
UC Irvine
ICS Technical Reports

Title
UCI L6 language manual

Permalink
https://escholarship.org/uc/item/7qv96782

Authors
Sowizral, Henry
Tadman, Frank

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qv96782
https://escholarship.org
http://www.cdlib.org/

UCI l6 language manual

by
Henry Sov;izral

Frank Tadman

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine
TECHNICAL* REPORT #50 — June, 1974 - '

TABLE OF CONTENTS

INTRODUCTION ' 1

1. GETTING STARTED WITH . . • ,3
1

2. DATA STRUCTURES 5

1. Internal Representation of Elementary Data 5
2. Constants 5

1. Numeric Constants ... 6
2. Character Strings 8
3. Internal Representation of Constants 10

3. . Blocks and Plex Structures 11
4. Storing and Refering to Data Items 12

1. Base Data Items — Bugs . . . 12
2. Refering to Data in the User-Allocated Storage Area 12
3. Defining Field Templates 13
4. Refering to Fields Bug-Field Strings 14

3. TUPLE FORMATS 17

1. General Description, Format and Examples 17
2. Classified List of Operations and Tests 19

1. Operations 19
2. Tests 20

3. Comments on Operations and Tuple Formats 21
4. Operations on Fields of Unequal Length 21
5. The Field Contents Stack • 22

4. THE l6 PROGRAM 23

1. General Format of a Program 23
2. An Example Program . - 24
3. The L^ Statement 25

1. Labels, Comments, and General Format 25

2. Unconditional Operators and Transfers 25
3. Conditional Operations and Transfers 26

4. The L^ Procedure , 28

5. SOME USEFUL PROGRAMMING CONSTRUCTS 29

1. One Line Loops 29
2. Subroutines 29

3. The Extended GT and FR Operations for Stacks 31

5. MULTIPLE PROCEDURES . 32

1. General Description of a Procedure 32
2. Calling a Procedure — External Labels 33
3. Local Bugs and Fields 34
4. A Sample Program- With Multiple Procedures 35
5. Locked Procedures 36

7. ADVANCED L^ LANGUAGE FEATURES .37

1. Label Variables 37

2. String Variables .38

8. EXTENDED I/O ' . . . 39

1. OPENO and OPEN I 39
. 2. Extended INS, OUTF, OUTS., FOUT, and TOUT . '. . . . 41

3. The EOF Tuple 41

9. THE l6 INTERPRETER 4 2

1. Typing in Commands 42
2. Line Specifications 42
3. Commands 45
4. Core Allocation , . . 59

10. CHARACTER EDITING 61

11. DEBUGGING 64

INTRODUCTION

stands for Bell Telephone Laboratories Low Level
Linked List Language. UCI L^ is an extended version of the
L^ iinpleraented at Bell Telephone Laboratories. The
extensions added make UCI L^ a more powerful and convenient
programming medium.

The major extensions to the original language are;

1) The user is allov/ed a close interactive control
over the creation, execution, and modification of
his program.

2) ELSE clauses have been added. These are executed
only if the test fails.

3) Lines may now be typed in a freer format v/ith no
restriction on column usage.

4) L^ programs may now be divided into modules called
procedures which are independent of one another.

5) More primitives have been added to L^. These make
string manipulation, multidirectional branching,
and extended stack operations much easier.

6) Both string and label variables have been added to
allow dynamic specification of parameters to
primitives.

7) The input and output facilities have been extended
to allow multiple file access. Further, I/O can
be done in any legal buffered data mode.

8) An extensive debugging facility has been added to
allow the program to be interrupted. The state of
the program can then be examined and execution
continued.

9) Commands for creating and editing program have
been added.

- 1 -

12. THE l6 tuples 66

1. Storage Allocation and Release 67
2. Assignment Operations 69
3. Arithmetic Operations 70
4. Bitv/ise Logical Operations 73
5. Input/Output Operations 75
6. Subroutine Calls 83

• 7. Defining Field Templates 85
8. Pushdown Stack Instructions 86
9. Bit Shifting and Counting 90

10. Miscelaneous Tuples 94
11. Equality Test 1 98
12. Algebraic Comparisons 99
13. Logical Tests . . . , 101
14. Testing for End of File 102

APPENDIX A SAMPLE DECK SETUPS 103

APPENDIX B READING A DUMP 104

APPENDIX C STORING THE LOW SEGMENT AS A CORE IMAGE108

APPENDIX D THE ASCII CHARACTER SET 109

INTRODUCTION

This manual describes the basic language and the
extensions to it. The manual is divided into twelve
chapters. The first four provide an overview of the
language and the data structures v/hich can be constructed
with it. The last chapters provide a more detailed
description of the language, its operators, and its
constructs. We suggest that those unfamiliar with read
the first six chapters and chapter twelve. The other
chapters describe features which are useful to more advanced
programmers.

Several conventions are followed in the examples
throughout this manual.

1) The ASCII control characters are v/ritten as an up
arrow follov.'ed by a character. For example,
control-C is represented by "rC".

2) In examples of interaction with the computer,
portions which are underlined v/ere typed by the
computer.

3) Text enclosed in square brackets is optional.

The L" interpreter was designed and implemented by
Henry Sov/izral and Frank Tadman as an independent study
project. We thank Robert J. Bobrow for initiating and
advising this project, and for the many hours he spent in
discussing the design and implementation. We thank Richard

sustain the project in professor
Foodym provided many helpful

Also we would like to acknowledge
(ICS 190B) which did an earlier

Sigma-7 computer. Finally, this

Rubinstein for helping to
Bobrov/'s absence. Allan
comments and suggestions,
the senior project group
implementation of on the
manual is based in large part upon the
manual written by Robert Bobrow.

2 -

Sigraa-7 language

CHAPTER 1

GETTING STARTED WITH

This chapter introduces the basic cotTiinands necessary to
load and run an program online. Appendix A gives a deck
setup for running in batch. If the user is at the
monitor level and wishes to run an program he first must
tell the monitor to run the interpreter by typing:

L6

then responds by typing its version number, the date, the
time, then indicates its readiness to accept a command by
typing a colon. Now the user tells which program he
wants run. He does this via the LOAD command. This command
takes as its arguments the name of the file that the program
is saved on and optionally the name of the file on which the
user v/ants the program and errors to be listed. The
commands format is:

^LOAD [outfile=]infile

where "outfile" is optional and specifies the name of the
file the user wants the listing on. Examples of "outfile"
ar e:

LPT:

PARSER

PROG

The other argument "inf ile" is the name of the file that
contains the program the user wishes to run.

Once the program has been loaded the next step is to
start it running. To do this the user types:

2_RUN procname

where "procname" is the name of the procedure that is to be
executed. Whether or not the program runs successfully a
dump of the status of the program is usually required. The
command to do this is DUMP. It allows the user either to

channel the dump to a file or to his terminal. Its format
is:

:DUMP/FILE:outfile

- 3

GETTING STARTED WITH

If the "/PILE ;outf ile" is omitted then the dump is typed on
the terminal, otherwise it goes to the file specified by
"outfile" .

Two other useful commands are LIST and EXIT. LIST
permits the user to see the L^ programs v;hich are currently
defined, while EXIT exits the user to the monitor.

A session could go as follows:

_^R L6

UCI L6 2(5) 21:49:46 23-MAY-74

j_LOAD TTT=TTT

NO ERRORS DETECTED

8P CORE USED

2_RUN TRAVERSE

HALT AT LEVEL 0

8P CORE USED

2_DUMP/FILE:DUMP
j_EXIT

EXIT

This user first ran the L^ interpreter. After it
responded he asked it to load all the L^ procedures defined
in a file called TTT.L6 and list the procedures with
whatever errors there may be on a file named TTT.LST. He
then ran the procedure named TRAVERSE. After it ran, a dump
was requested on the file DUMP.LST. Finally, he returned to
the monitor.

- 4 -

CHAPTER 2

DATA STRUCTURES

2.1 INTERISIAL REPRESENTATION OF ELEMENTARY DATA

Internally, there is only one type of elementary data
item in L^, the field. A field is a sequence of n
contiguous bits (1 < n £ 36) lying within one machine word.
Depending on the size of the field and the operation to be
performed, a field m.ay be used in various manners. Thus a
field may contain:

a) a positive integer in binary form
(1 < n < 35)

b) a signed integer in two's complement binary form
(n = 35)

c) a sequence of 1, 2, 3, 4, or 5 characters in ASCII
code

:(n=7,14,21,28or35)

d) a bit string or set of flags or logical variables
(1 < n < 36)

e) a pointer to a word in user-allocated memory
(n = 18, and the value of the l8 bit integer forms
the address of the indicated word.)

2.2 CONSTANTS

There are several ways in which data can be represented
in an program. Since all data is stored internally
within fields, the external representation (or constant
notation) is important primarily for programmer convenience
and readability of programs. j[t good programming
practice to use notations that indicate the operations to be
performed on the data.

- 5 -

DATA STRUCTURES

2.2.1 NUMERIC CONSTANTS

DECIMAL INTEGERS

When data is to be used for ar ithinetic, it is raost
commonly represented in the form of an integer in decimal
notation, with or without an optional sign. Some examples
of the notation for integers are:

185 1234976 +169 -243 534258913

ARBITRARY BIT CONFIGURATIONS — OCTAL REPRESENTATION

A convenient way for the
bit strings is as octal numbers,
as a number sign (#) optionally
followed, by a sequence of from
set

0,1, 2, 3, 4, 5, 6, 7

user to represent arbitrary
An octal number is written

followed by a sign (+ or -),
1 to 12 characters from the

ANOTHER REPRESENTATION ~ HEXADECIMAL REPRESENTATION

Another way to represent bit strings is using
hexadecimal numbers. These are written as a period (.)
followed by a sequence of 1 to 9 hexadecimal digits. These
are any of the following characters

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

OTHER BASES — NUMBERS OF BASES 2-10

Numbers may be written in any base between tv/o and ten
by writing the base, followed by a number sign (#), and by
an optionally signed integer. Some examples are:

2#1011101101011011 8#2412 5#-432 10#+10

- 6 -

DATA STRUCTURES

In an octal

not a decimal

number of bits

number (as in an hexadecimal number, but
number) each character represents a fixed

(four for hexadecimal, three for octal).

OCTAL

0 = 000 1 = 001 2 = 010

3 = 011 4 = 100 5 = 101

6 = 110 7 = 111

Some examples of octal 'constants are;

#21 (= 0100-01)
#5023 (= 101000010011)
#7777 (= 111111111111)

HEXADECIMAL

0 = 0000 1 = 0001 2 = 0010 3 = 0011

4 = 0100 5 = 0101 6 = 0110 7 = 0111

8 = 1000 9 = 1001 A = 1010 B = 1011

C = 1100 D = 1101 E = 1110 F = 1111

Some examples of hexadecimal constants are;

.11 (= 00010001)

.A13 (= 101000010011)

.FfF (= 111111111111)

.10AB2 (= 00010000101010110010)

- 7 -

DATA STRUCTURES

2.2.2 CHARACTER STRINGS

When data is to be used for output of alphanumeric
characters, or other purposes where it is to be considered
as a character string (e.g., when the character code for "0"
is to be subtracted from the character code for a numeral to
get the associated integer) the data is best represented as
a character string. Character strings may be any sequence
of one to five characters enclosed in either single quotes
(').or double quotes (").

Note that if a single quote is to be contained in a
string the string should be delimited by double quotes. The
delimiting character may also be inserted in a string by
using two consecutive occurences of it. Some examples of
character strings are:

"A" 'a' "AB*C" 'Q3-A' "AB'C" "12A"

'I'm and both represent the string "I'M".

LONG TEXT STRINGS FOR TITLES

To make it easier to print long titles or headings, two
of the output operations (the text output operations, TOUT
and FOUT) accept character strings of any length. For
example:

"THIS IS AN EXAMPLE OF A LONG STRING FOR A HEADING"

- 8 -

DATA STRUCTURES

SPECIAL CHARACTERS - THE EXCLAMATION POINT

An exclamation point (!) is interpreted specially in a
text string. If it is followed immediately by one of the
letters in the table below the exclamation point and the
letter are replaced by one of the ASCII control characters
shown below. This allows the use of special characters
which can not be conveniently used in text strings. Two
consecutive exclamation points are treated as a single
exclamation point.

TEXT CONTROL OCTAL CHARACTER

ARGUMENT CHARACTER VALUE NAME

!C TM 15 carriage return
!L TJ 12 1inefeed

!F TL 14 formfeed

!T Ti 11 tab

! V TK 13 vertical tab

!B TG 7 bell

!A T[33 altmode (escape)
!U T] 35 home up
!D T\ 35 home down

!S rr 37 erase eof

!E 35 erase eol

!W TK , 13 cursor down

!X 'fx 30 cursor forv/ard

!Y Ty 31 cursor back

!Z Tz 32 cursor up
1 1 I 41 exclamation point

Some examples are:

"THIS IS A LINE OF OUTPUT!C!L"

"!UIS"

"!!SURROUNDED BY SINGLE EXCLAMATION POINTS!!

- 9 -

DATA STRUCTURES

2.2.3 INTERNAL REPRESENTATION OR CONSTANTS

Although there are many external representations of
data, all data is stored within as binary numbers.
Therefore, once a constant is read in, it may be used for
any purpose. For example, the constants below may be used
interChangably.

#101 65 6#145 'A' 2#1000001

/

10 -

DATA STRUCTURES

2.2.3 INTERNAL REPRESENTATION OF CONSTANTS

Although there are many external representations of
data, all data is stored v;ithin as binary numbers.
Therefore, once a constant is read in, it may be used for
any purpose. E'or example, the constants below may be used
interChangably.

#101 65 6#145 'A' 2#1000001 i
I

f

- 10 -

DATA STRUCTURES

2.3 BLOCKS AND PLEX STRUCTURES

allov;s the user to build arbitrarily complicated
data structures. The basic component of such structures is
the block, V7hich is a set of sequential words in a special
area ol memory, the user-allocated storaqe area. These
blocks may be any size that will fit into the available
storage. As far as the system is concerned, a block has
no internal structure, and can be used to hold any data that
the user desires to store in it.

The system provides the user with an automatic
storage management facility which allov;s the user to request
access to a block of any desired size, store data in the
block that has been allocated, manipulate the data, and
eventually return the allocated block to the storage manager
when it is no longer needed. This allows the same area of
storage to be used to hold different data structures at
different times in the execution of the proqram. In
general, the user conceptually decomposes a block into
fields, each containing a meaningful piece of data. (It is
possible to have overlapping fields.)

provides the user with convenient ways to extract
data from fields within a block, to combine data from
various fields and store the result in a given field. (See
the section below on referencing data in fields.) It is up
to the user to set up the data in a block as he needs it.
Thus, for example, a block can be used to hold the elements
of an array, stored in standard row or column major order,
it can be partitioned (conceptually) into various fields of
arbitrary length, it can hold a sequence of ASCII
characters, etc.

One of the most important types of fields a block can
contain is a field with a pointer to the origin (or middle)
of another block. As indicated above, such a pointer field
must be at least 18 bits long, and holds the relative
address of a word in the user-allocated storage area. A
field containing a pointer is often called a link field.

Such link fields allow the user to create coraplicated
structures, called pi ex structures, containing many blocks
linked together by pointers. Such structures can be used to
represent linear lists of characters or numbers, graphs,
circular lists, stacks, queues, etc.

- 11 -

DATA STRUCTURES

2.4 STORING AND REFERING TO DATA ITEMS

has five places where data may be stored. The most
important of these is a qrouj> of 26 registers called bugs.
Using the bugs, the program may reference blocks in the
user-allocated storage area. L° also has three stacks, the
field contents stack, the field definition stack, and the
subroutine return pushdovm stack where the program may store
data.

2.4.1 BASE DATA ITEMS — BUGS

The basic data storage areas in are 26 registers,
called bugs. These bugs are refered to by the single letter
names:

A, B, C, D, E, F, G, H, I, J, K, L, M,

N, 0, P, Q/ R, S, T, U, V, W, X, Y, Z

Each of these registers can contain any 36 bit
quantity. They can be used to hold numbers for arithmetic,
characters for input and output, and most importantly, they
can be used to hold pointers to blocks in the user-allocated
storage area. Such pointers "form the basis fo"r refering to
all data in the user-allocated storage area.

To refer to the 36 bit quantity contained in a bug, the
user need only v/rite the name of the bug in the correct
place in the program. Thus, to refer to the contents of the
bug Q, one writes Q.

2.4.2 REFERING TO DATA IN THE USER-ALLOCATED STORAGE AREA

To refer to a field in an allocated block, the user
must specify a pointer and a field template. A pointer is
an 18 bit quantity which gives tEe relative address of a
word in the user allocated storage area. A field template
indicates the position of a field relative to a pointer.

Most plex structures have pointer FTera's which contain
null pointers. These are pointers which do not point to
anything and serve to m.ark the "end" of the plex structure.
The pointers 0, 1, and 2 are reserved as null pointers. A
block will never be allocated in the user-allocated storage

- 12 -

DATA STRUCTURES

area with these relative pointers. If.more distinctive null
pointers are,needed those greater than or equal to #400000
may be used.

2.4.3 DEFINING FIELD TEMPLATES

At any given time the user can have up to 36 field
templates defined.

The possible names for field templates are;

the 26 letters of the alphabet: A, B, ... , X, Y, Z
the ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The user can change the field template associated v/ith
a field name at any time during the execution of his
program, and can even define a field template on the basis
of information computed by his program.

To specify a field template the user m.ust give tv/o
pieces of information, an offset and a bit position
specification. The offset indicates the word in which the
field is to be found. The address of the v/ord containing
the field is obtained by adding the offset to the pointer.
Thus, if the offset is 0, the field is in the word indicated
by. the pointer, if the offset is 5 then the field is in the
fifth word after (i.e., with a higher address than) the
pointer. The displacement of a field may be negative in
which case the field refers to an address which is lower

than the pointer.
To specify the position of the field within a word the

user can either give a 35 bit mask which has I's in those
bit positions which are in the field and 0's elsewhere, or
indicate the first and last bit positions in the field.

The leftmost bit in a word is refered to as bit 0, and the
r ightmost is bit 35. (The high order- bit is bit 0, the lov/
order bit is bit 35.)

Thus, to indicate a field of 5 bits, starting in the
fifth bit position of the word, (bit 4) the user can give
either the mask #036000000000 or the bit positions 4 8. If
we let stand for a bit position not in the field and
for a bit position in the field, we can "drav/" the bit
specification for the field as follows:

- 13 -

DATA STRUCTURES

An example of the v/ay in which a user can define a
field template is;

(3 D F 7 13)

which defines the field name F to be associated with the
field template v/ith offset 3 and specifying bits 7 through
13. Another example is:

(0 D Q #77400)

which defines the field template named Q to have offset 0
and be in bits 21 through 27. Diagrams of the bit position
specifications of the two fields are:

f = »X^ XX X d.nd

Q =; AKXic :1c 3^

Equivalent definitions are:

{3D F #776000) and (0 D Q 21 27).

2.4.4 REFERING TO FIELDS — BUG-FIELD STRINGS

In a program a field is referenced by means of a
bug-field string which is a sequence of 2 to 63 characters.
The first character is the name of a bug (which must contain
a pointer to a location within an allocated block), and the
remaining characters are the names of (currently defined)
fields. All but the last field must be at least 18 bits
long, since they must contain pointers.

Some examples are:
AX, QZl, R13, M1RST5

r

But not:

A (only one character, just specifies a bug),
IX (the first character is not alphabetic, so it

is not the name of a bug)

The meaning of a bug-field string is easy to see. For
example, if the bug P contains a pointer and the field X is
currently defined, then the bug-field string FX refers to
the field whose position is specified by the pointer in P
and the field template associated with X. In particular.

- 14 -

DATA STRUCTURES

say P points to the word with address #101 and X has been
defined by (4 D X 18 35), then FX refers to the field in the
rightmost 18 bits of the word with adores^ #105. (That is,
bits 18 through 35 in that word.) a diagram of the situation
is:

#101

#105

Since the field specified by PX has 18 bits, it could
contain a pointer to a word within another allocated block.
In that case the bug-field string PXX would refer to the X
field relative to the pointer in PX. Thus, if bits 18 to 35
of word #105 contain a pointer to word #215 then PXX would
be the field in bits 18 through 35 of word #221. If field 5
were defined by (1 D, 5 0 7) then PX5 would refer to bits 0
through 7 (the leftmost 8 bits) of word #216.

In general, if B is a bug and F, G, ... ,W are
currently defined fields, each of at least 18 bits length,
then BFG ... WQ refers to the field specified by the
pointer in the field specified by BFG ... W and the
template ass.ociated with Q. •

With complicated plex structures, as in the diagram
beiow, it is possible to refer to a given field in many
ways, by finding alternative chains of pointers to guide the.
way to the field. In the diagram below, the same field (the
A field in the first word of the second block) can be
refered to as:

XA or WKA or WFFA or VvF3KA'

- 15 -

DATA STRUCTURES

THE FIELDS DEFINED ARE;

F=2[2,20] . BITS 2 - 20, DISPLACEMENT. 2

A=-l[5,ll] BITS 5 - 11, DISPLACEMENT -1

K=0[18,36] BITS 18 - 36, DISPLACEMENT 0

3=0[1,18], BITS 1 - 18, DISPLACEMENT 0

X- •> 1

W- •> I

I I

. A

I/////I

#4 56

F

3

#100

#147

F

- 16 -

K

#147

K

#147

#100

I #146

I #333

#456

CHAPTER 3

TUPLE FORMATS

3.1 GENERAL DESCRIPTION, FORMAT AND EXAMPLES

In writing a program there are two types of common
activities, testing data, and operating on data. In
general, a test involves comparing the contents of a field
with the contents of another field or with a literal
(constant) in the program while an operation specifies some
change to be made to the contents of some field, bug,
pushdown stack or ^ I/O device. In L^, both tests and
operations are written in the sam.e format, with the
distinction between the tv/o types of action being made on
the basis of v/here they occur in the L^ statement. The
basic syntactic unit which is used for both tests and
operations is the tuple. A tuple must specify the action to
be performed and the data on which it v/ill act.

A tuple consists of a symbolic operation code and one
or more data specifications, enclosed in parentheses. The
data specifications can be constants/ bug names, bug-field
strings and sometimes labels. The operation code is always
the second element of the tuple, and the elements are always
separated by at least one blank space.

The formats are:

(data-1 op) or
(data-1 op data-2) or
(data-1 op data-2 .data-3) or
(data-1 op data-2 ... data-n)

Some examples of tuples are:

(XAl = 15) moves the integer 15 into the field XAl'
when it is used as an operation tuple (when it is used
as a test tuple, it compares the contents of the field
XAl with the integer 15.

(PQ + R) adds the contents of the bug R to the
contents of the field PQ and stores the result in the
field PQ.

(

- 17 -

TUPLE FORMATS

(PX - 157) subtracts the integer 157 from the contents
of the field PX and stores the result in PX.

(P GT 10) requests a block of 10 words from the
storage allocator, and stores a pointer to the first
word of the allocated block in the bug P.

(RS FR) returns the block whose first word is pointed
to by the field RS to the storage allocator (if RS
does not point to the first word of an allocated block
this causes an error).

- 18 -

TUPLE FORMATS

3.2 CLASSIFIED LIST OF OPERATIONS AND TESTS

3.2.1 OPERATIONS - -

There are several basic classes of operations in L^:

Storage Allocation — GT to allocate a block, FR to free a
block

Assignment — 4-, = or E for assignment, IC to interchange
contents

•/

Arithmetic — + for addition, - for subtraction, * for
multiplication, /for division

Bitwise Logical Operations — & or A for Boolean and, 1 or 0
for Boolean or, X for exclusive or, C for complement

Input/Output — INIT for initializing input and output
files, INS for inputting character (strings), OUTS and OUTF
for outputting character strings, TOUT for outputting long
text for titles, FOUT for outputting text and forcing the
output buffer to be printed

Subroutine Call -- DO for transfering to a subroutine

Defining Field Templates — D for defining fields

Pushdown Stack Instructions — SFC for saving one or more
data items on the field contents stack, RFC for restoring
one or more fields from the field contents stack, SFD for
saving one or more field definitions on the field definition
stack, RFD for restoring one or more field definitions from
the field definition stack

Bit Shifting and Counting — L for left shift, R for right
shift, COL for finding the position of the leftmost one
within a field, CZL for finding the position of the leftmost
zero, COR for finding the position of the rightmost one, CZR
for finding the position of the rightmost zero, CO for
counting number of ones in a field, CZ for counting number
of zeroes

19 -

TUPLE FORMATS

Incremental Dump — DUMP for obtaining a dump of the
contents of the user-allocated storage area while the
program is running.

3.2.2 TESTS

There are a number of tests available, including;

Equality ~ = for equality, # for inequality

Algebraic Comparison- -- < for less than, > for greater than,
<= for less than or equal, >= for greater than or equal, and
R for inclusive range

Logical Tests — 0 to test for corresponding one bits, Z to
test for corresponding zero bits

- 20 -

TUPLE FORMATS

3.3 COMMENTS ON OPERATIONS AND TUPLE FORMATS

As should be clear, from the examples, the operator is
alv/ays the second element of the tuple. Since the operation
codes can be sequences of letters, it would be impossible to
distinguish them from bug-field strings if they did not
always occur in the same place in the tuple.

There must always be at least one space between
consecutive elements of a tuple. Extra spaces may be
inserted ror readabilTty wherever a single space is
acceptable. Tabs, linefeeds, formfeeds, and vertical tabs
are equivalent to spaces except inside character strings.
There can be no spaces betv/een the characters in a bug-field
strinq.

r

Almost all operations that combine data store the
result in the space occupied by the first argument. (The
most notable exceptions are the extended GT operation, the
RFC restore field contents operation, and the extended
division tuple) Thus, the first argument of an operation
tuple can be either a bug or a bug-field string, but not a
constant. Remember, the original contents of the first
argument are modified during arithmetic operations. The
other arguments of a tuple are,constants, bugs or bug-field
strings.

3.4 OPERATIONS ON FIELDS OF UNEQUAL LENGTH

It is common to combine fields of unequal length in L®
operations. Conceptually, the operations are performed on
the two fields as if they were right justified in a 36 bit
word, and the rightmost bits of the result are stored in the
result field. Thus, if field FA has 17 bits and field PQR
has 13 bits, the operation (PQR + FA) takes the 17 bits from
FA and puts them in the rightmost 17 bits of a word, with
the remaining bits zeroed, and puts the 13 bits of PQR in
another word, with the remaining lefthand' bits zeroed out,
and adds the two quantities. The rightm.ost 13 bits of the
resulting 17 (or 18) bit sum are stored in the field PQR,
and the other 4 (or 5) significant bits are lost. Remember
that a negative number takes 36 bits so the contents of any
field shorter than 36 bits is treated as a positive number.
In an assignment statement, (PQR = FA) results in PQR being
filled with the rightm.ost 13 bits of the 17 bit field FA,
the other bits being . lost. (FA = PQR) results in the
rightmost 13 bits of the field FA getting the contents of
the field PQR, and the leftmost 4 bits of PQR being set to
zero. As was noted above, constants can be regarded as

- 21 -

TUPLE FORMATS

being right-justified in a 36 bit field. Thus, if a field
can contain enough bits to represent a constant the result
is what you would expect.

3.5 THE FIELD CONTENTS STACK

The field contents stack provides the programmer with a
convenient way to store the local information needed for a
recursive subroutine. It is possible to store blocks of
words on the stack, and to restore these same blocks. The
contents of several fields may be saved at one time on the
stack. There is only one field contents stack, and the
elements stored on it are blocks of 36 bit words. Note,
that as in all L^ data transfers, if the fields are shorter
than 36 bits, the quantity stored in the stack contains the
field to be stored, right justified with zeroes on the left
in a 36 bit word. The user should be careful, since the
stack holds blocks of words. To save the bugs A, Q and the
contents of the field PRX the user can write

(3 SFC A Q PRX)

and to restore the same items he would use,

(3 RFC A Q PRX)

Note that the items in a block are restored in the same
they were placed in the block, and that it Ts only

blocks which are stacked in a"nTast in, first out" fashion.

- 22 -

CHAPTER 4

THE program

4.1 GENERAL F0Rf4AT OF A PROGRAM

An program is a group of one or more procedures.
Each procedure consists of a sequence of statements.
Roughly speaking, a statement is a sequence of operations
written as tuples, v/hich may be performed unconditionally,
or which may only be performed if some conditions specified
by a set of test tuples are satisfied. Normally, control
flows from one statement to the next statement in a

sequence, and from left to right, tuple to tuple, within a
statement. Ih order to allow the user to unconditionally or
conditionally change the flow of control in his program any
statement may have a label, and it is possible to specify
that control is to be passed unconditionally or
conditionally to the statement with a given label.

- 23 -

THE LO PROGRAM

4.2 AN EXAMPLE PROGRAM

PROCEDURE LINKLIST

/THIS L6 PROGRAM READS IN A SEQUENCE OF CHARACTERS FROM THE
/DISK PILE LINK.DAT IN THE USER'S DISK AREA, AND FORMS A
/LINKED LIST OF THESE CHARACTERS. IT THEN TRAVERSES THE LIST
/AND PRINTS OUT THE CHARACTERS, FREEING THE BLOCKS AS IT
/GOES. READING IS TERMINATED WHEN THE CHARACTER " IS SEEN.
/END OF LIST IS INDICATED BY A 0 IN LINK THE FIELD.

/THERE ARE TWO FIELDS IN EACH BLOCK, THE FIELD C IS AN 7 BIT
/FIELD FOR A CHARACTER, AND THE FIELD N IS THE LINK FIELD

/B POINTS TO THE START OF THE LIST, P IS A WORKING POINTER, C
/IS USED TO HOLD CHARACTERS TEMPORARILY ON INPUT

START THEN ('LPT:' INIT 'LINK') /SET UP I/O
THEN(0 D C 0 6) (0 D N 18 35) /SET UP FIELD TEMPLATES
THEN (P GT 1)(B = P)(PC INS 1) /SET UP FIRST BLOCK
THEN (C INS 1) /GET FIRST CHAR FOR LOOP

/THE NEXT STATEMENT IS A ONE LINE LOOP WHICH READS IN
/CHARACTERS AND PLACES THEM INTO BLOCKS UNTIL IT READS A

LOOP IF (C # ".'•) THEN (PN GT 1) (P = PN) (PC = C)(C INS 1) LOOP
THEN (PN = 0) (P = B) /SETUP P FOR OUTPUT LOOP

/THIS LOOP TRAVERSES THE LIST, PRINTING CHARACTERS AND
/FREEING THE BLOCKS

OUTLP IF (P = 0) then halt ELSE (PC OUTS 1)
THEN (T = P)(P = PN)(T FR) OUTLP

END

- 24 -

THE LO PROGRAM

4.3 THE L® STATEMENT

4.3.1 LABELS, COMMENTS AND GENERAL FORMAT

An L^ statement has a free format. A statement may be
labeled. A label can be any sequence of from one to ten
letters or digits, beginning with a letter, with the
exception of the following reserved words:

IF IFNONE IFALL IFANY

IFNALL THEN ELSE PROCEDURE
PROC END LCLB LCLF

EXTERNAL

Labels defined in this manner are known as local labels. In
the program above all non-labeled statements started in
column 8. This was done only to improve readability, since
L® would have been perfectly happy to have the statements
start in any column. It is strongly suggested that the user
develop his own standard format to improve readability, and
stick to that format in typing his programs.

Comments can be placed in an L^ program by preceding
them v/ith a slash {/) . All characters on a line following a
/ are ignored by the parser. (Major exception: / is used as
the division operator, and a / that occurs as the second
element of a tuple does not cause subsequent characters to
be ignored.)

4.3.2 UNCONDITIONAL OPERATIONS AND TRANSFERS

The simplest form of an L^ statement is the
unconditional statement which consists of the keyword THEN
follov/ed either by a sequence of operation tuples or a label
or both. Some examples are:

THEN (P GT 1) (PC INS 1)

THEN LABI

THEN (PR + 3)(P = PN) LABI

When an unconditional statement is encountered the
tuples within it are executed from left to right, and if
there is a label control is then passed to the statement

- 25 -

THE l6 program

with that label. (If there are no tuples and only a label,
control is passed directly to the statement with that label.
If there is no transfer label, then after all the tuples
have been executed control flows to the next statement in
the program.)

The transfer labels HALT, DONE, FAIL and * have special
significance. Transfering to the label HALT will cause the
program to come to a halt. DONE and FAIL are special dummy
labels used to return from subroutines and procedures. is
a special label useful for creating one-line loops.

Once execution begins on a sequence of tuples, all the
tuples will be'executed unless an error occurs, or there is
a transfer tuple (GOTO or DO) in the sequence.

The unconditional statement is not only the simplest
form of an L^ statement, it is the basis for most of the
other statements. The sequence of the keyv/ord THEN followed
by either a sequence of one or more tuples, a label or both,
is refered to as a THEN clause.

4.3.3 CONDITIONAL OPERATIONS AND TRANSFERS

In a program of any complexity, there will be
operations that are only to be performed when certain
conditions are met, or transfers of control that are to be
made only under certain conditions. L^ provides several
forms for such conditional expressions. The simplest form
consists of the keyv/ord IF followed by a test tuple,
followed by a THEN clause. Some examples are:

IF (P

IF (PC

IF (P

".")THEN OUTPUT

The sequence consisting of the keyword IF and the test tuple
is called an IF clause. It is the simplest form of the IF
clause, more complicated ones with multiple tests are shown
below.

- 25 -

THE L" PROGRAM

The ELSE clause

For these simple IF statements, the THEN clause is
executed if the test is true, and if the test is not true
the next statement in the sequence is executed. A useful
generalization is the IF statement v/ith an ELSE clause. An
ELSE clause is like a THEN clause except that it starts v.'ith
the keyword ELSE and can only occur after a THEN clause in a
conditional statement. The ELSE clause is executed exactly
like a THEN clause, except that it is only executed if the
testing condition is not met. Some examples are;

IF (A = 3) THEN (P + 2)(A - P)(Q = QN) LABS ELSE (A = 1)

IF (P = 0) THEN HALT ELSE (PC OUTS 1)(P = PN) LOOP
I

In the first case, the THEN clause is executed only if the
contents of bug A is a 3, and the ELSE clause is executed if
the contents of the bug A is not 3.

Multiple Tests in an IF clause — IFALL, IFANY, IFNONE,
IFNALL

Many times it is necessary to test several conditions
to see if a line of code is to be executed. L^ provides
several alternative IF clauses with different keywords to
control the execution of a line, depending on the conditions
which must hold for the THEN clause to be executed.

The keyword IFALL indicates that the THEN clause is to be
executed only if all the tests are true.

The keyword IFANY indicates that the THEN clause is to be
executed only if at least one of the tests is true.

The' keyv/ord IFNONE indicates that the THEN clause is to be
executed only if none of the tests are true.

The keyword IFNALL indicates that the THEN clause is to be
executed only if at least one of the tests is false.

Some examples are:

IFALL (P # 0)(PC # ".") THEN (PC OUTS 1) ELSE (PD OUTS 1)

IFANY (P = 0)(PC ".") THEN (PD OUTS 1) ELSE (PC OUTS 1)

- 27 -

THE LO PROGRAM

IFNONE (PN = 0)(R = 3)(J > K) THEM (R + J)(P = PN)

lENALL (Q = P)(PN = R) THEN (P = PN)(R = 2)

4.4 THE LO PROCEDURE

A procedure is a block of statements to be executed as
a unit. Every procedure must be named. Procedures begin
with a PROCEDURE statement of the form;

PROCEDURE name

where "name" is a label. This label becomes a new type of
label known as an external label. External labels are

unknovm inside procedure definitions and an identical label
may therefore be used as a local label in any procedure.
(Exception: See the EXTERNAL statement in chapter 6).

- 28 -

CHAPTER 5

SOME USEFUL PROGRAMMING CONSTRUCTS

5.1 ONE LINE LOOPS

There is a special symbol * which can be used as a
transfer label in either a THEN or an ELSE clause. The
symbol * stands for the current line. Thus, it is possible
to write convenient one-line loops in L^.

For example:

IF (P # 0) THEN (PC OUTS 1)(P = PN) *

This one line will print all the characters in the C fields
of a linked list with link field N, stopping only when a 0
link field is found.

IF (P =0) THEN HALT ELSE (P FR PN) *

This line of code will free all the blocks in a linked list,
and halt when it reaches a link field of 0, having returned
the last block.

5.2 SUBROUTINES
" 1

L^ provides a minimal subroutine capability. It is
possible to transfer control to a line of a program and to
save the location from v/hich the transfer took place. The
subroutine transfer tuple is an operation tuple (and must
occur in a THEN clause or an ELSE clause) and looks like:

(SUBRl DO)

or

(SUBR2 DO FAILEXIT)

where SUBRl and SUBR2 are the labels of statements which are
the beginning statements of subroutines. When the first

- 29 -

SOME USEFUL PROGRAMMING CONSTRUCTS

form of DO is executed, the "address" of the next tuple in
the clause (the one following the DO tuple) is pushed onto
the return stack and control is passed to the statement
whose label is the first argument of the DO tuple (this is a
case where a sequence of letters as an argument to a tuple
is interpreted as a label and not as a bug-field string) .
In the second form of the, DO tuple, tv;o addresses are put on
the return stack, the address of the tuple following the DO
tuple, and the address of the statement whose label is the
second argument of the DO tuple.

If the label DONE is used as the transfer label of a

THEN or an ELSE clause, the .return stack is popped, and
control passes to the address which was stored on the top of
the stack.

If the label FAIL is used as the transfer label of a

THEN or an ELSE clause, the stack is popped, and if there
are two elements, control is passed to the second address,
the one which came from the second argument of the DO tuple.
This FAIL exit feature allows the programmer to v/rite
subroutines which test certain conditions and return to one

location specified by the caller if some conditions hold,
and return to another if the conditions do not hold. This

is very often useful when external conditions might make it
impossible for a subroutine to perform its assigned task,
and it is necessary for the calling routine to knov; about
it. This FAIL exit can also be used in many other ways. If
the subroutine executes the label FAIL and the calling DO
tuple does not have a FAIL address, the DONE exit is taken.

Since the location of the calling tuple is placed on a
stack, it is quite easy to write recursive subroutines in
L^, as long as the programmer takes care to save internal
variables before calling any subroutine which might call the
calling routine recursively. The field contents stack makes
such saving of internal registers quite convenient. Another
way to write recursive programs . is to write recursive
procedures using the local bug and local field feature.
This will be described in chapter 6.

- 30 -

SOME USEFUL PROGRAMMING CONSTRUCTS

5.3 the extended GT AND FR OPERATIONS FOR STACKS

The extended form of the GT and FR operation make it
quite easy to make a linked stack in L^. To insert a blocK
on the head of a stack pointed to by the, bug P, v/ith links
in field L, the programmer simply writes:

(P GT 1 PL)

and to pop an item off the stack and return it to the free
list one can write:

(P FR PN)

Note that since the contents of the first argument is saved
before it is modified, and the field specified by the third
argument is not found until after the first argument is
modified, the extended GT operation results in the original
value of P being stored in the link field of the block which
has been obtained from the allocator, and which is now
pointed to by the bug P. A similar juggling trick occurs in
the extended FR operation.

- 31 -

CHAPTER 6

MULTIPLE PROCEDURES

6.1 GENERAL DESCRIPTION OF A PROCEDURE

A procedure is a group of statements of the form:

PROCEDURE name

statements

END

In this description ''name" is a string of one to ten
letters or digits beginning with a letter. The keyword PROC
may be used in place of the word PROCEDURE in the first
statement. "Statements" is any number of unconditional or
conditional lines. Three other special types of statements
may also be included. They are EXTERNAL, LCLB, and LCLF.
These will be described later.

Any number of procedures may be defined, either by
loading them from a file, or by writing them online using
the editor commands.

The labels defined in a procedure are local to the
procedure, that is, they are not defined outside of the
procedure. This means that identical labels defined in
several seperate procedures v/ill not conflict. It also
means that a procedure may not branch to a line in another
procedure. For example, suppose there are two procedures
defined as follows:

PROCEDURE ONE

THEN TWOSLABEL

DOUBLE THEN DONE

END

PROCEDURE TWO

TWOSLABEL THEN HALT

DOUBLE IF (X < 100) THEN (X + 1) DOUBLE
END

If the command

:RUN ONE

- 32 -

MULTIPLE PROCEDURES

is typed an undefined label error v/ill occur since the
definition of TV'iOSLABEL in procedure TwO is not recognized
in procedure ONE. Also, the branch to DOUBLE in TWO
branches back to the label DOUBLE in TWO and not to DOUBLE
in procedure ONE. The definition of DOUBLE in ONE is not
used.

6.2 CALLING A PROCEDURE — EXTERNAL LABELS

A procedure may call another procedure (or itself) in
the same way subroutines are called. For example, to call
procedure PRINT the line

THEN (PRINT DO FAILEXIT) (C INS 1)

can be used. This causes procedure PRINT to be executed,
beginning with the first line until either DONE or FAIL is
encountered. Control returns (as with subroutines) to the
INS tuple in case of a DONE or to the line with the label
FAILEXIT in case, of a FAIL. The label FAILEXIT must be
defined as a local label in the procedure containing the
calling DO tuple.

The names of procedures are not normally recognized
within any procedure's statements. Therefore, a statement
called the EXTERNAL statement is used. It has the form:

EXTERNAL proc-1,proc-2,proc-3, ... ,proc-n

The proc'-I ,proc-2 ,proc-3, ... ,proc-n is a list of
procedure names. This statement causes these names to be
interpreted as external rather than local labels. In the
previous example, the procedure containing the DO tuple must
contain the statement

^ EXTERNAL PRINT

to indicate that PRINT is the name of a procedure rather

than a subroutine. EXTERNAL labels can not be defined at

the beginning of a line, nor can they be used as branches,
FAIL exits, or in the GOTO tuple. They are used only as the
first argument of the DO tuple. ...

Procedures are called, using the same stack which is

- 33 -•

MULTIPLE PROCEDURES

used for subroutine calls. Therefore, when one of the
labels DONE or FAIL is encountered it applies to the last DO
tuple executed, whether it called a subroutine or a
procedure. A DONE or a FAIL at level 0 (when no subroutine
or procedure calls are in effect) acts exactly like a HALT,
except that the message

i DONE AT LEVEL 0

or

FAIL AT LEVEL 0

is typed. This is so that procedures can be written which
may be run either by being called by other procedures or by
being executed by either the RUN or EXECUTE commands.

6.3 LOCAL BUGS AND FIELDS

When a procedure is called by a BO tuple, it is
possible to specify bugs and field definitions which will be
saved on the pushdov/n list along with the procedure call and
restored when the procedure is exited by a -DONE or FAIL.
This is done with the LCLB or LCLF statem.ents. They look
like:

LCLB bug-list '
LCLF field-list '

EXAMPLES ARE:

LCLF A,1,5
LCLB A

LCLB A,B,M,Z,R

This feature is especially useful for writing recursive
procedures. It is also helpful for writing library routines
which should not modify any bugs or fields except those used
to pass values back to the calling routine.

- 34 -

MULTIPLE PROCEDURES

6.4 A SAMPLE PROGRAM WITH MULTIPLE PROCEDURES

PROCEDURE FACT

/ THIS IS THE MAIN PROCEDURE WHICH LISTS THE FACTORIALS
/ OF THE NUMBERS BETWEEN 1 AND 13 ON THE TELETYPE.

EXTERNAL PRINTBUGC,FACTORIAL

THEN ("TTY:" INIT "TTY:") /SETUP I/O
THEN (N = 1) /INITIALIZE A COUNTER

START IF (N > 13) THEN ('!C!L' OUTF 2) HALT
THEN ('1C!L' FOUT) (C ^ N) (PRINTBUGC DO) (" " TOUT)
THEN (N + 1) (FACTORIAL DO)
THEN (C SFC) (PRINTBUGC DO) (C RFC) START
END

PROCEDURE FACTORIAL

/ THIS PROCEDURE TAKES A NUMBER IN BUG N AND
/ COMPUTES N! IN BUG C. THIS IS A RECURSIVE
/ PROCEDURE.

EXTERNAL FACTORIAL

LCLB N

IF (N = 1) THEN (C jC. 1) DONE
THEN (N - 1) (FACTORIAL DO) (C " N) DONE
END

PROCEDURE PRINTBUGC

/ THIS PROCEDURE IS ALSO RECURSIVE. IT PRINTS
/ THE NUMBER IN BUG C IN DECIMAL.

EXTERNAL PRINTBUGC
LC LB B

PR THEN (C/10B) (B! "0") /GET NEXT DIGIT
IF (C # 0) THEN(PRINTBUGC DO) (B OUTS 1) DONE
THEN (B OUTS 1) DONE
END

- 35 -

MULTIPLE PROCEDURES

6.5 LOCKED PROCEDURES
».| ... -Il-I !•! I». • • I A

V

Inside the L^ interpreter, both the source line and a
special code called the object code which is made from the
source line is stored. Only the object code is necessary to
run the procedure. The source code is stored to allov/
procedures to be listed and modified. E'or this reason a
procedure may be loaded without the source. This will
typically save about half of the core which is otherwise
needed to store the program. This is done by placing the
word LOCK is square brackets at the end of the procedure
statement. An example of this is:

PROCEDURE FACTORIAL [LOCK]

Since the procedure statement cannot be edited, a
special command called the LOCK command is provided. LOCK
takes a list of procedure statements as arguments. For
example:

j_LOCK FACTORIAL, FACT, PRINTBUGC

If no arguments are typed, all of the procedures are
locked. This command has no effect on the procedure except
that the option [LOCK] is added to the procedure statement.
When the procedure is saved this will appear in the output
file.

When a procedure with the option LOCK is loaded, it is
loaded without the source. Therefore after loading the
procedure it cannot be listed, edited, or saved.

- 36 -

CHAPTER 7

ADVANCED LANGUAGE FEATURES

7.1 LABEL VARIABLES

A bug-field string preceded by an at sign (@) may be
used anywhere in place of a label. This construct is called
a label variable. It is interpreted as a bug field string
that contains a pointer to a tv/o word block which contains
the label one wishes to branch to. The two word block must
contain the label ^ft justified in seven bit ASCII padded

Awith zero characters to ten characters.
a character composed of seven zero bits.
bug B contains a pointer to a two word block that contains
"PRINTER" left justified

B —> 1 P R I i T i

1 E R 1

zero character is

For example assume

and assume the following statement is executed;

THEN (A = 2) @B

will first assign the value of 2 to bug A and then
attempt to branch to PRINTER. The label variable may also
be used in a DO tuple. For example if N is the field
0 [18,35] (displacement zero, bits 18-35) then

THEN (@BN DO) ^

will use the contents of the N field of the word pointed to
by B as a pointer to a two v;ord block that contains the
label of.the subroutine or procedure.

- 37 -

ADVANCED LANGUAGE FEATURES

7.2 STRING VARIABLES

The other L^ construct which involves bug-field strings
is the string variable. L^ recognizes as a string variable
any bug-field string that is preceded by a dollar sign ($).
String variables are similar to label variables in that the
bug-field string is a pointer to a block of words. However,
a string variable may be any number of words long. The
block contains five ASCII characters left justified in each'
word and the string is terminated by a zero character (a
byte of zeroes). String variables can be used in the INIT,
OPENI, OPENO, FOUT, and TOUT tuples. String variables a.llov/
the user to specify output text and file names dynamically.
For example:

THEN($T FOUT)

will output the ASCII characters pointed to by bug T.
Assume that bug B points to the two word block that

contains "TTY12:" left justified followed by a byte of
zeroes.

B > I T T Y 1 2 I

Now if the follov-zing expression were executed:

THEN(2 OPENO $B)

then teletype twelve would be open for output on channel
two.

- 38 -

CHAPTER 8

EXTENDED I/O

8.1 OPENO AMD OPENI

The OPENO and OPENI tuples provide the user, v/ith the
ability to do I/O to a multitude of devices. Among these
are teletypes, disk, DECtape, paper tape reader and punch,
card reader and punch, and others. These two tuples take as
arguments the channel number, the device and file name, and
optionally, the number of buffers and the data mode. The
exact format is described in chapter tv/elve.

A channel number is a logical association between a
specific file and a number. It is used to allow generality
in the specification of input and output streams. For
example, assume that we have a program to add a list of
numbers together and output the sum and we wish to use this
same program so that it would input its augends from both
the teletype and a disk file. If each individual input or
output tupie contained a reference to the file then a major
rewrite of the program would be necessary every time v/e
v/ished to change from the teletype to the disk file or vice
versa. Hov^ever, since channel numbers are used instead of
the actual file names all that need be changed is the one
tuple that makes the association between the file and the
channel number. This is much easier to do. The channel
number must be in the range 0-10. Channel 0 is the IMIT
tuple's channel. This means that an OPENO (without optional
arguments) using channel zero is equivalent to specifying
the same device and filename in the output portion of an
INIT tuple. Further, OPENI on channel 0 is analogous to the
OPENO on channel 0, however, it affects only the INIT's
input file specification. The other channels (1-10) may not
be used simultaneously for input and output as can channel
0.

The file specification must be provided in DEC standard
form:

"devifilename.ext[ppnj <prot>"

dev: is the device name, filename.ext is the filename and
the extension, [ppn] is the project programmer number, and
<prot> is the protection of the file. When specifying an

- 39 -

EXTENDED I/O

input file the protection code is ignored. It does,
however, specify the protection to be associated with an
output file.

The specification of the number of buffers is optional,
although it is sometimes convenient to specify the number of
buffers explicitly. A buffer is an area in memory that is
used as an intermediate storage area. Usually this storage
area holds values that have come from a device or are
destined to be sent to some device. The reason for buffers
is that devices are usually shared in a multiprogramming
environment. This means that a program may not necessarily
be able to do input or output exactly when it wants to. In
fact it almost always has to wait in line to use resources.
But, with buffers instead of having to wait in line to
output just one character, the program may save up thirty or
forty characters. This means the program V'/ill not have to
wait in line as often and can therefore do whatever other
tasks are required of it.

The last argument is also optional, but if the user
wishes to specify the data mode he must also specify the
number of buffers (the third argument). If the " user' does
not want to specify the number of buffers explicitly then he
may request a non-positve number of buffers. This will
allocate a default number of buffers as specified by the
monitor. The only legal data modes are the buffered mode
(as defined in the pECsysteml0 Monitor Calls reference
manual) These are:

CODE NAiME

#0 ASCII

#1 ASCII

#10 IMAGE

#13 IMAGE

#14 BINARY

LINE

BINARY

If the same device is opened more than once in different-
modes then only the last specified mode is in effect. If no
data mode is specified then ASCII is the mode assumed.

The last argument can actually be used to set the
entire status word used in the opening of the file. This
will allow such things as echo control and full character
set for the' teletype. Certain bits in the status word may
cause an immediate end of file condition or the simulation
of device' errors. Therefore the programmer should be
familiar with I/O programming before setting up his own
status word. . . _

- 40 -

EXTENDED I/O

8.2 EXTENDED INS, OUTF, OUTS, FOUT, AND TOUT
\

Each of the data transfer tuples can have an additional
optional argument. This argument is the channel number.
Its purpose is to specify the data stream to which the I/O
operation should to be channeled. The channel number must
be in the range 0-10 and it corresponds directly to the file
specified in the last OPENO or OPENI tuple that used the
same channel number.

When an INS tuples reads more than one character, it
shifts the previous character left seven bits and OR's in
the next. If the byte size for the data mode is not seven
bits, this may give useless input. Because image, image
binary, and binary modes read data as thirty-six bit v7ords,
the second argument should be a one for these modes.

8.3 TM EOF TUPLE

The EOF tuple is used to sense an end of file
condition. If an end of file condition has occured then the
tuple is true, otherwise it is false. Its only argument is
the channel number and it must be in the range 0-10. If the
channel specified is an output channel the end of file
condition will never be raised. If the channel selected is
channel zero then only the input side of the INIT tuple is
tested. This tuple is useful for checking to see if all of
the data has been read in. If the end of file condition is
raised you are assured that no more data is to be found in
that file. This is not necessarily the case for a teletype
because a control-Z may have been typed accidentally,
thereby signalling an end of file prematurely.

Since an INS tuple can read up to five characters, it
is possible that an end of file can occur before enough
characters are received to satisfy the request. In this
case l6 supplies ASCII nulls (zero characters) at the right
of the field to finish the input. ^However, any attempt to
execute another INS tuple after an end of file occurs will
result in an error message.

- 41 -

CHAPTER 9

THE INTERPRETER

9.1 TYPING ^ COMMANDS

VVhen is ready to accept a command it responds by
typing a colon (;). Any of the commands which are described
later in this chapter can then be input. When lines are
typed in at the command level there are several control
characters which can be used to correct typing errors. A
rubout deletes the last character which has not already been
deleted. This character is echoed in place of the rubout.
Since l6 handles its own rubouts, the characters deleted are
not enclosed in backslashes as they are v/ith the monitor.
Typing a control U (TU) deletes the entire command string
and reprompts with the colon. Typing a control G (TG)
retypes the command string. This feature is useful when the
input line has been cluttered by several rubouts.

.Both commands and switches (words preceded by slashes
which change the action of a command) can be abbreviated to
any string which is nonambiguous. For example, PROCEDURES
can be abbreviated to PROC. Using PRO as a command will
result in an error message, since it could be either
PROCEDURES or PROMPT.

9.2 LINE SPECIFICATIONS

Many of the commands take an argument which specifies a
line or group of lines in the program. A line
specification has the form:

procedure;line or procedure;line-l,1ine-2

The first of these specifies one line. The second one
denotes a group of lines, those between line-l and line-2 in
the specified procedure.

One way of specifying lines is to give an absolute line
number,. The first line of a procedure is line 1 and the

- 42 -

THE L® INTERPRETER

lines are numbered in ascending order from there. The line
number of a lines may, change as lines before it are inserted
or deleted. A line may also be referenced by any label
which it defines. A label may be modified by adding or
subtracting a constant from it.

The dollar sign ($) may be used in place of a label to
line of the procedure. Some examples should
this.

denote the last

help to clarify

ONE; 5

SCAN;1,10

REVERSE;GEAR

SYSTEM;CRASH-5

TRAV;TREE+2,$-1

The fifth ,line of procedure ONE.

The first through tenth
procedure SCAN.'

lines of

The line which defines label GEAR

in procedure REVERSE. Produces an
error if GEAR is not defined.

The fifth line before the line
which defines the label CRASH in

procedure SYSTEM.

All lines between the second line

after the line which defined TREE
in TRAV and the line before the

last line of the procedure TRAV.

The procedure name and the follov/ing semicolon may be
omitted from the line specification. In this case the
current procedure is assumed. The current procedure is not
defined when- the system is clear. When a procedure is
specified in any command it becomes the current procedure.
When a program is run the procedure in which execution stops
becomes the new current procedure. For example;

£L0AD SAMPLE

NO ERRORS DETECTED

10P CORE USED

j_LIST 5
? NO CURRENT PROCEDURE

£RUN myprog

HALT AT LEVEL '«
12P CORE USED

- 43 -

THE LO INTERPRETER

_^LIST 5
5j THEN (A = 1) /LINE 5 OF MYPRQG

:PROCEDURES

FACTOR MYPROG TRAVERSE

j_PROCEDURE FACTOR

:LIST $
12-; /THIS IS THE LAST LINE OF FACTOR

j_LIST MYPROG
? 'MYPROG' IS A UNDEFINED LABEL

j_LIST MYPROG;

1: /THIS IS THE PROCEDURE DEFINITION
2: /OF MYPROG

;LIST TRAVERSE;$.

' liZ0; /THIS IS THE LAST LINE OF TRAVERSE

, LiH'p 2

2: THEN (C GT 2) (V + 3) /THE SECOND LINE OF TRAVERSE
^EXIT

EXIT

In the commands INSERT, DELETE, and LIST the list
specification may be omitted. This has a different meaning
in each case which is described with the command.

- 44 -

THE L® INTERPRETER

9.3 COMMANDS

The system provides a substantial number of commands
to facilitate its use. They provide the user control over
the execution, editing, and debugging of his program.

BREAKPOINT

CLEAR

CLOSE

CONTINUE

CORE

DDT

DELETE

DUMP

EDIT

ERRORS

EXECUTE

EXIT

HELP

INSERT

LABELS

LIST

LOAD

LOCK

PROCEDURES

PROMPT

REMOVE

RENAME

REPLACE

RUN

SAVE

STORE

UNDEFINED

UNLOCK

The commands and their descriptions follow.

- 45 -

THE L® INTERPRETER

BREAKPOINT

capability to
condition of his

This command

interrupt his
program, and

provides the user with the
program flow, examine the

then continue execution.

Command format; BREAKPOINT#brk proc;1ine:tuple

"Brk" is the number of the breakpoint to be assigned, and
"proc" is the procedure name. "Line" is the line
specification, and "tuple" is the tuple number. The format
of the tuple number is "T" , "E", or nothing followed by a
number. "T" denotes the THEN clause and "E" denotes the

ELSE clause. If neither is specified then "T" is assumed.
If no specification is provided, i.e. everything is omitted,
then the breakpoints currently in use are listed.

Examples;

B#4 FUN;5:T3 Breakpoint THEN tuple 3
line 5 of subroutine FUN

use breakpoint number 4

B GEORGE;$:El Breakpoint ELSE tuple 1 of the
last line in procedure GEORGE

List all the breakpointsB

CLEAR This com.mand re-initializes the - L^ system by
freeing all acc-umulated core, deleting all opened files,
resetting all I/O, and re-initializing the stacks. If the
contents of files which currently open are to be saved, they
should be closed. This can be done selectively, using the
CLOSE tuples, or all files may be closed using the CLOSE
command.

Command format; CLEAR hum

The argumient gives the amount of core to be assigned to
the L^ lov/ segment. 'Nhen the interpreter is started for the
first time a default amount of core
argument on the CLEAR command changes
subsequent CLEARS
with an argument,
user core maximum
larger than the
maximum is set to

unless changed by a
The CLEAR command

unless the CLEAR has

present value. In
a value higher than

- 46 -

is used. Giving an
this value for all

later CLEAR command

does not affect the

an argument v\/hich is
this case the core
the new clear size.

THE INTERPRETER

The argument is a decimal integer optionally follov/ed by "K"
or "P" to denote either K (1024 words) or pages (512 words).
If neither "K" nor "P" is used "K" is assumed.

CLOSE This command closes all of the files which are
currently open. It should be used before CLEAR if the
contents of the currently open files are to be saved.

Com.mand format: CLOSE

CONTINUE This command restarts the program at the place
last interrupted by a breakpoint.

Command format: CONTINUE [num]

The only argument this command accepts is a numeric
continuation count. It specifies the number of times to
bypass the last breakpoint encountered without stopping.

CORE This command sets the user core maximum.

Command format; CORE [num]

"Num" is the maximum amount of core the low segment may
contain. It is a decimal integer follov^'ed by "P" or "K" . A
"P" specifies pages and a "K" specifies thousands of words.
If neither is present "K" is assumed. The command:

CORE 5K

will allow a maximum of 5K for the low segment.
If the core command is given without an argument, the

amount of core in use is typed, along with the system; and
user core maximuras (for more information see the description
of core allocation in section 9.4).

- 47 -

THE l6 interpreter

DDT This

This command

command is

is included

used to enter DDT, DEC's debugger
for svstem maintenance.

Command format; DDT

DELETE This command deletes lines from a procedure.

'Command format: DELETE line specification

The "line specification" selects one or a group of
lines to be deleted. If more than five lines are to be
deleted

ARE YOU SURE?

is typed. Typing Y causes the lines to be deleted. Any
other character outputs

% NOT DONE

and no other action is taken. If the procedure name and
semicolon is used, but no line numbers, the entire procedure
is deleted.

The delete command may be used to edit a procedure
after execution has been suspended at a breakpoint.
However, there are several restrictions. If a line which
contains a breakpoint is deleted, the breakpoint is removed
and warning message is typed. If a line which contains a DO
tuple that has a call on the return stack is deleted, the
message

%STACK DAMAGE — CAN'T CONTINUE

will be typed. This means that the execution cannot be
continued by the CONTINUE comm.and.
deleted and the procedure in which

If a LCLB

it occures

the stack then the mess-age
Finally, if the line on which

STACK DAMAGE

execution was

deleted, the execution cannot be continued.

- 48 -

or a LCLF is

is pendent on
is printed,
suspended is

Examples:

DELETE ARROW;

DELETE ARROW

DELETE 5,$

THE INTERPRETER

deletes procedure ARROVi/

deletes the line v;ith the label
ARROVv from the current procedure

deletes all lines after line five
from the current procedure

DUMP This command allows the user to examine the current
state of the program. By the use of switches the user may
dump any or all of the following areas: the BUGS, CORE,
FIELD CONTENTS STACK, FIELD DEFINITION STACK, FIELDS, I/O
channels open, or a traceback of the subroutine calls.

Command format: DUMP/sl/s2 .../sn

/sl/s2.../sn are the switches that determine what areas if
any are to be dumped.

- 49 -

Switch

/ALL

/BUGS

/CHARACTERS

/CORE

/FCS

/FDS

/FIELDS

/FILE:f ilenaine

/lO

/NARROW

/NOCHARACTERS

/NONE

/SPACE:n

/TRACE

/WIDE

THE INTERPRETER

Descr iption

Provide a complete dump of the state
of the user's program. (This is the default
switch if none other is specified.)

Dump the bugs

Provide a character dump with whatever
else is being dumped.

Dump the user-allocated storage area

Dump the field contents stack.

Dump the field definition stack.

Dump the currently defined fields.

Dump onto the file specified.

Dump the currently open I/O channels.

Dump in a narrow for format. (For use
with a terminal)

Do not do a character dump

Dump nothing.

Space the dump "n" number of times in
between each line. (0 < n < 10)

Provide a traceback dump of the subroutine
and procedure calls with local bugs
and fields.

Dump in a wide format. (For use with the line
printer)

- 50 -

THE LO INTERPRETER

EDIT The EDIT command opens the line specified for
character editing. The same restrictions v/hich apply to the
DELETE command about lines which are suspended in execution
also applies to editing lines. For information on character
editing see chapter 10.

Command format: EDIT line specification

ERRORS ^ This command allows the user to list all of the
errors in a procedure.

Command form.at: ERRORS procedure

If the procedure name is omitted the current procedure is
assumed.

EXECUTE This command allows the user to begin execution
anywhere within his program.

Command format: EXECUTE proc;1ine:tuple

The arguments are the same as in the BREAKPOINT command.
Where "proc" is the procedure name, "line" is the line
number, and "tuple" is the tuple number preceded by E for an
ELSE tuple or by either T or nothing for a THEN tuple. This
command differs from the RUN command in that the user
allocated storage area and the stacks are not cleared.

EXIT This command allov/s the user to leave the L°
system. When it is executed all I/O is completed, the files
are closed and kept, and the DECsystem monitor is given
control.

Command format: EXIT

- 51

THE INTERPRETER

HELP This command provides helpful
different commands in the system.

Com.mand format: HELP [item]

descriptions of the

"Item" is the name of the help text wanted. If no argument
is provided a short description of the help command will be
provided. HELP * lists all of the topics and commands
available.

INSERT This allows the insertion of lines into
procedures.

Command format: INSERT line specification

Lines are inserted

INSERT command is t^^p^
number of the line to be inserted followed by a colon,
just the procedure but no line number is given, the 1
will be inserted at the beginning of the procedure. If
procedure is undefined this will define it. VLhen a
followed by a carriage return is typed, the editor
respond v/ith the next line number. To terminate the in
type T'Z (control-Z, not up arrov/ Z) . This will iramedia
return to the top level. Any partially typed line
terminated by a carriage return is discarded. Examples

j_INSERT 5
6: /INSERTED INTO THE CURRENT PROCEDURE
7T /AS A COMMENT

§1
92_ Tz

: INSERT NINE;$
100: /THIS LINE IS APPENDED TO PROCEDURE NINE
TFTTTZ

2_INSERT TREE;
1: THEN HERE /THIS BECOMES THE FIRST LINE OF TREE

j_INSERT tree
? 'tree' IS AM UNDEFINED LABEL

after the line specified.
l6 responds by typing

- 52 -

When

the

the

line

If

ines

the

line

will

ser t

tely
not

are:

THE INTERPRETER

LABELS This command lists all labels used in all
procedures. If the label is prefixed by an asterisk («),
is an external label. Labels prefixed by a minus sign
are undefined.

the

it

(-)

Command format: LABELS

LIST This command causes lines to be listed either to a
file or on the teletype.-

Command format: LIST lines/sl/s2 .../sn

The argument
specifications
list is null
argument list

"lines"

seperated
then all

is scanned

that any explicit
specifications to the
declaration.

Examples:

LIST 5&16

LIST THIS;&THAT;

is actually a list of line
by ampersands (&). If the argument
procedures will be listed. The
from left to right. This implies

procedure name applies to any
right of the one with the explicit

List lines 5 and 16 of the

current procedure

List procedure
procedure THAT

THIS and

LIST 5&Z1;5,10&16&Z2; List line 5 of the current

procedure, lines 5 through 10
and 16 of procedure Zl, and
all of procedure Z2. The
current procedure is changed
to Z2.

- 53 -

THE l6 interpreter

The following table is a concise description of the switches
available.

SWITCH

/PILE:filename

/HEADERS

/LABELS

/NOHEADERS

/NOPAGES

/PAGES

DESCRIPTION

List onto the file specified

Procedures will be listed with
a PROCEDURE and an END
statement

All labels currently defined
are listed after the
statements specified in the
LIST command

Procedures will not be listed
with a PROCEDURE and an END
statement

The output will not be divided
into pages

The output will be divided
into pages with a header at
the top of each page

If neither /HEADER nor /NOHEADERS is specified the
default is /NOHEADER if the listing is to a teletype and
/HEADERS if the /FILE switch is used. However, the default
is always /HEADERS if the entire procedure is listed. If
neither /PAGES nor /NOPAGES is specified, the default is
/NOPAGES for the teletype and /PAGES if the /FILE switch is
used.

- 54 -

THE L" INTERPRETER

Examples:

^LIST MAIN;1 & READ;4,5 /TITLES

PROCEDURE MAIN

1:THEN ('TTY:' INIT ' TT Y: ')
END

PROCEDURE READ

4:THEN (C INS 1)
SrIFANY (C = " ") (C = #11) THEN (C INS 1) *

END

^LIST MAIN;1 & READ;4,5 /NOTITLES

1:THEN ("TTY:" INIT "TTY:")

4:THEN (C INS 1)
5:IEANY (C = " ") (C = #11) THEN (C INS 1) «

LOAD This command loads and parses the user routines so
that they may be executed by the L^ system.

Command format: LOAD [outfile=]file-1,file-2, ... ,file-N/Sw

"Outfile" is the output file on which the listing and errors
are written. If the output file is omitted then only the
errors are outputted to the teletype. Also, if the
extension is omitted, it will be assumed to be "LST".

"File-1,file-2, ..., file-N" are the files which are to be
loaded consecutively. The LOAD command accepts complete
file specification, so that FUN.L6K[3,4] is a legal file
specification. If the extensions are omitted L6 is assumed.

The switch "sw"' if present, may be either /LOCK or /NOLOCK.
LOCK means that all procedures loaded are to be locked, even
if they do not have the option LOCK in the procedure
statement. NOLOCK loads all procedures without locking them •
regardless of whether the option LOCK appears in the
procedure statement. The LOCK switch is especially useful
in batch v;here the ability to edit and list the program is
not necessary.

- 55 -

THE interpreter

LOCK This coinmand causes the option LOCK to appear in
the procedure stateirient of one or all procedures.

Command format; LOCK [procedure]

The procedure specified is given the option LOCK. If the
procedure name is omitted all procedures are locked. In
this case L^ will type

ARE YOU SURE?

Typing a Y followed by a carriage return locks all
procedures, typing anything else returns L° to the command
level with no other effect.

PROCEDURES If no argument is provided, this command
lists all procedures which are either defined or referenced.
Undefined procedures are preceded by a minus sign (-). If
an argument is used the current procedure is changed to the
procedure specified.

Command format; PROCEDURES [name]

PROMPT This command changes the, prompt character
associated with the user's teletype input.

Command form.at: PROMPT character

Character is any special character. If no prompt is desired
the command "PROMPT NONE" should be used.

REMOVE This command removes breakpoints.

Command format: REMOVE number

The only argument is the number of the breakpoint to be
removed. If no breakpoint is specified the message:

- 56 -

THE INTERPRETER

ARE YOU SURE?

Is printed. If Y is typed all the breakpoints will be
removed, otherwise this command does nothing.

RENAME This command is used to change the name of a
procedure.

Command format; RENAME nev/nameiloldname

The procedure called "oldname" is renamed to "newname",. An
equal sign (=) may be substituted for the back arrov/.

REPLACE This command in similar to INSERT except that
lines are replaced beginning with the specified line. The.
line on which the \Z is typed in not affected.

Command format: REPLACE line-specification

EXAMPLE:

_^REPLACE HASHC0DE;3
3:THEN (A 4. B) /REPLACES LINE 3 OF HASHCODE
?TTHEN (A C Z) (A + 2) /REPLACES LINE 4
5: T Z

RUN —- This command first lists any undefined sym.bols.
Then the user-allocated storage area and the stacks are
cleared. Finally, the procedure specified is run. If no
procedure name is specified the current procedure is
assumed.

Command Format: RUN procedure

- 57 -

r"--

THE [NTERPRETER

SAVE .This command is exactly the same as LIST except
that line numbers are not listed and the options /HEADERS
and /NOPAGES are always in effect and may not be overridden.
The SAVE command produces a listing which can-later be read
by the LOAD command.

Command format: SAVE lines/sl

STORE This command removes the L^ high segment and then
returns to the monitor." The low segment may then be saved
using the SAVE or SSAVE monitor commands (for details see
the section on core allocation).

Command format: STORE

UNDEFINED This command lists all undefined labels,

Command format: UNDEFINED

UNLOCK This command will remove the option LOCK from a
procedure statement to v/hich it has been added by the LOCK
command. It has the same format as the LOCK command.

Command format; UNLOCK [procedure]

"Procedure" is the name of the procedure to be unlocked.

- 58 -

THE INTERPRETER

9.4 CORE ALLOCATION

There are two major divisions in the core area of a
user. The first is the L^ interpreter itself. It is stored
in the high segment and presently occupies about 8K. It is
sharable, that is, if several L^ users are logged in at
once, they all use the same high segment. The second area,
the low segment contains the L^ procedures, the
user-allocated storage area, and the stacks.

The high segment is fixed in length. However, the low
segment is variable. When the system is first started, the
low segment is set to a default size (this is set at system
assembly time). When the requirements of the program
require more core than is currently present, more is
obtained from the monitor and the size of the lov; segment is
increased. This expansion process requires substantial
overhead. Therefore, the CLEAR command can take an argument
which is the am.ount of core to be assigned to the lov;
segment. Once set, this new value is used until another
CLEAR command with an argument is used.

Since the lov; segment is expanded automatically, it is
possible for a program to expand until it reaches the limit
set by the monitor. However, most programs do not need
nearly this m.uch core. To prevent "run-away" programs, that
go into an infinite loop v;hich allocate core, or have
infinite recursion, the user may set a core limit on the
size of the low segment data area. The command to do this
is the CORE com.mand with a numeric argument. When an
attem.pt is made to allocate a block of core which would
exceed this limit the message

% USER CORE MAXIMUM OF nnn EXCEEDED

is outputted, where nnn is the current user maximum. In
batch, control returns to the command level. Online,
however, the message:

ADDITIONAL CORE:

is typed. Typing a carriage return return control to the
command level. Typing a number optionally follov;ed by a "K"
or a "P" adds that amount of core to the user maximum and
continues the last command. If neither "P" or "K" is

specified "K" is assumed.
Another maximum is the system core maximum. This is

set by the monitor and gives the maximum amount of core
which any job may obtain. When it is exceeded the message:

- 59 -

p.

THE Lb INTERPRETER

7SYSTEM CORE MAXIMUM OF nnn EXCEEDED

Sometimes, especially after extensive editing, storage in
the interpreter becomes fragmented. Saving the program,
clearing the interpreter, and reloading may solve the system
maximum problem.

Typing the core command with no argument prints the
amount of core used and the current maximums. For example:

j_CORE

10? OF CORE USED

TOTAL CORE: 26? [INCLUDING 16? HIGH]
USER MAXIMUM: 30?

SYSTEM MAXIMUM: 100?

This means that the low segment is 10 pages long (on
the KA10 the size is printed in K) . The total amount of
core used is 26?, 15? by the L^ interpreter itself. The
user core maximum is 30?. This is the maximum size of the
low segment only. The system core maximum is 100?. This
includes both the interpreter and the low segment.

- 60 -

CHAPTER 10

CHARACTER EDITING

This chapter describes the character editor --which is
used to make changes within lines. It is called by the EDIT
command as described in chapter 9. The editor will respond
by typing

<EDITING LINE nnn>•

"nnn" is the number of the line being edited. The character
editor then responds with a plus sign (+) to signal its
readiness to accept input. The editor accepts a sequence of
commands, each of which is one letter long. Some commands
take one or more strings as arguments. A string consists of
all the characters following the command up until the next
altmode or carriage return. A line of input is terminated
by a carriage return. Some com,mands also take numeric
arguments. These proceed the com.mand.

• Vj^hile a line is being edited, a pointer is kept to it.
This can point to the beginning of the line, the end of the
line, or between any tv/o characters.

One useful command is the T command. This command
types the line with a percent sign (%) at the current
position of the pointer. The S command can have both a
numeric and a string argument. Its format is:

nSstring '

This moves the pointer after the n'th occurence of "string".
If "string" is not found an error message is printed and the
pointer is moved to the beginning of the line.

The I command is another useful command. It has the
form:

Istring

This causes "string" to be inserted at the pointer. The
pointer is left after the inserted string. The D command is
used to delete characters. It has.the form:

nD

This deletes the n characters following the pointer if n is

- 61 -

CHARACTER EDITING

positive. If n is negative, the n characters before the
pointer are deleted. An example of the use of these four
commands is: .

j_LIST lOSETjl
1; THEN ('LPT:' INIT 'PROG.DAT')

+^T

+ S

+T

+ 4DT

1-
<EDITING LINE 1>

1:%THEN ('LPT:' INIT 'PROG.DAT')

IrTHEN ('%LPT: ' INIT 'PROG.DAT')

1:T'hEN ('%' INIT ' PROG.DAT')

+ITTY:$T
1;THEN ('TTY:%' INIT 'PROG.DAT')

+ E

Notice that commands which do not take a string
argument may be follov;ed immediately by another comm.and.
Those which do must have an altmode (represented as a $, on
some terminals it is called escape) to terminate the string.

There are three commands which search for a string (I,
K, and R). If the search argument to any of these commands
is null (has no characters) , the string v/nich v/ill be used
is the one used in the previous search command. A null
string may not be used if no previo"us search has been done.

- 62 -

CHARACTER EDITING

A complete list of the commands follows;

COMMAND

A

nB

nD

E

nF

Istrinq

nKstr ing

N

nRstr ing$str inq

nSstr ing

T

X

EFFECT

Move the poiner to the end of the
line

Move the pointer back n characters

Delete the n characters after the
pointer If n is negative, delete n
characters before the pointer.

Exit from the character editor.

Move the pointer forward n
character s.

Insert "string" at the pointer.
The pointer is left pointing after
the inserted string.

Restores the line to its original
state and reopens it for edit.

Deletes ' the n'th occurence of
"string". If n is omitted it is
assumed to be one.

Moves to the next line in the
procedure and open it for edit.

Replaces the n'th occurence of the
first string with the second.

/

Move the pointer after the n'th
occurence of "string".

Type the line with a % at the
pointer

Restore the line being edited to
its original state and return to
the interpreter.

- 63 -

CHAPTER 11

DEBUGGING

Rarely does a program run correctly the first time. It
almost always needs to be debugged. Since this topic is so
important the rest of this chapter describes the commands
provided to make the task of debugging easier.

Once all of the syntax errors have been found and the
program loads correctly, the user is anxious to see if his
program will execute correctly. He does this by typing the
keyv;ord "RUN" followed by the name of the procedure he wish
to execute. Then begins execution of the named procedure
and does not stop until either an error is encountered or a
halt is executed. If an error occurs it is usually evident
from the message what went wrong and the cause can many
times be removed quickly. However, if the program
terminates execution by encountering a HALT and it did not
do what was expected of it, then the programmer has a
problem on his hands. (It is at a time like this that the
program.mer wishes that he had never heard of the language he
is programming in.)

The first thing that come to mind when trying to debug
a program is to step through the program and examine what
changes the execution of two or three tuples makes. This
can be done by using the BREAKPOINT and CONTINUE commands.
The BREAKPOINT command specifies a place in the program to
stop execution and the CONTINUE "command causes the programi
to continue execution from the last breakpoint.

» The user has available twenty breakpoints. Every
breakpoint has associated with it a num.ber (between 1 and
20),. Through this number a breakpoint may be refered to
uniquely. When a breakpoint is set and a breakpoint number
is not specified the first free breakpoint will be assigned.
If by chance all of the breakpoints are in use and the user
wishes to set still another he may not unless he specifies
the number of a breakpoint to reuse. This also provides the
ability to change breakpoints. Breakpoints are removed by
using the REMOVE command followed by the number of the
breakpoint to be cancelled. If no argument is provided all
of the breakpoints are removed.

The CONTINUE command continues the execution of the

program from the last breakpoint. It takes as an optional
argument a count. This count specifies the number of times
to continue past the previous breakpoint without stopping.
In effect, this allows the user to execute a loop a number
of times and then stop. CONTINUE with no argument is

- 64

DEBUGGING

equivalent to CONTINUE 0. While execution is suspended
because of a breakpoint any command can be used. Hov;ever,
some of the editor commands can cause either

or

? STACK DAMAGE — CAN'T CONTINUE

? BREAKPOINT REMOVED

to be printed. These cases are described in the delete
command in chapter 9.

Finally, the last command provided to make debugging
easier is the EXECUTE command. This command allows the user
to begin execution anywhere within any procedure. Its
arguments are exactly the same as for the BREAKPOINT
command.

When one is debugging a program it is usually necessary
to execute some tuples v/hich are not in the procedure being
executed. This can be done through the use of direct
ex^ecution. This is the execution of an actual unlabeled
statement as a command. This statement is executed exactly
as if it were a statement in whatever procedure is current.
This means that whatever labels are defined in the current
procedure may be used in the direct execution statement. If
there is no current procedure then the only labels which may
be used are the names of the procedures. These labels may
only be used as external' labels. Thus when there , is no
current procedure it appears that there v/as an implicit
EXTERNAL statement with all of the names of the defined
procedures as arguments to it.

65

CHAPTER 12

THE TUPLES

This chapter describes each operation and test in
detail.

Notations Used in Tuple Descriptions

m modified data area (bug name or bug-field string)

1 a literal constant
(integer, character string, hexadecimal number)

c contents of a field or bug used but not modified
(bug name or bug-field string)

cl contents of a field or bug, or literal constant
used but not modified (literal, bug name or
bug-field string)

int positive integer

f field name

The tuple descriptions are grouped according to the
categories in section 3.2.

- 66 -

THE Lt> TUPLES

12.1 STORAGE ALLOCATION AND RELEASE

ALLOCATING A BLOCK:

Tuple Forinat:
(m GT cl)
(in-l GT cl m-2)

Descr iption;
The first format allocates a
determined by the value of
pointer to the first word of

block whose size is

"cl" and places a
the block in "m".

The second format does several things. First,
it saves the original contents of "m-1" in a
special temporary register. It then allocates a
block v/hose size is determined by the value of
"cl" and puts a pointer to the first word of the
block in "m-1". Finally, it places the original
value of "m-1" in the position specified by
"m-2" after "m-1" has been changed. Thus, it is
possible to put the original value of "m-1" in
the block v/hich has just been allocated.

Examples:
(P GT 3)
pointer
bug P.

allocates a three word block and puts a
to the first v/ord of the block in the

(QX GT MN) allocates a block Vsrhose size is given
by the contents of the bug-field string MN, and
puts a pointer to the block in the field
specified by QX.

(P GT 2 PN) allocates a two word block, puts a
pointer to the first v;ord of the block in the
bug P, and puts the original value of the bug P
in the N field of the new block (as specified by
PN) .

- 67 -

THE tuples

RELEASING A BLOCK:

Tuple Eormat:
(m FR)
(m-l FR Tn-2)

Descr iption:
The first form of PR releases the block pointed
to by "m" . "m" must point to the f^r^ word of
an allocated blo^k or an er ro^ will occur.
Although the contents of "m" are not modified by
this tuple, the program, must not reference the
block after it has been freed.

The second form of FR does several things. It
first saves the contents of "m-2" in a temporary
register. It then releases the block pointed to
by "m-1" (as in the simple FR tuple). Finally,
it places the original contents of "ra-2" ^ in
"m-1". Note that since the contents of "m-2"
are obtained before the block is freed, this
makes it possible to save a field from the
released block and place it in "m-1". This
extended form of the FR tuple, along with the
extended form of the GT tuple make it convenient
to build a linked pushdown list out of arbitrary
size blocks.

Examples:
(P FR) frees the block pointed to by P.

(P FR PN) frees the block pointed to by P, but
places the N field of the freed block in P.

- 68 -

THE tuples

(

12.2 ASSIGNMENT OPERATIONS

ASSIGNMENT;

Tuple Format:
(m C. cl)
(ra = cl)
(m E cl)

Descr iption:
All three of these tuples transfer the value of
"cl" to "m". If the field "cl" is larqer than
"m" then only the rightmost bits (as many as
will fit in "m") are transfered. If the field
"cl" is smaller than "m" then "cl" is extended
on the left with zeroes and then transfered.

INTERCHANGE OF CONTENTS:

Tuple Format:
(m-1 IC m-2)

Descr iption:
This tuple causes the contents of "m-1" and
"m-2" to be interchanged. If the two are fields
of unequal size then the larger is truncated on
the left as it is moved into the smaller, and
the smaller is extended on the left with zeroes.

- 69 -

THE l6 tuples

12.3 ARITHMETIC OPERATIONS

General

Be
note; In

combined are

ADDITION:

all arithmetic operations,
first transfered into 36

filled out

Tuple Format:
(m + cl)
(m A cl)

the arguments to
bit registers in

right-justified positions (i.e., filled out on the left with
zeroes if they are shorter than 36 bits). The two registers
are combined as specified by the operation code, and the
result is transfered into the modified
argument) . If the first argument is
only the rightmost bits of the result

argument (the
shorter than 36

are transfered.

first

bits,

Description:
The contents of
added together
location "m".

"m" and the value of "cl" are

and the result is stored in

SUBTRACTION:

Tuple Format:
(m - cl)
(m S cl)

Descr iption:
The value of "cl"
contents of "m" and

location "m".

- 70 -

is subtracted

the result is
,from the

stored in

THE L® TUPLES

MULTIPLICATION:

Tuple Format:
(m * cl)
(m M cl)

Description:
The contents of "m" is multiplied by the value
of "cl" and the result (lovv order 36 bits of the
product) is stored in the location "m" .

DIVISION:

Tuple Format:
(m-1 / cl) (m-1 / cl ra-2)
(m-l V cl) (m-1 V cl m-2)

Description:
The contents of "m-1" is divided by the value of
"cl" and the integer quotient is stored in the
location "m." . If "m-2" is present, the
remainder of the division is stored in it. Note
that this is integer division. For example, if
X contains 9, then after executing (X / 2 Y) the

. bug X contains the integer 4, not the floating
point number 4.5 or the fraction 4 1/2 or any
other random value. The bug Y contains the
integer 1. Division by zero does not result in
an error, hov/ever it sets "m-2" to "m-1".

- 71 -

MODULO;

THE l6 tuples

Tuple Format:
(m-1 MOD cl)

Description:
The contents of "m" is divided by the value of
"cl". The remainder after this division is
stored in "m" . The result of the division is
not saved. Mote if "cl" is zero then this tuple
does 'nothing.

- 72

THE L® TUPLES

12.4 BITWISE LOGICAL OPERATIONS

General comment;

The combination of arguments of different length. v;ith
logical operations is done in essentially the same manner
(with the same extensions and truncations) as arithmetic
operations.

OR:

AND;

Tuple Format:
(m ! cl)
(m 0 cl)
(ra SMP cl)

Descr iption:
The contents of "m"

"cl" and the result

is "ORed" with

is stored in "m'

the value of

Tuple Format:
(ra & cl)
(ra N cl)
(m EXT cl) (EXTract "m" bits of "cl")

Description:
The contents of "ra" is'"ANDed" with the value of
"cl" and the results are stored in "ra".

73 -

THE tuples

EXCLUSIVE OR;

Tuple Format:
(m X cl)
(m HAD cl) — •— (Half ABd "m" and "cl")

Description:
The contents of "m" is "EXCLUSIVE ORed" with the
value of "cl" and the result is stored in "m".

COMPLEMENT;

Tuple Format:
(m C cl)

Description:
The value of "cl" is logically complemented
(i.e. One bits are made zero, zero bits are
made one -- be careful to remember truncation
and left extension by zero) and the result is
stored in "m" .

74 -

THE LO TUPLES

12.5 INPUT/OUTPUT OPERATIONS

OPENING AND INITIALIZING PILES:

Tuple Format:
("outfile" INIT "infile")

Descr iption:
This operation causes the file named "outfile"
to be opened for output, and the file named
"infile" to be opened for input. From the time
this tuple is executed until another INIT tuple
is executed, all data input to the program v/ill
come from file "infile", and all output v^ill go
to the file "outfile". (Exception: extra files
can be opened using the OPEKO and OPENI tuples.)
this tuple can be used anywhere in a program to
change the input and output files. The
execution of this tuple closes the previously
opened input and output files.

"Infile" must be. the name of
existing file enclosed in quotes.

a previously

"Outfile" must be, the name of a file (which may
or not have previously existed) enclosed in
quotes. If "outfile" is a previously existing
file then that file will be overwritten with the
new output and the previous contents of the file
will be lost. If "outfile" is a new file name,
the file will be created and output will go to
the new file.

- 75 -

THE l6- tuples

SPECIAL NOTE ON THE BUFFERING OF OUTPUT

L" buffers

tuple and the
transm it

Instead

its output.
TOUT tuple

data directly to
they place their

Thus, the OUTS
do not actually

the output file.
arquiTient character

string at the end of an output buffer. The
contents of this buffer are transmitted to the
output file whenever:

1) the output buffer becomes filled during
the execution of an output tuple,

2) the FOUT or OUTF (force output) tuples
are used, which cause the current buffer
to be output followed by the argument
string, or

3) the output file is closed.

- 76 -

THE LO TUPLES

OPENING A FILE FOR OUTPUT

Tuple format:
(cl-1 OPENO "filename' cl-2 cl-3)

Description: This tuple will cause the PDP-10 file
named "filename" to be opened on channel "cl-1".
The channel number must be between 0 and 10
inclusive. This tuple associates all output to
channel "cl-1" with the file specified. If
"cl-1" is zero then the output channel
associated with the INIT tuple will be changed
to "filename". The last tv/o arguments "cl-2"
and "cl-3" are optional. They specify the
number of buffers to allocate and the data mode
to use, respectively. If "cl-2" is zero then
the default number of buffers (usually 2) is
allocated. This allows one to specify the data
m.ode without the need to explicate the number of
buffers.

Examples:
(1 OPENO 'TTY:') open the teletype for output to
channel 1.

(5 OPENO "MTTT."NEW<0 37>") open the file for
output on channel five with a protection code of
037.

(B OPENO 'TTY7:') open teletype seven for output
on the channel specified by B.

(7 OPENO 'TTY: ' 4 #10) open the teletype for
output on channel seven with four buffers and in
image mode

- 77 -

THE l6 tuples

0PEI-3ING A FILE FOR INPUT

Tuple format:
(cl-1 OPENI "filename" cl-2 cl-3)

Description: This tuple will cause the PDP-10 file
named "filename" to be opened on channel "cl-1".
The channel number must be betv7een 0 and 10

inclusive. This tuples associates all input
from channel "cl-1" v/ith the file specified. If
"cl-1" is zero the input channel associated with
the INIT tuple is changed to "filename". The
last tv/o arguments are optional and specify the
number of buffers and the data mode,

respectively. If "cl-2" is zero then the
default number of buffers (usually 2) are
allocated. This allows one to specify the data
mode v;ithout the need to explicate the number of
buffers.

Examples:
(2 OPENI 'TTY5: ') open teletype five for input

on channel two.

(7 OPENI "DOC:BLLTN") open the file on channel
seven for input.

(B OPENI "DSKB:INT.DAT" 5 #12) open the file on
the channel specified by B for input with five
buffers and in binary mode.

- 78 -

THE tuples

CLOSING A FILE

Tuple format:
(cl CLOSE)

Descr iption:

This tuple will terminate all I/O activity with
the file on channel "cl".
forcing the last buffer and closing
The channel number must be between

inclusive. If the channel number
both of the INIT files are closed.

It

IS

does this by
the file.

0 and 10

zero then

Examples:

(4 CLOSE) close channel four

(BFF CLOSE) close the channel specified by BFF

(0 CLOSE) close the INIT channels

- 79 -

THE l6 tuples

CHARACTER STRING OUTPUT;

Tuple Format;
(cl-1 OUTS cl-2 cl-3)

Description;
This tuple buffers several characters for output
(see above) <, The number of characters is
specified by the value of "cl-2". (This number
must be either 1, 2, 3, 4, or 5.) The characters
are specified by the value of "cl-1", and it is
the r ightmost "cl-2" characters that are
transmitted/ in a left to right sequence. The
third argument "cl-3" is optional. ' If it is
provided it denotes which channel the characters
should be output to. If it is omitted the
characters go to the INIT tuple's output file.
Specifying channel zero as the output channel
number is equivalent to omitting "cl-3".

Examples:

("ABC" OUTS 3) will buffer for output the three
characters A, B and C, in that order.

("ABC" OUTS 2) will buffer for output the two
characters A and B, in that order.

(BC OUTS 2) will buffer for output the rightmost
two characters (14 bits) in the field specified
by BC.

("XYZ" OUTS 2 1) will buffer the
Y for output to channel 1.

(LONG) TEXT STRING OUTPUT:

character X and

Tuple Format:
("text string" TOUT cl)

Descr iption:
This tuple will buffer for output the entire
long text string "text string". The last
argument is optional. It- specifies the channel
v/hich will recieve the buffering of the text.

- 80 -

THE tuples

FORCING OUTPUT OF TEXT FROM THE BUFFER

Tuple format:
(cI-1 OUTF cl-2 cl-3)

Descr iption:

This tuple buffers several characters for
output. The number of characters is specified
by the value of "01-2" (1 _< cl-2 _< 5) . The
characters are specified by "cl-1", and the
rightmost "01-2" characters are outputted, in a
left to right manner. The third argument "cl-2"
is the channel number to which the characters
are to be output. If this number is omitted
then the characters will be outputted to the
INIT channel. Specifying channel zero is
equivalent to omitting "cl-3".

FORCING OUTPUT OF TEXT FROM THE BUFFER:

Tuple Format:
("text string" FOUT cl)

Description:
This tuple places the long text string "text
string" in the output buffer, and then forces
the buffer to the device. The last argument

, "cl" is option. It specifies the channel number
to which the text is to be outputted.

- 81

THE LO TUPLES

TEXT INPUT;

Tuple Format:
(m INS cl-1 cl-2)

Descr iption:
This command reads in the number of characters
specified by the value of "cl-1", and places
them in the location "m." , right-justified. The
characters are read in from the file that is

currently opened on the INIT channel. If "cl-2"
is used then the input is from, the'file assigned
to that channel. If "cl-2" is zero the input is
from the INIT channel. (Note; 1 < cl-1 < 5)

- 82 -

THE L® TUPLES

12.6 SUBROUTINE CALLS

The l6 subroutine transfer strategy is described in
detail in chapter five. Basically, L^ provides a v/ay for a
tuple to transfer control to a labeled line. This type of
transfer is known as a subroutine cell. L^ also provides a
way of transfering control to a procedure, as described in
chapter 10. The "address" of the following tuple (or next
line if there are no tuples after the DO tuple, or the label
at the end of the clause if the calling tuple v/as the last
tuple in a THEN or an ELSE clause) is saved. This "normal
return address" is stored on the "return stack". If the
label is external the local bugs and fields are also stored
on the stack. Whenever the label DONE appears as a transfer
label to be executed, the subroutine return pushdown stack
is popped and control is passed to the "normal return
address" v/hich was just removed from the stack. If any bugs
or fields were saved these are restored before control is
returned. If the stack is empty the program will terminate.

Note that, in the case of subroutines, L^ does not
check to see that the user uses a DONE label to return from,
a statement which has been reached by a subroutine call.
This is not "legal", but, it cannot be detected by L^. The
user can tell that this has happened by noticing the "level
number" printed out in the dump or termination message when
the program stops. That number tells how many return
addresses are left on the subroutine stack (i.e., how many
subroutines and procedures have been entered and not
"returned from" v/hen execution terminated). The user may
look at a complete dump of the subroutine stack by doing a
traceback dump.

The user can also supply an alternate return point for
a subroutine, by means of the DO tuple with a FAIL exit.
This tuple allows the user to specify a separate FAIL exit
to be placed on the subroutine return stack along with the
"normal return address". Whenever the label FAIL appears as
a transfer label the subroutine stack is popped. If the top
of the stack had a FAIL exit then control is passed to the
statement specified by the FAIL exit, otherwise control is
returned as if a DONE label had been

callingmust be a label local to the

be HALT, DONE, or FAIL.

- 83 -

used. The FAIL

routine. It may
exit

also

THE LO tuples

SUBROUTINE AND PROCEDURE TRANSFER;

Tuple Format:
(sublabel
(sublabel

DO)
DO fa ilex it)

Descr iption:
The first form of DO causes control to be
transfered to the line with label "sublabel"
unless "sublabel" appears in an EXTERNAL
statement in the procedure containing the DO
tuple. If "sublabel" is used in an EXTERNAL
statement control is transfered to the procedure
of that name. The normal return address is put
on the stack, along with any local bugs and
fields, as described above.

The second form of the DO tuple transfers
control to the line v;ith the label "sublabel",
and establishes the line with label "failexit"
as the fail exit on the stack.

- 84 -

THE LO TUPLES

12.7 DEFINING FIELD TEMPLATES

FIELD TEMPLATE DEFINITIONS;

Tuple Format:
(cl-1 D f
(cl-1 D f

cl-2 cl-3)
cl-2)

Descr iption:
The first form of the D tuple defines the field
template "f", with offset equal to the value of
"cl-1" and with bit specifications given by the
values of "cl-2" and "cl-3"

The second form of the D tuple defines the field
template "f", v/ith offset equal to the value of
"cl-1" and with the bit specification given by
the (right-justified) value of "cl-2" as a mask.

See the descriptions in chapter 2
detail.

- 85

for more

THE l6 tuples

12.8 PUSHDOWN STACK INSTRUCTIOMS

There are two stacks in (aside from the return
stack) v;hich the user may use to store information. The
user may save the definitions of field templates on the
field definition stack and he may save field values on the
field contents stack. Both of these stacks may actually
have groups of field definitions or field values placed on
them v;ith a single save instruction. Thus it is simple to
save several field definitions or values at one time and

restore them later. One thing which must be rem.embered is
that the user must remove the same number of items as he

placed on the stack in one group, and in the same order.
(The order of items in a group is not reversed v/hen the
group of items goes on the stack. The order of groups on
the stack is the reverse of the order in which the groups
were placed on tne stacTTI)

- 86 -

THE TUPLES

SAVING FIELD VALUES (AND CONSTANTS);

Tuple Format;
(cl SFC)
(int SFC cl-1 cl-2 ... cl-int)

Description;
The first form' of the SFC tuple is merely an
abbreviated form of (1 SFC cl) i so v/e describe
the second form only. This command pushes onto
the field contents stack a group of "int"
values, from the items "cl-l", ..., "cl-int"
(which may be constants, bug names or bug-field
strings) . L*^ will check that the number of
arguments to the right of the SFC is greater
than or equal to the value of "int" and if not
it will give an error message. If there are
more arguments than needed only the leftmost
ones will be pushed. This allows the first
argument to be a bug-field string which can
specify the number of arguments to be pushed as
the program is running.

Examples:

(3 SFC PX .0AB -5) saves a group of three items,
the contents of the field PX, the hexadecimal
constant . 0AB and the (36 bit two's complement)
integer -5.

(2 SFC X Y #11 0) saves only the contents of X
and Y. #11 and 0 are not saved.

- 87

THE tuples

RESTORING VALUES SAVED ON THE FIELD CONTENTS STACK:

Tuple Format:
(ra RFC)
(int RFC m-1 m-2 m-int)

Descr iption:
The first form is an abbreviation for

so v;e discuss only the second form,
pops the top of the field contents
the group at the top of the stack
at least the number of items in it

"int" an error occurs,

the group are stored in
,"m-int". Be sure to
operation vi/as:

(int SFC cl-1 cl-2 cl-int)

(1 RFC m),
This tuple
stack. If

does not have

specified by
Otherv/ise, the items in

the locations "ra-1", ...
note that if the save

and the restore operation is:

(int RFC m-1 m-2 ... m-int)

then the result is the same as the assignments;
y

(m.-l = cl-1) (m-2 = cl-2) ... (m-int = cl-int)

This statement is true both in terms of the

ordering of the arguments and in terms of the
truncation and extension of unequal size
arguments in an assignment.

Examples:
(3 RFC P Q R) can be used to restore the bugs P,
Q and R saved by (3 SFC P Q R) .

- 88

THE LO TUPLES

SAVING FIELD DEFINITIONS:

Tuple Format:
(f SFD)
(int SFD f-1 f-2 F-int)

Descr iption:
The tuple form (f SFD) is short for (1 SFD f) ,
so we discuss only the second form. This tuple
saves the field definitions associated v/ith the
field names "f-1", "f-int" in a qroup on
the field definition stack (or gives an error if
too few arguments are present) . It is similar
to SFC.

RESTORING FIELD DEFINITIONS

Tuple Format:
(f Rf^D)
(int RFD f-1 f-2 F-int)

Description:
This tuple is the companion tuple
Definitions. They work with SFD in the
as it restores the fields or group of
which were save by SFD. It works with
the same way as RFC works v/ith SFC (v/ith
to order of arguments) .

- 89 -

to SFD.

same way

fields

SFD in

respect

THE tuples

12.9 BIT SHIFTIiNiG AND COUNTING

LEFT SHIFT:

Tuple Forniat:
(m L cl)

Descr iption:
This tuple shifts the bits of the contents of
"m" left by "the number of positions specified by
the value of "cl". Zeroes fill the vacated
rightmost positions. The result is stored in
the location "m".

RIGHT SHIFT:

Tuple Format:
(m R cl)

Descr iption:
This tuple shifts the bits of the contents of
"m" right by the number of positions specified
by the value of "cl". Zeroes fill the vacated
leftmost positions. The result is stored in the
location "m".

- 90 -

THE LO TUPLES

POSITION OF LEFTMOST ONE BIT:

Tuple Format:
(m COL cl)

Description:
This tuple puts into "m" the
leftmost one bit of "cl". The
relative to the left boundary
the first bit of "cl" is one
set to one.

position of the
position is given
of the field, if
then "m" will be

Examples:
(A COL EC) If the field BC contains the
string 2#B00000000001101001001011 then after
tuple is executed bug A will be set to 12.

bit

the

If the value in field BC
then bug A is set to 1.

is #241 (= 2#10100001)

Note: If the value of the field BC is would have
been zero (no one bits)
set to 0.

then bug A would have been

POSITION OF LEFTMOST ZERO BIT:

Tuple Format:
(m CZL cl)

Description:
This tuple placed
leftmost zero bit
operation
looks for

in "m"

in the^
is the same as COL, except

a zero instead of a one.

- 91 -

the position
value of "cl"

of the

Th i s

that it

THE TUPLES

POSITION OF RIGHTMOST ONE BIT

Tuple Format:
(m COR cl)

Descr iption:
This tuple places in "m" the position of the
rightmost one bit of the value of "cl", relative
to the right end.

Examples:
(A COR EC) if the field EC contains the value
#04 (= 2#00000100) then bug A is set to 3. If
the field EC is all zeroes, then bug A is set to
0 the rightmost bit is position 1.

POSITION- OF RIGHTMOST ZERO BIT:

Tuple Format:
(m CZR cl)

Description:
This tuple places in "ra" the position of the
rightmost zero bit of "cl", relative to the
right end the rightmost bit is position 1.

- 92 -

THE TUPLES

COUNT NUMBER OF ONE BITS:

Tuple Format:
(m CO cl)

Description:
This tuple places in "m" the count of the number
of one bits in the value of "cl".

COUNT NUMBER OF ZERO BITS:

Tuple Format:
(m CZ cl)

Description:
This tuple places in "m" the count of the num.ber
of zero bits in the value of "cl".

- 93 -

THE TUPLES

12.10 MISCELANEOUS TUPLES

INCREMEKTAL DUMP TUPLE:

Tuple Format:
(cl-1 DUMP cl-2 cl-3)

Descr iption:
This tuple causes a dump to be printed on the
INIT file whenever the value of "cl-l" is
greater than 0 and it uses that value as a
spacing factor. Thus this tuple this can be
used to cause a conditional dump. Such
incremental dumps are of great value in
debugging programs and in demonstrating the data
structures that have been created at
intermediate times during the execution of the
program. The last tv/o arguments are optional.
They specify what is to be dumped and to which
channel the dump is to go, respectively. "Cl-2"
specifies what is to be dumped. This
information is provided through the use of a bit
mask. The following table enumerates the dumps
available and the condition of the bits so that
the dumps wanted will be specified.

FEATURE BIT

BUGS #20

CHARACTERS v #200
CORE #40
FCS #2
FDS #4
FIELDS #10
NARROW #100
TRACEBACK #1

94 -

THE l6 tuples

Thus to dump traceback, and the bugs with
characters in a wide forinat double spaced the
dump tuple would appear as follows:

(2 DUMP #221 4)

The last argument specifies the channel that the
dump is to be outputted on. If omitted the
output goes to the INIT file. If "cl-3" is zero
the dump will also go to the INIT file.

To interpret the output of a dump, see Appendix
B on "Reading a Dump".

- 95 -

THE l6 tuples

INCREMENTING THE FIELD TEMPLATE:

Tuple Format:
(f IFLD)

Description:
This tuple increments the field definition.
Incrementing a field causes it to mask off the
next contiguous set of bits of the same size as
the original template. For example, assume
field H is defined to be a displacement of 1,
bits 0-6. Incrementing field H would redefine H
as a displacement of 1, bits 7-11. Further
increments would cause H to be redefined a
1[11,20], 1[21,27], 1[28, 35], 2[0,6]. Notice
that attempting to increment a field so that it
v/ould have to mask outside a word causes the
field to be set to the beginning of the next
v/ord. This tuple is very useful in setting up
string and label variables.

- 96 -

THE L® TUPLES

CONDITIONAL MULTIDIRECTIONAL BRANCHING

Tuple Format:
(cl GOTO lab-1 lab-2 lab-3 lab-n)

Description:
This tuple provides a method of performing a
multi-way branch in a line. The first argument
of the tuple is an integer v^hich specifies which
label is to be used for the branch. If it is
less than or equal to zero, or greater than the
number of labels, the tuple has no effect. If
hov7ever, the first argument is v^ithin range,
control is transfered to the line with the label
which is the cl'th left of the GOTO. If the
selected label is undefined or external, control
is transfered to the line which defines the last
label in the GOTO statement. A error occurs if
this label is external or undefined. This
feature is very useful with label variables.
For example, suppose a label nam.e was read from
the teletype and placed into a two word block by
the program. If this was supposed to be a label
in the procedure and it was misspelled then
through the use of a GOTO tuple the program
could regain control over a branch to an illegal
label, thereby preventing the L^ interpreter
from issuing an error.

- 97 -

THE tuples

12.11 EQUALITY TESTS

EQUALITY TEST:

Tuple Format:
(cl-1 = cl-2)
(cl-1 E cl-2)

Description:
This tuple is true if the 36 bit register v.'ith
the value of "cl-1" right-justified and filled
with zeroes on the left is equal to the value of
a second 36 bit register with "cl-2"
right-justified filled with zeroes on the left.

This test is often used for fields of the same
length, and in that case it is true exactly v;hen
the contents of the fields are identical.

INEQUALITY TEST;

Tuole Format:

(cl-1 # cl-2)
(cl-1 NE cl-2)

V (cl-1 <> cl-2)
(cl-1 >< cl-2)

Description:
This tuple is true exactly when the tuple
(cl-1 = cl-2) is false.

- 98 -

THE LO TUPLES

12.12 ALGEBRAIC COMPARISONS

GREATER THAN;

Tuple Format:
(cl-1 > cl-2)
(cl-1 G cl-2)

Description:
This test is true if the 36 bit register with
the value of "cl-1" right-justified and filled
on the left v^ith zeroes is greater than the 36
bit register with the value of "cl-2"
right-justified and filled on the left with
zeroes. The comparison is done as 36 bit tv/o's
complement numbers (with correct sign
comparison).

LESS THAN OR EQUAL TO:

Tuple format:
(cl-1 =< cl-2)
(cl-1 <= cl-2)
(cl-1 LE cl-2)

Descr iption:
This test is true exactly when the test
(cl-1 > cl-2) is false.

- 99 -

THE TUPLES

LESS THAN:

Tuple Format:
(cl-1 < cl-2)
(cl-1 L cl-2)

Descr iption:
This test is true exactly V7hen the test
(cl-2 > cl-1) is true.

GREATER THAN OR EQUAL TO:

Tuple Format:
(cl-1 => cl-2)
(cl-1 >= cl-2)
(cl-1 G£ cl-2)

Descr iption:
This test is true exactly when the test
(cl-2 > cl-1) is false.

INCLUSIVE RANGE TEST:

Tuple Format:
(cl-1 R cl-2 cl-3)

Description:
This test is true exactly when both
(cl-2 <= cl-1) and (cl-1 <= cl-3) are true

- 100 -

THE tuples

12.13 LOGICAL TESTS

SUBSET OF ONE BITS;

Tuple Format:
(cl-1 0 cl-2)

Descr iption:
This test is

the value of

in the value
this test to

has more one

true exactly when all one bits in
"cl-1" have corresponding one bits

or "cl-2". (It is possible for
be true when the value of "cl-2"

bits than the value of "cl-1".)

Examples:
(5 0
(7 0

7)
5)

SUBSET OF ZERO BITS

is true,

is false.

Tuple Format:
(cl-1 Z cl-2)

Descr iption:
This test is true exactly when all zero bits in
the value of "cl-I" have corresponding zero bits
in the value of ."cl-2". (It is possible for
this test to be true when the value of "cl-2"

has more zero bits than the value of "cl-1".)

Examples:
(5 Z
(4 Z

4)
5)

IS

is

tr ue.

false

- 101 -

THE tuples

12.14 CHECKING FOR END OF FILE

CHECKING FOR THE END OF THE FILE:

Tuple Format: : .
(cl EOF)

Description:
This tuple checks to see if an end of file
condition exists on the file on the channel
specified by "cl". If end of file exists this
tuple is true. If not, it is false. If "cl" is
zero then the input side of the INIT tuple is
checked.

- 102 -

APPENDIX A

SAMPLE CARD SETUP

This is a sample card setup for a typical l6 program.
It provides a maximum time which should be sufficient for
small jobs.

$JOB name [p^p] /TIME:1:00
$PASSWORD password
$DECK PRQG.L6

procedures
$EOD
$DECK PROG.DAT

data

$EOD
.R L6

:LOAD PRGGCPROG/LOCK
:RUN procedurename
: DUMP/FILE: LPT :/SPACllMG: 2
:EXIT

.DELETE PROG.L6,PROG.DAT

%ERR:

.REENTER

: DUMP/\iiIDE/FILE: LPT:
:EXIT

.DELETE PROG.L6,PROG.DAT

)

This setup creates tv/o disk files PR0G.L6 and PROG. DAT.
The INIT tuple will be:

THEN ("LPT:" INIT "PROG.DAT")

Of course any other filenames may be substituted for
these two. The "name" in the job card is the name to be
given to the job. It can be up to six characters in length.
The "procedurename" is the name of the L^ procedure v/hich is
to be executed. This is given on a procedure statement in
the L^ program.

- 103 -

APPENDIX B

READING A DUMP

has two ways to produce a dump, the DUMP tuple and
the DUMP command. These are described in chapters tv/elve
and nine respectively. The dump is divided into several
parts. Each part is described below.

I/O DUMP

This dump
program I/O.
below the file.

lists all files which are currently open for
If the file status is nonzero it is listed

BUG DUMP

Th i s

These are

be listed
The first

bug (the
positions
character s

dump lists the
listed in octal,

in ASCII. The

gives the five
five characters with

6, 13, 20, 27, and 34).
right justified in the

contents of all nonzero bugs.
If requested, the bugs will also

ASCII is listed in two columns,
characters left justified in the

their rightmost bits in
The second gives the five
bug (the five characters

28, andwith the rightmost bits in positions (7, 14, 21,
35). For example, suppose bug A contains the string "RIGHT"
right justified and bug B contains the string "LEFT " (v;ith
a trailing blank) left justified. The first line of the
dump would look like:

A=245114362124 8=462130652100 *) $CD''LEFT BRIGHT. . . (@''

Sometimes

characters and

the data was not intended to represent
therefore the dump will be meaningless. The

ASCII character set contains

not print, but may have other
Therefore these characters

replaced by a period (.) .

many characters which are do
effects on the output device.
(#0-#37 and #175-#177) are

- 104 -

READING A DUMP

FIELD DUMP

All of the defined fields are
Examples of field definitions are:

printed by this dump.

A= 1[0,8] -77 7000000000-

4= -2 [1,19] 377777600000

-Field- A has a displacement of
1 and includes bits 0 throuqh
8. The 777000000000 is an
octal mask. If converted to
binary it will have ones in
the bits of A and zeroes

el sev7here.

Field 4 has a displacement of
-2 and contains bits 1 through
19.

CORE DUMP

This dump shov/s the user-allocated
has a format similar to the bug dump,
one or more blocks. Betv;een each block
information about the block. Both the

18-35) of the word above and the left
of the word below the block contain
The leftmost bit is zero if the block
block is allocated. The rest of the bits give the length of
the block plus one. For example, the following dump has
three allocated blocks, a four word block at location #3, a
five vrard block at location #23, and a ten word block at
location #31. There is a free block of 10 words at location
#20. Notice that groups of zero words are not included in
the dump. An extra line is skipped when a group of words is
omitted.

- 105 -

storage area. It
In the dump will be
is a v;ord containing
right halfword (bits
halfword (bits 0-17)

the same information,

is free and one if the

READING A DUMP

USER-ALLOCATED STORAGE AREA

000000 000000000602 006000000234 N* X
• •••••••

X
•

000002 400000400005 405010647652 A FOU* * A. X X

000004 511012747644 42101G246236 ^R WORD BLC «$A/.$.A. X
•

000006 416260006000 400005000013 «CK. . * P X

000020 000000000000 000234000234 * ' .N* X

000022 000013400006 405010644655 « . .\. .A FIV * . .8...A. ^ X

000024 425012747644 421010246236 «E WORD BLO* * . A/ . $. A. X
•

000026 416260000000 000000000000 *CK X

000030 400006400013 405G12442634 "@.4. .A TEN^- * .. h . . . A) X
•

000032 202571751210 202051447606 WORD BLOC* * A/. %. A. . X
•

000034 454600000000 000000000000 *K * X

000035 000000000000 000000000000 Sic X

000040 000000000000 0000S0000000 VC X X ♦ • • X

000042 000000060000 400013000172 (3 y = 3^ * 0

000234 000021000021 00017240600,0 (X

Blocks are zeroed when they are freed. This means that
all free blocks should be zero with the exception of the
last word in the block. Any data other than this word in a
free block indicates that the program is using it. Also
notice that a free block's last word is used by the
allocator. If the program overv^rites this word it may be
impossible for the allocator to allocate a block v/hen the
program requests one. It will then print the message:

? POINTER DOES NOT

DESTROYED

POINT TO A BLOCK OR ALLOCATOR DATA

and stop
make sure

the program. For
that the program

these reasons the user should
never accesses a block once it

has been freed.

- 106 -

READING A DUMP

TRACEBACK DUMP

This dump prints a summary of all subroutine and
procedure calls which have been made, but not terminated by
DONE or FAIL. An example of an entry in this dump is:

2: PROCEDURE YAWN CALLED BY

PROCEDURE BORED AT LINE 3 THEN TUPLE 2

LOCAL BUGS

A=O00000000010

LOCAL FIELDS

3= 5[0,10] 6 = UNDEFINED

1: PROCEDURE BORED CALLED BY

PROCEDURE LECTURER AT LINE 100 ELSE TUPLE 5

The local bugs and local fields listed are those values
which were saved on the stack, i. e. the values which v/ill
be restored v/hen the procedure is exited. The number
preceding the colon is the level number. This is the number
of nested procedure and subroutine calls which were in
effect when this call was made.

FIELD CONTENTS STACK

The field contents stack is listed in blocks. Each
block contains the values saved by one SFC tuple. The
blocks are dumped in the order in which they will be
restored. Therefore the values which v;ill be restored by
the next RFC tuple are dumped first.

FIELD DEFINITION STACK

The field definition stack

to the field contents stack.

is output in blocks similar

- 107 -

APPENDIX C

STORING THE LOW SEGMENT AS A CORE IMAGE

Sometimes it is convenient to store L" as a core image
rather than- reloading the program each time it is run.
Hov;ever, since the high segment is sharable it is not
necessary to store a copy of it each time the low segment is
saved. The STORE command causes the high segment to be
removed and control to be returned to the monitor. The lov;

segment may then be saved with the SAVE or SSAVE commands.
For a description of these see DECsystem-10 Operating System
Commands in DEC's software notebooks. Later v;hen execution
of the ^saved system is started, by either the "R, RUN, or
START commands, L^ checks to see if a high segment is
present. If not, it gets a copy from_ the system device and
then starts it executing. Mote, if L*^ is started and a high
segment from the user's disk area is present, it will be
used rather than a copy from the system device.

- 108 -

APPFJNDIX D

THE ASCII CHARACTER SET

OCTAL ASCII TEXT OCTAL AS(

000 null 040 S]

001 TA 041 1

002 TB 042
It

003 TC 043 #

004 TD 044 $
005 TE 045 %

006 VF 046 &

007 TG(bell) !B 047

010 Th (backspace) 0 50 (
011 Tl(tab) !T 051)
012 fj(1inefeed) !L 052

013 TK (vert. tab) !V 053 +

014 Tl(formfeed) !F 054 t

015 TM(car. ret.) IC 055 -

016 IN 056 •

017 TO 057 /

020 TP 060 0

021 TQ(xon) 061 1

022 TR 062 2

023 TS (xoff) 063 . 3

024 Tt 064 4

025 Tu 065 5

026 TV 066 6

027 Tw 067 7

030 Tx !X 070 8

031 TY !Y 071 9

032 rz !Z 072 :

033 al tmode •A 073 9

034 r\ !D 074 <

035 T] !U 075 =

036 rr !S 076 >

037 j !E 077 7

- 109 -

TEXT

I I

THE ASCII CHARACTER SET

OCTAL ASCII TEXT OCTAL ASCII TEXT

100 @ 140
101 A 141 a
102 B 142 b
103 c z—:.z:"::i43 ^ c
104 D 144 d
105 E 145 e

106 F 146 f
107 G 147 g

110 H 150 h
111 I 151 i
112 J . 152 j
113 . K 153 k
114 L 154 1
115 M 155 ro
116 N 156 n
117 0 157 o

120 P 161 p
121 Q 162 q
122 R 162 r

123 S 163 s
124 T 164 t

125 U 165 u
126 V 166 V
127 W 167 V7

130 X 170 X

131 Y 171 y
132 Z 172 z
133 [173 {
134 \ 174 I
135] 175 }
136 " 176
137 177 rubout

- 110 -

