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SCIENTIFIC REPLIRTS

Temporary microglia-depletion
after cosmic radiation modifies
phagocytic activity and prevents
et cognitive deficits

Published online: 18 May 2018 . . . . . .
ublished ontne i Karen Krukowski(®'2, Xi Feng'?, Maria Serena Paladini®?, Austin Chou'?, Kristen Sacramento?,

Katherine Grue'?, Lara-Kirstie Riparip2, Tamako Jones?, Mary Campbell-Beachler?,
Gregory Nelson? & Susanna Rosi%2*>

Microglia are the main immune component in the brain that can regulate neuronal health and synapse
function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models
thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s
for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary
microglia depletion, one week after cosmic radiation, prevents the development of long-term memory
deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory
response to cosmic radiation. The repopulated microglia present a modified functional phenotype with
reduced expression of scavenger receptors, lysosome membrane protein and complement receptor,
all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed

in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide
mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic
radiation exposure.

The next era of human exploration will be as challenging as it is exciting. As we seek to explore planets beyond our
own, both the distances traversed and the difficulties faced during the voyage will be new to humankind. Long
space missions, such as the upcoming Mars journey, require a clear understanding of the effects of space exposure
on the mental and physical functional capabilities of astronauts. The psychological stressors that astronauts face
during space travel are powerful and varied, including social isolation, altered sleep patterns, and physical space
limitations'. This is coupled with the direct impact of the adverse environment of space, which includes exposure
to galactic cosmic rays (GCR). GCR are composed of protons, helium nuclei, and high charge and energy nuclei,
which can alter cellular machinery and function. The short and/or long-term effects of GCR exposure are largely
unknown. It is estimated that during deep space missions astronauts will experience 10-fold higher GCR expo-
sure than when on the international space station. Two major contributors of this exposure will be from protons
and helium nuclei, therefore understanding of the effects of these particles is vital for mission success'~>.

Only in the last decade research has started to focus on how GCR can impact the central nervous system
(CNS), with much effort devoted to developing mitigating factors that could prevent or rescue the loss of cogni-
tive functions. Initial studies from our group and others have developed rodent models to study the effects of indi-
vidual particle exposure. Our group found that exposure to protons, or protons coupled with iron, can cause acute
as well as persistent cognitive loss as measured by the novel object recognition task (NOR)*. Radiation-induced
cognitive loss is mediated in part by changes in/by the hippocampus. Importantly we have found that GCR
exposure can alter the expression of the plasticity-related immediate early gene Arc and hippocampal networks
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Figure 1. Experimental Design. Animals were exposed to helium radiation (0, 15, 50, 100 cGy) on day 0. Diet
changes (4/—PLX) and behavioral analysis are shown relative to radiation exposure. NOR = Novel Object
Recognition. EPM = Elevated Plus Maze.

mediating spatial memory*¢-%. Other recent rodent studies have reported behavioral impairments coupled with
synapse alterations following exposure to different GCR particles- specifically titanium or oxygen®-'!. Notably,
the behavioral and synaptic alterations observed previously correspond with a modified inflammatory response*
and enhanced microglia activation up to 12 months after exposure®!2. Taken together, these studies suggest that
GCR exposure can impact both neuronal and microglial cell function when radiation-induced cognitive deficits
are measured.

Microglia are the resident macrophages and the main immune component in the brain, accounting for
10-15% of all brain cells. They constantly survey for signals of injury/infection; quickly moving toward affected
sites upon activation, acting as key mediators of neuroinflammatory processes. It has long been established that
microglia can passively regulate neuronal health through the release of cytokines and chemokines, however, more
recent reports found direct effects of microglia on synapse function'>'. Microglia mediated synaptic interaction
can be dependent on the complement cascade, which includes C1q and C3. The complement cascade, originally
thought only to regulate pathogenic immune responses and phagocytosis, has been recently found to mediate
synaptic elimination during brain development and in neurodegenerative diseases. It has been reported that
inhibition of C1q or C3 reduces synapse loss, and pharmacological depletion of microglia prevents neuronal
and synapse losses in Alzheimer’s models'>'. In line with these results, we and others have shown that microglia
depletion at the time of radiation can prevent cognitive decline and dendritic spine loss in the hippocampus after
brain only irradiation'”5.

It is estimated that during deep space missions, each cell in the body will be traversed by a helium ion approx-
imately once every three weeks®~>1%2 yet, despite this risk, there remains a paucity of studies investigating its
effects on CNS function. In this study, we hypothesized that helium exposure affects memory function and that
microglia activation plays a critical role in the development of cognitive deficits after helium exposure. To test
these notions, we first examine the early and late effects of helium exposure on cognitive function. Second, we test
whether temporary microglia depletion after helium exposure will prevent the development of cognitive deficits.
Finally, we determine the functional characteristics of the repopulating microglia to understand their direct role
on cognition.

Results

Radiation exposure paradigm and experimental design. Twenty-one week old male C57Bl6] mice
were exposed to different doses of helium (0, 15, 50, 100 cGy) at Brookhaven National Laboratory. Seven days
after radiation exposure mice were switched to PLX5622-1200ppm (PLX) or control diet for 15 days, (Fig. 1). The
PLX diet is composed of a CSF1-R inhibitor that induces depletion of microglia within 3 days (~90%), and sus-
tains the depleted state throughout the duration of treatment'”?!. Upon returning to normal diet microglia repop-
ulation occurs within seven days*'-?*. Behavioral readouts for recognition memory and anxiety were measured
early after radiation, during microglia depletion (18-21 days), and long-term post radiation (90-100 days, Fig. 1).

Brief microglia depletion fully rescued the development of long term radiation-induced memory
deficits. To study the possible effects of helium irradiation on memory we used the novel object recognition
task (NOR). In this task the animal’s preference for the novel object serves as the gold standard measure of rec-
ognition memory. We investigated the effect of helium exposure on early (18 + days post irradiation, during PLX
or control diet) and late (90 4- days post radiation) memory response. No memory impairments were detected
early after exposure in any of the groups, (Supplemental Fig. 1). At late time points (90 + days post helium expo-
sure, Fig. 1) mice exposed to either 15 or 50 cGy of helium were unable to distinguish the novel and familiar
objects denoting deficits in recognition memory, (Fig. 2A, red squares and blue triangles). Strikingly, when either
group was treated with PLX after irradiation, the long-term memory impairments were no longer observed,
(Fig. 2A, red shaded squares or blue shaded triangles). No memory impairments were measured in any other
group, (Fig. 2A). Importantly, no differences were measured in total exploration time (Fig. 2B) or object prefer-
ence during identical object exploration (Fig. 2C).

Furthermore, we analyzed anxiety-like behavior by the elevated plus maze (EPM) at 90 days post radiation
exposure. No groups displayed any anxiety-like behavioral phenotypes (Fig. 2D). Thus, poor performance in the
NOR task was not a result of inactivity or anxiety-like behavior. Taken together these data suggest that temporary
microglia depletion acutely after radiation exposure could be a potential therapeutic option for treating long-term
radiation-induced memory impairments.

Radiation-induced long-term changes in inflammatory markers. Gene array profiling was
performed to examine the effect of radiation exposure and/or transient microglia depletion upon the neu-
roinflammatory response. Using hippocampal lysates from 0 cGy, 50 cGy and 50 cGy + PLX treated mice we
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Figure 2. Radiation-induced memory impairments rescued by PLX treatment. Animals were exposed to
helium radiation (0, 15, 50, 100 cGy). Beginning 90 days later, animals were tested for memory deficits or
anxiety-like behavior. (A) Memory deficits were measured by novel object recognition. Animals were exposed
to two identical object, 24 hrs later the animals are exposed to one familiar object and one novel object. Memory
deficits are calculated by a deficit in distinguishing the new object. Nv=novel. Fm = Familiar. Two-way
repeated measured ANOVA found a significant group (p < 0.0001) and discrimination effect (p < 0.0001). Sidak
post hoc analysis revealed differences in discrimination effects. Animals exposed to 15 or 50 cGy of helium
radiation were unable to distinguish the objects, denoting memory impairment. (B) Total exploration time with
both objects is depicted per group. (C) Arena side preference is determined during the familiarization phase. In
which animals are exposed to two identical objects. Time spent exploring each object is measured. L = object

on the left side of the arena, R = object on the right side of the arena. (D) Anxiety-like behavior was measured
by time spent in the open arms in the elevated plus maze. A one-way ANOVA did not reveal any significant
differences between groups. *p < 0.05, **p < 0.01. Individual animal scores represented in dots, bars depict
group mean and SEM. N =12-18 each group.

performed a 96 chemokine and cytokine gene array assay to investigate possible genetic signatures responsible
for radiation-induced behavioral effects, (Fig. 3A). While the majority of the gene profiles were similar between
the 50 cGy and 50 cGy + PLX groups, we did observe a subset of genes in which PLX treatment down-regulated
expression and a second subset in which PLX treatment upregulated gene expression (Fig. 3A). Further validation
by qPCR on targets from these subsets revealed four targets with significant group effects. CCL2, CD206, CD163
and DUSP1 were all down-regulated in the 50 cGy + PLX group when compared to 50 cGy alone (Fig. 3B-E). We
also investigated if inflammatory signatures differed in two groups that did not display behavior deficits (100 cGy
and 100 cGy + PLX). We found no changes in CCL2 and DUPS1 when comparing 100 cGy to 100 cGy + PLX.
Interestingly, CD163 was still down-regulated following PLX treatment, whereas CD206 was increased with
PLX treatment. These data demonstrate that brief microglia depletion after helium irradiation alters long-term
neuroinflammatory processes. Furthermore, these data suggest that the repopulated microglia and associated
microenvironment exhibit altered genetic and functional phenotype.

SCIENTIFICREPORTS | (2018) 8:7857|DOI:10.1038/541598-018-26039-7 3



www.nature.com/scientificreports/

A 50 50+PLX
& B | 5 cGy c
| : A 50 cGY +PLX

Upregulated il

N
"
>
| 4

Fold change
(=
Fold change

2

o A
e A
I E ol §l
- 0
| s cCL2
| 2 D E
\ = 2- 3
| l il *
! % AA s %2- A
B £ g i
| - T e T
| ; 3 3 s
‘ : 2 2 1 .
CE: ;
- 0 0-
- | = DUSP1 CD163

&

HEEK

f = Down regulated

Figure 3. Radiation-induced gene changes. (A) Gene-expression changes were measured by a 96 chemokine
and cytokine target gene array. qPCR analysis found four genes with significant differences between the 50 cGy
and 50 cGy + PLX group: (B) CCL2 (C) CD206 (D) DUSP1 and (E) CD163. Unpaired Student t-test revealed
significant differences between groups. *p < 0.05, **p < 0.01, ***p,0.001. Individual animal scores represented
in dots, bars depict group mean and SEM. N =11-12 each group.

Microglia and peripheral macrophage numbers were not affected by whole body helium irra-
diation followed by transient microglia depletion. To determine the impact of temporary microglia
depletion and/or radiation exposure on repopulation late after exposure (90 + days) in the brain we used flow
cytometry. We did not observe any differences across any treatment groups in either microglia (CD11b*CD45/°")
or peripherally derived macrophage (CD11b*CDA45"8") numbers (Fig. 4). These results suggest that whole-body
helium irradiation does not affect microglia or peripheral macrophage numbers. Furthermore, it demonstrates
that after removal from the temporary PLX diet, microglia and macrophages repopulate to levels similar to
untreated animals.
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Figure 4. Flow cytometry analyses of microglia and periphery originated cells in the CNS. (A) Gating for
microglia and peripherally derived macrophage population analysis. Microglia (CD11b*CD45'°¥) and
peripherally derived macrophage (CD11b*CD45"8") populations were identified by their differentially
expressed cell surface markers. (B) A graph to show the relative populations of microglia and peripheral cells in
the CNS. Data are presented as dot plots (mean +/—SEM) to show percentage of either population in all viable
cells. A one-way ANOVA did not reveal any significant differences between groups. N =4 each group.

Temporary microglia depletion decreases complement receptorC5aR in the repopulated microglia.
Next, we investigated whether alterations in the repopulated microglia activity at late end points could be respon-
sible for the rescue of radiation-induced memory deficits. One way microglia can impact neuronal function is
through synaptic interaction. The complement system has been shown to be involved in microglia-mediated syn-
aptic engulfment under both physiological and disease conditions'*~'>4-26, We characterized microglia expres-
sion levels of two mediators of the complement pathway: C5aR and CD11b (CR3A) by flow cytometry. Radiation
alone did not impact C5aR levels; however, the repopulated microglia in the 50 cGy + PLX group displayed sig-
nificantly decreased expression levels of C5aR when compared to the 50 cGy group (Fig. 5A,B). CD11b levels were
not significantly affected by helium irradiation or PLX treatment (Fig. 5C,D), but there was a trend of decreased
expression in the 50 cGy + PLX group. These results demonstrate that the repopulated microglia have reduced
complement receptor levels that correspond with improved recognition memory.

Repopulated microglia following helium irradiation exposure have lower phagocytic activity.
To understand the long-term effects of helium irradiation and temporary microglia depletion on phagocytic
activity we examined three key phagocytosis markers in microglia isolated from the brain: LAMP-1, CD206 and
CD45. The repopulated microglia after 50 cGy + PLX treatment showed a significant decrease of LAMP-1 levels
when compared to the 50 cGy group (Fig. 6A,B). No differences were measured in CD206 expression levels,
however a trend downward in the 50 cGy + PLX group was measured (Fig. 6C,D). No differences in CD45 levels
were measured between groups (Fig. 6E,F). These results suggest that the repopulated microglia have reduced
phagocytic activity.

Temporary microglia depletion alters synapse markers following helium irradiation exposure.
To investigate if alterations in the repopulated microglia phenotype relate to neuronal synapses levels we
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Figure 5. Analyses of complement markers in microglia. Mean fluorescence intensity (MFI) was used to
compare the protein levels in microglia populations (CD11b+*CD45%"). (A,B) Comparison of C5aR MFI

by surface staining on microglia. PLX5622 treatment after 50 cGy helium irradiation results in significantly
reduced C5aR level compared to the 50 cGy-only group, **p < 0.01, One-way ANOVA with Sidak’s multiple
comparisons test. (C,D) Comparison of CD11b MFI by surface staining on microglia. Statistics reveals no
significant difference in CD11b (CR3A) levels across groups, but there is a trend of decreased MFI in the

50 cGy + PLX5622 group, p =0.1096, unpaired student t-test. N = 3-4 each group.

measured protein levels of two neuronal proteins: synapsin 1 and postsynaptic density protein 95 (PSD95). We
observed significant increases in levels of the presynaptic protein, synapsin 1 in the 50 cGy 4 PLX when com-
pared with the 50 cGy alone group, Fig. 7A and Supplemental Fig. 2. This is consistent with the hypothesis that
less phagocytic repopulated microglia will have limited neuronal interactions. Conversely, we found a significant
decrease in post synaptic marker, PSD95 levels in the 50 cGy 4 PLX when compared with the 50 cGy alone group,
Fig. 7B and Supplemental Fig. 2. This is consistent with a previous report that measured increased PSD95 levels
corresponding with decreased dendritic spine density®. Taken together these data suggest that the altered phe-
notype of the repopulated microglia could play a role in synaptic protein expression specifically in the proteins
important for stability and synapse function.

Discussion

Deep space journeys into the unknown are dangerous endeavors, the hope is that with preclinical studies we can
both identify potential obstacles, as well as solutions for these problems. Here, we find long-term deficits in mem-
ory associated with whole body helium irradiation. For the first time we show that a brief microglia depletion
after charged particle radiation exposure completely prevents memory deficits measured more than 90 + days
later. Moreover, we found that the recovery in memory-deficit was at least in part due to: 1) a reduced neuroin-
flammatory milieu, 2) modifications in the repopulated microglia phenotype and 3) neuronal protein expression.
Specifically, repopulated microglia displayed decreased expression of complement mediator C5aR and phagocytic
marker LAMP-1. Cognitive rescue corresponded with increased synapsin-1 and decreased PSD-95 protein lev-
els. These results demonstrate that temporary microglia depletion treatment after aversive exposure could serve
as a powerful therapeutic countermeasure for prevention of radiation-induced memory deficits during space
missions.

Recognition memory refers to the ability to judge a previously encountered item as familiar and depends
on the integrity of the medial temporal lobe?’”. Perhaps the best known task to measure recognition memory in
rodents is the NOR (also known as the “visual paired-comparison task” in studies with humans and monkeys)
and relies on hippocampal function®. This behavioral task measures recognition memory without the use of
aversive stimuli (shocks, water, noise) and is based on the natural tendency of rodents to explore novel situations
and objects. It also requires little investigator interaction, thereby limiting potential interference in the output.
Here we used the NOR task to investigate GCR-induced recognition memory deficits. We found that helium
exposure does not impact recognition memory early (18 4 days, Supplemental Fig. 1) after exposure. In line with
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Figure 6. Analyses of phagocytic markers in microglia. MFI was used to compare the phagocytic marker levels
in microglia. (A,B) Comparison of LAMP-1 (CD107a) MFI by intracellular staining in microglia. PLX5622
treatment caused significantly reduced CD107a compared to the 50 cGy group, *p < 0.05, One-way ANOVA
with Sidak’s multiple comparisons test. (C,D) Comparison of CD206 MFI by intracellular staining in microglia.
(E,F) Comparison of CD45 MFI by surface staining on microglia. There is no difference in microglial CD45
levels between groups. N = 3-4 each group.

other reports investigating microglia depletion for therapeutic purposes®"?, while microglia are depleted we do
not detect any memory deficits. However, both 15 cGy or 50 cGy of whole body helium exposure cause deficits in
recognition memory measured 90 4- days post exposure, (Fig. 2A).

Current estimates suggest that a Mars voyage will last between 1.5-3 years, thus radiation exposure and
associated radiation-induced deficits are an important problem facing astronauts over the entirety of their Mars
journey*. We and others have previously demonstrated persistent radiation-induced deficits after exposures to
multiple components of GCR such as protons®, iron®***!, silicon®, proton + iron exposure*, titanium or oxygen
exposure’ ! A previous report investigated helium irradiation in rats and it found no deficits in NOR at low
doses (0.1-10 cGy)*?, however, the report was based on helium exposure confined to the head only. It is also
important to note that radiation exposure on deep spaces missions will not be confined to individualized body
regions. To this extent previous results from Rabin et al. comparing the effects of irradiating head only, body only
and whole body with °O ions demonstrated that whole-body exposures are the most deleterious to cognitive
performance®. The results of this study and previous reports'?** demonstrate that multiple particles found in
GCR, including helium, can induce persistent deficits in recognition memory. Cognitive deficits are detectable
over extended periods of time post exposure (90 + days) and suggest that charged particle exposure could pose
significant problems for long duration missions’ success and quality of life of astronauts upon return to earth.
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Figure 7. Investigation of neuronal stability markers. Western blot analysis of isolated prefrontal cortex tissues
revealed changes in neuronal stability markers: synapsin 1 (A) and PSD95 (B). (A) A significant increase in
synapsin 1 levels were observed in the 50 cGy + PLX group when compared to 50 cGy alone. Representative
blot depicted below. (B) A significant decrease in PSD-95 levels were observed in the 50 cGy 4+ PLX group when
compared to 50 cGy alone. Representative blot depicted below. Full-length blots are presented in Supplemental
Fig. 2. Samples were derived from the same experiment and were processed in parallel. Unpaired student t-tests
reveal significant differences between groups. *p < 0.05, **p < 0.01. Individual animal scores represented in
dots, bars depict group mean and SEM. N =7-8 each group.

Temporary microglia depletion (via PLX) seven days after radiation exposure completely prevents the devel-
opment of deficits in recognition memory. We only tested PLX beginning at seven days after radiation exposure
due to experimental limitations (time and logistics associated with shipment between facilities). However, the
fact that PLX was not given preventatively or immediately after exposure is significant for two main reasons. First,
these results highlight the potential of temporary microglia depletion for treatment purposes. Having a therapeu-
tic intervention with a broad treatment window is advantageous. However, we acknowledge there are additional
experiments needed prior to administration in astronauts. Second, these findings address basic mechanisms of
radiation-induced cognitive decline. It is clear that helium exposure can regulate microglia activity long-term
(Figs 3,5 and 6) while not impacting microglia number at 90 4 days post exposure (Fig. 4). We hypothesize that
radiation-induced microglia alterations primarily occur acutely after injury (within the first three weeks) as we
found that a temporary depletion of microglia with PLX from day 8-22 after helium exposure was sufficient
to prevent long-term memory problems. While this may not be the only useful treatment window, it definitely
represents an effective one. The repopulated microglia in irradiated animals display phenotypes different from
the microglia in irradiated animals 90 + days later, (Figs 5 and 6). Importantly, following completion of the PLX
diet, microglia repopulate to numbers comparable to those of untreated animals, (Fig. 4). Thus, a key difference
between the 50 cGy and the 50 cGy + PLX group is the phenotype of the repopulated microglia suggesting that
these cells are an important functional component of helium radiation-induced cognitive deficits.

PLX targets colony-stimulating factor 1 (CSF-1) which is crucial for the survival, differentiation, and prolif-
eration of monocytes and microglia. The CSF-1/CSF-1R signaling pathway plays a pivotal role during early brain
development. CSF-1-(null) mutant mice have reduced tissue macrophages and abnormal brain development®*,
and CSF-1R knockout mice are lethal before puberty*®. However, depletion of microglia by CSF-1R inhibitors
in adult mice causes no noticeable cognitive deficits (Fig. 2)'7'®2%2>2%_ Close to full depletion of microglia can
be achieved by oral administration of CSF-1 inhibitor via food?, and after the inhibitor is withdrawn, microglia
precursors in the CNS quickly proliferate, repopulate, and distribute to the entire brain*?*. We and others have
recently demonstrated that partial or full depletion of microglia prevents chronic cognitive deficits induced by
whole-brain cesium and X-ray irradiation'”!%. Interestingly, in Alzheimer’s mouse models, depletion of micro-
glia prevents neuronal loss, dendritic spine loss and cognitive deficits during the disease development*"%.
Furthermore, in a diphtheria toxin-induced neuronal loss model, depletion of microglia was able to resolve
inflammatory responses and promote brain recovery’. Taken together, these studies suggest that microglia deple-
tion during or shortly after pathological-, physiological-, or chemical-induced brain damage can prevent the con-
sequent neuronal deficits. However, the underlying mechanisms are still not clear. Although Elmore et al. showed
that in the normal CNS, repopulated microglia have inflammatory expression profiles indistinguishable from
those of normal non-depleted microglia?, this may not be the case during pathological states. In this study, we
show for the first time that temporary microglia depletion can mitigate the adverse effects on recognition mem-
ory after exposure to space-like radiation. We demonstrate that the repopulated microglia elicit lower levels of
inflammatory chemokines and cytokines after charged particle irradiation, (Fig. 3). These changes corresponded
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to the reduced complement receptor C5aR expression on microglia, (Fig. 5). This finding is in line with previous
reports showing improved cognitive performance after C5aR antagonist treatment in different rodent models®®.

The repopulated microglia have reduced lysosome membrane protein LAMP-1, indicating that they had lower
phagocytic activity and, were therefore functionally distinct from their non-depleted brain counterparts. In our
previous study we observed that microglia depletion prevented the dramatic reduction in spine density induced
by cranial irradiation. Notably, microglia depletion alone did not cause changes in dendritic spine density in
hippocampal granule neurons'®. Given the established links between phagocytic microglia, complement acti-
vation and synapse depletion**-? it is possible that by repopulating microglia and preventing the phagocytic
phenotype we also block synapse and cognitive loss. In support of this possibility we observed changes in synapse
stability following temporary microglia depletion. Specifically, we measured increases in the pre-synaptic protein
synapsin-1 and decreases in the post-synaptic protein, PSD-95 in the 50 cGy + PLX group when compared with
the charged particle exposure alone, (Fig. 7). Both synapsin-1 and PSD-95 are involved in synapse stability and
function**#! thus changes in these proteins is indicative of alterations in overall neuronal function consistent also
with the behavioral changes observed here. Initial studies focusing on microglia and synapse interaction found
that microglia primarily phagocytose presynaptic terminals®. This is in line with our finding that the less phago-
cytic repopulated microglia (in the 50 cGy + PLX group) could lead to more presynaptic protein expression. A
previous report found that GCR exposure alone increases PSD-95 levels which corresponded with decreased den-
dritic spine density®. These alterations in the post-synaptic terminals correlated with radiation-induced behav-
ioral deficits (NOR and object-in-place). The direct interaction between microglia phenotype and synapses after
cosmic radiation exposure needs further investigation; nevertheless, this study provides an initial insight into
potential mechanisms of transient microglia depletion and rescue of cognitive decline.

Understanding how radiation exposure impacts cognitive function is critical not only for astronauts on long
missions but also for patients undergoing cancer therapy. Therapeutic whole brain irradiation usually consists
of a total dose of 55-60 Gy delivered in 25-30 fractions. It causes a wide range of deleterious responses, includ-
ing deficits in neural regeneration, damage to the blood-brain-barrier, activation of glial cells and infiltration of
peripheral immune cells, that together may account for long-term cognitive impairment*>-°. In the current study,
we found significant reductions in the inflammatory chemokine CCL2 and the scavenger receptors CD206 and
CD163 measured in the hippocampus of microglia depleted mice (50 cGy 4+ PLX) compared to irradiated mice
(50 cGy) 90 plus days post exposure. These data were also corroborated by the flow cytometry analysis demon-
strating that the repopulated microglia have reduced lysosome protein LAMP-1. These results demonstrate that,
after GCR exposure, microglia depleted brains have a less inflammatory and less stressful microenvironment than
the microglia non-depleted brains. Together with our previous data in preclinical animal models of therapeutic
irradiation, the results reported here further demonstrate the critical role that microglia play in the long-term
development of radiation induced cognitive deficits's4.

Microglia depleted brains after GRC show also a reduction in DUSP1, an upstream suppressor of the BDNF
signaling suggesting that PLX-mediated microglia depletion may cause an indirect up-regulation of the micro-
glial BDNF signal, which could be responsible for preserved cognitive outcomes***. Interestingly, we only found
decreased DUSP1 expression in the 50 cGy + PLX group and not the 100 cGy + PLX group when compared to
the GRC exposed animals without microglia depletion. We did not identify changes in CCL2 expression when
comparing the 100 cGy and 100 cGy + PLX group. These results further imply that the behaviorally impaired
group (50 cGy group) has a different inflammatory phenotype than animals in which no behavioral deficits are
measured (50 cGy + PLX, 100 cGy and 100 cGy + PLX). We did however still see a modest decrease in CD163 and
an increase in CD206 in the microglia-depleted brains mice when compared to irradiated only (100 cGy). These
results suggest that changes in the expression of the scavenger receptor CD163 and the pattern recognition recep-
tor CD206 in the repopulated microglia are not involved in loss of cognitive functions since the 100 cGy group
did not show any cognitive deficits. Taken together, these results further strengthened the link between radiation
induced microglia activation and its role on the development of cognitive functions.

In conclusion, our results provide potential mechanistic evidence for the role of microglia in the development
of long-term cognitive deficits after cosmic radiation exposure. To our knowledge this is the first report to identify
a therapeutic approach for treating GCR-induced deficits. Understanding how radiation exposure impacts cogni-
tive function is critical not only for astronauts on long missions but also for patients undergoing cancer therapy.

Methods

Animals and whole body helium radiation exposure.  All experiments were conducted in accordance
with National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the
Institutional Animal Care and Use Committee of University of California (San Francisco). Twenty-one week
old C57B6/] wildtype (WT) mice were purchased from Jackson Laboratory (Bar Harbor, ME) and shipped to
Brookhaven National Laboratory (BNL), Upton, New York where, after 1 week of acclimation, they were irra-
diated in an unmodulated beam of 250 MeV/n helium ions during two experimental campaigns at the NASA
Space Radiation Laboratory as part of experiment # N301. These were NSRL 16B (mice irradiated 6/8/2016, at
1:30-3:30 PM) and NSRL 17A (mice irradiated 5/2/2017, at 1:40-1:56 AM). The mice were housed in groups of
4 on a normal 12:12 light cycle at the BNL animal care facility (provided food and water ad libitum), transported
to the NSRL for irradiation several hours before exposure and returned to the animal care facility several hours
after irradiation. In each case, mice were loaded into 7.3 x 4.0 x 4.0 cm polystyrene restraint boxes with air holes
and mounted on the beam line either in a polyethylene foam adaptor (NSRL 16B) or as stacks of restraint boxes
on a foam base (NRL 17A). After irradiation the animals were returned to their home cages and returned to the
animal care facility for shipment to University of California San Francisco by World Courier™ after 2 or 5 days.
For the NSRL 16B set, animals were oriented transverse to the 20 x 20 cm beam while during NSRL 17A the beam
intensity was lower necessitating orientation of the animals parallel to the beam direction due to time restrictions.
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The beam energy was 249.3 MeV/n with a range in water of 36.6 cm and a predicted LET of 1.57 keV/um. GERM
transport code calculations indicate that at the target surface, fragments (Z=0 or 1) accounted for 2% of the
particle fluence while at the midline of transverse oriented animals fragments represented 5.1% of the fluence and
for parallel oriented animals fragments represented 7.7% of the fluence at the midpoint [GERM reference]. For
all depths the dose averaged LET was 1.57 while fluence- or event-based LET varied from 1.54 to 1.55 LET/um.
For NSRL 16B animals the exposures were: 15.007 & 0.005 cGy (mean and standard deviation) with a dose rate of
16.37 ¢cGy/min; 50.010 4-0.004 cGy at 16.95 cGy/min and 100.007 £ 0.007 cGy at 18.07 cGy/min. For NSRL 17A
there was one exposure each at 50.004 cGy and 100.002 cGy with an average dose rate of 19.98 cGy/min. Poisson
distribution calculations indicate that the average number of particles traversing a 100 um2 cellular target (~
neuronal soma) are 60, 199 or 398 at 15, 50 and 100 cGy;, respectively. In resting microglia, for which average soma
area is ~39 um2 in C57Bl/6 mouse cortex™, the average fluence would be 23, 75 and 155 at 15, 50 and 100 cGy.
This indicates that all relevant cells received multiple ion traversals and that dose was uniform throughout the
cells and tissue.

PLX treatment. Upon arrival at UCSF (seven days after radiation exposure), diets were switched to either
PLX5622 or control diet (free base PLX5622 was provided by Plexxikon Inc, Berkeley, CA, and formulated in
AIN-76A standard chow at 1200ppm by Research Diets Inc). Mice were group housed in environmentally con-
trolled conditions with reverse light cycle (12:12 h light:dark cycle at 21 + 1 °C) were provided diets and water ad
libitum. Approximately, 1.2 mg of PLX5622 was ingested by a mouse of 25 grams of weight. Diets were switched to
their regular diet after 14 days of treatment.

Behavioral analysis. For all behavioral assays the experimenters were blinded both to the radiation
exposure and diet treatment. One week prior to behavioral analysis, animals were handled for habituation to
experimenters and room settings. Behaviors were performed in dark rooms during the animals wake cycle. All
behaviors were recorded using an overhead camera connected to a video tracking and analysis system (Ethovision
XT 12.0, Noldus Information Technology). When tracking was not optimal, videos were manually scored by an
investigator blinded to radiation exposure and diet treatment. Animal behaviors were run on both irradiated
cohorts (NSRL16B 12 mice/group; NSRL 17A 4/mice group- 0, 50, 100, 50 + PLX, 100 + PLX only). Total ani-
mal group numbers: 0cGy=15; 15cGy=12 15cGy + PLX = 12; 50 cGy = 15; 50 cGy + PLX = 14; 100 gGy = 18;
100 cGy + PLX = 18. No behavioral differences between NSRL16B and NSRL17A were observed.

Novel object recognition. Memory function was measured both during PLX or control diets (days 18-21) and
at late time points (90 + days), Fig. 1, by novel object recognition assay (NOR)>'. This tool is frequently used to
accurately reflect even mild deficits after radiation exposure”®*-%°, The test environment consists of an open field
arena (30 cm?) under red lighting. Mice were allowed to explore the arena for two 10-minute periods for two
consecutive days (habituation phase). On day three (training phase), two identical objects (red Lego™ blocks)
were secured to the floor in opposite corners of the arena using magnets and mice were allowed to explore the
arena and objects for 5 minutes. 24 hours later on day four (testing phase), one of the objects was replaced with a
novel object (orange Lego™ flower) of similar dimensions and texture. Mice were allowed to explore for 5 min-
utes. The objects and arena were cleaned with 70% ethanol between trials and animals. Trials were recorded and
exploratory behavior was defined as time the animals spent directing its nose towards an object. Data is expressed
as percent of time mice spent exploring each object. Mice that had less than 5 seconds of exploration time during
either training or testing were excluded from analysis.

Anxiety. Anxiety was evaluated using the Elevated Plus Maze (EPM) at 90 days post helium exposure. The EPM
consists of two exposed, open arms (35 cm) opposite each other and two enclosed arms (30.5 cm) also across from
each other. The four arms are attached to a center platform (4.5 cm square) and the entire maze elevated 40 cm off
the floor. Bright white lights are illuminated on both ends of the open arm®®. Mice were placed individually onto
the center of the maze and allowed to explore the maze for 5 minutes and their activity was recorded. The maze
was cleaned with 70% ethanol between animals. Anxiety-like behavior was calculated by the percent time spent
in the open arms + center.

Tissue collection.  All mice were lethally overdosed using a mixture of ketamine (10 mg/ml) and xylaxine (1 mg/
ml). Once animals were completely anesthetized, the chest cavity was opened and blood was obtained by cardiac
puncture. Following cardiac puncture animals were perfused with 1 x phosphate buffer solution (PBS), pH 7.5
(Gibco, Carlsbad, CA, 70011-044).

For frozen tissue, following PBS, the whole brain was rapidly removed and the hippocampus and prefrontal
cortex were dissected, snap frozen on dry ice and stored at —80°C.

For flow cytometry analysis: After perfusion, brains from NSRL17A were quickly removed and cut into
approximately 1 mm? cubes by a razor blade and digested in 2 ml of cold Accutase in the the presence of DNase I
(Sigma Aldrich, DN25-100MG) on ice with frequent pipetting for 20 minutes. Cells suspension was then passed
through a 70um cell strainer to remove large debris. Cells were collected by centrifugation and then resuspended
in 25% Percoll™ solution (Sigma, P4937-100ML) diluted in RPMI medium. After centrifuging at 800 x g for
20 minutes at 4 °C, myelin debris and excess solutions were discarded. Cell pellet was then washed with fresh
RPMI medium and resuspended in 100ul FACS buffer (1 x DPBS with 0.5% BSA fraction V, Gibco 15260037).
Cells were blocked with one volume of blocking solution (5% normal mouse serum, 5% normal rat serum, 5%
normal rabbit serum (Jackson ImmunoResearch, 015-000-120, 012-000-120, 011-000-120), 2% FBS (Gibco,
10082139), and 1% BSA fraction V x 1 DPBS) for 30 minutes, stained for 30 minutes with fluorophore-conjugated
antibodies on ice (CD11b-AF700, 1:100, CD45-FITC 1:50, BD Pharmingen 557690 and 553080; C5aR-PE, 1:100,
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Miltenyi Biotech 130-106-174). For intracellular staining, cells pre-stained with extracellular markers were fixed
in 500ul Fixation/Permeabilization solution (BD Biosciences 554714) on ice 15 minutes, washed twice with
1 x perm/wash buffer (BD Biosciences 554714) and stained with intracellular markers on ice for 30 minutes
(CD107a-PE, 1:200, Miltenyi Biotec 130-102-219; CD206-PE, 1:50, Biolegend 141706). Stained cells were washed
and resuspended in FACS buffer before analyses. Data were collected on an Aria III sorter (BD) and analyzed with
Flowjo™ software (v10, Tree Star Inc.). At least 3,000 microglia events (CD11b*CD45"") were collected from
each brain for fluorescence intensity comparisons.

Gene array analysis and gPCR confirmation. Dissected ipsilateral hippocampi from NSRL 16B cohorts were
used for all gene expression analyses. RNA isolation and cDNA conversion were completed as previously
described®”*. RNA concentration and quality were determined using a NanoDrop (Thermo Scientific). Three
hundred nanograms of RNA was reverse transcribed using High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems). For inflammatory profiling arrays®, (Qiagen, #330131) equal volumes of cDNA for each
sample were pooled (n= 11 animals/group/pool) and run on a single plate per condition; cycling conditions
were followed as suggested by manufacturer. Inflammatory genes analyzed summarized in Supplemental Table 2.
Select analytes from the profiling arrays were validated using individual samples (n = 11/group) carried out in
duplicate using SYBR Green Master Mix (Applied Biosystems) following manufacturer’s suggested protocol. The
relative expression of target genes was determined by the 2—AACt method and normalized against beta-actin
gene expression using a Statagene Mx3005P Real-Time PCR system. 50 cGy and 50 cGy + PLX groups were stand-
ardized to 0 cGy group. 100 cGy and 100 cGy + PLX were standardized to 100 cGy group. The primers used were:

CCL2: 5": GCTGACCCCAAGAAGGAATG-3'

CD206: 5 CCTCTGGTGAACGGAATGAT-3'

DUPS1: 5'-CAACCACAAGGCAGACATCAGC-3/
CD163: 5'-GCTAGACGAAGTCATCTGCACTGGG-3'.

Genes tested for differential expression in which significance was not reached: CCL7, GATA3, GMCSEF, IL-6
and CD36.

Western blot analysis.  Snap frozen prefrontal cortex tissues NSRL 16B cohorts were hand homogenized in Pierce
RIPA buffer (Thermo Scientific, #89900) with cOmplete ULTRA tablets (Roche, #05892791001) and PhoSTOP
(Roche, #04906837001) protease inhibitors for whole cell lysis. Debris was removed via centrifugation and the
protein concentration of the remaining homogenate was measured using the Piece BCA Protein Assay (Thermo
Scientific, #23225) following the manufacturer’s instructions. 20 ug of protein in Laemelli buffer (BioRad,
#1610747) with beta mercaptoethanol (Sigma, M-3148) was boiled at 100 °C, loaded into a precast 4-15% Tris
Glycine gel (BioRad, #5671084), and run using Tris/Glycine/SDS buffer (BioRad, 1610772) at 150 V. Protein was
transferred onto a nitrocellulose membrane (BioRad, 1620168) using Tris/Glycine buffer (BioRad, 1610771) at
100 V. Membranes were blocked using Odyssey Blocking Buffer (PBS) (LI-COR, 92740000) and incubated for
a minimum of 14 hours with either synapsin 1 (1:2000 in PBS, Millipore, #AB1543) or PSD95 (1:1000 in PBS,
Abcam, #ab13552). Blots were washed using TBS and incubated for 60 minutes in their host-specific secondary
antibody (LI-COR, #92632210-Mouse, #92632211-Rabbit). Blots were imaged using Odyssey (LI-COR) imaging
system and quantified using the Image Studio software. All blots were normalized to GAPDH (Sigma, #G8795).

Data analysis. Results were analyzed using Prism software (v7.05, GraphPad™; La Jolla, CA) and expressed as
mean =+ standard error of the mean (SEM). Statistical analyses were performed as listed below with p values of
<0.05 considered as significant.

Novel Object Recognition: Two-way repeated measure ANOVA, Sidak post-hoc analysis.

Exploration time: One- way ANOVA; no post hoc analysis because significance was not reach.

Elevated Plus Maze: One- way ANOVA; no post hoc analysis because significance was not reach.

qPCR: Unpaired Students t-test.

Flow Cytometry: Unpaired Student t-test.

Western Blot analysis: Unpaired Students t-test.
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