
Lawrence Berkeley National Laboratory
Recent Work

Title
Application of MacMillan-Majer Theory to Dilute Liquid Systems

Permalink
https://escholarship.org/uc/item/7qw5p5zf

Authors
Haynes, C.A.
Newman, J.F.
Blanch, H.W.
et al.

Publication Date
1992-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qw5p5zf
https://escholarship.org/uc/item/7qw5p5zf#author
https://escholarship.org
http://www.cdlib.org/


1 
I 
! 

i 
" , 

LBL-31973 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Materials Sciences Division 

Submitted to Journal of the Electrochemical Society 

Application of McMillan-Mayer Theory to 
Dilute Liquid Systems 

C.A. Haynes, 1. Newman, H.W. Blanch, and 1.M. Prausnitz 

February 1992 

u. C. lawrence Berkeley Laboratory 
library, Berkeley 

FOR REFERENCE 
Not to be taken from this room 

Prepared for the U.S. Department of Energy under Contract Number DE·AC03· 76SF00098 I 

I 
\. 

OJ 
~ 
0-

La . 
U1 
l'Sl 

r 
r OJ ...- r 
trn I 
'1 0 W 
1lJ'O .... 
'1"< l.D 
"< -...] . .... W 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor­
nia, nor any of their employees, makes any warranty, express or im­
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac­
turer, or otherwise, does not necessarily constitute or imply its en­
dorsement, recommendation, or favoring by the United States Gov­
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising' or product endorsement pur­
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 

t 

'," 

I 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 

I: 



i 

LBL-31973 

Application of McMillan-Mayer Theory to Dilute Liquid Systems 

Charles A. Haynes, John Newman, Harvey W. Blanch, and John M. Prausnitz 

Department of Chemical Engineering 
University of California 

and 

Chemical Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

February 1992 

This work was supported in part by the National Science Foundation under Grant No. CBT -8715908 and by the 
Assistant Secretary for Conservation and Renewable Energy, Office of Transportation Technologies, Electric and 
Hybrid Propulsion Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 



LBL-31973 

Application of McMillan-Mayer Theory to Dilute Liquid Systems 

Charles A. Haynes, John Newman*, Harvey W. Blanch, and John M. Prausnitz 

Department of Chemical Engineering 
University of California 

Chemical Sciences Division 
Lawrence Berkeley Laboratory 

Berkeley, CA 94720 

Abstract 

Historically, McMillan-Mayer theory has been used to develop the thermodynamics of dilute solutions of , 

electrolytes, polymers, and other solutes. The appropriate independent variables for the McMillan-Mayer dilute-

solution theory are temperature, volume, chemical potential of the solvent, and numbers of moles of solutes. 

Hence, the proper thermodynamic potential is not the Helmholtz energy A(T, V, nj) but a modified Helmholtz 

energy A'(T, V, ~o' nj G*O» where A' = A - no~o' Theoretical developments for electrolytic and polymeric 

solutions yield excess values of A', not A. As a result, the chemical potential of the solute, or its activity 

coefficient, should include a term - PEx V j8, whose presence has apparently not been recognized or discussed clearly. 

(Here PEx is an excess pressure, and V j
8 is the partial molar volume of solute j.) In this work, the origin and 

influence of this additional term are explored for electrolytic and polymeric solutes. 

Our development proceeds in five steps: (1) prove that statistical-mechanical theories for electrolyte and 

dilute polymer solutions yield excess values of A' (2) determine what an ideal solution means in terms of A', (3) 

express solution nonidealities in terms of A', (4) determine the chemical potential of a solute from A', and (5) 

confirm that these results can be expressed in terms of pressure, temperature, and composition, which are the 

independent variables of the Gibbs framework. 

* To whom correspondence should be addressed 
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Introduction 

Phase equilibria for systems containing electrolytes are of central importance 

in many classical separation processes, including concentration of salt-containing 

liquids by evaporation or reverse osmosis, salt precipitation from mixed solvents, and 

liquid-liquid extraction of mixtures containing electrolytes. Similarly, dilute 

polymer solutions often arise in food and cosmetics manufacturing, as well as in 

pharmaceuticals, detergents, and textiles production. 

The need for a thermodynamic framework for prediction and correlation of 

phase equilibria for dilute systems containing electrolytes and/or polymers has 

intensified in recent years through the rapid growth in large-scale separation 

techniques for the purification of biomaterials. For example, a promising class of 

bio-macromolecule purification processes is provided by aqueous two-phase 

extraction systems, which have been applied successfully to the purification of a 

large number of biomaterials, including plant and animal cells, viruses, proteins, 

chloroplasts, and nucleic acids. 1,2 

Most useful theories for electrolytic solutions, including Debye-Huckel theory 

and the mean-spherical approximation for electrolytes, are derived using statistical 

mechanics; they are based on the "primitive" model of molecular fluids, where the 

solvent is considered to be a continuum with constant dielectric properties. 3 

Statistical mechanics has also provided the most promising theories for the solution 

properties and phase behavior of dilute polymer systems; most of these advanced 

dilute-polymer-solution theories are based on the mean-field concepts embodied in 

the osmotic virial expansion. 4-7 The statistical-mechanical basis for the osmotic 

virial expansion and for ionic-solution models derived from the primitive model lies 

ultimately in the dilute-liquid-solution theory developed by McMillan and Mayer.8 

The appropriate independent variables for the McMillan-Mayer dilute­

solution theory are temperature, volume, solvent chemical potential, and solute mole 
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numbers. Application of statistical mechanics to electrolytic and polymeric solutions 

thus yields a modified Helmholtz energy A' = A - no !lo' where no is the number of 

moles of solvent and !lo is the solvent's chemical potential. As a result, the chemical 

potential of each solute should include a term - PE x V j9, where PEx is an excess 

pressure and V j9 is the partial molar volume of component j. In this chapter, the 

origin and influence of this additional term are explored for electrolytic and 

polymeric solutes. 

Our development complements the work of Fowler and Guggenheim,9 who 

showed that Debye-Htickel theory properly yields a two-term expression for the 

activity coefficient of ion i in aqueous solution, by showing that the last term of their 

expression represents the contribution of the - PE x V j9 term. Further inspiration for 

this work was provided by Friedman, 10 who has clarified much of the complex 

statistical mechanics behind McMillan-Mayer theory, and by Cardoso and O'Connell,11 

who addressed problems in applying Debye-Htickel theory to multi solvent systems. 

McMillan-Mayer Dilute-Solution Theory 

In 1945, McMillan and Mayer8 developed a statistical-mechanical path which 

links the osmotic properties of a dilute macromolecular solution to the potential of 

mean force describing the interactions of macromolecules dilute in a solvent. Their 

strategy was to choose partition functions in a way such that the resulting theory for 

dilute liquid solutions parallels the imperfect-gas theory (i.e., the real-gas virial 

expansion), which describes the interactions of molecules in vacuum. As illustrated 

in Figure 1, the solvent in McMillan-Mayer theory plays the role that vacuum does in 

imperfect-gas theory. Among others, 10 Hill I 2 gives a clear and fairly complete 

development of McMillan-Mayer theory . 

In formulating their dilute-solution theory, McMillan and Mayer placed no 

restrictions on the nature of the medium in which the dilute macromolecules are 
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immersed. Thus, McMillan-Mayer theory is applicable to model systems where solute 

macromolecules interact with each other through a medium of discrete solvent 

molecules or through a continuum. 

McMillan-Mayer theory has been employed indirectly in the derivation of a 

number of electrolyte-solution theories, including Debye-Htickel theory 13 and the 

mean-spherical approximation. 14 Each of these electrolyte-solution theories 

provides an expression for the excess modified Helmholtz energy, AEx', a point which 

is rarely recognized by engineers using these models. 

Debye-Htickel theory provides the following expression for the excess 

modified Helmholtz energy of a dilute electrolytic solution 15 

A~ = -~ t(Ka)LZr nj 
121t £ j 

(1) 

where 

t(y) = l [ InO + y) _ y + L y2 ] 
y3 2 

In Equation 0), F is Faraday's constant, e is the unit charge on a proton, £ is the 

continuum permittivity, a is the distance of closest approach between ions, Zj is the 

charge number of ion j, nj is the number of moles of ion j, and K is the reciprocal of 

the Debye length (defined later). 

McMillan-Mayer theory is also the basis for the derivation of the osmotic 

virial expansion, the most celebrated model of dilute-macromolecule-solution 

properties. 16 As derived by McMillan and MayerS through application of cluster-

integral-expansion theory, the osmotic virial expansion (as applied to a binary 

dilute-polymer solution) is given by 
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II = RT [CI + B2 ~ + B3 C~ + ... J (2) 

where II is the osmotic pressure, c I is the molar concentration of polymer, B2 is the 

osmotic second virial coefficient for the 1-1 pair, and B3 is the osmotic third virial 

coefficient. The virial coefficients in Equation (2) are formally equivalent to those 

of imperfect-gas theory, but instead of being related to the interionic pair potential 

ull(r) they are related to wll(r), the potential of mean force between solute 

macromolecules in pure solvent. Theories which provide an expression for II also 

provide an expression for A' rather than A. 

Debye-Htickel theory and the osmotic virial expansion have found extensive 

use in modeling single-phase, dilute-solution properties. 17 ,18 Debye-Htickel theory 

has also been used extensively to correlate vapor-liquid equilibria, including vapor­

pressure and isopiestic data, to treat freezing points, and to model electrochemical­

cell equilibria. 15 ,19,2o However, these theories have rarely been used in liquid-liquid 

equilibrium calculations, due, in part, to the lack of a consistent thermodynamic 

framework for such calculations in the McMillan-Mayer framework. 

In the literature, expressions obtained by the McMillan-Mayer method, such as 

Equation (1), have been stated or assumed to represent nonideal contributions to the 

Helmholtz energy A rather than to A'. The consequences of this assumption are the 

focus of this work. 

Statistical-Mechanical Basis of the Modified Helmholtz Energy 

In statistical mechanics, the progression from the canonical ensemble to the 

grand canonical ensemble, and correspondingly from the canonical partition 

function Q to the grand partition function ::: (see Hill, 1986, p. 24), leads to a change of 

the specified quantities (or independent variables) from temperature, volume, and 
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mole numbers to temperature, volume, and chemical potentials. By stopping in the 

middle of this process, one can arrive at Q', which Hill calls the semi-grand partition 

function, where only one mole number, that of the solvent, has been replaced by its 

chemical potential as an independent variable. 12 As shown below, the 

thermodynamic potential corresponding to Q' is the modified Helmholtz energy A'. 

Thus, a statistical-mechanical development carried out in the McMillan-Mayer 

framework leads naturally to A' as a basis for obtaining all derivative 

thermodynamic properties. 

For a binary mixture of solvent (0) and solute (1), the transformation from Q to 

~ reads 

E(Jlo ,IlI,T,V) = 2. 2. exp (Nollo + NIJlI ) Q(No, NI, T, V) 
No Nl NAvkT 

(3) 

where Nj represents the number of molecules of species i, NAv is Avagadro's number. 

and Q can be expressed by an integral of the N-body intermolecular potential u over 

all possible configurations: 

Q(No• NI. T. V) = 1 f dq dr exp[ - u(q, r)/kT ] 
N ' N' 'l3No 'l3Nl o· I. fI.O 11.1 

(4) 

Here, rand q are continuous 3N 1- and 3No -dimensional position variables for the 

solute and solvent molecules. respectively, and Aj = (h2/21tm jkT) 1/2 is the thermal 

wavelength of molecule i. In Equation (3) and in all other Equations where it 

appears. Il j is defined on a per mole basis. Q and E are in turn related to 

thermodynamic properties by (Hill. 1986) 

A = - kT In Q and PV = kT In E (5) 



'. 

The summations in Equation (3) are thus equivalent to the thermodynamic 

manipulation of subtraction of all njJlj from A, 

(6) 

and also serve to change the independent variables from those appropriate for Q to 

those appropriate for :::. 

In McMillan-Mayer theory, a binary solution is treated as a pseudo one-

component system (') where only solute molecules are considered explicitly. In this 

spirit, we can define a pseudo one-component intermolecular potential u'(r, Jl o)' 

which depends on the solvent chemical potential, by averaging over all the possible 

configurations of the solvent molecules: 

exp[ - u'(r, Jlo)/kT ] = L exp[ NoJlo/NAvkT] fdq exp[ - u(r, q)/kT ] 
No No! ~No 

Analogously to Equation (4), we next define Q' in terms of u'(r, Jlo): 

Q'[(Jlo), NI, T, V] = 1 f dr exp [ _ U'(~,;o) ] 
N ,'1 3N1 

I· 1\.1 

In this way, the grand partition function ~ can also be expressed as 

3(Jlo, JlI, T, V) = L exp[NIJlI/NAvkT] Q'[(Jlo), Nl, T, V] 
Nl 

(7) 

(8) 

(9) 

The modified Helmholtz energy, A', for the pseudo one-component system is 

then given by (see Appendix A) 
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A' = - kT In Q' = - kT In::: + ---.L(N 1) Jll 
NAv 

= -PV + _1_(Nl) Jll 
NAv 

(10) 

where <x> represents the (grand canonical) ensemble average of x. Comparison of 

Equation (10) with Equation (6) shows that 

In the grand 

molecules <Nl> 

nl 

A' = A - _1_ (No) Jlo 
NAv 

canonical ensemble. the 

in the solution is given by 

=~= kT ( a In::: ~ = 
NAv a Jll . V.11o 

(11 ) 

(ensemble-average) number of solute 

(a(PV) ~ 
a Jll . V.11o 

(12) 

The number of solute molecules is the same in the solution and in the pseudo one-

component system since <Nl> is obtained from the same grand partition function. 

From our expression (Equation (8» for the modified (semi-grand) partition 

function Q'. we observe that the independent variables of the pseudo one-component 

system [Jl o ' Nl • T. and V] are the independent variables for the McMillan-Mayer 

framework and that A' is the natural thermodynamic potential when working in the 

semigrand canonical ensemble. 

Finally. we connect u'(r. Jl o ) to the primitive model. We approximate u'(r. Jl o ) 

as the sum of pairwise additive interactions 
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u'(r, J.1o) (13) 

where uII '(rij' J.1 o) is the intennolecular pair potential for the solute - solute pair. For 

Debye-Hiickel theory, which treats multisolute systems, ukl'(rij , J.1 o) for a pair of ions of 

types k and I a distance rij apart is given by 

(14) 

. ( ) = Zk Zl e2 
Ukl fij, J.1o 

41t E nj 
nj > Ofcl 

where akl is the distance of closest approach between ions of types k and I, and E is the 

solvent pennittivity, which depends on T and J.1 o' In Equation (14), the solvent enters 

only as a dielectric continuum which modifies the long-range electrostatic 

interactions. As shown by McQuarrie, Equation (14), with akl = 0, provides the starting 

point for the derivation of the Debye-Hiickel limiting law through (Ornstein­

Zernike) integral-equation theory. 2 I 

Thermodynamics in the McMillan-Mayer Framework 

The Helmholtz energy of a mixture is a natural function of temperature, 

volume, and the mole numbers of the components, including the solvent component 

(0): 

dA = -S dT - P dV + 2. J.1i dDi (15) 

Elimination of the solvent contribution to dA yields an expression for the modified 

Helmholtz energy of a mixture 

9 
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dAt = dA - d(noJ.1o) = -S dT - P dV - no dJ.1o + L J.1i dni (16) 
i.-o 

As shown in Equation (16). solvent chemical potential (J.1 0 )' solute mole numbers. 

temperature. and volume are the independent variables which most conveniently 

specify the state of the system in the McMillan-Mayer description of solutions (and 

form a canonical system in the sense of Gibbs). 

From Equation (16). the pressure of a system described in the McMillan-Mayer 

framework is determined by the derivative of At with respect to V: 

(
OAt) P = 
oV 110. nj (j;<O). T 

(17a) 

The chemical potential of solute i is given by 

J.1i = (OAt) 
on i Ilo. nj (j;<i.O). T. v 

(17b) 

Similarly. the solvent mole number no comes from the derivative of At with respect to 

J.1 0 ' and the derivative of At with respect to T yields the entropy S. Therefore. At 

provides a complete themodynamic description of a mixture. 

To simplify the derivation. we restrict our attention to incompressible systems. 

that is. to systems where the partial molar volumes of the components are 

independent of pressure. Since liquid solutions at ambient temperature and normal 

pressures are essentially incompressible. we can apply our results to the description 

of dilute solutions containing polymers and/or electrolytes. 



An Ideal Mixture in Terms of AI 

The Gibbs energy of an ideal mixture of unequal-sized molecules was derived 

by Fowler and Rushbrooke (1937), and later by Flory (1942), to be 

Gid = L ni Ilr (T, P) + RT L ni In CPi (18) 

where CPi is the volume fraction of component i (or the volume fraction of ion i for a 

solution containing electrolytes), and the sums are over all components (ions) in the 

mixture, including the solvent; Il i a is the standard-state chemical potential of 

component i defined at system temperature and pressure; subscript id stands for 

ideal. Equation (18) defines an ideal mixture in the Gibbs framework, where the 

independent variables of the system are temperature, pressure, and composition. 

The volume of an ideal mixture is given by 

v = (a Gid ) = L n i ~ (T) 
a P Dj, T 

(19a) 

where V ia, the partial molar volume of component i, is independent of composition 

as well as pressure. Similarly, in an ideal solution, the chemical potential of 

component i (including the solvent component) is given by 

Ili,id = ( aGid ) = Ilia + 
ani nj (io'i), T, P ( 19b) 

The relevant themodynamic potential in the McMillan-Mayer framework is AI. 

For an ideal mixture, the modified Helmholtz energy is given by 
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(20) 

where V is the total volume given by Equation (19a) for an ideal mixture. 

It is necessary to express A' in terms of the independent variables of the 

McMillan-Mayer framework; elimination of no and P in Equation (20) in favor of V 

and Ilo' respectively, gives the desired expression for Aid' 

(21 ) 

where, by definition, ai = Ilia - P Via; ai is a function of temperature but, since the 

system was taken to be incompressible, not of pressure. Equation (21) relates the 

desired potential, A'id , to Ilo' T, V, and all solute ni's, which are known and, more 

important, .fixcl in the McMillan-Mayer framework. 

In Equation (21), the solvent mole number no was eliminated by a 

rearrangement of Equation (19a) to the form 

(22a) 

and the pressure of the ideal system was eliminated by rearrangement of Equation 

(19b) to the form 

(22b) 

These expressions for no and Pid , as well as those for the solute chemical potentials 

and S, can also be obtained by appropriate differentiation of A'. 
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Equation (21) shows that niN == ci' the molar concentration of solute i, is an 

appropriate intensive measure of composition in the McMillan-Mayer framework. 

For incompressible systems, cl>i = V iOc i is also appropriate; this latter measure of 

composition is attractive because cl>i is also an appropriate measure of composition in 

the Gibbs framework. 

Nonideal Mixtures 

Addition of the ideal and excess modified Helmholtz energies gives the modified 

Helmholtz energy of a real mixture described in the McMillan-Mayer framework: 

A' = Aid + AEx (23 ) 

where A'Ex is the excess modified Helmholtz energy and is given, for example, by 

Debye-Htickel theory (Equation (1». 

The pressure of a real mixture described in the McMillan-Mayer framework is 

then given by (see Equation (17a» 

P = Pid + PBx (24a) 

where 

PEx = (a A~ ) 
a V 110. nj (j0<0). T 

(24b) 

Similarly, Equation (17b) can be used to determine the solute chemical potential ~i in 

terms of the variables of the McMillan-Mayer framework 



~i = ai + RT In <!>i + RT ( 1 - v: ~! - ~ ( 1 - ~ <!>j)) + v: Pid + ~i. Ex 

,J;<O Vj Vo J"O 

(25a) 

where 

1'1,"" = (aa ~~ L,", (joi,O), T, v (25b) 

In Equation (25a), Pid is given by Equation (22b). 

Our final objective is to convert Equation (25a) back into the Gibbs framework. 

This conversion, accomplished by using Equation (l9a) to eliminate V and Equation 

(24a) to eliminate ~o' yields 

( 
V:2,n j

) 
~i = ~~ + RT In c!>i + RT 1 - ~ - v: PBx + ~i. Ex 

2, Vk nk 
k 

(26) 

Expression of ~i in terms of the Gibbs framework also requires that ~i.Ex and PEx be 

expressed in terms of the appropriate variables for the Gibbs framework. 

As shown in Equation (19b), the first three terms on the right side of Equation 

(26) represent ~i.id' Therefore, we can define the solute activity coefficient Yi as 

RT In Yi (27) 

We might expect the first term on the right side of Equation (27) from the addition of 

A'Ex to A'id' but the last term is new. The existence of the - V i9PEx term is a general 

result; as shown in Appendix B, it is independent of the choice of the form for Gid. 
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Applications 

A) Binary Mixture of Hard Spheres in a Continuum 

The Percus-Yevick integral equation can be solved analytically for a hard-

sphere solute (1) in a continuum (0) using either the pressure equation or the 

compressibility equation. 21 The equation of state obtained through the pressure 

equation is 

P = Po + 1 + 2<pI + 3<p1 RT nl 
(28) 

2 V (1 - <PI) 

= Po + 1 + 2<pI + 3<P1 RT <PI 
2 -9 

(1 - <PI) VI 

where Po = (J,lo - ao)/ V 0 e and <PI is the solute volume fraction; <PI can also be 

interpreted as the reduced hard-sphere density given by 

= 1t cri NAv n I = ~!!.l.. 
6 V V 

Here, cr I is the hard-sphere diameter, and P I is the hard-sphere number density. 

As indicated by Equation (17a), the modified Helmholtz energy A' can be 

determined through a volume integral 

A' = f(T, J,lo, nl) - f P dV 

= nlal - PoV(1 - <PI) + nIRT( In[ <PI (1 - <p1)2] - ~ +~) 
V~ 1 - <PI 

(29a) 

(29b) 

The constant of integration f was determined by expanding A' for large V (or small 

<PI) and comparing the result with the corresponding form for the ideal dilute fluid. 
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Application of Equation (17b) yields the following expression for J.1l in terms of 

the variables of the McMillan-Mayer framework 

(30) 

The pressure of the system is given by Equation (28). as can be shown through 

application of Equation (17a) to Equation (29b). 

Our final task is to convert these results back to the Gibbs framework. 

Essential to this task is the elimination of J.1 0 in favor of P by means of Equation (28). 

The elimination of V in favor of no is made simpler because <l> 1 can be expressed in 

terms of n l and no as 

(31 ) 

in addition to its definition as n l V ION. For J.1l' this process yields 

(32) 

and for the solvent 

(33) 

The Gibbs energy of the mixture is then given by 



G = no 110 + nl III 

= noll~ + nlll~ + ntRT{ In[ cl>l (1 - cl>1)2] - ~ + ~} v: 1 - cl>l 

(34) 

Inspection of Equations (32) and (33) reveals that III and 110 depend on the ratio 

of the solute and solvent partial molar volumes in very simple ways. It is convenient 

to remove this dependence by defining a generalized hard-sphere (solute) activity 

9 --9 = III - III + YL _ 1 = 
RT --9 Vo 

and a generalized solvent activity ao * as 

--9 9 
In a; = YL Ilo - Ilo = 

--9 RT Vo 

(35) 

(36) 

The ratio V 1
9

/ V 0
9 appears in Equations (35) and (36) in a manner appropriate to the 

thermodynamic description of systems of solutes in a continuum (because the 

molecular weight of the continuum is unspecified in such systems). 

Figure 2 shows generalized hard-sphere and solvent activities calculated using 

Equations (35) and (36). 

Because f in Equation (29) was determined by matching with the form of A' for 

ideal infinitely~dilute solutions. 111 9 can now be said to represent the standard-state 

chemical potential of component 1 defined at the limit of infinite dilution 

as LCi ~ 0 
i;tO 

(37) 
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Equation (28), with cI> 1 now equal to 

(38) 

provides the starting point for the derivation of the Gibbs energy of a mixture of 

equal-sized hard spheres (e.g. equal-sized ions of an electrolyte) in a continuum: 

Om = 2, niJ.lr + RT 2, ni In «I>i + RT[ In(l - «1»2 - ~ + ~l2, ni (39) 
i i*O v: 1 - «I> i .. O 

As before, Equation (39) was derived by integrating P according to Equation (29a) to 

get A', with the integration constant being evaluated by comparison with the form of 

A' for an ideal dilute solution. 

B) Aqueous Electrolytic Solutions (Debye-Huckel Theory) 

Equation (1) is the excess modified Helmholtz energy of a dilute electrolytic 

solution described by Debye-Hiickel theory. Application of Equation (25b) yields the 

well-known Debye-Hiickel expression for J.li,Ex 

2 
_Zi F e __ K_ J.li,Ex = 

81t £ 1 + Ka 

where K is given by 

(40) 
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and ci... is the average concentration of species i. Equation (40) is often referred to as 

the extended form of Debye-Hiickel theory. 

Typically, J.li.Ex in Equation (40) is assumed to be RTln'Yi' where 'Yi represents the 

activity coefficient of ion i. As shown in Equation (27), this assumption ignores the 

contributions made by the - V is PEx term to RT In 'Yi . 

where 

P Ex is determined through application of Equation (24b) to be 

PEx = - kT lC
3 

a(lCa) 
241t 

O'(y) = 2.... [ y - 21n( 1 + y) - _1_ + 1 ] 
y3 1 + y 

(41 ) 

The complete expression for the activity coefficient of ion (based on Equations (26) 

and (27)) is then given by 

In 'Yi 
--8 

= Ili. Ex - Vi PEx = 
RT 

_ zr F e ~ + __ --8....;.V ...... i __ (lCa)3 O'(lCa) 

81t RT e a 1 + lCa 81t a3 NA v 3 
(42) 

Figure 3 compares Equation (42) with Ili. Ex/RT for a model 1:1 electrolyte (a = 4 A and 

V is is given by 1ta3 NAv/6) in water at 25°C. The V is PEx term diminishes the nonideal 

behavior of the ion. 

As shown by Mayer,24 Debye-Hiickel theory provides an exact limiting law; 

that is, Debye-Hiickel theory correctly describes thermodynamic properties of all 

solutions of strong electrolytes as the ion concentrations approach zero (Le. lc ~ 0). 

For small lc, Equation (42) reduces to 
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Lim In 'Yi 
1(-+0 

--e 
= Lim~i.Ex - Vi PEx = 

1(-+0 RT 

and Equation (1) becomes 

. Fe <~:Zf ni 

AEx = j 

127t E 

2 
Zj Fe .... - ",a 

87t RT E a 

which form the classic limiting law of Debye and Huckel. 

C) Other Applicable Systems 

(43) 

(44) 

Dilute to semi-dilute solutions containing electrolytic, polyelectrolytic, and/or 

polymeric solutes are found frequently in nature and industry. In nature, for 

example, dilute amounts of electrolyte and protein are often found in the periplasmic 

space of cells. Electrolytes are also known to play an important role in nerve 

function. In industry, fermentation broths are often complex dilute aqueous 

solutions containing electrolytes, proteins, and polymeric materials. Furthermore, 

electrolytes and water-soluble polymers (and polyelectrolytes) are finding 

increasing use in bioseparation systems designed to purify biomaterials from these 

complex fermentation broths. Finally, industry is increasingly concerned with 

organic, polymeric, and metallic contaminants in aqueous effluent streams. Our 

understanding of these natural and industrial processes is controlled, in part, by our 

ability to model them correctly. McMillan-Mayer solution theory and the primitive 

model of molecular fluids have provided a number of models, in terms of A' or A'Ex' 

which may be useful for describing these natural and industrial systems. As shown 

here and by Friedman,l 0 in all of these applications of McMillan-Mayer theory, 

attention must be given to a number of thermodynamic details when comparing 

properties calculated using models where the independent variables are T, V, ~o' and 
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ci's (i:# 0) with properties of real (experimental) systems where the independent 

variables are T, P, and all ci's (or cl>i'S). 

Aqueous two-phase polymer systems, which contain at least one high­

molecular-weight polymer and strong electrolytes at concentrations up to 5 M, 

provide a striking 

particularly the -

example of the importance of these thermodynamic details, 

V i' PEx terms. The high concentrations of electrolyte in these 

systems generate relatively large values for PEx which are magnified by the large 

partial molar volumes of the polymers. Consequently, the - V i' PEx terms make 

substantial contributions to the polymer chemical potentials and to the phase 

diagrams. For example, Figure 4 compares predicted coexistence curves with 

experiment for the poly(ethylene glycol) 3350/potassium phosphate/water aqueous 

two-phase system at 25°C. The same model parameters were used in the two 

predictions. All model parameters were determined from either low-angle laser-

light scattering or membrane-osmometry experiments done in the McMillan-Mayer 

framework; no parameters were fit to the experimental coexistence curve. As shown 

in Figure 4, model predictions are in good agreement with experiment when the 

contribution of the - V i' PEx terms is included. In these systems, the - V i' PEx terms 

partially account for the salting-out of the polymer from the salt-rich phase. The 

details of the model calculations and data shown in Figure 4 can be found 

elsewhere. 25 

Discussion 

The distinction between the McMillan-Mayer and Gibbs descriptions of liquid 

mixtures lies in the difference in specified quantities (or independent variables) for 

the two frameworks. From a clear understanding of this distinction, a consistent 

thermodynamic picture emerges which allows one to take statistical-mechanical 

21 



22 

models or Monte-Carlo simulations in the McMillan-Mayer framework and compare 

them with experimental data taken at constant temperature and pressure. 

For example, the osmotic virial expansion (Equation (2» relates the osmotic 

pressure II of a liquid mixture to the independent variables of the McMillan-Mayer 

framework. II is related to P, the system pressure, by 

P = Po + II (46) 

The thermodynamic development used to treat the Percus-Yevick equation of state 

(for a binary mixture of hard spheres in a continuum) can therefore be used to 

determine the form of A' corresponding to the osmotic virial expansion. For a binary 

mixture of solute (1) dilute in solvent (0), the osmotic virial expansion yields the 

following A' 

.. k 

A' = nl al - Po V ( 1 - C\>l) + RT nl In C\>l - RT V C\>l + RT nl 2, Bk+l C\>l 
v: k=l k (Vi r (47) 

Equation (47) can be extended to multi solute systems in a straightforward manner. 

Comparison of Equations (24a) and (46) provides the relation between II and 

II = -R T [ In (1 - 2, C\>i ) + 2, (Vi - v:) n i ] + PBx v: i .. O i .. O V 
(48a) 

Equation (48a) can be simplified by noting that the osmotic virial expansion is 

appplicable to dilute solutions. In the limit of infinite dilution, Equation (48a) 

reduces to 



II = RT L Ci + PEx 
i.-O 

(48b) 

P Ex can therefore be thought of as the nonideal contribution to II since the first term 

on the right side of Equation (48b) corresponds to the van't Hoff equation. 

Our thermodynamic development is restricted to incompressible systems. 

Relaxing this restriction would complicate matters substantially by introducing a 

pressure dependence in all partial molar volumes, and thus, in the molar 

concentrations of the components. Analytic expressions (analogous to Equation (21» 

do not emerge from the compressible-system development because of the dependence 

of the system volume on pressure. However, the development of the McMillan-

23 

Mayer-framework thermodynamics of dilute compressible solutions follows a path ,~, 

similar to that shown for incompressible systems. The key differences arise from the:;' 

requirement that no and P must be eliminated in favor of Ilo and V by numerical or 

more complicated analytical means. These complications arise in the compressible-

system case primarily because the relation between ai and lli8 is now given by " .... ;: 

(49) 

where V i
8 is now a function of pressure. For many practical applications, the 

assumption of liquid incompressibility introduces negligible error. However, 

relaxing this restriction may prove fruitful for highly compressible systems or for 

systems under high pressures, such as geothermal salt brines. Appendix C presents a 

numerical path for converting results for compressible systems in the McMillan-

Mayer framework to the corresponding results in the Gibbs framework; this 

algorithm should prove particularly useful for comparing semi-grand ensemble 

Monte-Carlo simulation data with experiment. 
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Nomenclature 

A Helmholtz energy, J 

A' modified Helmholtz energy, J 

a distance of closest approach parameter, A 

ai ~i - P V is, Jlmol; or, activity of species i 

B2 osmotic second virial coefficient, Llmol 

B3 osmotic third virial coefficient, L2/mol 2 

ci molar concentration of species i, moleslL 

e electronic charge, 1.60210 x 10-19 C 

F Faraday's constant, 96,487 C/equiv. 

f integration constant 

g ij( r) pair distribution function 

h Plank's constant 

k Boltzmann's constant 

NAv Avagadro's number, mol- 1 

Ni number of molecules of species 

n i number of moles of species i 

P pressure, Pa 

PEx excess pressure, Pa 

Q (canonical) partition function 

Q semi-grand partition function 

R universal gas constant 

r radial distance, m 

T absolute temperature, K 

ujj(r) interionic pair potential function, Jlmol 

V volume, L 

V is partial molar volume of species i, Llmol 
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w ij( r) potential of mean force, 11m 0 I 

zi charge number of species i 

Greek Letters and Symbols 

E permittivity, farad/cm 

<l>i volume fraction of species 

'Yi activity coefficient of species 

1C reciprocal Debye length, A-l 

Ai thermal wavelength of species i, m 

Jli chemical potential of species i, JIm 01 

II osmotic pressure, Pa 

~ grand partition function 



Figure Captions 

Figure 1: Analogy between imperfect-gas theory and the pnmltlve model 
for dilute liquid solutions. In the gas phase, molecules move in 
vacuum and interact with each other through vacuum. The 
analogy is made by assuming that in dilute solutions solute 
molecules are suspended in a continuum and interact with each 
other through the continuum. McMillan-Mayer solution theory 
provides the link between imperfect-gas theory and the 
primitive model for dilute liquid solutions. 

Figure 2: Generalized hard-sphere (1) and solvent (0) activities calculated 
from Equations (35) and (36). 

Figure 3: Corrected and uncorrected mean-ionic aCtIVIty coefficients from 
extended Debye-Huckel theory for a model 1: 1 electrolyte in water 
at 25°C: a = 4 A and V}9 is given by 1ta3 NAv/6. 

Figure 4: Comparison of predicted coexistence curves with experiment for 
the PEG 3350/potassium phosphate a~eous two-phase system at 
25°C. Predicted results where the - V i9 PEx terms are ignored are 
shown by the dashed curves; the solid curve shows model 
predictions where the - V i9 PEx terms are included. All tie-lines 
are for a total composition of 13 wt% salt and 15 wt% PEG 3350. 
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Appendix A: Statistical-Mechanical Basis for A' 

The proof of the correspondence between a thermodynamic function and a 

partition function, such as those relationships given in Equations (5) and (10), 

properly proceeds through the establishment of the equivalence of a sufficient 

number of partial derivatives of these functions. Here, we want to prove that A' = -

kT In Q'. 

Following Hill (see reference 12, p. 18), let us write the classical partition 

function Q (written in terms of the configurational integral in Equation (4)), as a 

sum over all quantum states: 

Q = L exp [ - Uj /kT ] (A. 1 ) 

where, for a binary mixture, Uj( No, N I' V) is the energy of quantum state j. From 

Equations (8) and (9), the semi-grand partition function Q' is related to Q (and thus to 

Q' = L exp [ NoJ.1o /NAvkT ] Q 
No 

= L L exp [ NoJ.1o /NAvkT] exp [ - Uj/kT ] 
No j 

(A.2) 

Then, given the probability that a binary system with fixed values of J.1 o' N I , T, and V 

is in the jth quantum state, we can establish the (semi-grand) ensemble average of 

any mechanical property (Hill, reference 12, p. 12). For example, 

(No) = 1-L L No exp [NoJ.1o - Uj] (A.3) 
Q No j NAvkT kT 
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(U) = l L L Uj exp [No~ _ Uj] 
Q No j NAvkT kT 

(AA) 

and 

(P) - 1 L L (a Uj) [No~ Uj ] 
- - Q No j av No,NI exp NAvkT - kT (A.5) 

Each of these ensemble averages can also be obtained by direct differentiation of 

Equation (A.2). For example, <No> can be obtained from the partial derivative of In Q' 

with respect to J..L o : 

(a In Q') _ 1 (a Q') 
d ~ NI. T. V Q a ~ NI. T. V 

J... L L No exp [NoJ..lo _ Uj] 
Q' No j NAv kT NAvkT kT 

(A.6) 

= 
NAv kT kT 

Similarly, <U> can be obtained from 

(alnQ') _ 1( d Q') _ 1 LL( No~ 
aO/T) 11<>. NI. V Q aO/T) fLo. NI. V Q No j N Av k 

_ Uj) exp [No~ _ Uj] 
k NAvkT kT 

= (No) ~ M = no J..Lo _ U 
NAv k k k k 

(A.7) 

and <P> can be obtained from 

= - J... L L _1 (a Uj ) exp [NoJ..lo _ Uj] 
Q' No j kT a v No, NI NAvkT kT 

=.21 = L (A.8) 
kT kT 



The third equality in Equations (A.6), (A.7), and (A.8) was established by comparison 

with Equations (A.3), (AA), and (A.5), respectively. The final equality in Equations 

• (A.6), (A.7), and (A.8), where the ensemble quantities <No>/NAv' <U>, and <P> have been 

associated with the macroscopic quantities no' U, and P, was established by invoking 

the ensemble postulate of Gibbs (see McQuarrie, reference 21, p. 40). 

The implied partial derivatives in Equation (16) can be used to establish 

thermodynamic relations between A' and no' U, and P. For example, 

[ 
a(A'/T) ] = _ ..!!2.. 

a ~ nl. T. V T 

Similarly, 

[ 
a(A'/T) ] 
aO/T) /10. nl' V 

and 

= _ r[ a(A'/T)] 
aT l1o.nl.V 

= TS + A' = U - nollo 

[ 
a(A'/T) ] = _ P 

a v 110. nl. T T 

(A.9) 

(A.I0) 

(A.ll) 

We can now establish the identities necessary to prove that A' = - kT In Q'. 

Comparison of Equations (A. 11) and (A.8) yields the identity 

[
a(A'/T)] = k(alnQ') 

a v 110. nl. T - a v /10. NI. T 
(A.12) 
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which can be integrated with respect to V to give 

A'{f = - k In Q' + f(~o' N l , T) (A.13) 

where f(~o' N l' T) is the constant of integration. Partial differentiation of Equation 

(A.13) with respect to ~o gives 

[ 
a(A'/T) ] = 

a ~ nl. T. V 

k (d In Q' ) + ( d f ) 
a ~ Nl. T. V d ~ Nl. T 

(A.14) 

When applied to Equation (A. 14), the equalities established in Equations (A.6) and 

(A.9) prove that 

(A.lS) 

and thus that 

A'{f = - k In Q' + feN l , T) (A.16) 

Partial differentiation of Equation (A.16) with respect to lIT gives after application 

of the equalities established in Equations (A.6) and (A.9) 

_ [ a f ] U - no ~o - U - no ~o + 
d( lIT) Nl 

(A.17) 

Thus, f does not depend on temperature, and we can write 

(A.18) 



where K} is a constant. The last equality in Equation (A.I8) follows from the 

understanding that both AI and In QI are extensive quantities. It is customary in 

statistical mechanics to set constants such as K} equal to zero (and thereby obtain 

Equation (10» since thermodynamic functions like AI can contain arbitrary 

constants related to the reference states for entropy and internal energy of the 

components. 

Appendix B: A Generalized Treatment of Thermodynamics in 

the McMillan-Mayer Framework 

We present here a unified treatment of the conversion between the McMillan-

Mayer and Gibbs frameworks which is independent of the assumed form for Gid. Let 

Gid = L ni Jlr(T,p) + FG.j(T,ni) (B.I) 
i 

where FG,j represents the assumed form for the ideal mixture. Four possible forms for 

FG,j are 

FG,x(T,Di) = RT L ni In Xi 

FG,~(T,ni) = RT L ni In <l>i 
i 

FG,m(T,ni) = RT L ni [In (~i ) - 1] 
i;tO 0 

FG,c(T,ni) = RT L ni In <l>i 
i,.O 

(B.2a) 

(B.2b) 

(B.2c) 

(B.2d) 

Equation (B.2a) is the familiar mole-fraction definition of ideality, while Equation 

(B.2b) is the volume-fraction definition derived by Flory; both of these definitions of 
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ideality are symmetric with respect to the treatment of the components (including 

the solvent component). However, the McMillan-Mayer theory gives a special place 

to the solvent (component 0); it is treated as a continuum in which the solute 

molecules move. This leads to the idea that the definition of ideality should be 

invariant with respect to the state of aggregation of the solvent. It should then make 

no difference whether the solvent were actually in the form of dimers rather than 

monomers since the solvent is treated as a continuum with constant macroscopic 

properties (such as density and permittivity). 

Application of this concept to the mole-fraction definition of ideality leads to 

Equation (B.2c). It is interesting that this development led naturally to a molality 

basis for ideality whose formal derivation in the literature is not known to us, 

although it was used by Newman in a Gibbs energy model for multicomponent 

electrolytic solutions. Similarly, application to the volume-fraction definition of 

ideality leads to Equation (B.2d). Equation (B.2d) can be regarded as the 

concentration (molarity) basis for ideality. 

For our generalized development, the form of FG,j is not considered explicitly. 

Therefore, F G" is abbreviated as FG for the remainder of the section. ,J 

The ideal chemical potential of component can be determined from Equation 

(B.1) 

"""d - (aGid ) ,....1,1 - --

ani ":i (j.!i), T, P 
= Jlr (T,P) + (aFG ) 

ani ":i (j;!i), T, P 

The ideal modified Helmholtz energy is then given by 

, 
Aid = Gid - PV - noJlo 

= L ni Jlr + FG(nj, T) - P L ni v: - Jlo ( V - L v: ni ) 
i i v: i .. o 

(B.3) 

(BAa) 

(BAb) 
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(B.4c) 

where 

(

V - L nj v: ) 
= FG T, j~ , nj (j:;t0) 

Equation (B.4c) defines ideality in the McMillan-Mayer framework. 

Addition of the ideal and excess modified Helmholtz energies gives the modified 

Helmholtz energy of a real mixture described in the McMillan-Mayer framework: 

A' = L nj aj + FA(nj (j:;tO),T,V) - ~ ( V - ~ v: nj ) + A~x(nj (j:;tO),T,V) (B.5) 
Vo 1",0 

where A'Ex is the excess modified Helmholtz energy and may not depend explicitly on 

JJ.o' Following Equation (16), no is given by 

no = _(OAI). = ~(v-~njV:) 
oJJ.o Dj u..O),T,V VO 1,00 

(B.6) 

and the pressure is given by 

p = ( 
aA' ) _ JJ.o 
av Dj u..O),T v: (B.7a) 

=JJ.o (B.7b) 

' .. 

Finally, the solute chemical potential is given by 



Jli = (aAI) = ai + (aFA) + V? J,lo + Jli,Ex 
ani 110, Dj (jotO,i),T,V ani Dj (j .. O,i),T,V v: (B.8a) 

= ai + Mi(nj,T) - ~ ( aFG ) + ~ J,lo + Jli,Ex 
V 0 ano nj (j,oO),T VO 

(B.8b) 

-e = ai + Mi(nj,T) + (P - PEx) Vi + Jli,Ex (B.8c) 

or 

(B.8d) 

Equation (B.8d) proves that the - Vie PEx term is a general result and does not appear as 

a result of the choice of the form for Gid. 

Finally, the relationship between G and A'Ex can be determined through the 

fundamental thermodynamic relation 

G = A' + PV + noJ,lo 

= [ t: niai + FG(no,nj (j:;/:O),T) - noJlo + AEx(nj (j:;/:O),T,V) ] 

-e 
+ PI, ni Vi + noJlo 

G = I, niJl? + FG(no,nj (j:;/:O),T) + AEx(nj (j:;/:O),T,V) (B.9) 
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Appendix C: Gibbs to McMillan-Mayer Framework Conversion 
for Compressible Electrolytic Mixtures 

In the McMillan-Mayer framework, the pressure Pid of the ideal mixture may 

not be the same as the pressure P of the real mixture. Following the notation of 

appendix B, we denote this pressure dependence by rewriting the Gibbs energy of an 

ideal mixture as 

Gid = ~ ni J.l.r(T, Pid) + FG(nj, T) 
i 

(C.l) 

where all standard-state chemical potentials now depend on P id . As in the 

development for incompressible fluids, our objective is to determine the expression 

for A\d which corresponds to Equation (C.l). For compressible mixtures, A\d and Gid 

are related by 

Aid = Gid - PidV - no, id J.l.o 

= no, id J.l.g + ~ ni J.l.r + FG(no, id, ni (i*0), T) - PidV - no, id J.l.o 
i .. O 

= ~ ni J.I.? + FA(ni (i*0), T, V) - PidV - no, id (J.l.o - J.l.g) 
i .. O 

(C.2) 

In the McMillan-Mayer framework, J.l. o' all ni's (i*0), T, and V are fixed. 

However, partial-molar-volume and standard-state-chemical-potential data, which 

depend on Pid as well as T for compressible mixtures, are required to calculate A'id' A 

convenient algorithm for determining Pid and the corresponding V i9(T, Pid) values 

begins by guessing a value for Pid (which corresponds to the set values of J.l. o' all ni's 

(i*O), T, and V) and using it to determine all V j9(T, Pid)'S from tabulated values or 
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appropriate correlations. The number of moles of solvent no. id in the ideal mixture is 

then determined by 

--e 
V - L ni Vi(T, Pid) 

i .. O no. id = -----e------
Vo(T, Pid) 

(C.3) 

where V, the system volume, is a set quantity in the McMillan-Mayer framework. 

Finally, the standard-state chemical potential J.l.i9 of each component, particulary the 

solvent component, is determined from 

Pid 

J.l.r(T, Pid) = I V:' dP + ai(T) (C.4) 

Convergence to the proper Pid is checked by calculating J.l. o from 

J.lo = ~(T, Pid) + Mo(no. id, nj G:;tO), T) (C.5) 

and comparing with the set value of J.l. o' 

The advantage of this algorithm is that a value for A'id can be determined 

directly from the set of specified arguments (J.l. o' all n/s (i:;tO), T, and V) without regard 

for the nature or complexity of A'Ex' 

The modified Helmholtz energy A' is then given by Equation (23), where A'Ex is 

given by Monte-Carlo simulation data or theories appropriate for compressible 

systems. 
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