R [73] using the function pgls of the package

caper [74].

Generalized Linear Mixed Models (GLMM)

To be able to analyze both the 1KGP and the SGDP datasets (which has small sample size for a

large number of populations, so allele frequencies cannot be estimated) we also used a GLMM

[75] fitted with binomial error structure and logit link function [76]. This model conceptually

corresponds to a regression; however, it allows more flexibility with regard to the distribution

of the response (e.g., normality and homogeneity of the residuals are not necessarily required),

and it also allows us to effectively control for non-independence of the data due to multiple

observations of the same populations or individuals [75]. The response variable is the genotype

of rs10166942 in each individual, in a 2-column-reponse-matrix (the derived and the ancestral

allele counts). For the modern human genetic data, shared ancestry was controlled by adding

as an additional fixed effect the genetic distance between each population and YRI, measured

as the genome-wide average FST. Population identity was included as a random effect in the

model, to account for random genetic drift. We further included a random effect per individ-

ual to account for the non-independence of the ancestral and derived allele counts. The model

that includes all these effects is the null model.

To test for the effects of latitude and the annual mean temperature we included them as test

predictor variables with fixed effects. In the analysis of the early Europeans, we added age as a

further test predictor variable. For the comparison among models (multi model inference

[71]) we considered the null model and all possible models that could be constructed with the

two test predictors, totaling four models (eight in the early European analysis). We assessed

model stability as in case of the PGLS, which revealed the model to have good stability (S3

Table). Overdispersion was no issue (dispersion parameter of the full model in the 1KGP: 0.97

and the SGDP: 0.67). The models were fitted in R [73] using the library ‘lme4’ [77].

Signatures of local adaptation

Local adaptation on a single variant can lead to a rapid rise in the frequency of the positively

selected allele, resulting in strong population differentiation (measured for example by FST)

between the population(s) with positive selection and those without it. We calculated per SNP

FST with a custom perl implementation of the Weir and Cockerham estimator [49] for each

pairwise population comparison.

The allele under positive selection will rise in frequency together with its background haplo-

type, raising the frequency of linked alleles. When the favoured allele is young (e.g., under a

classic selection from a de-novo mutation model (SDN) hard sweep model), this results in a

signature of extended haplotype homozygosity. To test for such signature, we calculated iHS

[45] and XP-EHH [44] using selscan with default parameters [78]. For iHS, we used SNPs with
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derived allele frequencies higher than 5% and lower than 95%. For XP-EHH, we used SNPs

with derived allele frequency higher than 5% in the test population. These filters follow previ-

ously established methods [79] and prevent signatures of extended LD to be broken by rare

variants, while still obtaining XP-EHH values for derived alleles fixed or nearly fixed in the test
population. For both analyses, only sites with a high confidence inferred ancestral allele were

used (part of 1KGP genotype files). Recombination was estimated using the genetic map from

HapMap Project, Phase 2 [80].

All three statistics were calculated genome-wide, and P-values for SNPs of interest were cal-

culated based on the empirical distribution. Since both tests are sensitive for positive selection,

the tail of the empirical distribution is enriched for the targets of positive selection. Our analy-

sis is hypothesis-driven for the migraine risk allele in rs10166942, and, thus, no correction for

multiple testing is required.

Approximate Bayesian Computation analysis

To infer the selective history of the gene, we used an Approximate Bayesian Computation

(ABC) approach, which allows us to assess the probability of different evolutionary models

and their associated parameters [46]. Following [7, 50], we compared the genomic observa-

tions to simulations under three models with parameters drawn from uniform (U) prior

distributions. These models are: (I) SDN, where the selected allele appeared as a single copy

between 60,000 and 30,000 years ago (tmut~U(30,000, 60,000 years ago)) and was immediately

advantageous with a selective coefficient that was allowed to differ between the African (sA~U

(0,1.5%)) and the non-African (sNA~U(0.5,5%)) populations; (II) selection on standing varia-

tion (SSV), where a previously neutral allele at a given starting frequency (fsel~U(0,20%))

became positively selected (sNA~U(>0,5%)) in the non-African population after the out of

Africa migration and before the European-Asian split (51,000 to 21,000 years ago; tmut~U

(21,000, 51,000 years ago)); (III) fully neutral model (NTR), where the allele appeared as in the

SDN model (tmut~U(30,000, 60,000 years ago)) but was completely neutral.

We ran one million simulations for each selection model and 100,000 simulations for the

neutral model using msms [81]. Each simulation comprised a stretch of 185 kb with 122

chromosomes of an African (population 1) and a non-African (population 2) population.

Human demographic parameters followed the model inferred by Gravel et al. [82], and in

each simulation we analyzed the African population with one non-African population (in

Europe or Asia). To simulate the recombination hotspots across the locus, we simulated

extended regions with a length that corresponded to the local increase in recombination rate

above the baseline recombination rate (S12 Fig). These regions were then removed before

calculating summary statistics, such that they contribute recombination events but not muta-

tion events to the data. The baseline recombination rate was the mean recombination rate

across the locus excluding the peaks, based on a merged map from several 1KGP populations

(S12 Fig).

For the ABC inference we used five summary statistics: XP-EHH [44], Fay and Wu’s H

[47], Tajima’s D [48], FST [49] and derived-allele-frequency. XP-EHH and FST were calculated

between YRI and the studied population. We calculated the LD based statistic XP-EHH on the

selected allele using the entire simulated region. We calculated the statistics Fay and Wu’s H,

Tajima’s D, and average FST (across SNPs in a section) in both simulated populations on two

separate sections: the first section was the central ~65 kb part (since the genomic data shows

strong population differentiation across 65 kb), and the second section were the combined

flanking regions, together 120 kb long. We also used the allele frequency of the selected site in

the African and non-African population and its FST.
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As in the genomic data, for the XP-EHH statistic we required the variant investigated to

have a derived allele frequency> 5% in the test non-African population. The absence of a long

haplotype associated with the derived allele (XP-EHH) in the presence of strong population

differentiation is an important attribute to differentiate between the SDN and the SSV model

[83–85]. Thus, we used only simulations where XP-EHH could be calculated, which biased

minimally the previously uniform prior.

All summary statistics were calculated in the same way for the simulations and the real

data–where rs10166942 was used as a proxy for the selected site. The demographic history fol-

lows the [82] model. African demography was based on YRI, all European populations (CEU,

GBR, TSI, FIN, IBS) were simulated under the inferred European (CEU) demography, and

all Asian populations (CDX, CHB, CHS, KHV, JPT, BEB, GIH, ITU, PJL, STU) under the

inferred East Asian (CHB/JPT) demography. The ABC analysis was performed using the

ABCtoolbox on BoxCox and PLS transformed summary statistics (following recommenda-

tions for ABCtoolbox) [86] retaining the top 1,000 simulations matching our observation. We

used the first five PLS components as they carried most information for each parameter (S13

Fig). The PLS transformed statistics differentiate between the different models and capture the

variation observed (S11 Fig), rendering them well-suited for the inference.

We performed an additional ABC inference considering a halted SDN and a halted SSV

model (with all parameters as above, with the only exception that selection ceased 3,000 years

ago). Both power estimates and model selection were performed as described above. Lastly, we

also performed an ABC analysis with the four selection models (SDN, partial SDN, SSV and

partial SSV) to test our power to discriminate among them.

Supporting information

S1 Fig. Tissue expression of TRPM8 according to GTEx dataset. Known eQTLs are absent

in the region (RegulomeDB [60]), although the restricted expression of the gene may hamper

their identification. Because the gene is also expressed in prostate according to GTEx [61], we

investigated if rs10166942 affects expression in this tissue type. rs10166942 was not included

on the Illumina 2.5 M SNP array used to genotype the majority of individuals in this cohort, so

we used instead available tagging SNPs in high LD (in FIN; rs6431648 r2 = 0.73, rs4663990 r2 =

0.6, and rs917435 r2 = 0.6). Using genotypes and prostate RNA-Seq data from 62 individuals

from the GTEx cohort we were unable to detect allele-specific differential expression of the

whole gene and any of the exons, for any of the three tagging SNPs considered. We note that

we were unable to analyze TRPM8 expression in available basal root ganglion RNA-Seq data

(kindly provided by G. Gisselmann) from 21 pooled human samples (all European ancestry)

[62] because out of 20.1 million 75-bp reads, only 187 map to the 5,621 bp transcript RefSeq

NM_024080.4 (at ~2x average read depth).

(PDF)

S2 Fig. Protein-coding variants located in TRPM8. Three variants in close proximity to

rs10166942 (all with intermediate to low LD) are non-synonymous (rs7593557 S419N r2 =

0.28, rs13004520 R247T r2 = 0.06, rs17868387 Y251C r2 = 0.06), but they all fall in the N-termi-

nal domain of TRPM8 and are unlikely to affect protein function. There are no indels that

affect the open-reading frame of TRPM8.

(PDF)

S3 Fig. Pairwise differences among haplotypes carrying the derived rs10166942 T allele.

Distribution of pairwise differences of each haplotype carrying the rs10166942 derived T allele

(derived haplotype) with all other derived haplotypes within a population. We show one
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representative population for each continent: YRI (Africa), CHB (East Asia), GIH (South

Asia), and FIN (Europe). The marked boxplots (orange; median > 10) indicate haplotypes

putatively affected by recombination with the ancestral haplotype (carrying the rs10166942

ancestral C allele). These haplotypes have not only unusually large distances to other derived

haplotypes, but the alleles contributing to these differences are by large present in the ancestral

background (S4 Fig).

(PDF)

S4 Fig. Proportion of variants present on derived haplotypes likely due to recombination.

Y-axis shows, of all the variable sites (with median pairwise difference of 10 and higher,

marked in S3 Fig) present on the derived haplotypes (carrying the rs10166942 derived T allele),

which proportion of the alleles are also present in the ancestral haplotypes (carrying the ances-

tral rs10166942 C allele). The observed high proportion indicates that these derived haplotypes

most likely arose as a result of recombination with the ancestral haplotype. All populations

with at least one allele with a median pairwise count above 10 are shown (number of alleles

(N) in parenthesis).

(PDF)

S5 Fig. Neighbor-Joining tree for the 1KGP populations, based on the genome-wide FST

matrix.

(PDF)

S6 Fig. SGDP population overview. Map showing the geographic origin of each population

and its rs10166942 T allele count for the two individuals sampled (additional information Sup-

plemental Dataset 1).

(PDF)

S7 Fig. Latitude and age of each pre-historic European considered. Colour indicates ances-

try group: EF for Early Farmers (orange), HG for Hunter-Gatherers (blue), and SP for individ-

uals of Steppe pastoralist ancestry (red). The genotype of the ancient individual is indicated by

its symbol (. for missing data; 0 for homozygote ancestral; 1 for heterozygote; 2 for homozygote

derived). The legend shows the Pearson’s correlation of the allele count with latitude within

each ancestry group.

(PDF)

S8 Fig. Selection signatures across the TRPM8 locus. Empirical P-values for FST (blue circles)

and XP-EHH (grey diamonds) in the extended TRPM8 region in all populations analysed.

The position of TRPM8 is indicated by an orange bar on top, while the strongly differentiated

upstream region is between the two vertical blue lines. The red circle marks the FST value and

the red diamond the XP-EHH value of candidate variant rs10166942. Long dashed lines show

mean P-value for FST and XPEHH (blue and grey, respectively; largely overlapping), across all

protein-coding genes on chromosome 2 (ensembl GRCh37.p13).

(PDF)

S9 Fig. Linkage disequilibrium across extended TRPM8 locus. Haploview (https://www.

broadinstitute.org/haploview/haploview) plots for (A) CHB and (B) FIN across a +-20 kb

extended region surroundingTRPM8.

(PDF)

S10 Fig. ABC analysis with selection halted 3,000 years ago. Posterior probabilities for each

model and population.

(PDF)
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S11 Fig. Cloud plots of PLS transformed statistics. Scatter plots of all five PLS components

used in the ABC inference for Europe (A & C) and Asia (B & D). (A & B) PLS transformed sta-

tistics for the SSV model and their correlation with the three parameters associated with the

SSV model: s_time (time when selection started), s_strength NA (selection strength in non-

Africa) and frequency (frequency of the allele at s_time). (C & D) The PLS transformed statis-

tics for all three models (SDN in blue, SSV in orange and NTR in grey) and the PLS trans-

formed observations in all non-African populations (color scheme as in Fig 1).

(JPG)

S12 Fig. Recombination landscape across the TRPM8 locus. Recombination map based on

average recombination rate in two randomly chosen populations per continental group, to

avoid biases due to different numbers of populations per continent (YRI, LWK for Africa;

GBR, TSI for Europe; CHB, GIH for Asia). The TRPM8 gene is between the two blue vertical

dashed lines. The strongly differentiated region is between the two red vertical dashed lines.

All basepairs with recombination rates higher than 5 cM/Mb (horizontal dashed line) were

considered as being within a hotspot of recombination in the simulations.

(PDF)

S13 Fig. RMSE plots. Information contained within each PLS component for a given parame-

ter for all three models combined for (A) the European model and (B) the Asian model. t0

(time when selection started), sA (selection strength in Africa), sNA (selection strength in non-

Africa), fsel Africa (frequency of the allele at selection start in Africa), fsel Non-Africa (frequency of

the allele at selection start in non-Africa).

(PDF)

S1 Table. Linked diversity. (A) Diversity estimates measured by means of the number of pair-

wise differences for all haplotypes carrying the derived rs10166942 T allele. (B) Same as in A

after removing haplotypes with evidence of recombination (see Materials and methods and S3

and S4 Figs).

(DOCX)

S2 Table. Power results of ABC analysis with continuous selection. Power of ABC analysis

to correctly assign the model in simulations of European and Asian demography using 10,000

random samplings. TP (True Positive), FP (False Positive), and FN (False Negative).

(DOCX)

S3 Table. Model stability. Full model stability estimates for each fixed and random effect in

each analysis (original estimate obtained from the full data set and the range of estimates

derived from omitting individuals and populations (GLMM) or populations (PGLS), one at a

time). The small ranges around the original value indicate the overall good stability of the

model. Based on z-transformed predictor variables for the PGLS analysis and the GLMM anal-

ysis of the SGDP data.

(DOCX)

S4 Table. Power results of ABC analysis with selection ceased 3,000 years ago. Power of

ABC analysis to correctly assign the model in simulations of European and Asian demography

using 10,000 random samplings. TP (True Positive), FP (False Positive), and FN (False Nega-

tive).

(DOCX)

S5 Table. ABC results of the halted SSV model for each population. Bayes factor (measure

of confidence) and the resulting posterior probability (Post. Prob.) for the SSV model in each
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population, ordered by latitude. t0: time when selection starts; SNA: selection strength in non-

African population (ceased 3,000 years ago); fsel: frequency of allele at selection start. The

median of the posterior distribution of each inferred parameter is shown together with its 95%

confidence interval (2.5%–97.5%).

(DOCX)

S6 Table. Power results of ABC analysis to differentiate continuous selection and selection

ceased 3,000 years ago. Power of ABC analysis to correctly assign the selection model in simu-

lations of European and Asian demography using 10,000 random samplings. TP (True Posi-

tive), FP (False Positive), and FN (False Negative).

(DOCX)

S7 Table. Migraine prevalence and derived allele frequency. Migraine prevalence per coun-

try gathered from Stovner et al. [57]. When multiple samplings per population were available,

mean migraine prevalence or mean DAF reported. Pearson correlation between DAF and

migraine prevalence: rho = 0.61 (p-value = 0.11).

(DOCX)

S1 Dataset. Overview SGDP data. For each individual used from the SGDP ‘C Panel’ the ID,

population, continent, rs10166942 ancestral and derived allele count, latitude, longitude and

mean yearly temperature are given.

(TXT)
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62. Flegel C, Schöbel N, Altmüller J, Becker C, Tannapfel A, Hatt H, et al. RNA-Seq Analysis of Human Tri-

geminal and Dorsal Root Ganglia with a Focus on Chemoreceptors. PLOS ONE. 2015; 10(6):

e0128951. https://doi.org/10.1371/journal.pone.0128951 PMID: 26070209

63. Gravel S, Zakharia F, Moreno-Estrada A, Byrnes JK, Muzzio M, Rodriguez-Flores JL, et al. Recon-

structing Native American migrations from whole-genome and whole-exome data. PLoS Genet. 2013; 9

(12):e1004023. https://doi.org/10.1371/journal.pgen.1004023 PMID: 24385924

64. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, et al. Ancient human genome

sequence of an extinct Palaeo-Eskimo. Nature. 2010; 463. https://doi.org/10.1038/nature08835 PMID:

20148029

65. High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901- Dec. 2014). [Inter-

net]. 2015.

66. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinfor-

matics. 2004; 20(2):289–90. PMID: 14734327

Human local adaptation on TRPM8

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007298 May 3, 2018 21 / 22

https://doi.org/10.1038/nature08835
https://doi.org/10.1038/nature08835
http://www.ncbi.nlm.nih.gov/pubmed/20148029
https://doi.org/10.1038/nature06250
https://doi.org/10.1038/nature06250
http://www.ncbi.nlm.nih.gov/pubmed/17943131
https://doi.org/10.1371/journal.pbio.0040072
http://www.ncbi.nlm.nih.gov/pubmed/16494531
http://www.ncbi.nlm.nih.gov/pubmed/12524368
http://www.ncbi.nlm.nih.gov/pubmed/10880498
http://www.ncbi.nlm.nih.gov/pubmed/2513255
https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
http://www.ncbi.nlm.nih.gov/pubmed/28563791
https://doi.org/10.1371/journal.pgen.1003011
https://doi.org/10.1371/journal.pgen.1003011
http://www.ncbi.nlm.nih.gov/pubmed/23071458
https://doi.org/10.1126/science.1172873
http://www.ncbi.nlm.nih.gov/pubmed/19661421
http://www.ncbi.nlm.nih.gov/pubmed/7869073
https://doi.org/10.1375/136905203770326420
https://doi.org/10.1375/136905203770326420
http://www.ncbi.nlm.nih.gov/pubmed/14624726
https://doi.org/10.1111/j.1468-2982.2007.01288.x
http://www.ncbi.nlm.nih.gov/pubmed/17381554
https://doi.org/10.1212/WNL.47.1.52
http://www.ncbi.nlm.nih.gov/pubmed/8710124
https://doi.org/10.1186/s13059-016-0974-4
http://www.ncbi.nlm.nih.gov/pubmed/27268795
https://doi.org/10.1101/gr.137323.112
https://doi.org/10.1101/gr.137323.112
http://www.ncbi.nlm.nih.gov/pubmed/22955989
https://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
https://doi.org/10.1371/journal.pone.0128951
http://www.ncbi.nlm.nih.gov/pubmed/26070209
https://doi.org/10.1371/journal.pgen.1004023
http://www.ncbi.nlm.nih.gov/pubmed/24385924
https://doi.org/10.1038/nature08835
http://www.ncbi.nlm.nih.gov/pubmed/20148029
http://www.ncbi.nlm.nih.gov/pubmed/14734327
https://doi.org/10.1371/journal.pgen.1007298


67. Han MV, Zmasek CM. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioin-

formatics. 2009; 10:356-. https://doi.org/10.1186/1471-2105-10-356 PMID: 19860910

68. Mundry R. Statistical issues and assumptions of phylogenetic generalized least squares. Modern phylo-

genetic comparative methods and their application in evolutionary biology: Springer; 2014. p. 131–53.

69. Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect

sizes and the winner’s curse. Behavioral Ecology and Sociobiology. 2011; 65(1):47–55. https://doi.org/

10.1007/s00265-010-1038-5 PMID: 21297852

70. Dobson AJ, Barnett AG. An Introduction to Generalized Linear Models Third Edition Introduction. Ch

Crc Text Stat Sci. 2008; 77:1–+.

71. Burnham KP, Anderson DR. Multimodel inference—understanding AIC and BIC in model selection.

Sociol Method Res. 2004; 33(2):261–304. https://doi.org/10.1177/0049124104268644

72. Mundry R. Issues in information theory-based statistical inference-a commentary from a frequentist’s

perspective. Behavioral Ecology and Sociobiology. 2011; 65(1):57–68. https://doi.org/10.1007/s00265-

010-1040-y

73. Team RC. R: A Language and Environment for Statistical Computing. 2016.

74. Orme D. The caper package: comparative analysis of phylogenetics and evolution in R. R package ver-

sion. 2013; 5(2).

75. Baayen RH. Analyzing linguistic data: a practical introduction to statistics using R. Cambridge, UK;

New York: Cambridge University Press; 2008. xiii, 353 p. p.

76. McCullagh P, Nelder JA. Generalized linear models. 2nd ed. Boca Raton: Chapman & Hall/CRC;

1998. xix, 511 p. p.

77. Bates Douglas M M, Bolker Ben, Walker Steve. Fitting Linear Mixed-Effects Models Using lme4. Jour-

nal of Statistical Software. 2015; 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

78. Szpiech ZA, Hernandez RD. selscan: an efficient multithreaded program to perform EHH-based scans

for positive selection. Mol Biol Evol. 2014; 31(10):2824–7. https://doi.org/10.1093/molbev/msu211

PMID: 25015648.

79. Grossman Sharon R, Andersen Kristian G, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, et al. Identifying

Recent Adaptations in Large-Scale Genomic Data. Cell. 2013; 152(4):703–13. https://doi.org/10.1016/j.

cell.2013.01.035 PMID: 23415221

80. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human

haplotype map of over 3.1 million SNPs. Nature. 2007; 449(7164):851–61. https://doi.org/10.1038/

nature06258 PMID: 17943122

81. Ewing G, Hermisson J. MSMS: a coalescent simulation program including recombination, demographic

structure and selection at a single locus. Bioinformatics. 2010; 26(16):2064–5. https://doi.org/10.1093/

bioinformatics/btq322 PMID: 20591904

82. Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG, et al. Demographic history and

rare allele sharing among human populations. Proceedings of the National Academy of Sciences. 2011;

108(29):11983–8. https://doi.org/10.1073/pnas.1019276108 PMID: 21730125

83. Przeworski M, Coop G, Wall JD. The Signature of positive selection on standing genetic variation. Evo-

lution. 2005; 59(11):2312–23. https://doi.org/10.1111/j.0014-3820.2005.tb00941.x PMID: 16396172

84. Sabeti PC, Schaffner SF, Fry B., Lohmueller J., Varilly P., Shamovsky O., et al. Positive Natural Selec-

tion in the Human Lineage. Science. 2006 June 16:1614.

85. Hermisson J, Pennings PS. Soft sweeps molecular population genetics of adaptation from standing

genetic variation. Genetics. 2005; 169(4):2335–52. https://doi.org/10.1534/genetics.104.036947 PMID:

15716498

86. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L. Abctoolbox: a versatile toolkit for

approximate bayesian computations. BMC bioinformatics. 2010; 11(1):116.

Human local adaptation on TRPM8

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007298 May 3, 2018 22 / 22

https://doi.org/10.1186/1471-2105-10-356
http://www.ncbi.nlm.nih.gov/pubmed/19860910
https://doi.org/10.1007/s00265-010-1038-5
https://doi.org/10.1007/s00265-010-1038-5
http://www.ncbi.nlm.nih.gov/pubmed/21297852
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1007/s00265-010-1040-y
https://doi.org/10.1007/s00265-010-1040-y
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1093/molbev/msu211
http://www.ncbi.nlm.nih.gov/pubmed/25015648
https://doi.org/10.1016/j.cell.2013.01.035
https://doi.org/10.1016/j.cell.2013.01.035
http://www.ncbi.nlm.nih.gov/pubmed/23415221
https://doi.org/10.1038/nature06258
https://doi.org/10.1038/nature06258
http://www.ncbi.nlm.nih.gov/pubmed/17943122
https://doi.org/10.1093/bioinformatics/btq322
https://doi.org/10.1093/bioinformatics/btq322
http://www.ncbi.nlm.nih.gov/pubmed/20591904
https://doi.org/10.1073/pnas.1019276108
http://www.ncbi.nlm.nih.gov/pubmed/21730125
https://doi.org/10.1111/j.0014-3820.2005.tb00941.x
http://www.ncbi.nlm.nih.gov/pubmed/16396172
https://doi.org/10.1534/genetics.104.036947
http://www.ncbi.nlm.nih.gov/pubmed/15716498
https://doi.org/10.1371/journal.pgen.1007298



