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low-coverage genomic data
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Understanding when species diverged aids in identifying the drivers of

speciation, but the end of gene flow between populations can be difficult

to ascertain from genetic data. We explore the use of pairwise sequential

Markovian coalescent (PSMC) modelling to infer the timing of divergence

between species and populations. PSMC plots generated using artificial

hybrid genomes show rapid increases in effective population size at the time

when the two parent lineages diverge, and this approach has been used

previously to infer divergence between human lineages. We show that, even

without high coverage or phased input data, PSMC can detect the end of

significant gene flow between populations by comparing the PSMC output

from artificial hybrids to the output of simulations with known demographic

histories. We then apply PSMC to detect divergence times among lineages

within two real datasets: great apes and bears within the genus Ursus. Our

results confirm most previously proposed divergence times for these lineages,

and suggest that gene flow between recently diverged lineages may have been

common among bears and great apes, including up to one million years of

continued gene flow between chimpanzees and bonobos after the formation

of the Congo River.

This article is part of the themed issue ‘Dating species divergences using

rocks and clocks’.
1. Introduction
The assumption that lineages accumulate sequence-level changes at an

approximately constant rate through time, also known as the molecular clock

hypothesis, makes it possible to place estimates of evolutionary divergence on

calendar and geological timescales using DNA sequence data. The molecular

clock hypothesis was first proposed in the 1960s [1,2] and has been widely used

across evolutionary biology. Inference of the time to most recent common ancestor

(TMRCA) of two or more lineages has been used, for example, to provide insights

into environmental events that may have driven evolutionary radiations [3],

episodes of cross-species transmission in viruses [4] and the colonization of new

habitats by a dispersing species [5].

Prior to recent advances in genome-scale sequencing, most studies incorporat-

ing a molecular clock approach estimated the TMCRA of two lineages using

phylogenies inferred from one or a few loci, or ‘gene trees’. However, except for

instances of post-divergence admixture, the TMRCA of a particular locus within

the genome will be more ancient than the population-level divergence of the

two lineages. Genome-scale data present an opportunity to unravel the divergence

histories of two lineages with increased accuracy, as each of the many ‘gene trees’

within the genome describes a different aspect of the ‘species tree’ [6,7].

Pairwise sequentially Markovian coalescent (PSMC) [8] and multiple sequen-

tially Markovian coalescent (MSMC) [9] are two new computational approaches
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that are capable of estimating the demographic history of a

lineage from genome-scale data. Both PSMC and MSMC

infer fluctuations in ancestral effective population size (Ne)

from either a single genome (PSMC) or from multiple genomes

sampled from the same population (MSMC). PSMC and

MSMC estimate ancestral population size by measuring the

rate of heterozygosity across regions of the genome. Because

heterozygous sites are nucleotide positions where the two

parental chromosomes differ, genomic estimates of heterozyg-

osity can be paired with the molecular clock to infer when an

individual’s parents shared a common ancestor. The distri-

bution across the genome of these times to parental common

ancestry, or coalescence events, can then be used to infer

changes in the ancestral population size over time, as the prob-

ability of observing a coalescence event at some time in the past

is inversely proportional to the ancestral population size.

In addition to inferring changes in effective population

size over time, PSMC and MSMC have been used to estimate

divergence times between species [8–13]. The most common

approach has been to first infer PSMC plots for each species

separately and then to overlay these plots. When reading

the plots from the present into the past, between-species

divergence is inferred to have occurred at the point in time

when the trajectories of two overlain plots become identical,

which presumably reflects the transition to shared population

histories (e.g. the time prior to divergence). This approach has

been used, for example, to estimate the timing of interspecific

divergences within the great apes [11], between modern

humans and Neanderthals and Denisovans [12], and between

dogs and wolves [13]. This approach does not, however,

account for the possibility of demographic processes other

than complete divergence, such as population structure or

that the two lineages might have the same effective size

owing to chance [8]. The second approach, which we investi-

gate further here, uses phased data, which has either been

the X chromosomes of male individuals [8], or from multiple

whole genomes drawn from high-quality human datasets [9].

These phased data are used to create artificial F1 hybrid

genomes comprising one chromosome from each of the two

lineages whose divergence time is to be inferred, and plots

are generated from these artificial hybrid genomes. Sites

along an F1 hybrid genome cannot coalesce more recently

than the speciation of the two parent species. These plots there-

fore show a transition from an infinite population size during

the time of lineage divergence to population sizes that reflect

the shared ancestry period prior to divergence. Where this

transition falls is interpreted as the time of divergence [8].

Although the artificial F1 hybrid approach is a potentially

powerful method to learn when two lineages diverged, it is

unknown to what extent this approach is suitable for organ-

isms for which high-quality, phased genomic data are not yet

available. Here, we use a combination of simulated and real

data to investigate the utility of the F1-hybrid PSMC approach,

hereafter hPSMC, under a variety of demographic scenarios

and with low-coverage and unphased data. First, we use simu-

lated phased and unphased data to explore the influence of

(i) amount of time since divergence, (ii) post-divergence gene

flow and (iii) effective population size prior to divergence on

the accurate recovery of divergence time using hPSMC. We

then apply hPSMC to two well studied, real datasets: great

apes and bears from the genus Ursus. We compare hPSMC esti-

mates of divergence timing within these lineages to estimates

inferred using other approaches.
2. Methods
(a) Simulated data
First, we explored the influence of several demographic factors

on the accuracy of divergence-time inference using hPSMC.

Using the coalescent simulation program ms [14], we simulated

chromosome sequences to generate four datasets: (i) phased haplo-

types with no post-divergence gene flow between populations;

(ii) unphased ‘haploidized’ sequences generated by randomly

selecting from one of two haplotypes with no post-divergence

gene flow between populations to mimic data that are typically

available from short-read shotgun sequencing; (iii) unphased

sequences generated from populations with a range of pre-

divergence effective sizes; and (iv) phased haplotypes with varying

amounts of post-divergence gene flow between populations.

We simulated the populations and DNA sequences using

ms coalescent simulation [14]. For each simulation in this study,

we simulated 200 Mb genomes divided into chromosomes of

equal length of either 5 or 10 Mb (electronic supplemen-

tary material, tables S1 and S2). We assume a mutation rate of

1 � 1029 mutations per site per year, a recombination rate

of 1 CM Mb21 per site per generation, and a generation time of

25 years. To create simulated phased datasets, we simulated one

haploid sequence per chromosome each from two populations,

both with an effective size of 10 000 individuals. The populations

were simulated to diverge from an ancestral population of 10 000

individuals at time t. We then used these haploid sequences to

create an artificial F1 hybrid. We converted the ms output to

psmc input files (.psmcfa format) by parsing the sequences and

calling a heterozygous site where the parents differ (see https://

github.com/jacahill/hPSMC). Although the default settings for

PSMC is to bin the genome into 100 base-pair regions [8], we

reduced this binning to 10 base pairs so as to compensate for the

higher expected heterozygosity in our simulated hybrid genomes.

This change also allows for greater resolution at older time periods

and avoids mutation saturation. To assess the influence of the evol-

utionary distance between populations, we created seven phased

datasets where t ¼ 100 000, 500 000, 1 million, 2 million, 3 million,

4 million or 5 million years ago (Ma). To assess the influence of

post-divergence migration between populations, we created five

additional datasets where post-divergence migration rates were

0.1, 1, 10, 100 or 1000 migrants per generation. For each of these

five datasets, t ¼ 1 Ma.

To create unphased datasets, we used a process called

‘haploidization’ [15], which involves selecting a single high-

confidence base call at each site where reads are mapped to the

reference genome. Haploidization is useful for genomic analyses

of low-coverage data, as it requires only a single high-quality base

call mapped to each site compared with more than 20� coverage

needed for calling and phasing genotypes [16]. To generate a haploi-

dized dataset, we simulated data using ms [14] as above, but

generated two haplotypes per population. Then, for each popu-

lation, we randomly selected a single allele at each site where the

two simulated haplotypes differed. As with the phased data

above, we created eight datasets reflecting a range of divergence

times between populations from 0 to 5 Ma.
(b) Real data
We next applied hPSMC to two well-studied biological test cases

where whole genome sequence data are available and for which

divergence between lineages has been estimated previously:

bears from the genus Ursus and great apes. We downloaded

reads from the NCBI SRA for five bears—two polar bears (Ursus
maritimus), one from Svalbard (SAMN01057660) [17] and another

from Alaska (SAMN01057676) [17]; two brown bears (Ursus
arctos SAMN03252407, SAMN02045559) [18,19], one from North

America (SRA) and one from Europe; and an American black

https://github.com/jacahill/hPSMC
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Figure 1. Results of simulation experiments designed to test the accuracy of hPSMC in inferring divergence time under three varying demographic scenarios: (a) the
influence of using phased (dashed lines) versus unphased (solid lines) data to infer divergence times at seven different depths of divergence; (b) the influence of
pre-divergence effective population size on the ability of hPSMC to detect divergence between unphased data; (c) the influence of post-divergence migration
between populations. In (b,c), divergence between populations occurs 1 Ma, and the dashed horizontal lines indicate the pre-divergence effective population size.
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bear (Ursus americanus SAMN02045561) [18]—and for one individ-

ual from each of the five extant great ape species—human

(Homo sapiens, ERP001960) [20], chimpanzee (Pan troglodytes,

ERS027400) [21], bonobo (Pan paniscus, ERX012399) [21], gorilla

(Gorilla gorilla, SRX339460) [22] and orangutan (Pongo pygmaeus,
ERS225256) [22]. We aligned the bears to the polar bear reference

genome [23,24] and the great apes to the human reference

genome (hg19) [25]) using bwa 0.7.10 [26] with the BWA–MEM

algorithm and default settings. We processed the files, filtered

reads with map quality scores less than 30 and removed duplicate

reads using SAMTOOLS v. 0.1.19 [27]. After mapping, we generated

haploidized sequences as described above for each individual

from base calls with minimum base quality and read mapping

qualities of 30. We ran PSMC on simulated hybrids from all pair-

wise combinations of bears and all pairwise combinations of

great apes, and estimated the divergence times between each

species and between populations as described above. For all

bears and great apes, we used the default PSMC settings described

in the original publication of the method [8]. For bears, we

assumed the polar bear generation time of 15 years [28] for all com-

parisons, and a mutation rate of 1 � 1029 mutations per site per

year [29]. For great apes, we used a generation time of 25 years

as per the human analyses in the original publication of PSMC

[8], and also estimated chimp generation time [30], with a mutation

rate of 1 � 1029 mutations per site per generation.
3. Results
(a) Simulated data
We first explored the influences of three demographic

parameters—time since divergence, pre-divergence popu-

lation size and post-divergence gene flow—on the ability of

PSMC to infer the time of divergence between lineages.

Using simulation, we created artificial F1 hybrid chromosomes

to mimic both high coverage (phased) genomic datasets and

lower coverage (unphased) genomic datasets, and estimated

PSMC plots from these artificial hybrid chromosomes. In

each resulting plot, the timing of the transition between an infi-

nite inferred population size to a population size that reflects

the shared ancestry period of the two lineages is interpreted

as the time of divergence between those lineages.

First, we created artificial hybrid chromosomes from simu-

lated populations in which the time of divergence between

parent populations ranged from 100 thousand years ago (ka)

to 5 Ma. Using the same divergence times, we created datasets

that reflected both phased and unphased data. As expected,

plots generated using phased, artificial F1 hybrid genomes
(those generated from a single parental chromosome of each

species or lineage) show a transition (a rapid change in inferred

ancestral population size) at the simulated divergence time

(figure 1a). The plots are qualitatively similar whether they

are generated from phased or unphased data; however,

the precise timing of transition is somewhat offset.

Using unphased data, we then generated eight additional

datasets in which the divergence occurred 1 Ma, but the pre-

transition effective population size ranged from 1000 to 50 000

individuals. Pre-divergence population size influences the tran-

sition time, with larger populations resulting in more ancient

transitions from infinite Ne to Ne that is reflective of shared

ancestry (figure 1b). This effect is also observed when the diver-

gence occurred 100 000 years ago (data not shown), suggesting

that this approach may be more likely to produce accurate

estimate of divergence time when populations are small.

We next simulated datasets in which gene flow continues

between the populations post-divergence. Assuming a 1 Ma

divergence between lineages and pre- and post-divergence

Ne of 10 000, we varied the number of migrants per generation

from 0 (complete isolation) to 1000. Figure 1c shows that gene

flow between populations quickly erodes the precision of

hPSMC to detect divergence. At low rates of migration, a tran-

sition is observed, but it is not the typical rapid change in Ne

and may be challenging to interpret in real data (figure 1c).

A rate of one or more migrants per generation results in a

plot of Ne that is the post-divergence sum of the populations

exchanging migrants (here, 20 000), which is what would be

expected in the absence of population divergence. Like

phased data, post-divergence gene flow produces a much

slower rate of hPSMC-inferred population size increase in hap-

loidized datasets (electronic supplementary material, figure

S18–S21). At large population sizes, haploidized data appear

to be less impacted by gene flow than phased data (figure 1c
and electronic supplementary material, figures S18–S21).

The results described in figure 1 show that population

divergence can be inferred as a transition between an infinite

population size to population sizes that reflect the shared

ancestry of the two parent lineages. However, pinpointing

the exact timing of this transition can be challenging, in par-

ticular given the demographic complexities of real data. We

therefore implemented a simulation-based procedure that

estimates the most likely transition time by comparing

hPSMC plots estimated from analyses of simulated data gen-

erated under a range of transition times to plots estimated

from the real data. This procedure assumes that, if the
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transition occurs more recently in a simulated dataset than it

does in the real data, the time of divergence assumed in the

simulation was probably more recent than the truth. Like-

wise, if the transition is older than that observed in the real

data, then the time of divergence used in that simulation was

probably older than the truth. We therefore consider the time

range during which divergence is most likely to have occurred

to be the narrowest range of simulated divergence times

that include the real data without intersecting it (figure 2).

So as to capture the portion of the hPSMC plot that is most

influenced by the divergence event, we consider only the

portion of the inferred hPSMC plots where the ancestral Ne

is between arbitrary thresholds of 1.5 and 10 times the pre-

divergence Ne. The lower bound is to avoid conflating

pre-divergence increases in population size with the signal of

population divergence. The upper bound is to avoid exploring

parameter space in which little information is present; in

instances where inferred Ne increases exponentially after popu-

lation divergence, the values reported by PSMC are informed

by increasingly little data and so will eventually become a

greater source of error than information for very large inferred

values of Ne. The cut-off values of 1.5 to 10 time pre-

divergence Ne are intended as a reasonable starting point for

interpretation, but may not be appropriate for all datasets.
(b) Real data
We next used hPSMC, as described above, to infer the timing

of divergence between lineages of great apes and bears in the

genus Ursus. For each comparison, we first generated hPSMC

plots from artificial F1 hybrid genomes generated from two

parent lineages (figure 3). To infer the most likely transi-

tion intervals for each pair of lineages, we then simulated

populations of each pre-divergence Ne as above, where simu-

lated populations diverged at a range of times spanning those

suggested by the hPSMC plot (figure 2 and electronic sup-

plementary material, figure S1–S17), and used these results

to infer the most likely range of divergence times for each

pair of lineages (table 1). For the great apes, hPSMC infers
the end of gene flow between chimpanzees and bonobos to

be 300–450 ka. Our results indicate that humans diverged

from the common ancestor of chimpanzees and bonobos

about 1.75–3.75 Ma, and that the Hominini (Homo and Pan)

diverged from the lineage leading to gorillas 3.75–6.25 Ma.

We find that the lineage leading to orangutans diverged

from the other great apes approximately 7.5–13.0 Ma. For

the bears, we infer that brown bears and polar bears diverged

within the last 200 ka, and their common ancestor diverged

from American black bears 500 ka–1 Ma (figure 3b). In

addition to between-species divergence, we also estimate

the divergence between geographically disparate polar bear

populations from Svalbard and Alaska and brown bear

populations from Sweden and Alaska. These intraspecific

divergences are also within 200 ka, 50–150 ka for the polar

bears and less than 100 ka for the brown bears.
4. Discussion
Our results demonstrate that PSMC can be used to infer the

timing of divergence between lineages under a wide range of

demographic scenarios, although the accuracy with which

divergence time is detected is influenced both by demography

and by the quality of the data available for analysis. The exten-

sion of the simulated F1 hybrid PSMC (hPSMC) framework to

unphased haploidized data, which mirrors the type of data

that are available for many published genomes, produces

results that are comparable to those from phased data

(figure 1a,b). However, pre-divergence population size will

affect the inferred transition time, with population sizes more

than 10 000 appearing to diverge earlier than the truth

(figure 1b).

A known, potentially confounding feature of PSMC is

that rapid changes in ancestral effective population size are

recovered as more gradual transitions [8]. In the context of

hPSMC, this means that we cannot apply a purely qualitative

approach to estimating population divergence time by

increases in inferred ancestral population size. Even using
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Figure 3. Results of hPSMC analyses of (a) five species of great apes (human, chimpanzee, bonobo, gorilla, orangutan) and (b) three species of bears in the genus Ursus
(American black, brown, polar). Within the great apes (a), we observe the expected pattern of divergence in which orangutans diverge most anciently followed by
gorillas and then humans, and chimpanzees and bonobos diverge most recently. Within bears (b), we also find the expected order of divergence, where the American
black bear is the most ancient divergence, followed by brown bear/polar bear divergence (light brown) and brown bear/brown bear divergence (dark brown) The polar
bear/polar bear divergence (blue) is inferred to have occurred very recently and may be an artefact of the small effective population size of polar bears (figure 1b).

Table 1. Corrected estimates of the inferred divergence time between lineages using hPSMC. Estimates were corrected using the procedure described in
figure 2.

hPSMC ‘parent’
1 lineage

hPSMC ‘parent’
2 lineage

inferred recent
bound for divergence

inferred ancient
bound for divergence

pre-divergence Ne

for simulations

bonobo chimpanzee 300 000 450 000 18 000

bonobo human 2 000 000 3 750 000 40 000

bonobo gorilla 4 000 000 5 250 000 40 000

bonobo orangutan 8 000 000 10 500 000 80 000

chimpanzee human 1 750 000 3 250 000 40 000

chimpanzee gorilla 3 500 000 4 750 000 40 000

chimpanzee orangutan 7 500 000 9 500 000 80 000

human gorilla 5 000 000 6 250 000 40 000

human orangutan 10 000 000 13 000 000 80 000

gorilla orangutan 10 000 000 13 000 000 80 000

polar bear (Alaska) polar bear (Scandinavia) 50 000 150 000 4000

brown bear (Alaska) brown bear (Scandinavia) ,100 000 100 000 45 000

polar bear (Alaska) brown bear (Alaska) ,100 000 200 000 45 000

polar bear (Alaska) brown bear (Scandinavia) ,100 000 100 000 45 000

polar bear (Scandinavia) brown bear (Alaska) ,100 000 200 000 45 000

polar bear (Scandinavia) brown bear (Scandinavia) ,100 000 200 000 45 000

polar bear (Alaska) American black bear 500 000 900 000 50 000

brown bear (Alaska) American black bear 600 000 1 000 000 50 000
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simulated phased data without any post-divergence gene

flow (figure 1a) inferred ancestral population size begins to

increase gradually before the divergence event. Therefore,

we believe that a framework of comparing simulated popu-

lation divergence events hPSMC results to those for real

data (see above) is essential for reliable divergence-time

estimation with hPSMC.

Our simulation results also show that hPSMC is highly

sensitive to post-divergence gene flow (figure 1c). This sensi-

tivity suggests that the approach may be a useful tool to infer

the timing of the end of gene flow between two diverging

populations, rather than the time of the initial divergence.
As expected from population genetic theory, no divergence

is detected when one or more migrants move between popu-

lations per generation post-divergence [31,32]. With smaller

amounts of gene flow (here, 0.1 migrants per generation),

divergence is detected, but the precision of the time estimate

of that divergence is less than with no post-divergence

migration (figure 1c).

The capacity of hPSMC to capture the end of gene flow

between populations differentiates this approach from the

more commonly used approach to detecting divergence using

PSMC, which is to overlay PSMC plots generated separately

for the two parent lineages and infer divergence by detecting
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shared ancestry [8–12]. Conveniently, these two approaches

appear to capture different aspects of the divergence process.

Overlaying PSMC plots detects the end of panmixia, whereas

hPSMC detects the end of gene flow. Very strong allopatric bar-

riers to gene flow might result in similar estimates of divergence

time from these two approaches, as the end of gene flow will

occur simultaneously with divergence. However, incomplete

isolation or post-divergence gene flow may cause hPSMC to

produce divergence estimates that are substantially more

recent than those from overlain PSMC. Using hPSMC in

conjunction with overlain PSMC plots may therefore provide

additional insights into the divergence process, including an

indication of the likelihood of post-divergence gene flow.

Like other forms of PSMC-based analysis, hPSMC requires

assumptions about the rate of mutation and generation time

that can profoundly impact inference. Because the mutation

rate is assumed to be constant across the genome, any local vari-

ation, as may be due to the effects of purifying or balancing

selection, is ignored. In addition, if the assumed mutation rate

differs from the true genome-wide average, estimates of diver-

gence times will be skewed proportionally from the true

divergence time. In addition, longer generation time estimates

produce larger PSMC inferred ancestral population sizes [8];

therefore, incorrect inference of the ancestral population size

will affect the inferred range of most likely divergence times.

Mutation rates and generation times can be difficult to estimate

reliably [30,33–37], and the results of any PSMC-based analysis

should be interpreted within the context of these limitations.

While the simulations presented above are based on

relatively simple demographic models that assume a lack of

post-divergence gene flow, the same simulation framework

can be applied to other, more complex demographic scenarios

in order to observe the influence of specific demographic par-

ameters on the shape of the hPSMC plot. For example, if we

assume models where populations are large at the time of

divergence and maintain prolonged post-divergence gene

flow, haploidized data produce hPSMC plots that are consist-

ent with a more ancient divergence than the truth (electronic

supplementary material, figures S18–S21 and accompanying

text). Finally, given the influential role of pre-divergence Ne

on haploidized hPSMC plots, it is important that any simu-

lated data used for comparison with a real dataset exhibit

the same pre-divergence ancestral population size as the

real data.
(a) Great apes
Our hPSMC-based estimates of divergence times within the

lineages of great apes (table 1) are mostly similar to estimates

produced using different molecular approaches, although vari-

ation between the fossil record and molecular estimates of

divergence times within the great apes has long made these

estimates contentious [30,38]. One surprising result of our

analysis is the extremely recent inferred divergence time

between chimpanzees and bonobo (table 1). Today, chimpan-

zees and bonobos are separated by the Congo River, which is

thought to have formed approximately 1.5–2 Ma [39] and to

be a strong barrier to gene flow [40]. Previous PSMC-based esti-

mates of chimpanzee and bonobo divergence, which were

estimated by overlaying PSMC plots, suggested that the two

lineages diverged 1.5–3 Ma [11], supporting the hypothesis

that the Congo River has always been a strong barrier to

gene flow. Our hPSMC results indicate divergence between
chimpanzees and bonobos occurred only 350–400 ka, which

we hypothesize may reflect the different aspects of the diver-

gence process that are captured by the two PSMC-based

methods. Overlaying PSMC plots to estimate divergence

assumes that any difference in ancestral population size indi-

cates population divergence. However, population structure

and admixture can also produce different ancestral population

size estimates without necessarily indicating that gene flow

between populations has ended [8]. In contrast, hPSMC is

more sensitive to gene flow (figure 1c) and will therefore

describe the time when significant gene flow ended. In this

context, it can be interpreted that our results suggest that

chimpanzees and bonobos may have experienced a long

period of population structure with gene flow from 1.5 Ma to

300–450 ka. Interestingly, a comparison of excess allele sharing

between a bonobo genome and the genomes of central, eastern

and western chimpanzees found no evidence for gene flow

between bonobos and any one particular population of chim-

panzees [21]. However, the different chimpanzee populations

are estimated to have diverged within the last 500 ka [11],

and some evidence of post-divergence gene flow between

chimpanzee populations has been inferred [11,41]. If gene

flow did occur between chimpanzees and bonobos, then it

therefore must have occurred prior to the isolation between

the three populations of chimpanzees.

Our estimates of the time of divergence between the

African great apes (human, chimpanzee, bonobo and gorilla)

all have large confidence intervals (table 1). This is in part

because the transition from infinite ancestral population sizes

to a period of shared ancestry is not as abrupt in these real data-

sets as it tends to be in simulated datasets (figure 3a). Figure 1c
shows that this same phenomenon is observed with low levels

of post-divergence gene flow. The wide confidence intervals

estimated for divergence among great ape lineages may be

partly the result of low levels of post-divergence gene flow

near the time of speciation. It is also possible that other viola-

tions of the assumptions of PSMC, including purifying

selection and variation of mutation rates within or among

lineages may influence these results. Another possibility is

that hPSMC could be detecting the effect of a genetic mosaic

of divergent and non-divergent genomic regions, as may

occur when two species speciate via strong divergent selection

[42], or speciation under ‘genome hitchhiking’ [43,44]. Future

analysis of the patterns of genetic variation and rates of

mutation along these lineages will be necessary to fully under-

stand why these observed transitions occur more slowly than

expected from simulation.
(b) Bears in the genus Ursus
The timing of divergence between bear lineages in the genus

Ursus has been a matter of much recent debate [17,18,24,45–

47]. This is due in part to the paucity of fossils representing the

early divergence of this lineage [48] and to post-divergence

hybridization, which may be common among bears

[18,19,24,45]. Molecular estimates of the timing of divergence

between polar bears and brown bears range from 300 ka to

5 Ma [17,24]. A recent population genetic analysis of 89 polar

and brown bear genomes concluded that these two lineages

probably diverged 350–500 ka [24]. In contrast, PSMC-based

estimates of the divergence between brown bears and polar

bears have failed to identify a period during which the two

lineages converged to the same population size [17], which has
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been interpreted to suggest a very old divergence between the

lineages [17].

In our hPSMC analyses, all of the divergences estimated

between polar bears and brown bears—both within and

between lineages—occur within the last 200 000 years. We

hypothesize that these remarkably recent divergences, which

disagree with evidence from the fossil record [48], are probably

the result of recent admixture among these lineages [18,19,24].

For example, we infer that brown bears in Alaska and Sweden

diverged less than 100 000 years ago. Today, Alaskan and

European brown bears are isolated by a variety of geographical

and physical barriers, including the Bering Strait. During the

last ice age, however, brown bears occupied a more or less

continuous range from western Europe to Canada’s Yukon

Territory [45,49]. Data from mitochondrial DNA indicate a

major expansion of brown bears out of Beringia beginning

around 30–35 ka [45], which may explain the recent gene

flow between Swedish and Alaskan brown bears (figure 3b).

Similarly, hPSMC suggests that brown bears and polar

bears diverged less than 200 ka (table 1), which is considerably

more recent than the timing of divergence inferred using a

population genetics approach [24] and more recent than the

age of the oldest known polar bear fossil, which dates to

approximately 110 ka [50]. The hPSMC-based estimate of

divergence is also probably influenced by post-divergence

gene flow. Alaskan brown bears, including the individual

used in this study, are known to have a small, but variable com-

ponent of polar bear ancestry as the result of post-divergence

hybridization with polar bears within the last 20 ka [18,19].

However, between-species divergences estimated using the

Swedish brown bear, which has not been shown to have any

polar bear ancestry, also suggest a recent divergence (table 1).

This is less well explained, because neither polar bears nor

Swedish brown bears have been shown to have detectable

introgressed ancestry from the other species [18,24]. However,

as the tests used to detect introgression used the Swedish bear

as the purportedly un-admixed individual, future work in

comparison with other, potentially less admixed, brown

bears might reveal some polar bear ancestry in this Swedish

brown bear.
5. Conclusion
We have shown that hPSMC or PSMC analysis of simulated F1

hybrid individuals can be used to estimate population

divergence times with low-coverage unphased data. hPSMC

provides a distinct perspective with regard to divergence

than other methods, including overlaying PSMC plots. While

overlaying PSMC plots detects the end of panmixia, hPSMC

detects the end of gene flow. Very strong allopatric barriers

to gene flow might make these two estimates the same. How-

ever, incomplete isolation or post-divergence gene flow may

cause hPSMC to produce divergence estimates that are sub-

stantially more recent than those from overlain PSMC. In our

case studies using real data from great apes and bears, we

inferred divergence times that were largely consistent with

estimates from other methods. However, our assessments of

recently diverging lineages—chimpanzees and bonobos and

polar bears and brown bears—are suggestive of a divergence

process that includes post-divergence gene flow rather than

an abrupt transition from panmixia to isolation. While other

methods are available to infer the timing of divergence

between lineages, such as MSMC [9], diffusion approximations

for demographic inference [51] and identity by state tract length

[52], most methods for genome based inference of divergence

time require high coverage and phased genomic data, often

from multiple individuals. hPSMC is particularly useful for esti-

mating divergence time from low-coverage datasets, such as

those found in ancient DNA studies, because it does not require

the ability to call heterozygous sites or phase haplotypes. We

suggest that hPSMC may be a valuable tool for estimating

divergence in these common scenarios, and that, in combi-

nation with other approaches, can provide important new

insights into the process of population subdivision and

speciation.
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