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MECHANICAL AND HYDRAULIC PROPERTIES OF ROCKS
RELATED TO INDUCED SEISMICITY

by
_ Paul A. Witherspoon, LawréﬁcevBerkeley Labofatory and
Department of Civil Engineering, University of California, Berkeley
~John E. Gale, Department of‘Civil Engineering,
Ugiversi;y of Califorqia; Berkeley*

ABSTRACT

The méchénical‘and hydraulic propertiés ¢f fréctured rocks are
considered with regard*té the tple they play infihduced seismicipy.
In méﬁy'éaseé; the mecﬁanicai properties of fraéﬁures determine the
stability df a rock mass. The pfoblems of sampling and testing these
rock disébhéiﬁuities and’ihtéfbréting their non4line§ribehaviof are
feviewed.:'Stick'slib”hasvbéeﬁ proposed as the failure mechanism iﬁ
' earthquaké'eQénts. Because of the cqmplex interactionsvthaf are inherent
in the mechanical behavior of fractured rocks, there seems to be ﬁo'simple
wéy to combine fhévdeformétion characteristics of sevéralvéets of fractﬁres
when thefe are significant perturbations of existing cénditions. Thus,
the morevimportant fractures must be treated as.individual componénté
in the rock mass. | o

In ;onsidefing the hydréulic'proﬁerties, it has been customary to
. treat a fracfufe as é paréllel—pléte~condﬁit and a number of mathemétical
models of fracture systems haﬁe adopted this appfoach. Non-steady flow

in fractured systems has usually been bésed-on_a two-porosity model,
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whiéh assumes tﬁé priméry (iﬁtergranuiar) porosity'ééﬁﬁrib@tes‘only fo
storage and ﬁhé éecdndafy (fracfure)'poroéity'contribﬁtes dnly to the
overall_condﬁcﬁivity. Using such a modél; it has'Béehijund thatAthé'
time requirea t9_achieVe‘quasi—steady state flow in é fractured'reservoir
isvone or two or&érs of‘mégnitude greater than iﬁ is;ig_a.hombgeneous
system. IniesSéﬁtially}all of this work,‘thevassuﬁp;ion ﬁas geﬁerally

been made that the fractures are rigid.

. AN

However,bit is ciear'from a,reviéw of thé meéhaniéal‘andvhyaraﬁlic
propérties'thatfnot only are fractures:easily'deforMed;but they constitute
the main fléW §$£hs in many rock massés. This means thét one must
consider'the:iﬁtéractioﬁ of mechanical and hydraulié effécts. A coﬁ—
'siderablé amoﬁntgbf laboratory and field data is n;w gVéiiable‘that
_c;early_demonéftafes this stress—flow beha§i§£{_ T&g approaches have
been used in,agfémpting to numeriéally model such behaﬁi&r: (1) con-
tinuum models aﬁd (2) discrete models. The continuuﬁ éproéch onl§
needs'informafiéﬁ as_to.aVerage'values of fractureiségéing and:material'
préperties. 'Eﬁg because of tﬁe inherent_complexity 9f fractured rock
ﬁasses and'thé;ﬁdrresponding decrease in éymmetry,:ét.is difficult to
develop an eqpi&alent continuum that will simulate_ghé behavior'of the
entire Syste@; “The discrete approach, on the other"héqa,'requires aétails
‘of thé_fractﬁ%éiggdmetry and material properties df‘botﬁ ffacturés and
rock matrix. :ihé,diffibulty in obtaining such iﬁforﬁation.hés.bgen
considered é serious limitation'of diécretermodels,fbﬁt improved Borehéle
techniques c;h enable one to oétain'fhe necessary dgta, at least in.shallow
syétems. The;poésibility of extending these methods to deeﬁer frdéture
systems needs‘mofe investigation. Such data must be E6ﬁsidered whep

deciding whephefato use a continuum or discrete model to represent the
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interaqtion éf rock and fluid forces in a‘fractﬁred rockvsystem, gspecially'
:wiqh regéfd to the problem of iﬁduced seismicity. When one ié attempting

to altéf thé'préssufe distribution in a fault zonelByvinjection or with-
drawal of-fluids, the extent to.which this can be'aghieved will be controlled
in'lafge @easure by the behavior of thé fracturés that communicate with the
boreholé; Since this is essentially a point phenoména, i.e. the changes.

will propagate from a felativélyvsmall region around the borehole, the use

of 'a discrete model would éppear to be.preferable.



-

_ INTQODUC;IION
| In considering the'heéhanical and hydraulic proééfties'éf rocks in
relatibh'to the concept of induced seismicity, one im@ediately ﬁhst'
recognize that fock masses consist of 5t least tworéub—domains:'-<l)
the iﬁtact_fogk blocks'and (2) tﬁe discontinuities,i In ﬁhis review,
we will uSuaily réfer fo these’discontinuitiesvas~fr;ctures,vélthoughﬁ
‘this term couid algo mean faults, joints,.%issﬁreé, efc. It is
_geﬁgfaliy'recognizéd by workers in the.field of roék mechanics that
'the,intéqt blocks and the fractures can have cohsidefably differeﬁt
mechanical ana hydfaulic properties. In many cases the mecﬁanical
_pfoperties of fractures determine the stability'éf a tock‘mass_(Jaeger,
111971). .The preSencé of'ffactures on Outc:ops-énd in_deep'miﬁes indicates
o that_ftacturgs are a pervasiQe featﬁrevof the earth's crgét although
'their‘ﬁechanical andvhydfaulic propeftiés vary copéiderably with'dépthx

‘and rock type.(Brace, 1974; Bishop, 1974);-

" In the United States where seismicity has been detected as a result

 0£ human activities at the Rockf'Mountain Arsenai Wéll near Denver (Lane,
l969) and in the Rangely>oil field in_ﬁesterﬁVColorado (Raleigh’et:al.,
1972),:the changes in stress due to pbrewgter preésure Qériétibns‘were
"dn1j>a'smallIfractionfof the'combressive strength of-thé rock. In -
additiqn; the sﬁressvchangeé were baSicaily'chaﬁges in.effective Stress
not t6tél étressQ Thus, it has‘been.suggested that'fhe movements pro-
‘ducing'the égismi; activi;y-ogcurred'not through the breékage of.intact

'rock'but along pre—éxisting faultvof fracture planés (Lane, 1969;

- ; Raleigh et al., 1972). There may also be breakage along planes of

‘weakness that_consist_of a combination of fracture planes and the



'.intervening fbck.bridges (Lajtai, 1975).

Invfhié review, it is assumed'that existing fractures are the paths
along which failure occuré'}n‘regions"Of induced seismicity. Therefore,
thg méchénicai and hydraulic propertiés of fractures will be presented
rather .than the.propétties of the intaCtWroék blocké themSélVeS; For a
disédésioﬁ-bf-thé'Behévior_of ihtact_rqék under failure COnditioﬁs, the
reader is reférfed»to Brace et al. (1966); Bieniawski (1968); and Jéeger
and Cook (1969)." o

;,zwhile.ihtact roc?s_havg been'inVestigated in some detail, the
meéhaniééi aﬁd h&draulic.propertie; of fractures have only récently
béén the‘éuﬁject of detaiied investigations. ,I;';s_impossible, within

the scope of this review paper, to summarize. the mahy attempté, both-

)

thgo;etiqal.éqd,expérémgntél,‘;hag have been mdde.to éhafac;erize the
mecﬁanical behaViour 6f ffacturés and ffacture systeﬁs.  Hence;vthe_'
major_papets describing work onwthe_mechan;cal propert;eé of fractures
have beén peﬁiewedf» The selection of'thesé paperé represents our own

bias and the prominence of the material in the published literature.

. MECHANICAL PROPERTIES OF FRACTURES i | oo
SamEliﬁg ) |
| Althﬁugh it is relatively easy.to obtain samples 6f intact rock,
it is”very'difficult to Obtain'undiéturbed éamplés of roéks containing
naturalrffactures for laboratory testing purposes. Goodman (1974) des-
‘cribes fhe different mefhods used Eovﬁbtéin.samples‘Of natufal fractures.
These methods consist of.(l) preBolting‘and ovércérihgvperpendicﬁlaf to:.
thg‘fracture plane; and (2) cutting évbloék 6f frééﬁured rock either
':with a wire saﬁ or byfcoﬁneCting boreholes, cementingbthe rock block ; 

together,‘and-cdtting appropriate.samples with a diamond saw after the
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'sample has been tfanqurted to the labofatory. Ineadditidn, relatively
good eampies of fractures can be obtainee by drflling.parailel to the
fracture plane (Goodman, 1970)‘, brilling at an englefto fhe’fractere
plane can preduee reésbnabiy goodvsamplesjif enough-cere is exercised
in fhe drilliné.opefations. . | |

- Because offthefdiffiCﬁlty in obtaining samples containing natural'
‘fractﬁree, ményfﬁorkerszuse arfificially created'fneetﬁreS'obtained by '
either spllttlng or sawing a rock . block‘ The rough teneioh fracfures
obtalned by" Spllttlng are repreeentatlve of the sufface foughness of
some natural frectures. The saw-cut surfaces represenf a somewhat
idealized fracfﬁfe sufface but.are,usefulvin etudiee.that attempt:tos
separate the_frietional3propertiesLof the rock fromffhe edded strengfh
end compleXity:afforded:by the'interlecking_ésperities:Qn fough surfaces.
(Coulson, 1970); | | :

Thus, onlyrfréctures et.or near the.surfaee have been eampled and
tested; At the depths et;which most induced seismicity‘has been detebfed;
vef§ litflefiekaOWﬁ.abeut‘the character of-the fraefefe‘Surface butbit
is logical to_esseﬁe thaf fhe mechanical-character ef eucﬁ.fractﬁree
lies befween?that'measured_dn ffeSh unweathered aftifieial fteétures
and the highly Weetﬁefed.fractﬁres obtained at outcrofsy The ﬁresence
. of gouge in the fracture is an addltloeal factor to be con51dered
(Goodman,'1970;'0hnishi; 1973). Patton (1966) and Barton (l97l) have
used aftfffciaiiy‘cfeated surfaces of plaster, etc. to study fhe effect
of suffaee rouéhﬁeseeon shear strength. The diffefeetnfricfional?
charactefistfce of such meterials may make'it_dffficuif\to ebﬁbafe the -
fesf:resultg toethose'OBteined from tests on rock‘surfeees (jaeger, .

1971).»“Barton'(bersoﬁal communication, 1975) avoids this criticism



by recognizing that_while.:he physical propertiés of hisrmodel materigi
are relatedvto the physical properties.of rocké by one parameter, phé
stréssesvdeveloped in the model are related to the stregses-in the rock
mass by a diffe:ent parameter. Jéeger (1971) has giQén_an excellent
review Qf the different types of natural and ér;ificial materials that

have been used in studies of fracture surfaces.

Testing Methods

'Jaegér‘kl9il) reﬁiéﬁed the different méthods that have beén used
to study the'sliding ofbroﬁk éﬁrfécgs. The tests most épplicéblekto
studiesgof‘ffacture chéracterisfids (Figﬁre.l).ére: (a) triaxial teéts
(Jaeger;'1959)‘Where a cylindrical samples with a joint or sawcut is
inclinéd at a’suitablé‘angle‘to thé'cyiindef'axis, (b) direct sﬁear' .
tests.(KrsmaﬁOQic, 1967; Lo;her, 1968; Hoek'and Pentz, 1969 ; Goodman
and "Ohnishi, 1973) where either a constant normal sfréss or a constant
normal displacement islmaintained_while'the shear‘éfféss is.incréasgd
to produce shear displaCemgpt along a pre-existing fracgufe, and (c)
insitu shear tests (Rocha, 1964; ZeinKiewicz and étagg, l966; Pratt
‘et al., 1974a; Franklin et al., 1974). i

Each test has cértain advantages and disadvantages. The results
‘of triaxial tests are dependent éﬁgthe saﬁple endsvbéing free from .
hOrizqntai éoﬁstréints. " As shear dispiacementvqccuré there is a'cbn—,
tinuous decréase in contact area and tﬁis must be ﬁaken into account
(Rbsengren, 1968) . Both thé normél.and\tangential displaéementé cahM_
be obtainéd ipdirebtl& by'meaéﬁfiﬁg'axial andhlateral'displééemepts and
- rock stfains during.the test and then performing the necessary calcula-

tions. The direct shear test gives’ both normal and shear diéplécements

\
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‘Fig. 1. Schematic,of fracture testing methods:

(a) triaxial, (b) direct shear,
(c¢) insitu shear.




directly as well as the:rélationéhip_betﬁeén'normal and shear stress..
Most'réséérchers'haQe maintained éppréximatély a constant normal load
during dirébt shear tests bﬁt this wiil iéad'to a low estimate of
sheaf‘strength in situations where plane st:ain.boundary'conditions
exist (suéhvboundafy conditions should exist in areas of slip along
verticﬁl,br’ﬁear verticéliboundérieé); .In éuch.caééé it would be more
appropriate tb»use a constant normal displacement condition; as.
suggested. by Locher (1968). : |

Insitu”Shear tests have the advantage of a largé sample area and
'direét testing of tﬁe fracture. One diSadvantagé is the high cost, and
because of the loading mechanism there is some quéstion'about the uniformity
of stress distribution within the fracture plane. Pfatt et al. (1972)’have
‘used specially constructed flatjacks to control boundary conditidns in a
field study of aftificial fracture surfaces. More recently, Pratt ét al.
(1974b) used the same syStem-to study?thevinsitu‘feépénse of a large
-block (3 mx 3 mx 3 m)1 of naturally fractured granitié rock under both
uniaxial and biaxial logdihg conditiéns.'

The scalé of the-ffactu;e specimeﬁs fested wiil depend on the
availability'of‘equipment'and costs. - But, as shown by Bernaix (1969) :
vana Pratt et al.'(l974b), the best approach is one in which sampies of

the rock mass are tested both insitu and in the laboratory.

1The followingbconveréions to the metric system may be useful:
Length:  1.m = 3.281 ft = 39.37 in.

Pressure: 1 kg/cm? = 0.9678‘atm =0.9807 bars = 14.22 psi
. =9.807 x 10* n/m®. , -



Results of Tests on Fracturés

The resuipé'of laboratory tests are generally.reﬁqrted in terms
of fracture.stiffneSs - force per unit.displacément (Go6dman'et al.,
1968), Generéliéed’curVéé for the normal and sheaﬁ é;?ffnésé af a.
frécturé'are‘giQén in Figure§”2'énd 3. Frém-Figufé_Z it‘can bezseen
that'a’sﬁfaight line approximatioh-tbithe normal displaceﬁent curve
results in alnbrﬁglbstiffﬁess value Ky that ié highiyfdépendent on
‘the existing $té;e of stress. | . ; 

'Ihe norﬁg%:fdrce—nofmal displacemen;.curve'on Fié;re 2:has been
described asﬁbéiﬁg sémifiégarthmic (Shehata, 197l)u;nd bibsely approx-
ima;ed by a hjpefbéia (Goodman, 1974). Snow (l972;;§ﬁgéests:suéh non-
linear ggrveslﬁéyibe éppropriate for fvirgiﬁ"‘fraciﬁgeé‘thatvhéve ﬁoﬁv
ciosed‘beféfg? ;Snow refers fp unpublished data by Sﬁehé£a that iﬁdicétes
essentially”linéér deforﬁabiiity:with repeated lbédiﬂg;below;édme pre-
_vioﬁsly aftaiﬁéd méximum load. Gale (1975) found.tﬁatiééen.ﬁith_sfiff
saw-cut fractgfesvin é_large>(~l m) diameter graniﬁé_céreAthe
_nonlineariﬁy.peééiéted with:repééted loading (Figu?é 4>;

Und;ubtgdly; the=n6nlinearity of the normal.férQéeaisplaCement'
curve is relégéatto the percentage of‘thé twé'fractufé sﬁrfaEeé that
érg-intially'fﬁ_contact;\fAs a rule, fractures once-opeﬁlwill notlfit
perféctly béég;togéthervagain and will tﬁus éxhibit.sdme degreé‘ofi

: ﬁonlinear‘normalffdrce;displaqement behaVior. Stréss—étrain daté
from a lérge field test'(Pratt‘et éi., 1974b) showé;#hé felétive .
Contributionito the thal:displacemént fiéld of-thé fréctures,:miéro—
.crécks and thé.intact fock (Figure 5) as well as tﬁé §0niipeaf ﬁature

of the normal fbrce—displacement curve.,
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'»The shear:férce4shear diéplacement.curVe (Figufé 3>; Based 6n a
- constant normélfsﬁress, consists of three parts: (1)‘aﬁ inifial linearv
section With é §héar’stiffness Ks reaching, (2) a péak'éhegr strength
fol&owéd by,_(3§;a residual shear strengfh conditioh.  Aé_$hown Ey Jaéger

S of specimens with fresh -ground surfaces is

»(1971) the ShééfiétiffnéSS'K
independentldﬁ'the normal stress (Figure 6a) but teéts;éh fhe same mater-
ial with”rough q¢fn'surfaceS showed that in such cases fhe Shéar stiffness
.appérently deéends 6n the normal stress (Figure 6b) . |

s indicaféavin Figures 3 andv6 theapeak sheartéfrength and the
residual'shearlsgrength afe dependent on’ the magﬁit?denof the_applied
hdrﬁélrforce?  Bé§ed on a review‘of shear strength'da£a énd his- own
experimental:Wka on'fracfures,bBérton (1974) states ﬁhat;while peak -
: shear-sﬁfengtﬁziéﬂlafgely'dependent on the effective:ﬁofﬁai stress
>acting across‘the;fracture,'it is aléo sensitive toitﬁéldegree of
surface-roughnééé; compressive strength of the rock; degree of Qéathering, ﬁ
: miﬁeralogy, énd!ptesence or absence 6fbwatér. 'A1é6; £hé fatiQ of fhe-
peak shear strenéfh to résiduél shear strengthvis déﬁgﬁaent dn-the |
magnitude 6f-thé normal load, the size .of thé.ésperitiés;in the
fracture.plané, the'ratiolof static to dynamic friction; préseﬁce or‘
abséhce'of filiiﬁg.matefial, and the néture of the boup&ary:conditioné 

(constant normal force or constant normal displacemeht)i

"As:péiﬁtéaloufv5§'Goodmén'(l974), thé reéidualfstrengfh of:foﬁéﬁ.
clean fractureétgfadually‘approaches the peak Shear éﬁ?énéth of the
fractuie witﬁ_ingréaéiﬁé nbrmai lqad; For filled‘fra¢t£res_the étréss%
_defprmétiqﬁ cp£vg pesembleé that of clay withfa'poqriyiaefiﬁﬁd peék and
cbnfinuo@s cﬁ??étﬁre.i At constant‘normél.load,'jaégéf‘(i97l) reporfs a

.tbe peakvshéar;sﬁfength app;oachés the résidual'sheéi;strength'with:"
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frictional force with displacement for a tensile

‘ fract@re in Bowral trachyte; area 0.00332; normal load 612.3
- kg (after Jaeger, 1971). : o
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increaéed Véé:;@f‘the fracture surface és shbwn in'Figufe 7.v The
-fraéﬁure sﬁffééés were_cleaned'and remated aftervdel,m'of displacef
‘ment'and theﬁ;ﬁhé'éhe;r test-fepeatéd. The ﬁumbef;:oﬁithe curves
refef to thé'Seqpential order of ghe'test.‘

Figuré‘3 ﬁémoﬁstrétes thg‘effec£ of eitﬁér a goésfant nbrmal
.str853.or 5 56ﬁ§tént'normal.displédement bquqdaryaédﬁdition_oh the
'éharacter offt£é‘shear—deformation curve. The‘chéqge‘in nofmal'dié—-
placement'éﬁd ﬁormalvstress in Figures 8a and 8b indiéates thevdilataﬁt:
natureiof nat@f;l fractureé..'Tﬁe diiatancy'of nafutél fractures is
vdepehdent §p tHéumagﬂitude of the normai stress.fo66dman and Dubois -
»(1972) haveféhoﬁn that at_low‘normal;stresses_fragéﬁ}é;'open (diiaté) -
- dufing.Sheéfﬂdisplécémgﬁt but close‘(confraét)‘underfﬁigh_normal
étreséestv'oﬁﬁ;éhiuénd Gobdman (1974) fouﬁd.that réugh.fféétutes in,.
samplés of?gréﬁife,_rhyoiite and friable'sandétonéyailate.sigﬁificaﬁtly.'
during,shear whéé'fhe.ndrmal stress”was le$s thgn,Zd;pércénﬁ ofvthe_
unéonfinéd gémﬁression,strength of thébintact rock;f Dilata@c& is a
resuit of tﬁe:réughpééé of the fracture wall‘but fotation caﬁ also be
a éontribﬁting factof (Goodman, 1974) at -least in thevféilure‘df rock
.slopes.. | -

Reﬁgers_<ié70) in summarizing the work of Paﬁfdﬁvt1966) hastreparéd
1Figuré.9 tpldéﬁénstfétevthe influence of'gurface roughéss oﬁ_the‘effec; 
tive aﬁéie §f1ffi¢£ibn and henée on the_shear stréﬁgthlof the'f?acture;
 .AS1Sh0Wn‘in'Figuref9 the éffective‘friétionvangle étﬁié&_nérmal étfeSséé
includeé bogﬁ&fﬁé frictién'of the‘sﬁoothysurfaceél(liné_i)'énd"the j "
;effeqﬁé of tﬁé aéperitie§ (line 2), ‘Whén ﬁﬁe nérmal §£fess is;inéreased
fovthe poiﬁ# Whé?élshearihg occuré'through tﬁe_aéperiﬁies, fhe normal

- stress-shear stress relationship is governed by an angle of internal

i
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| friction'(iinéﬁ3); vThus?>Patton propo;ed é bilineér CQéstitutiVé model
Qhereas the‘cbﬁétitdtive relationships of Ladanyibéﬁa Afdhambault-(1970)
and Bafton (1973; 1974) resulted in non-linear stfégs;§#réin_ehveiopes.
The bilinear médel_may be accurate enough for most situatiohs; but the
constitutiVé model proposed by Barton (1973) permiﬁs one to predict the
peakahear‘Stféngth from measured parameters and té'éxtra?olate;shear'
strength vélue;:from a limited number of tests., The:USe of the -
bilinear model'sﬁggestsra cohesion factor (C.1in Figui§;9) whereas the
use of a cohééion intercept at low or zero normal stre?s would be
iﬁadmiséiblé»%i%ﬁ é non-linear model (Barton, 1973). . This obséfvation
is cbnéistent wi£h the no-tension-strength charactéfisticé éf most

fractures.,

Failufé Meghénié@sfjb

| .Some reééarchers (Byerlee; 1967; Byerlee and Bféée;'l968, Dieteriéh,
1972; among‘btheré) Beligve tﬁat thé unstable slidiﬁg §hich écéurs at
high normalisﬁrééses:due to sheariﬁg‘thféughbphe aspefitieé'is_a
possible earfﬁdugke mechanism. This unstable slidipg;lrefefred to -
,as'"stick—siié“ iﬁ-the iitérature, has been descriﬁed'by'Jaeger (1971)
using a-simpie1ﬁechahicél model (Figure 10) . Jaegefvéésumes that the
coefficient‘indynamic‘friction u! is'éonstant‘and”ieés'thaﬁ ;hat of
stéﬁic frictﬁpn‘u: ‘A normal force W is applied to a ﬁasSIM} Auspring
’ dfvcdnstént k is aﬁtaqhéd to the>mass.ﬁ with its frée‘éhd_mdving‘at.av.
constant'Véloéif?,vﬁ; When the éﬁergy ;tored iﬁ-tﬁe Sﬁfiﬁg ié
suffidient‘to QQerCéme'the férce of static.frictioﬁgthé'ﬁass{M wili -

: slip. When>éiip”occurs the‘frictional force. is contfélled by_the :

dynamic coefficient of friction and hence the mass M willZSlip at a
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ﬁuch greater:velbcity fhén the velocity v of thé.fréé.end of spring.
With sufficient displacemgnt of the maéé M in the directiop of the
spring movement, the energy stored in the spring wi}i be'aecreased
bélow that required to'méintain slip. TheAmass.M wili stop, static
friction will.be¢ome effective and the proééss’wiil Bé febeated.
This intermittént tybébof slip With,the aSsbciated.éééillétipn.éf
forceébinrthé-sygtem has been observed in expérimenpé'én ﬁnfractured
. granife with saw—cﬁt surfaces (Nur, 1974).

It is obvidgé.from the examples of the frabture'tésts discussed
here ﬁhat ffécfurés respond in many compléx and nonlinear patterﬁs to
.changing loading.éonditions; Some authors have a;temptgd to use the
characterisﬁi¢§ of fhe fréctﬁrevsystem to Construct:ééuivalent coﬁtinuum
models (Goodman and Duncan, 1971). This approach hés‘béén ﬁéed_by
Rinéy et al. (1973) to construct -computer models'for gréundvmotion'
prédictioﬁs. Itfis intereSting to note that Goodman:(l974) ;tates
that an "equivaleht orthotropiévmedium cannot be constructed to fairly
represent the deférmability of'régﬁlarLy jointed rogkf.bgcéuée;' (D

;tﬂe normal deforﬁationvof the_fraétures is heavily strééé dependéﬁt,
(2) the dilatancyzand ﬁode‘of shéar deformation~depepd on the sigp
ofvthe-shear StféSS,as well as the magniﬁude oﬁ the qqrmal stréss,
,(3) dilatancy rédﬁceé the elastic symmetry to a class‘lowér than
orthotropic. .Aléo,vGoodmanbstates ;hat’there seemsvtq bg ﬁo éimpie
way to gombine ﬁhé déformaﬁion characteristics of sevétal-setg of
ffactures and thus the ﬁore important fracfﬁres must bé.tfeated-as'

‘individual components- in the rock mass.
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HYDRAULIC PROPERTIES OF FRACTURES

In éttempting to treat the problem of fluid flow in fractured rocks,
it has been customary to assume that a natural fracture can be represented
by a parallel plate opening as shown in Figure 11. Romm (1966) has
shown how an expression for laminar flow in such an idealized model
of a single fracture can be derived from the Navier-Stokes equations.

He obtains the well known relationship between flow rate q and pressure

gradient dp/dx

_(@p)? dp
17 T121 dx (1)

where 2b is the size of the fracture aperture and Y is the fluid viscosity.

Since the cross-sectional area for flow is 2b‘1l, the average velocity v

is simply

_ (2b)% dp - |
VT TI72p ax ‘ (2)

We see that flow in a fracture is a sensitive function of aperture size.
The validity of these equationé extends only through the region of
laminar flow, but it seems that this type of flow is dominant in mést
field situations (0Ollos, 1963; Louis, 1969).

A great many workers have analyzed flow in fractured rocks using
equations 1 and 2. Wilson and Witherspoon (1970) have made a review
of investigations on this subject and include an extensive set of
refefences. Snow (1965) has presented a thorough review of fracturing
based on existing geological literature. Hodgson (1961la,b) has pro-
vided a basic framework for describing fractures in the field. Snow
(1965), Kiraly (1969), and Mahtab et al. (1973) have contributed to

the statistical description of fracture orientations. Parsons (1972)
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used Snow's and Kiraly's approach in a study of the contribution of flow

in fractures to regional groundwater systems.

Laboratory and Field Work on Fracture Flow

One of the earliest and most extensive laboratory experiments on
fluid flow in fractures was conducted by Lomize (1951). He modeled a
fracture using two thin glass plates with variable cross—-sections and
curvilinear Shapes. Lomize examined the transition zone between laminar
and turbulant flow and also investigated the effect of fracture roughness.
Louis (1969) extended the work of Lomize in a series of laboratory
experiments on single fractures and has presented a series of flow
laws to account for different degrees of fracture roughness.

From results of laboratory tests on a single nétural fracture in
porphyry, Sharp (1970) questions the applicability of equation 1 in
describing laminar flow under his laboratory conditions. He concluded
that the fracture discharge was related to the aperture by some expon-
ential factor less than three. However, a review of his data reveals
that there was still a measurable discharge for the "closed" position
of his fracture. This suggests that Sharp did not have an accurate
measure of the effective aperture. In dealing with a natural fracture,
there is also the problem of the effect of roughness (Lomize, 1951).

It would appear therefore that Sharp's conclusioﬁ as to the inappli-
cability of equation 1 is not justified on the basis of these limited
exXperimental results. |

Maini (1971) used a transparent modelling material to duplicate
a natural fracture. By injecting dyes into.the discontinuity, Maini

was able to clearly demonstrate the discontinuous nature of the flow
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field within the fracture plane when the fracture surfaces were in
contact. Maini also discussed different methods of collecting.and
interpreting field data when studying the hydraulics of fractured
media.

The fundamental characteristics of flow in natural fractures is
the subject of an ongoing research project at the .University of
California. One of the items of interest is the manner in which the
permeability decreases as a fracture closes. Iwai (personal communica-
tion, 1975) is investigating this problém using numerical and laboratory
models. An example of his numerical results for the pressure distribution
with radial flow in a horizontal fracture where only 15 percent of the
flow paths are blocked is shown in Figure 12. . In this case, the
impermeable contact area caused a reduction in flow of approximately
35 percent. Iwai (personal communication, 1975) has found that when
50 to 60 percent of the flow paths are blocked at random, the permeability
of a radial flow system such as this has almost vanished. Obviously,
once the sides of a fracture begin to touch at the protruding points,
the cross—section for flow can change significantly.

Banks (1972) has discussed the problem of méking field measurements
of fracture permeability. Borehole camera surveys and field mapping
were used to calculate flow rates for comparison with injection tests
in moderately jointed basalt. Banks states that when laminar fiow
prevailed, the calculated results were within an_order of magnitude
of the measured flow rates. In some situations, however, the results
differed by as much as four orders which Banks attributed to the

effects of turbulence. In commenting on these results, Snow (1972)



@;3; i} “‘%d“gi}@bgg

23.

has suggesteduthat the assumption of turbulent flow is not a valid
explanatioh for the observed discrepancies. Snow states that more
preéise inférmation on fracture geometry is needed before one can

predict permeability with confidence.

In the field_of groundwater hydrology, various attempts have been
-made to develop methods of analyzing pump test results that could be
épplied to fractured aquifers. Hantush (1966) assﬁmed that such aquifers
éould be represented by-én equivalent anisotropic system and qouid be
evaluated accordingly. A more practical method has been presented by
Papadopoulos (1967) in which the anisotropy is assumed to result from
joint patterns that cause permeability variations in different directioms.
The solution obtained by Papadopoulos enables one to &etermine the
maximum and minimum permeability and the storage coefficient.

In the petroleum industry, thére has been an.extensive develoﬁment
of pressure buildup analysis in wells because of the wide use of Hydrau—
lic fracturing to stimulate production. One of.thé early methods of
analyzing such data has been developed by Ramey (1970) and rélies on
‘type curve matching techniques. More recently, analytical solutions
have been devéloped to describe the behavior of a well that interSectS
a single horizontal fracture (Gringarten and Ramey 1974) or a single
vertical fracture (Gringarten, ef al., 1974). Gringarten and Witherspoon
(1972) have developed methods of analyzing the pressure behavior in
either the pumping well or a nearby observation well using a series
of type curves. With the aid of these curves, it is possible to dis-
tinguish between aquifers with horizontal and vertical fractures, gnd.
to analyze the system as an "equivalent" anisotropic homogeneous porous

medium with a single fracture of much higher perﬁeability.
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Mathematical Models of Fracture Flow

‘Mathematical modelling of fluid flow in fractured rock masses has
taken two directions: (1) statistical models where the geometry of the
fracture system is represented by appropriate statistical distributions,
and (2) deterministic models, where the geometry of the fracture system
is assumed to be known. |

The general approach in the statistical work has been to develop
an equivalent porous media model that describes the‘hydraulic behavior
of the fracture system. If the rock blocks are porous, it is generally
assumed that they provide nearly all of the storage while the fractures
are the main conduits (Barenblatt et al., 1960). Important contributions
to the statistical approach have been made by Snow (1965) and Romm and
Pozinenko (1963). These authors have attempted to develop a permeability
tensor to describe the hydraulics of the rock mass. This approach is
dependent on determining the fracture aperture distribution, and attempts
to do this ha&e been made using the statistics of borehole 1injection
tests (Snow, 1965), photographic techniques on bedrock exposures (Bianchi
and Snow, 1968), and elaborate packer tests in multiplé injection bore-
holes (Louis and Pernot, 1972; Louis, 1974). The size of the apertures
is a difficult parameter to measure and remains one of the most impor-
tant factors in any analysis of flow in fractured rock.

Considerable work has been done in the petroleum industry on the
movement of oil and gas in fractured reservoirs, and much of this has
been of a statistical nature (Freedman and Natanson, 1959; Elkins and
Skov, 1960; Zheltov, 1961). Warren and Price (1961) concluded from
core analysis and pressure test data that the most probable behavior

of single phase flow in a heterogeneous system approaches that of an
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equivaient homogeneous system having a permeability equal tb the geometric
mean of the iﬁdividual permeabilities. Parsons (1966) in studjing idealized
fracture systems has come to the same conclusion.

Warren and Root (1963) extended this approach to naturally fractured
reservoirs using a double-porosity model similar to that of Barenblatt
et al. (1960). Asvshown in Figure 13, the model assumes that two regions
of distinctly different porosity exist within the formation. One region,
" the matrix, has a high storage and low.flow capacity, while the other,
the fractures, has a 10& storage and high flow capacity. Recent
laboratory work on fractured carbonate rocks (Jones, 1975) shows that
fracture systems can contributé materially to the storage capacity.

Variations of this model ha§e been investigated by é number of
workers (?ollard, 1959; Odeh, 1965; Kazemi, 1969), and in general, the
conclusions reached have not been in agréement. It appears that differ-
ent results are possible fof fractured systems depending upon the
reservoir characteristics. For example, a fractured aquifer is
equivalent to a homogeneous porous medium if the dimensions of the
matrix blocks are small (less than 1 m) and the matrix permeabilities
are significant (éreafer than.10-17 mz‘or 0.01 md). Warren and Root
(1963) observed,that the time required to achieve quasi—stea&y state
.flow»in a fracfured reservoir is one or two orders of magnitude greatér
than it is in a homogeneous system.

Kazemi (1969) has further extendéd this’approéch to unsteady flow
in a finite circular reservoir consisting of a set of uniformly spaced
hqriéontal_fréctures with an ihtervening permeable matrix and obtained
the same results as Warren and Root. In a sequel paper, Kazemi et al.

(1969) have attempted'to interpret interference tests in naturally
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Fig. 12, Pressure distribution with
radial flow in a partially
closed horizontal fracture.
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Fig. 13. Double-porosity model for
fractured rock masses
(after Warren and Root, 1963).
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fractured reservoirs assuming a uniform fracture distribution. Results
of their‘anélyses demonstrated the marked anisotropy of the reservoir
in that for early time responses, an equivalent homogeneoué model does
not adequately depict the interference effects.

Recently, Duguid (1973) has used a finite element method to model
nonsteady flow in porous rocks based on the two-porosity approach of
Barenblatt et al. (1960) and the élastic theory of Biot (1940). The
fractures are described by a statistical distribution and flow in the
fracture system is coupled to that in the porous blocks by a storage
equation. Duguid shows how the ratio of fracture permeability to
that in the porous blocks affects the time required to reach a steady
state fluid pressure distribution.

In the deterministic models, each fracture is modelled separately
using an‘approach based on netwdrk énalyéis. Wilson and Witherépoon
(1970) developed a finite element model for discrete fracture systems
where the fractures are the principle conductors and are assumed to be
rigid. This approach was used to investigate different flow problems
such as effect of fracture size on seepage beneath a dam and the effect
of tunnel size on groundwater inflow.

Wittke et al. (1972) have also used the finite element‘model to
develop methods of calculating seepage through three-dimensional net-
works of rigid fractures. They have applied their methods to rock
slopes and abutments of a concrete dam. They have also investigated
seepage to a tunnel passing through a fréctured rock mass and verified
their results with a laboratory model.

The decision to use either a deterministic or a statistical model

depends on the scale of the structure or area in question relative to
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the spacing and size of the important discontinuities as well as the
ability to collect the appropriate fracture data. Louis and Pernot
(1972) have shown how exteﬁsive use of drill holes and adits can pro-
vide a detailed description of the fracture permeabilities at a dam
site. With improved bore hole technology and greater emphasis on
seismic safety, we believe that similar field methods can be developed
to provide deterministic data on deep fracture systems.

In essentially all of this work on the hydraulic properfies of
fractures, the assumption has generally been made that the fractures
are rigid. However, as has been discussed in connection with mechanical
properties, fractures deform with changes in the state of stress. From
equations 1 and 2, it is apparent that one should expect significant
changes in the fluid flow and pressure distributions as deformations
occur. This means that one must consider the interaction of mechanical
and hydraulic propertieés, or wHat is sometimes termed "stress-flow"

behavior of fractures.

INTERACTION OF MECHANICAL AND HYDRAULIC PROPERTIES

Laboratory and Field Results

The mechanical and hydraulic properties of fractures, as outlined
in the previous two sections, demonstrate that the fractures are both
a highly deformable component of the rock mass and the main flow paths
in many impermeable and slightly permeable rocks. Based on Terzaghi's
concept of effective stress, an increase of fluid pressure within the
plane of fracture will reduce the effective normal stress acting across
the fracturé. From Figure 2 it can be shown that a reduction in effec-

tive normal stress will increase the size of the fracture opening. An



5

DU 04406

i,
Rt
5

29.

increase in aperture will change the flow characteristics of the fracture.
Snow (1968) reported results showing that radial and tangential surface
ground strains of 10_7 to 10"8 were measured in a fractured metamorphic
rock after the water level in a well had been decreased by 9.1 m. Of
importance‘here is that the strainmeters (25 m long quartz rods) were
75-90 m froﬁ the well and there was a two hour delay after the pumping
before the strain event occurred.

The effects of stress changes on the storage and permeability of
fractured:rocks has been discussed by Snow (1968). Increasing fluid
pressure during injection tests in fractured rocks will sometimes prd—
duce a highly nonlinear pressure-flow rate relationship (Figure 14).
This nonlinearity has been attributed (Maini, 1971) to: (a) kinetic
energy effects, (b) nonlinear pressure-flow laws, (c) leakage past
packers, and (d) increase in fracture aperture. The relative impor-
tance of these four factors has not been determined but recent Work by
Gale (1975) has shown that fracture apertures can be opened or closed
significantly by an increase or decrease in fluid pressure. Figure
15 shows pért of the results of a laboratory experiment on a large
diameter granite core. Fluid injection and withdrawal in the center
borehole that intersected two horizontal fractures produced signifi-
caﬁt changes in aperture. Insitu field measurements also demonstrate
that apertures deform under changes in fluid pressure. Figure 16 shows
the closing of a fracture located 8.8 m below bedrock surface during
fluid withdrawal at a constant rate of 1.5 x 10_4 m3/s. Fluid injection
in the same ffacture produced the fracture openings shown in Figure 17.
Analysis of these results reveals that the fluid pressures measured in

the fracture planes in both the laboratory and field tests could not
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have been produced if the fractures had uniform apertures. Uniform
apertures woﬁld have produced a logarithmic variation of fluid pressure
away from the well.

Other fracture deformation measurements by Gale (1975) showed that
the magnitude of the aperture change is related in part to the fluid
pressure distribution in the fracture plane and hence to the degree of
aperture uniformity. If a well intersects a fracture where the aper-
ture is large and if at some distancé from the well the aperture then
decreases, there will be only a small head loss between the well and
the constriction. This would have the effect of propagating fluid
pressure changes at the well over a considerable distance. Conversely,
when a well intersects the fracture where the aperture is small and the
aperture increases at some point away from the well, the area over which
the fluid pressures can chénge would be greatly reduced. Tﬁis inter-
action of the mechanical and geometrical properties of fractures with
the fluia pressure distributions should be thoroughly investigated when
one is considering the possibility of inducing a change in the state of
stress around_a borehole. Furthermore, a fluid pressure increase in a
fracture system reduces the effective normal stress, and as the aperture
opens, the deformation decreases the contact area‘and hence the shear
strength of the fracture system. |

Bernaix (1?67) demonstrated the dependence of the permeability of
finely fissured media on the effective normal stress. In a small scale
field experiment, Jouanna (1972) has alsovdemonstratéd the stress depen-
dent nature of the permeability of finely_fissured‘schist plus the
nonrecoverable deformation (hysteresis) with repeaﬁed loading. His

field results were supported by laboratory tests on similar rock types
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plus a calcareous rock containing a single fracture. Jouanna's work
has been extended by Rayneau (1972) to the study of flow in a single
artificial fracture subject to changing external loads. The perme-
ability of discrete fractures was found to have the same stress
dependence.

Triaxial tests on saw-cut fracé¢tures,where the fracture is subjected
to an all around confining preséure showed almost nb water flow when the
confining pressure exceeded 40 kg/cm2 (Ohnishi and Goodman, 1974).
Similar tesﬁs on both artificial and natural fractures (Jones, 1975)
revealed that fractures still exhibited permeability to air at 1400
kg/cﬁ2 confining pressure. At the University of California, radial
permeability tests on saw-cut and rough fractures in granitic rock
cores have recently been undertaken to determine if a scale effect
éxists. Iwai (personal communication, 1975) has found that when he
subjects a horizontal fracture in a 0.15 m diameter core to a normal
.stress of about 40 kg/cmz, the fracture permeability is almost zero.

On the other_hand, similar tests using a 1 m diameter core have shown
that the flow rate quickly reaches a minimum (Figure 18) and thereafter
does not decrease significantly even for stresses up to 175 kg/cmz.

In making large scale.field tests on natural fractures, Pratt et al.
(1974b) has also observed that the fluid flow could not be shut

off with increasing normal stress (Figure 19). While this limited
number of observations cannot be considéred conclusive, there does

seem to be some evidence that the larger samples give stress permeability
results that are more representative of natural fracture systems because

of the effect of bridging and contact area on flow rate.
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Very little data is available on the effects of shear displacement
on the permeability of fracture systems. ‘Jouanna (1972) presented
results of changing the flow rates és a function of shear stress during
shear tests on micaceous schist. The flow rate decreased with increasing
stress and was irreversible. Maini (1971) presented the results of a
test in which he measured the change in flow rate for known increments
of shear displacement along a fracture. The fracture was created by
splitting slate parallel to a cleavage plane and the normal load was
due to the weight of. the sample only. At this low stress level, a
shear displacement of 0.01 m and a normal displacement of 0.002 m
(opening) produced an increase in permeability of two orders of
magnitude. We do not know of any shear test on individual rough
fractures performed over a reasonable range of effective normal
stresses where the flow rates and both shear and normal displacements
were measured during the test. This is an area of research that needs
much more work, ‘especially when one considers dilatancy in shear modes.

Ohnishi and Goodman (1974) reported triaxial and direct shear test
results where the pore pressure induced in the fractures amounted to
ten to fifteen percent of the deviator stress at peak load in the
triaxial tests and ten to twenty percent of the peak shear stress
during the direct shear tests. This indicates that the effective
pormal stress in a fracture can be significaﬁtly‘reduced during

shear.

Modelling the Interaction of Mechanical and Hydraulic Properties
Two approaches have been used in attempting to numerically model

the interaction of fluid pressures and rock stresses in fractured rock
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masses: (1) continuum models and (2) discrete models. In the continuum
models, the properties of the rock blocks and fractures are averaged to
give an equivalent continuous medium. This includes combining the per-
meabilities of the fractures and matrix into an equivalent porous media.
In the discrete models, an attempt is made to include the mechanical
propertieé of most of the individual discontinuities as well as that

of the rock blocks. The flow characteristics and geometry of the
individual fractures are aséumed‘to dominate the flow field and are
treated in a manner essentially the same as that of the deterministic
models described earlier.

There is a basic argument as to whether the continuum or discrete
approach should be used. Both approaches have certain advantages and
disadvantagés. The continuum approach only needs information as to the
average values of fracture spacing and material properties. But és
pointed out earlier, with increase in complexity of the fracture
geometry and the corresponding decrease in symmetry of the system,
it becomes more difficult to develop an equivalent continuum that
will simulate the behavior of the fractured rock mass. Also, after
replacing the rock mass by an equivalent continuum, failure cannot
occur until a new frécture develops.

Riney et al (1973) have used the continuum approach and make shear
strength dependent on the spacing and frictional properties of the
fracture system. With regard to the concept of induced seismicity,
this presents a problem because one is unable to look at failure con-
diﬁions along some pre-existing plane of weakness, such as a fault zone.
Dieterich et al. (1972), in a study of earthquake triggering by fluid

injection, avoids this problem by combining a continuum description of
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of the rock block bounding a fault zone with a detailed description of
the zone itself. Both the static and dynamic friction were allowed to
vary with location and as a function of changes in fluid pressures
within the fault zone. Using field and laboratory input data, Dietrich
et al. have obtained results that compare favorably with the earthquake
activity observed during field experimengs at Rangely, Colorado.

Morgenstern and Guther (1972) used two finite element codes: (l)
a two-dimensional, equivalent porous media code to model flow in fractured
rock slopes, and (2) a two-dimensional code of a linearly elastic medium
to model the stresses in the rock slopes. The two programs were coupled
through the stress dependent nature of the pérmeability. Results pie—
sented by the authors show the effects of different stress configurations
on the pressure distribution and permeability in excavated slopes.
Morgenstern and Guther based their use of this simplified model on the
fact that available experimental data did not justify the study of more
complex relationships.

This lack of input data has been considered a serious limitation
of discrete models. This is no longer a valid criticism. As indicated
above, Louis and Pernot (1972) have shown how improved borehole
techniques enable one to obtain a three-dimensional picture of the
geometry and hydraulic properties of thevfracturé system. The mechan-
ical properties of individual fractures can be determined from careful
insitu and.laboratory tests. We fully_appreciate the problems inherent
in applying such an approach to deeply buried fracture systems, but as
has been pointed out by Raleigh (1972), one needs to know to what degree
generalizatioﬁ of the fracture geometry can be made without seriously

degrading the calculational results.
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Discrete models of fractured rock masses have been developéd by
Rodatz and Wittke (1972) and Noorishad et al. (1971). Noorishad et
al. combined two finite element programs: (1) a steady staﬁe, line
element program to model flow throﬁgh the fractures, and (2) a plane
strain structural program incorporating joint elements to model dis-—
‘placgments and stresses within the rock mass. The fluid pressures
interact with other stresses acting on the rock blocks simulating a
coupled stress—-flow phenomena. Noorishad et al, (1972) have demon-
strated the feasibility of using this model to study‘the effects of
fluid pressures on changes in fracture apertures. Gale et al. (1974)
have modified this approach in order to model general two-dimensional
plane strain and axisymmetric problems with arbitrary orientations of
the fracture network and of the initial stress field. This numerical
‘model is'esséntially quasi-static.

The model of Gale et al. (1974) has been applied by Witherspoon
et al. (1974) to studies of the parameters that affect controlled
displacements along the fracture planes within a fauit zone during
fluid injection and withdrawal through wells. - As shown in Figure
20, these investigations have revealed that the areas over which
fluid pressures are increased (and hence the effective stress de-
creased) during injection can be considerably larger than the areas
over which préésures are decreased (and hence the effective stress
increased) by fluid withdrawal. In this study, permeability aniso-
tropy within the fault zone was assumed to be an important factor.
Fracture apertures parallel to the axis of the fault were always
3.0 x lO—Am while the initial values of those oriented normal to the

fault axis were allowed to vary from 3.0 x lO_Sto 2.4 x 10_-4 m. The
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large variation in areas affected (Figure 20) reflects the effects of
changing the permeability anisotropy within the fault zone and the
fact that the opening and closing of fractures has a non-linear effect
on fluid pressure distributions.

Witherspoon et al. (1974) have also investigated the effect of
the orientation of the initial principle stress vector on the length
of the failure zone induced by fluid injection at one point in a
fault zone. Figure 21 shows results for five different stress
orientations and two different injection préssures. The orientation
shown is the angle between the maximum principal stress and the axis
of the fault zone. At either injection pressure, the maximum length
of shear failure occﬁrs when the principal stress makes an angle of
45° - ¢/2 with the direction of the fault plane, where ¢ is the angle
of static friction within the fracture. 1In this work, we assumed
¢ = 38°, and it will be noted that maximum shear failure occurred
with o ~ 26°, These results correspond with the continuum relationships
in rock mechanics. Since the fault zone contained an orthogonal net-
work of fractures, it would be of interest to determine if this rela-
tionship could still hold in a nonorthogonal system of fractures where
interlocking of rock blocks could occur.

Current numerical modelling work at the University of California,
Berkeley, consists of developing coupled-stress, nonsteady-flow models
of fractured porous media. In addition, dynamic coupled stress-flow
models of fractured media are also being developed. The purpose is to
permit an evaluation of the importance of the different geometric,
mechanical, and hydraulic parameters of fracture systems on pre-failure
conditions as well as the role they play in failure and post-failure

events.
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CLOSURE

As indicated in this review, there is no general agreement on how
the various fracture parameters should be described, how they should
be measured, or how they should be used in the analysis of fractured
rock masses. Fractures are both the dominant flow paths as well as
the weakest linksrin most rock masses, and their behavior is Highly
non-linear. In addition, there is some evidence tﬁat in laboratory
determinations of fracture properties, there is an apparent scale
effect in terms of sample size.

Existing and developing borehole and laboratory techniques provide
a means for obtaining a three-~dimensional picture of the mechanical and
hydraulic properties of shallow fracture'systems. The possibility of

extending these methods to deeper fracture systems needs more investi-

gation. Such data must be considered when one is deciding whether to

use a continuum or discrete model to represent the interaction of rock
and fluid forces in a fractured rock system, especially with regard to
the probiem of induced seismicity. When one is attempting to alter the
pressure distribution in a fault zone by injection 6r withdrawal of
fluids, the extent to which this can be achieved will be controlled in
large measure by the behavior of the fractures that communicate with
the borehole. Since this is essentially a point phenomena, i.e. the
changes will propagate from a relatively small region around the bore-

hole, the use of a discrete model would appear to be preferable.
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