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[Single-sentence summary]: Achieving an energy system that adds no CO2 to the atmosphere 1 

will require focused innovation and cross-sector coordination. [124 characters] 2 

[Abstract] Some energy services and industrial processes, such as long-distance freight 3 

transport, air travel, highly reliable electricity, and steel and cement manufacturing, are 4 

particularly difficult to provide without adding carbon dioxide (CO2) to the atmosphere.  Rapidly 5 

growing demand for these services, combined with long lead times for technology development and 6 

long lifetimes of energy infrastructure, make decarbonization of these services both essential and 7 

urgent. We examine barriers and opportunities associated with these difficult-to-decarbonize 8 

services and processes, including possible technological solutions and research and development 9 

priorities. A range of existing technologies could meet future demands for these services and 10 

processes without net addition of CO2 to the atmosphere, but their use may depend on a 11 

combination of cost reductions via research and innovation, as well as coordinated deployment and 12 

integration of operations across currently discrete energy industries. [129 words] 13 

People do not want energy itself, but rather the services that energy provides and the products that 14 

rely on these services. Even with substantial improvements in efficiency, global demand for energy is 15 

projected to increase markedly over this century (1). Meanwhile, net emissions of CO2 from human 16 

activities—including not only energy and industrial production, but also land use and agriculture—must 17 

approach zero to stabilize global mean temperature (2, 3). Indeed, international climate targets such as 18 

avoiding more than 2 C of mean warming are likely to require an energy system with net-zero (or net-19 

negative) emissions later this century (Fig. 1) (3). 20 

Energy services such as light duty transportation, heating, cooling, and lighting may be relatively 21 

straightforward to decarbonize by electrifying and generating electricity from variable renewable energy 22 

sources (such as wind and solar) and dispatchable (i.e. “on-demand”) non-renewable sources (including 23 

nuclear energy and fossil fuels with carbon capture and storage). However, other energy services essential 24 

to modern civilization entail emissions that are likely to be more difficult to fully eliminate. These 25 

difficult-to-decarbonize energy services include aviation, long-distance transport, and shipping; 26 

production of carbon-intensive structural materials such as steel and cement; and provision of a reliable 27 

electricity supply that meets varying demand. To the extent carbon remains involved in these services in 28 

the future, net-zero emissions will also entail active management of carbon. 29 

In 2014, difficult-to-eliminate emissions related to aviation, long-distance transportation and 30 

shipping; structural materials; and highly-reliable electricity totaled ~9.2 Gt CO2, or 27% of global CO2 31 

emissions from all fossil fuel and industrial sources (Fig. 2).  Yet, despite their importance, detailed 32 

representation of these services in integrated assessment models remains challenging (4, 5, 6). 33 

Here, we review the special challenges associated with an energy system that does not add any CO2 to 34 

the atmosphere (a net-zero emission energy system). We discuss prominent technological opportunities 35 

and barriers for eliminating and/or managing emissions related to the difficult-to-decarbonize services; 36 

pitfalls in which near-term actions may make it more difficult or costly to achieve the net-zero emissions 37 

goal; and critical areas for research, development, demonstration, and deployment. Our scope is not 38 

comprehensive; we focus on what now seem the most promising technologies and pathways. Our 39 
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assertions regarding feasibility throughout are not the result of formal, quantitative economic modeling; 40 

rather, they are based on comparison of current and projected costs with stated assumptions about 41 

progress and policy. 42 

A major conclusion is that it is vital to integrate currently discrete energy sectors and industrial 43 

processes. This integration may entail infrastructural and institutional transformations, as well as active 44 

management of carbon in the energy system.  45 

Aviation, long-distance transport, and shipping 46 

In 2014, medium- and heavy-duty trucks with mean trip distances of >160 km (>100 miles) 47 

accounted for ~270 Mt CO2 emissions, or 0.8% of global CO2 emissions from fossil fuel combustion and 48 

industry sources (estimated using 11, 12, 13). Similarly long trips in light-duty vehicles accounted for an 49 

additional 40 Mt CO2, and aviation and other shipping modes (such as trains and ships) emitted 830 and 50 

1,060 Mt CO2, respectively. Altogether, these sources were responsible for ~6% of global CO2 emissions 51 

(Fig. 2). Meanwhile, both global energy demand for transportation and the ratio of heavy- to light-duty 52 

vehicles is expected to increase (13). 53 

Light-duty vehicles can be electrified or run on hydrogen without drastic changes in performance 54 

except for range and/or refueling time. In contrast, general-use air transportation and long-distance 55 

transportation, especially by trucks or ships, have additional constraints of revenue cargo space and 56 

payload capacity that mandate energy sources with high volumetric and gravimetric density (7). Closed-57 

cycle electrochemical batteries must contain all of their reactants and products. Hence, fuels that are 58 

oxidized with ambient air and then vent their exhaust to the atmosphere have a substantial chemical 59 

advantage in gravimetric energy density . 60 

Battery- and hydrogen-powered trucks are now used in short-distance trucking (8), but at equal range, 61 

heavy-duty trucks powered by current lithium-ion batteries and electric motors can carry  ~40% less 62 

goods than can trucks powered by diesel-fueled, internal combustion engines. The same physical 63 

constraints of gravimetric and volumetric energy density likely preclude battery- or hydrogen-powered 64 

aircraft for long-distance cargo or passenger service (9). Autonomous trucks and distributed 65 

manufacturing may fundamentally alter the energy demands of the freight industry, but if available, 66 

energy-dense liquid fuels are likely to remain the preferred energy source for long-distance transportation 67 

services (10). 68 

Options for such energy-dense liquid fuels include the hydrocarbons we now use, as well as 69 

hydrogen, ammonia, and alcohols/ethers. In each case, there are options for producing carbon-neutral or 70 

low-carbon options that could be integrated to a net-zero emissions energy system (Fig. 1), and each can 71 

also be interconverted through existing thermochemical processes (Table 1). 72 

Hydrogen and ammonia fuels 73 

The low volumetric energy density of hydrogen favors transport and storage at low temperatures 74 

(-253C for liquid hydrogen at atmospheric pressure) and/or high pressures (350 to 700 bar), thus 75 

requiring heavy and bulky storage containers (14). To contain the same total energy as a diesel fuel 76 
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storage system, a liquid hydrogen storage system would weigh roughly six times more and be about eight 77 

times larger (Fig. 3A). However, hydrogen fuel cell or hybrid hydrogen-battery trucks can be more energy 78 

efficient than those with internal combustion diesel engines (15), requiring less onboard energy storage to 79 

achieve the same traveling range. Toyota has recently introduced a heavy duty (36,000 kg), 500 kW fuel 80 

cell/battery hybrid truck designed to travel 200 miles on liquid hydrogen and stored electricity, and 81 

Nikola has announced a similar battery/fuel cell heavy duty truck with a claimed range of 1300 to 1900 82 

km, comparable to today’s long-haul diesel trucks (16). If hydrogen can be produced affordably without 83 

CO2 emissions, its use in the transport sector could ultimately be bolstered by the fuel’s importance in 84 

providing other energy services. 85 

Ammonia is another technologically viable alternative fuel that contains no carbon and may be 86 

directly combusted in an engine or may be cracked to produce hydrogen. Its combustion must be carefully 87 

controlled to minimize production of highly oxidized products such as NOx (17). Furthermore, like 88 

hydrogen, ammonia’s gravimetric energy density is considerably lower than that of hydrocarbons such as 89 

diesel (Fig. 3A). 90 

Biofuels 91 

Conversion of biomass currently provides the most cost-effective pathway to non-fossil, carbon-92 

containing liquid fuels. Liquid biofuels at present represent about 4.2 EJ of the roughly 100 EJ of energy 93 

consumed by the transport sector worldwide. Currently, the main liquid biofuels are ethanol from grain 94 

and sugar cane and biodiesel and renewable diesel from oil seeds and waste oils. They are associated with 95 

substantial challenges related to their life-cycle carbon emissions, cost, and scalability (18). 96 

Photosynthesis converts <5% of incident radiation to chemical energy, and only a fraction of that 97 

chemical energy remains in biomass (19). Conversion of biomass to fuel also requires energy for 98 

processing and transportation. Land used to produce biofuels must have water, nutrient, soil, and climate 99 

characteristics suitable for agriculture, thus putting biofuels in competition with other land uses. This has 100 

implications for food security, sustainable rural economies, and the protection of nature and ecosystem 101 

services (20). Potential land-use competition is heightened by increasing interest in bioenergy with carbon 102 

capture and storage (BECCS) as a source of negative emissions (that is, carbon dioxide removal), which 103 

biofuels can provide (21). 104 

Advanced biofuel efforts include processes that seek to overcome the recalcitrance of cellulose to 105 

allow use of different feedstocks (e.g., woody crops, agricultural residues, and wastes), to achieve large-106 

scale production of liquid transportation fuels at costs roughly competitive with gasoline (e.g., U.S. 107 

$19/GJ or U.S. $1.51/gallon of ethanol) (22). As technology matures and overall decarbonization efforts 108 

of the energy system proceed, biofuels may be able to largely avoid fossil fuel inputs such as those related 109 

to on-farm processes and transport, as well as emissions associated with induced land use change (23, 24). 110 

The extent to which biomass will supply liquid fuels in a future net-zero emissions energy system thus 111 

depends on advances in conversion technology, competing demands for bioenergy and land, the 112 

feasibility of other sources of carbon-neutral fuels, and integration of biomass production with other 113 

objectives (25). 114 
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Synthetic hydrocarbons 115 

Liquid hydrocarbons can also be synthesized by industrial hydrogenation of feedstock carbon, such as 116 

the reaction of carbon monoxide and hydrogen by the Fischer-Tropsch process (26). If the carbon 117 

contained in the feedstock is taken from the atmosphere and no fossil energy is used for the production, 118 

processing, and transport of feedstocks and synthesized fuels, the resulting hydrocarbons would be 119 

carbon-neutral (Fig. 1). For example, emissions-free electricity could be used to produce H2 by 120 

electrolysis of water, which would be reacted with CO2 removed from the atmosphere either by direct air 121 

capture or photosynthesis (which in the latter case could include CO2 captured from the exhaust of 122 

biomass or biogas combustion) (27, 28). 123 

At present, the cost of electrolysis is a major barrier. This cost includes both the capital costs of 124 

electrolyzers and the cost of emissions-free electricity; 60 to 70% of current electrolytic hydrogen cost is 125 

electricity (Fig. 1C) (28, 29). The cheapest and most mature electrolysis technology available today uses 126 

alkaline electrolytes (such as KOH or NaOH) together with metal catalysts to produce hydrogen at an 127 

efficiency of 50 to 60% and a cost of ~ U.S. $5.50/kg H2 (assuming industrial electricity costs of U.S. 128 

$0.07/kWh and 75% utilization rates) (29, 30). At this cost of hydrogen, the minimum price of 129 

synthesized hydrocarbons would be $1.70 to $1.50/liter of diesel equivalent (or $5.50 to $6.50/gallon and 130 

$42 to 50 per GJ; assuming carbon feedstock costs of $0-100 per ton of CO2 and very low process costs 131 

of $0.05/liter or $1.50 per GJ (28)). For comparison, H2 from steam reforming of fossil CH4 into CO2 and 132 

H2 currently costs $1.30 to 1.50 per kg (red line in Fig. 3B) (29, 31). Thus, the feasibility of synthesizing 133 

hydrocarbons from electrolytic H2 may depend upon demonstrating valuable cross-sector benefits, such as 134 

balancing variability of renewable electricity generation, or else a policy-imposed price of ~$400 per ton 135 

of CO2 emitted (which would also raise fossil diesel prices by ~$1.00/liter or ~$4.00/gallon). 136 

In the absence of policies or cross-sector coordination, hydrogen costs of $2.00/kg (i.e., approaching 137 

the cost of fossil-derived hydrogen and synthesized diesel of ~$0.79/liter or $3.00/gallon) could be 138 

achieved, for example, if electricity costs were $0.03/kWh and current electrolyzer costs were reduced by 139 

60 to 80% (29) (Fig. 3B). Such reductions may be possible (33) but may require centralized electrolysis 140 

(34) using less mature but promising technologies, such as high-temperature solid oxide or molten 141 

carbonate fuel cells, or thermochemical water splitting (30, 35). Fuel markets are vastly more flexible 142 

than instantaneously balanced electricity markets due to the relative simplicity of large, long-term storage 143 

of chemical fuels. Hence, using emissions-free electricity to make fuels represents a critical opportunity 144 

for integrating electricity and transportation systems to supply a persistent demand for carbon-neutral 145 

fuels while boosting utilization rates of system assets. 146 

Direct solar fuels 147 

Photoelectrochemical cells or particulate/molecular photocatalysts directly split water using sunlight to 148 

produce fuel by artificial photosynthesis, without land-use constraints associated with biomass (36). 149 

Hydrogen production efficiencies can be high, but costs, capacity factors, and lifetimes need to be improved 150 

to obtain an integrated, cost-advantaged approach to carbon-neutral fuel production (37). Short-lived 151 

laboratory demonstrations have also produced liquid carbon-containing fuels using concentrated CO2 152 

streams (38) (Fig. 1H), in some cases using bacteria as catalysts. 153 
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Outlook 154 

Large-scale production of carbon-neutral and energy-dense liquid fuels may be critical to achieving a 155 

net-zero emissions energy system. Such fuels could provide a highly advantageous bridge between the 156 

stationary and transportation energy production sectors, and may therefore deserve special priority in 157 

energy research and development efforts. 158 

Structural materials 159 

Economic development and industrialization are historically linked to the construction of 160 

infrastructure. Between 2000 and 2015, cement and steel use persistently averaged 50 and 21 tons per 161 

million dollars of global GDP, respectively (~1 kg per person per day in developed countries) (4). 162 

Globally, ~1,320 and 1,740 Mt CO2 emissions emanated from chemical reactions involved with 163 

manufacture of cement and steel, respectively (Fig.2) (12, 40, 41); altogether, this equates to ~9% of 164 

global CO2 emissions in 2014 (purple and blue in Fig. 1). Although materials intensity of construction 165 

could be substantially reduced (42, 43), steel demand is projected to grow by 3.3% per year to 2.4 billion 166 

tons in 2025 (44) and cement production is projected to grow by 0.8 to 1.2% per year to 3.7 to 4.4 billion 167 

tons in 2050 (45, 46), continuing historical patterns of infrastructure accumulation and materials use seen 168 

in regions such as China, India and Africa (4). 169 

Decarbonizing the provision of cement and steel will require major changes in manufacturing 170 

processes, use of alternative materials that do not emit CO2 during manufacture, or carbon capture and 171 

storage (CCS) technologies to minimize the release of process-related CO2 to the atmosphere (39) (Fig. 172 

1B). 173 

Steel 174 

During steel making, carbon (coke from coking coal) is used to reduce iron oxide ore in blast 175 

furnaces, producing 1.6 to 3.1 tons of process CO2 per ton of crude steel produced (41).This is in addition 176 

to CO2 emissions from fossil fuels burned to generate the necessary high temperatures (1100 to 1500 C). 177 

Reductions in CO2 emissions per ton crude steel are possible through use of electric arc furnace (EAF) 178 

“minimills” that operate using emissions-free electricity; efficiency improvements (such as top gas 179 

recovery); new process methods (such as “Ultra-low CO2 Direct Reduction,” ULCORED); process heat 180 

fuel-switching; and decreased demand via better engineering. For example, a global switch to ultrahigh-181 

strength steel for vehicles would avoid ~160 Mt CO2 annually. The availability of scrap steel feedstocks 182 

currently constrains EAF production to ~30% of global demand (47, 48), and the other improvements 183 

reduce—but do not eliminate—emissions.  184 

Prominent alternative reductants include charcoal (biomass-derived carbon) and hydrogen. Charcoal 185 

was used until the 18th century, and the Brazilian steel sector has increasingly substituted charcoal for coal 186 

to reduce fossil CO2 emissions (49). However, the ~0.6 tons of charcoal needed per ton of steel produced 187 

require 0.1 to 0.3 hectares of Brazilian eucalyptus plantation (49, 50). Hundreds of millions of hectares of 188 

highly productive land would thus be necessary to meet expected charcoal demands of the steel industry, 189 

and associated land use change emissions could outweigh avoided fossil fuel emissions, as has happened 190 
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in Brazil (49). Hydrogen might also be used as a reductant, but quality could be compromised because 191 

carbon imparts strength and other desirable properties to steel (51). 192 

Cost notwithstanding, capture and storage of process CO2 emissions has been demonstrated and may 193 

be feasible, particularly in designs such as top gas recycling blast furnaces, where concentrations and 194 

partial pressures of CO and CO2 are high (40 to 50% and 35% by volume, respectively; Figs. 1G and 1E) 195 

(52, 53). 196 

Cement 197 

About 40% of the CO2 emissions during cement production are from fossil energy inputs, with the 198 

remaining CO2 emissions arising from the calcination of CaCO3 (typically limestone) (54). Eliminating 199 

the process emissions requires fundamental changes to the cement-making process and cement materials, 200 

and/or installation of carbon-capture technology (45) (Fig. 1G). CO2 concentrations are typically ~30% by 201 

volume in cement plant flue gas (compared to ~10 to 15% in power plant flue gas; 55), improving the 202 

viability of post-combustion carbon capture. Firing the kiln with oxygen and recycled CO2 is another 203 

option (56) but it may be challenging to manage the composition of gases in existing cement kilns that are 204 

not gas-tight, operate at very high temperatures (~1500 C), and rotate (57).  205 

A substantial fraction of process CO2 emissions from cement production is reabsorbed on a time 206 

scale of 50 years through natural carbonation of cement materials (58). Hence, capture of emissions 207 

associated with cement manufacture might result in overall net negative emissions as a result of the 208 

carbonation of produced cement. If complete carbonation is ensured, captured process emissions could 209 

provide an alternative feedstock for carbon-neutral synthetic liquid fuels. 210 

Outlook 211 

A future net-zero energy system must provide a way to supply structural materials such as steel and 212 

cement, or close substitutes, without adding CO2 to the atmosphere. Although alternative processes might 213 

avoid liberation and use of carbon, the cement and steel industries are especially averse to the risk of 214 

compromising the mechanical properties of produced materials. Demonstration and testing of such 215 

alternatives at scale is therefore a priority. Unless and until such alternatives are adopted, eliminating 216 

emissions related to steel and cement will depend on CCS. 217 

Highly reliable electricity 218 

Modern economies demand highly reliable electricity; for example, demand must be met >99.9% of 219 

the time (Fig. 1A). This requires investment in energy generation or storage assets that will be used a 220 

small percentage of the time, when demand is high relative to variable or baseload generation. 221 

As the share of renewable electricity has grown in the U.S., natural gas-fired generators have 222 

increasingly been used to provide generating flexibility because of their relatively low fixed costs (Fig. 223 

3B), ability to ramp up and down quickly (59), and the affordability of natural gas (60). In other countries, 224 

other fossil fuel sources or hydroelectricity are used to provide flexibility. We estimate that CO2 225 

emissions from such “load-following” electricity were ~4,000 Mt CO2 in 2014 (~12% of global fossil-fuel 226 
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and industry emissions), based loosely on the proportion of electricity demand in excess of minimum 227 

demand (Fig. 2) (61). 228 

The central challenge of a highly reliable zero-carbon electricity system is thus to achieve the 229 

flexibility, scalability, and low capital costs of electricity that can currently be provided by natural gas-230 

fired generators—but without emitting CO2. This might be accomplished by a mix of flexible generation, 231 

energy storage, and demand management. 232 

Flexible generation 233 

Even when spanning large geographical areas, a system in which variable energy from wind and solar 234 

are major sources of electricity will have occasional but substantial  and long-term mismatches between 235 

supply and demand. For example, such gaps in the U.S. are commonly tens of petajoules (40 PJ=10.8 236 

TWh=24 hours of mean U.S. electricity demand in 2015) and span multiple days- or even weeks (62). 237 

Thus, even with continental-scale or global electricity interconnections (62-64), highly reliable electricity 238 

in such a system will require either very substantial amounts of dispatchable electricity sources (e.g., 239 

generators or stored energy) that operate less than 20% of the time or corresponding amounts of demand 240 

management. Similar challenges apply if most electricity were produced by nuclear generators or coal-241 

fired power plants equipped with carbon capture and storage, suggesting an important role for generators 242 

with higher variable cost, such as gas turbines using synthetic hydrocarbons or hydrogen as fuel (Fig. 1P; 243 

see, e.g., 65). 244 

Equipping dispatchable natural gas, biomass, or syngas generators with carbon capture and storage 245 

(CCS) could allow continued system reliability with drastically reduced CO2 emissions. When fueled by 246 

syngas or biomass containing carbon captured from the atmosphere, such CCS offers an opportunity for 247 

negative emissions. However, the capital costs of CCS-equipped generators are currently considerably 248 

higher than for generators without CCS (Fig. 3B). Moreover, CCS technologies designed for generators 249 

that operate a large fraction of the time (with high “capacity factors”), such as coal-burning plants, may 250 

be less efficient and effective when generators operate at lower capacity factors (66). Use of CCS-251 

equipped generators to flexibly produce back-up electricity and hydrogen for fuel synthesis could help 252 

alleviate temporal mismatches between electricity generation and demand. 253 

Nuclear fission plants can operate flexibly to follow loads if adjustments are made to coolant flow 254 

rate and circulation, control and fuel rod positions, and/or dumping steam (67, 68). In the U.S., the design 255 

and high capital costs of nuclear plants have historically obligated their near-continuous “baseload” 256 

operation, often at capacity factors >90%. If capital costs could be reduced sufficiently, nuclear power 257 

might also become a cost-competitive source of load-following power, but costs may be increasing over 258 

time in some places (69, 70, 71). Similar to CCS-equipped gas generators, the economic feasibility of 259 

next-generation advanced nuclear plants may depend on flexibly producing multiple energy products such 260 

as electricity, high-temperature heat, and/or hydrogen. 261 

Energy storage 262 

Reliable electricity could also be achieved through energy storage technologies. The value of today’s 263 

energy storage is currently greatest when frequent cycling is required, such as for minute-to-minute 264 
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frequency regulation or price arbitrage (72). Cost-effectively storing and discharging much larger 265 

quantities of energy over consecutive days and less frequent cycling may favor a different set of 266 

innovative technologies, policies, and valuation (72, 73). 267 

Chemical bonds. Chemical storage of energy in gas or liquid fuels is a key option for achieving an 268 

integrated net-zero emissions energy system (Table 1). Stored electrolytic hydrogen can be converted 269 

back to electricity either in fuel cells or by combustion in gas turbines (power-to-gas-to-power or P2G2P; 270 

Figs. 1F, 1P, red curve in 3D); commercial-scale P2G2P systems currently exhibit a round-trip efficiency 271 

(i.e. energy out divided by energy in) of >30% (74). Regenerative fuel cells, in which the same assets are 272 

used to interconvert electricity and hydrogen, could boost capacity factors, but would benefit from 273 

improvements in round-trip efficiency (now 40 to 50% in proton-exchange membrane designs) and 274 

chemical substitutes for expensive precious metal catalysts (75, 76). 275 

Hydrogen can also either be combined with non-fossil CO2 via methanation to create renewable 276 

methane or can be mixed in low concentrations (<10%) with natural gas or biogas for combustion in 277 

existing power plants. Existing natural gas pipelines, turbines, and end-use equipment could be retrofitted 278 

over time for use with pure hydrogen or richer hydrogen blends (77, 78), although there may be difficult 279 

trade-offs of cost and safety during such a transition. 280 

Current mass-market rechargeable batteries serve high-value consumer markets that prize round-trip 281 

efficiency, energy density, and high charge/discharge rates. Although these batteries can provide valuable 282 

short-duration ancillary services (such as frequency regulation and backup power), their capital cost per 283 

energy capacity and power capacity makes them expensive for grid-scale applications that store large 284 

quantities of energy and cycle infrequently. For an example grid-scale use case with an electricity cost of 285 

$0.035/kWh (Fig. 3D), the estimated cost of discharged electricity using current lithium-ion batteries is 286 

roughly $0.14/kWh ($39/GJ) if cycled daily, but rises to $0.50/kWh ($139/GJ) for weekly cycling. 287 

Assuming that targets for halving the energy capacity costs of lithium-ion batteries are reached (e.g., 288 

~$130/kWh of capacity) (73, 79, 80), the levelized cost of discharged electricity would fall to 289 

~$0.29/kWh ($81/GJ) for weekly cycling. Cost estimates for current vanadium redox flow batteries are 290 

even higher than for current lithium-ion batteries, but lower cost flow chemistries are in development 291 

(81). Efficiency, physical size, charge/discharge rates, and operating costs could in principle be sacrificed 292 

to reduce the energy capacity costs of stationary batteries. Not shown in Fig. 3D, less-efficient (e.g., 70% 293 

round-trip) batteries based on abundant materials such as sulfur might reduce capital cost per unit energy 294 

capacity to $8/kWh (with a power capacity cost of $150/kW), leading to a levelized cost of discharged 295 

electricity for the grid-scale use case in the range of $0.06-0.09/kWh ($17-25 per GJ), assuming 20-100 296 

cycles per year over 20 years (81). 297 

Utilization rates might be increased if electric vehicle batteries were used to support the electrical grid 298 

(vehicle-to-grid, V2G), presuming that the disruption to vehicle owners from diminished battery charge 299 

would be less costly than an outage would be to electricity consumers (82). For example, if all of the 300 

~150 million light duty vehicles in the U.S. were electrified, 10% of each battery’s 100 kWh charge 301 

would provide 1.5 TWh, which is commensurate with ~3 hours of the country’s average ~0.5 TW power 302 

demand. It is also not yet clear how owners would be compensated for the long-term impacts on their 303 
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vehicles’ battery cycle life, whether periods of high electricity demand would be coincident with periods 304 

of high transportation demand, whether the ubiquitous charging infrastructure entailed would be cost-305 

effective, whether the scale and timing of the consent, control, and payment transactions would be 306 

manageable at grid-relevant scales (~30 million transactions per 15 minute period), or how emerging 307 

technologies and social norms (such as shared autonomous vehicles) might affect V2G feasibility. 308 

Potential and kinetic energy. Water pumped into superposed reservoirs for later release through 309 

hydroelectric generators is a cost-effective and technologically mature option for storing large quantities 310 

of energy with high round-trip efficiency (>80%). Although capital costs of such pumped storage are 311 

substantial, long lifetimes of reservoirs result in competitive levelized costs of discharged electricity when 312 

cycled at least weekly (Fig. 3D). Major barriers are the availability of water and suitable reservoirs, social 313 

and environmental opposition, and constraints on the timing of water releases by non-energy 314 

considerations such as flood protection, recreation, and the storage and delivery of water for agriculture 315 

(83). Underground and undersea designs, as well as weight-based systems that do not use water, might 316 

expand the number of possible sites, avoid non-energy conflicts, and allay some social and environmental 317 

concerns (84-86). 318 

Electricity may also be stored by compressing air in underground geologic formations, underwater 319 

containers, or above-ground pressure vessels. Electricity is then recovered with turbines when air is 320 

subsequently released to the atmosphere. Diabatic designs vent heat generated during compression and 321 

thus require an external (emissions-free) source of heat when the air is released, reducing round-trip 322 

efficiency to <50%. Adiabatic and isothermal designs achieve higher efficiencies (>75%) by storing both 323 

compressed air and heat, and similarly efficient underwater systems have been proposed (84). 324 

Thermal energy. Thermal storage systems are based on sensible heat (e.g., in water tanks, building 325 

envelopes, molten salt, or solid materials such as bricks and gravel), latent heat (e.g., solid-solid or solid-326 

liquid transformations of phase-change materials), or thermochemical reactions. Sensible heat storage 327 

systems are characterized by low energy densities (36-180 kJ/kg or 10-50 Whth/kg) and high costs (84, 87, 328 

88). Future cost targets are  <$15/kWhth; 89). Thermal storage is well-suited to within-day shifting of 329 

heating and cooling loads, whereas low efficiency, heat losses, and physical size are key barriers to filling 330 

week-long, large-scale (e.g., 30% of daily demand) shortfalls in electricity generation. 331 

Demand management 332 

Technologies that allow electricity demand (Figs. 1A, 1B, and 1C) to be shifted in time (load-333 

shifting or load-shaping) or curtailed to better correlate with supply would improve overall system 334 

reliability while reducing the need for underutilized, flexible back-up generators (90, 91). Smart charging 335 

of electric vehicles, shifted heating and cooling cycles, and scheduling of appliances could cost-336 

effectively reduce peak loads in the U.S. by ~6% and thus avoid 77 GW of otherwise needed generating 337 

capacity (~7% of U.S. generating capacity in 2017) (92). Managing larger quantities of energy demand 338 

for longer times (e.g., tens of PJ over weeks) would involve idling large industrial uses of electricity—339 

thus underutilizing other valuable capital—or effectively curtailing service. Exploring and developing 340 

new technologies that can manage weekly or seasonal gaps in electricity supply is an important area for 341 

further research (93).  342 
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Outlook 343 

Non-emitting electricity sources, energy-storage technologies, and demand management options that 344 

are now available and capable of accommodating large, multi-day mismatches in electricity supply and 345 

demand are characterized by high capital costs compared to the current costs of some variable electricity 346 

sources or natural gas-fired generators. Achieving affordable, reliable and net-zero emissions power 347 

systems may thus depend on substantially reducing such capital costs via continued innovation and 348 

deployment, emphasizing systems that can be operated to provide multiple energy services. 349 

Carbon management 350 

Recycling and removal of carbon from the atmosphere (carbon management) is likely to be an 351 

important activity of any net-zero emissions energy system. For example, synthesized hydrocarbons that 352 

contain carbon captured from the atmosphere will not increase atmospheric CO2 when oxidized. 353 

Integrated assessment models also increasingly require negative emissions to limit the increase in global 354 

mean temperatures to 2 °C (94-97), for example via afforestation/reforestation, enhanced mineral 355 

weathering, bioenergy with CCS, or direct capture of CO2 from the air (20). 356 

Capture and storage will be distinct carbon management services in a net-zero emissions energy 357 

system (e.g., Fig. 1J and 1E). Carbon captured from the ambient air could be used to synthesize carbon-358 

neutral hydrocarbon fuels or sequestered to produce negative emissions. Carbon captured from 359 

combustion of biomass or synthesized hydrocarbons could be recycled to produce more fuels (98). 360 

Storage of captured CO2 (e.g., underground) will be required to the extent that uses of fossil carbon 361 

persist and/or that negative emissions are needed (20). 362 

For industrial CO2 capture, research and development are needed to reduce the capital costs and costs 363 

related to energy for gas separation and compression (99). Future constraints on land, water, and food 364 

resources may limit biologically mediated capture (20). The main challenges to direct air capture include 365 

costs to manufacture sorbents and structures, energize the process, and handle and transport the captured 366 

CO2 (100, 101). Despite multiple demonstrations at scale (~15 Mt CO2/year are now being injected 367 

underground (99)), financing carbon storage projects with high perceived risks and long-term liability 368 

discharge remains a major challenge (102). 369 

Discussion  370 

We have estimated that difficult-to-eliminate emissions related to aviation, long-distance 371 

transportation and shipping; structural materials; and highly-reliable electricity represented more than a 372 

quarter of global fossil fuel and industry CO2 emissions in 2014 (Fig. 2). But economic and human 373 

development goals; trends in international trade and travel; the rapidly growing share of variable energy 374 

sources (103); and the large-scale electrification of other sectors all suggest that demand for the energy 375 

services and processes associated with difficult-to-eliminate emissions will increase substantially in the 376 

future. For example, in some of the Shared Socioeconomic Pathways that were recently developed by the 377 

climate change research community to frame analysis of future climate impacts, global final energy 378 
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demand more than doubles by 2100 (104); hence, the magnitude of these difficult-to-eliminate emissions 379 

could in the future be comparable to the level of total current emissions.  380 

Combinations of known technologies could eliminate emissions related to all essential energy 381 

services and processes (Fig. 1), but substantial increases in costs are an immediate barrier to avoiding 382 

emissions in each category. In some cases, innovation and deployment can be expected to reduce costs 383 

and create new options (e.g., 33, 73, 105, 106). More rapid changes may depend on coordinating 384 

operations across energy and industry sectors, which could help boost utilization rates of capital-intensive 385 

assets. In practice, this would entail systematizing and explicitly valuing many of the interconnections 386 

depicted in Fig. 1, which would also mean overcoming institutional and organizational challenges to 387 

create new markets and ensure cooperation among regulators and disparate, risk-averse businesses. We 388 

thus suggest two parallel broad streams of R&D effort: (1) research in technologies and processes that can 389 

provide these difficult to decarbonize energy services; and (2) research in systems integration that would 390 

allow for the provision of these services and products in a reliable and cost-effective way. 391 

We have focused on provision of energy services without adding CO2 to the atmosphere. However, 392 

many of the challenges discussed here could be reduced by moderating demand, such as by substantial 393 

improvements in energy and materials efficiency. Particularly crucial are the rate and intensity of 394 

economic growth in developing countries and the degree to which such growth can avoid fossil-fuel 395 

energy while prioritizing human development, environmental protection, sustainability, and social equity 396 

(4, 107, 108). Furthermore, many energy services rely on long-lived infrastructure and systems such that 397 

current investment decisions may lock in patterns of energy supply and demand (and thereby the cost of 398 

emissions reductions) for half a century to come (112). The collective and reinforcing inertia of existing 399 

technologies, policies, institutions, and behavioral norms may actively inhibit innovation of emissions-400 

free technologies (113). Emissions of CO2 and other radiatively active gases and aerosols (109), from 401 

land use and land-use change could also cause substantial warming  (e.g., 110). 402 

Conclusion 403 

We have herein enumerated energy services that must be served by any future net-zero emission 404 

energy system and have explored the technological and economic constraints of each. A successful 405 

transition to a future net-zero emission energy system is likely to depend on the availability of vast 406 

amounts of inexpensive, emissions-free electricity; mechanisms to quickly and cheaply balance large and 407 

uncertain time-varying differences between demand and electricity generation; electrified substitutes for 408 

most fuel-using devices; alternative materials and manufacturing processes for structural materials; and 409 

carbon-neutral fuels for the parts of the economy that are not easily electrified. The specific technologies 410 

that will be favored in future marketplaces are largely uncertain, but only a finite number of technology 411 

choices exist today for each functional role. To take appropriate actions in the near-term, it is imperative 412 

to clearly identify desired endpoints. If we want to achieve a robust, reliable, affordable, net-zero 413 

emission energy system later this century, we must be researching, developing, demonstrating and 414 

deploying those candidate technologies now. 415 
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Figures 

 

 

Fig. 1. Schematic of an integrated system that can provide essential energy services without adding any CO2 
to the atmosphere. Colors indicate the dominant role of specific technologies and processes: electricity generation 
and transmission in green, hydrogen production and transport in blue, hydrocarbon production and transport in 
purple, ammonia production and transport in orange, carbon management in red, and end uses of energy and 
materials in black. 
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Fig. 2. Difficult-to-eliminate emissions in current context. Estimates of CO2 emissions related to different energy 
services, highlighting (e.g., by longer pie pieces in A) those services that will be the most difficult to decarbonize, 
and the magnitude of 2014 emissions from those difficult-to-eliminate emissions. Note that the shares and emissions 
shown here reflect a global energy system that still relies primarily on fossil fuels and that serves many developing 
regions. Both the shares (A) and the level of emissions (B) related to these difficult-to-decarbonize services are 
likely to increase in the future. Totals and sectoral breakdowns shown are based primarily on data from IEA and 
EDGAR 4.3 databases. The highlighted iron & steel andcement emissions are those related to the dominant 
industrial processes only; fossil energy inputs to those sectors that are more easily decarbonized are included with 
direct emissions from other industry in the Other industry category. Residential and commercial emissions are those 
produced directly by businesses and households, and Electricity, CHP (combined heat and power), and Heat 
represent emissions from the energy sector. See Supplementary Materials for further details. 
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Fig. 3. Comparisons of energy sources and technologies. Panel A shows the energy density of energy 
sources for transportation, including hydrocarbons (purple), ammonia (orange), hydrogen (blue), and 
current lithium ion batteries (green). Panel B shows relationships between fixed capital versus variable 
operating costs of new generation resources in the U.S., with shaded ranges of regional and tax credit 
variation and contours of total levelized cost of electricity, assuming average capacity factors and 
equipment lifetimes. “NG cc” is natural gas combined cycle. (113). Panel C shows the relationship of 
capital cost (i.e. electrolyzer cost) and electricity price on the cost of produced hydrogen (i.e. the simplest 
possible electricity-to-fuel conversion) assuming a 25-year lifetime, 80% capacity factor, 65% operating 
efficiency, 2 year construction time, and straight-line depreciation over 10 years with $0 salvage value 
(29). For comparison, hydrogen is currently produced by steam methane reformation at costs of ~$1.50/kg 
H2 (~$10/GJ; red line). Panel D compares the levelized costs of discharged electricity as a function of 
cycles per year, assuming constant power capacity, 20 year service life, and full discharge over 8 hours for 
daily cycling or 121 days for yearly cycling. Dashed lines for hydrogen and Li-ion reflect aspirational 
targets. See Supplementary Materials for further details. 
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Table 1. Key energy carriers and the processes for interconversion. Processes listed in each cell convert the row 
energy carrier to the column energy carrier. Further details about costs and efficiencies of these interconversions are 
available in the Supplementary Materials. 

to 

from 

e- H2 CxOyHz NH3 

e-   Electrolysis (29) 
($5-6/kg H2) 

 Electrolysis + 
methanation 

 Electrolysis + Fischer-
Tropsch 

 Electrolysis + Haber-
Bosch 

H2  Combustion 
 Oxidation via 

fuel cell(115, 116) 

  Methanation 
($0.07-0.57/m3 CH4) 

 Fischer-Tropsch 
($4.40 to $15.00/gallon 
of gasoline-equivalent) 

 Haber-Bosch 
($0.50-0.60/kg 
NH3)(116) 

CxOyHz  Combustion  Steam reforming 
($1.29-1.50/kg H2) 

 Biomass gasification 
($4.80-5.40/kg H2) 

  Steam reforming + 
Haber-Bosch 

NH3  Combustion  Metal catalysts (117) 
(~$3/kg H2) 

 Sodium amide (118) 

 Metal catalysts + 
methanation/Fischer-
Tropsch 

 Sodium amide + 
methanation/Fischer-
Tropsch 

 

 

 




