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Threshold changes in rat brain docosahexaenoic acid 
incorporation and concentration following graded reductions in 
dietary alpha-linolenic acid

Ameer Y. Taha1,*, Lisa Chang2, and Mei Chen2

1Department of Food Science and Technology, College of Agriculture and Environmental 
Sciences, University of California, Davis, CA, USA

2Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on 
Aging, National Institutes of Health, Bethesda, MD, USA

Abstract

Background—This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) 

sufficient to maintain brain 14C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and 

concentration following graded α-LNA reduction.

Methods—18–21 day male Fischer-344 (CDF) rats were randomized to the AIN-93G diet 

containing as a % of total fatty acids, 4.6% (“n-3 adequate”), 3.6%, 2.7%, 0.9% or 0.2% (“n-3 

deficient”) α-LNA for 15 weeks. Rats were intravenously infused with 14C-DHA to steady state 

for 5 minutes, serial blood samples collected to obtain plasma and brains excised following 

microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and 

brain to calculate the incorporation coefficient, k*, and incorporation rate, Jin.

Results—Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine 

glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain 

incorporation rates (Jin) were significantly reduced at 0.2% α-LNA. Brain total lipid and 

phospholipid DHA concentrations were reduced at or below 0.9% α-LNA.

Conclusion—Threshold changes for brain DHA metabolism and concentration were maintained 

at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain 

brain DHA metabolism when dietary α-LNA intake is low.
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1. Introduction

Brain membrane phospholipids are highly enriched with the polyunsaturated fatty acids 

(PUFAs), docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6), which 

participate in neurotransmission [1, 2], gene transcription and the regulation of brain 

immunity [3–5]. The brain derives most of its DHA and AA from the plasma unesterified 

fatty acid pool, which is maintained by liver synthesis-secretion of DHA and AA from their 

dietary precursors, alpha-linolenic acid (α-LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6), 

respectively, or from direct dietary incorporation [6–9]. Brain endogenous synthesis of DHA 

and AA is low, accounting for less than 0.2% and 1% of the unesterified α-LNA and LA 

that enter the brain, respectively [10, 11].

Bourre et al. established that the minimum dietary α-LNA required to maintain maximal 

tissue DHA concentration in rats during development and adulthood, is 4% (0.4% energy) 

and 2.3% (0.26% energy) α-LNA of total fatty acids, respectively, when total fat content 

50–60 grams per kg diet [12, 13]. Bourre et al. also reported that 0.9% dietary α-LNA of 

total fatty acids (0.1% energy, or 0.5 g/kg diet) is sufficient to maintain adult rat brain DHA 

concentrations (Table 6 of the Bourre et al paper [13]). Typically, rodent diets, such as the 

AIN-93G diet, are designed to provide 4.6–7.0% dietary α-LNA (of total fatty acids) 

throughout development and adulthood to ensure maximal DHA liver supply, and accretion 

by the brain and other tissues [14–18]. Total fat content of the AIN-93G diet which contains 

4.8% α-LNA is 70 g per kg diet [14], whereas other similar dietary formulations contain 100 

g fat per kg diet [15–18].

Studies have shown that compared to rats fed a DHA-free, “n-3 PUFA adequate” diet 

containing 4.6% α-LNA of total fatty acids, rats fed a DHA-free “n-3 PUFA deficient diet” 

(0 to 0.2% α-LNA) for 15 weeks or 2–3 generations have reduced plasma and brain DHA 

concentrations, increased concentrations of n-6 docosapentaenoic acid (n-6 DPA), an 

elongation product of AA formed in the liver, and behavioral abnormalities [15–18]. Dietary 

n-3 PUFA deficiency also decreased brain DHA rate of acylation-reacylation (i.e. turnover) 

within membrane phospholipids [19] and increased elimination half-life from 33 to 90 days 

[20]. This is consistent with evidence of decreased mRNA, protein or activity of DHA-

metabolizing enzymes, including DHA-releasing calcium-independent phospholipase A2 

VIA (iPLA2), cyclooxygenase (COX)-1 and 12-lipoxygenase (LOX) [21, 22]. The decrease 

in brain DHA metabolism is accompanied by a reciprocal increase in AA-metabolizing 

group IVA calcium-dependent phospholipase A2 (cPLA2) and COX-2 [21, 22]. While brain 

AA turnover or half-life did not change [23, 24], n-6 DPA concentration and turnover 

increased [25], suggesting that n-6 DPA replaces DHA and may act as a substrate for AA-

metabolizing enzymes during chronic n-3 deficiency.

The decrease in brain DHA metabolism following dietary α-LNA deficiency suggests that 

homeostatic adaptations spare brain DHA metabolism. A graded dietary α-LNA study that 

provided 0.2%, 0.8%, 1.7%, 2.6% 3.8% or 4.6% α-LNA of total fatty acids to rats for 15 

weeks showed that changes in brain DHA metabolizing enzymes and concentrations 

occurred at or below 1.7% dietary α-LNA, indicating adaptive changes in brain DHA 

metabolism [21]. Brain DHA concentration decreased and n-6 DPA concentration increased 
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at 0.8% dietary α-LNA relative to controls (4.6% α-LNA), whereas DHA-metabolizing 

iPLA2 activity and COX-1 and 12-LOX mRNA decreased at 1.7% α-LNA [21]. Plasma 

unesterified DHA concentration decreased at 2.7% α-LNA, suggesting that the changes in 

plasma DHA concentration initiated, rather than followed changes in brain DHA and n-6 

DPA concentrations and enzymes [21].

Rapoport and colleagues developed an in vivo kinetic method using radiolabeled fatty acids 

to quantify the incorporation coefficient (k*) and rate (Jin) of plasma unesterified fatty acids 

into the brain [26] . Using this method, Contreras et al. reported that k* for DHA in brain 

total lipid (TL), ethanolamine glycerophospholipid (EtnGpl) and phosphatidylserine 

(PtdSer) increased in rats following α-LNA deprivation (n-3 deficiency) for 3 consecutive 

generations, reflecting an increase in the brain’s avidity for DHA [19]. The incorporation 

rate (Jin), reflecting net brain DHA consumption, decreased, however, due to the reduction 

in circulating unesterified DHA [19].

In the present study, we used the Rapoport in vivo kinetic method [26] to measure 

radiolabeled DHA incorporation into brain following graded dietary α-LNA reductions 

below 4.6% α-LNA, considered to be an n-3 PUFA adequate amount [14] that exceeds by 

two-fold the minimum α-LNA requirement (2.3% α-LNA of total fatty acids) established by 

Bourre et al. for adult rats [13]. Similar to the study by Kim et al. [21], rats received for 15 

weeks the AIN-93G diet containing the recommended amount of n-6 LA, but varying levels 

of α-LNA, which amounted to 4.6% (Adequate), 3.8%, 2.7%, 1.8%, 0.9% and 0.2% 

(deficient) of total fatty acids. The rats were injected with [1-14C]DHA in order to measure 

adaptive changes to k* and Jin in response to dietary α-LNA reduction. In view of the Kim 

et al finding, that changes in DHA metabolizing enzymes occurred at threshold levels above 

0.9% α-LNA [21], we hypothesized that adaptive increases in k* and reductions in Jin will 

occur at or greater than 0.9% dietary α-LNA, to maintain brain DHA concentrations.

Upon completion of the study, the fatty acid composition of the diets, which were obtained 

from Dyets Inc., was measured by gas-chromatography. Surprisingly, the measurements 

revealed that the 1.8% α-LNA diet contained 5.1% α-LNA. Thus, data related to this group 

was removed from the analyses on the basis that the diet composition was not accurate.

Contrary to the hypothesis, we found that k* increased and Jin decreased only at 0.2% α-

LNA, suggesting that changes in brain DHA kinetics occur only during n-3 PUFA 

deficiency (0.2% α-LNA).

2. Material and methods

2.1 Animals and Diets

Experiments were conducted following the “Guide for the Care and Use of Laboratory 

Animals” (National Institutes of Health Publication No. 86–23) and were approved by the 

Animal Care and Use Committee of Eunice Kennedy Shriver National Institute of Child 

Health and Human Development. Male Fischer-344 (CDF) rat pups aged 18–21 days and 

their surrogate mothers were purchased from Charles River Laboratories (Portage, MI, 

USA). Upon arrival, the pups were weaned from their surrogate mothers and randomly 
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allocated to 6 diets containing 4.6% (control, n-3 PUFA adequate), 3.8%, 2.7%, 1.8%, 0.9% 

and 0.2% (n-3 PUFA deficient) α-LNA of total fatty acids. The calculated percent energy 

equivalent of the 4.6%, 3.8%, 2.7%, 1.8%, 0.9% and 0.2% α-LNA rodent diets, based on 

prior quantitative fatty acid gas-chromatography (GC) analysis done on the 4.6% α-LNA 

diet, is 0.88%, 0.74%, 0.43%, 0.18%, 0.03% and 0.002%, respectively. The macronutrient 

composition of the diets which were prepared by Dyets Inc. (Bethlehem, PA, USA) based on 

the AIN-93G formulation [14], is presented in Supplementary Table 1. The fatty acid 

composition of the diets (analytical details in following section) is shown in Supplementary 

Table 2. The diets were isocaloric and contained 10% fat. α-LNA composition was altered 

by substituting coconut oil with flaxseed oil which is high in α-LNA, while maintaining 

safflower oil (source of LA) content.

The rats were maintained on the diets for 15 weeks, with their food being replaced every 3 

to 4 days. Water and food were provided ad libitum. Animals were housed in an animal 

facility that had regulated temperature, humidity and a 12 h light / dark cycle. They were 

initially housed in groups of 4 to 6 per cage and then 3 to 4 per cage a few weeks later to 

accommodate for cage space.

2.2 Diet fatty acid analysis

The fatty acid composition of the diets was analyzed, approximately two years after the 

study ended. Diets were stored at 4°C during and after the study. A few pellets from each 

diet were crushed using a pestle and mortar. A portion of the crushed pellets was weighed to 

approximately 0.2 g and transferred to glass vials (n = 3 replicates per diet). To each sample, 

400 µl toluene, 3 ml methanol and 600 µl of 8% hydrochloric acid in methanol were added. 

Samples were vortexed after adding each reagent. The samples were heated at 90°C for one 

hour and cooled thereafter for 10–15 minutes at room temperature. Water (1 ml) and hexane 

(1 ml) were added to each vial. The mixture was vortexed and the phases allowed to separate 

for 15–30 minutes. A portion of the top hexane layer (200 µl) from each sample was 

transferred to microcentrifuge tubes containing ~ 20 mg of sodium sulfate, to absorb 

residual water. The tube was inverted a few times and its contents allowed to settle for 10 

minutes. The top hexane layer was transferred to gas-chromatography (GC) vials. Fatty acid 

methyl esters (FAMEs) were analyzed by injecting 1 µl of the top hexane layer into a Varian 

GC (see below section on FAME analysis by GC).

2.3 Surgical procedure

After 15 weeks on a given diet, the rats were anesthetized with 5% isoflurane, and 

polyethylene catheters (PE50, Clay Adams, Becton Dickinson, Sparks, MD, USA) filled 

with heparinized isotonic saline (100 IU/ml) were inserted into the right femoral artery and 

vein while the isoflurane was maintained at 1–3% [11]. Heparinized saline was used to 

prevent clogging of the arterial line [27]. The rats were allowed to recover from surgery with 

its hindquarters loosely wrapped and taped to a wooden block for 4 h in a temperature-

controlled recovery chamber maintained at 25°C. Body temperature was checked regularly 

and maintained at 37°C with a rectal probe and a feedback heating element (TACT-2DF 

Temperature controller, Physitemp Instruments, Clifton, NJ, USA). Heart rate and blood 

pressure were measured prior to tracer infusion using a CyQ BPM02 system (CyQ 103/302; 
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CyberSense, Nicholasville, KY, USA). Surgeries were performed on 4 rats (from separate 

dietary groups) per day.

2.4 Tracer Infusion

[1-14C]DHA (53 mCi/mmol, >99% pure, Moravek Biochemicals, Brea, CA, USA) was 

dissolved in saline containing 50 mg/ml fatty acid-free bovine serum albumin by sonicating 

for 20 min ay 37°C (Sigma-Aldrich, St. Louis, MO, USA). Four hours after surgery, the 

unanesthetized rat was infused intravenously for 5 min with 1.3 ml of 170 uCi/kg of 

[1-14C]DHA dissolved in HEPES buffer (pH 7.4) containing 50 mg/kg fatty acid-free 

bovine serum albumin (BSA, Sigma) at a rate of 0.223(1 + e −0.032t) ml/min (t = sec) with a 

computer-controlled variable rate infusion pump (No. 22; Harvard Apparatus, South Natick, 

MA, USA), to achieve a steady-state plasma specific activity within 1 min [28]. Arterial 

blood samples were collected at 0, 15, 30, 45, 90, 180, 240 and 300 s during infusion in 

order to determine plasma [1-14C]DHA and unlabeled unesterified fatty acids 

concentrations. Five min after starting infusion, the rats were anesthetized with sodium 

pentobarbital (50 mg/kg, i.v.) and subjected to head-focused microwave irradiation to stop 

brain metabolism (5.5 kW, 4.8 s; Cober Electronics, Norwalk, CT, USA) [29]. The brain 

was excised, dissected sagittally into two hemispheres and stored at −80°C until further 

analysis. Blood samples were centrifuged at 18,000 g for 30 s at room temperature to obtain 

plasma, which was also stored at −80°C.

2.5 Plasma lipid extraction and separation

Total lipids (TLs) were extracted from plasma (50 µl) collected at 0, 15, 30, 45, 90, 180, 240 

and 300 s using 3 ml of 2:1 (v/v) chloroform / methanol and 2.5 ml 0.1M potassium chloride 

solution. One hundred µl of the lower organic phase was used to determine the radiolabeled 

unesterified plasma [1-14C]DHA concentration by liquid scintillation counting.

Concentrations of unlabeled, unesterified fatty acids were determined on 100 µl of arterial 

plasma collected at 5 minutes of infusion. Unesterified heptadecanoic acid (17:0) was added 

as an internal standard to the plasma and total lipids were extracted with 3 ml of 2:1 (v/v) 

chloroform / methanol and 0.75 ml 0.1M potassium chloride solution, followed by a 2 ml 

chloroform re-extraction wash. The lower chloroform phase containing the total lipid extract 

was separated by thin layer chromatography (TLC) on 60 A° silica gel plates (Whatman, 

Clifton, NJ) alongside phospholipid, unesterified fatty acids, triglyceride and cholesteryl 

ester standards using the solvent system heptane: diethyl ether:glacial acetic acid (60:40:3, 

v/v/v). The plates were sprayed with 0.03% 6-p-toluidine-2-naphthalene-sulfonic acid in 

50mM Tris–HCl buffer (pH7.4) (w/v), and the unesterified fatty acids band was identified 

under UV light, scraped and methylated with 1% H2SO4 (by vol) in anhydrous methanol for 

3 h at 70°C, after adding 0.2 ml toluene. The resulting fatty acid methyl esters (FAMEs) 

were extracted with 3 ml heptane after terminating the reaction with water 1.5 ml water. 

FAMEs were reconstituted in 25 µl of isooctane.

2.6 Brain lipid extraction and separation

TLs were extracted from one cerebral hemisphere with the Folch method [30], and 

reconstituted in 5 ml of chloroform / methanol (2:1, v/v). A portion of the total lipid extract 
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(50 µl) was methylated as described above with di-17:0-PC as an internal standard, or 

subjected to scintillation counting. Phospholipid classes (ChoGpl, choline 

glycerophospholipid; PtdSer, phosphatidylserine; PtdIns, phosphatidylinositol; EtnGpl, 

ethanolamine glycerophospholipid) and neutral lipid classes (unesterified fatty acids, 

triacylglycerides (TGs) and cholesteryl esters (CEs) ) were separated with 60 A° silica gel 

TLC plates in chloroform: methanol: H2O: glacial acetic acid (60:50:4:1 by volume) and 

heptane: diethylether:glacial acetic acid (60:40:3, v/v/v), respectively, alongside appropriate 

identification standards. Bands were visualized under ultraviolet light after spraying the 

plates with 0.03% (w/v) 6-p-toluidine-2-naphthalene sulfonic acid in 50 mM Tris buffer (pH 

7.4). Each band was scraped and used directly to quantify radioactivity by scintillation 

counting or to prepare FAMEs following the addition appropriate quantities of di-17:0-PC 

as an internal standard to quantify brain esterified lipids and 17:0 (heptadecaenoic acid) to 

quantify brain unesterified fatty acids.

2.7 Quantification of radioactivity

Radioactivity in plasma or brain total or fractionated lipid extracts was determined using a 

liquid scintillation analyzer (2200CA, TRI-CARB®; Packard Instruments, Meriden, CT, 

USA) following reconstitution in 5 or 10 ml Cocktail mix.

2.8 FAME analysis by GC

Brain and plasma FAMEs were analyzed by GC coupled to a flame ionization detector 

(Model 6890N; Agilent Technologies, Palo Alto, CA, USA) on a SP™-2330 fused silica 

capillary column (30 m × 0.25 mm inner diameter, 0.25 µm film thickness; (Supelco, 

Bellefonte, PA, USA). The initial oven temperature was set at 80°C, and increased to 150°C 

(10°C /min) and 200°C (6°C /min), held at 200°C for 10 min, and then increased to 240°C 

for a total run time of 38 min. Fatty acid concentrations (nmol/g brain or nmol/ml plasma) 

were calculated by proportional comparison of the GC peak areas to that of the 17:0 internal 

standard.

Dietary FAMEs were analyzed on a Varian 3800 system using a DB-23 column (Agilent 

Technologies, CA, USA). Helium was used as the carrier gas, at a flow rate of 1.3 ml / min. 

The initial temperature was set at 50°C for two minutes. It was increased to 180°C at 10°C 

per minute and then to 240°C at 5°C per minute. This was followed by a 5 minute hold at 

240°C. The total run time was 32 minutes. Fatty acid percent composition was calculated by 

dividing the FAME area of each fatty acid by the total area of identified FAME peaks.

2.9 Calculations

Unidirectional incorporation coefficients,  (ml·s−1·g−1) of DHA, representing 

incorporation from plasma into brain lipid i (TL, phospholipid fractions, TG or CE), were 

calculated as follows:

(Eq. 1)
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(nCi·g−1) represents radioactivity of brain lipid i at time T = 5 min (end of infusion 

time), t is time after starting infusion, and  (nCi·ml−1) is the plasma concentration of 

labeled unesterified DHA during infusion. Integrals of plasma radioactivity were determined 

by trapezoidal integration.

The incorporation rate Jin,i (nmol·s−1·g−1) of plasma unesterified DHA into brain lipid i, is 

calculated as follows:

(Eq. 2)

where Cpl(nmol·ml−1) is the concentration of unlabeled unesterified DHA in plasma.

2.10 Statistical analysis

Statistical analysis was performed on GraphPad Prism (version 4.03, GraphPad Software, 

San Diego, CA, USA). The normality of distribution of the data was first determined by 

Shapiro-Wilk test. Since most of the data was not normally distributed, they were analyzed 

by Kruskal–Wallis non-parametric one-way ANOVA followed by Dunn’s multiple 

comparison post-hoc test. Data were therefore presented as median and 25% and 75% 

interquartile ranges.

As reported below (results section), the 1.8% α-LNA group was excluded from the analysis 

because the fatty acid composition of the diet was 5.1% α-LNA, instead of the intended 

1.8% amount.

Rats that died or bled during or following surgery or infusion were excluded from the 

analysis. Also, rats that were not infused with the full dose of the tracer, based on the 

attainment of plasma radioactivity concentrations three times lower than the group median 

following the start of infusion, were excluded from the analysis. Statistical significant was 

accepted at P < 0.05.

3. Results

3.1 Dietary fatty acid analysis

Supplementary Table 1 shows the macronutrient content of the diets. The fatty acid 

composition of the diets is reported in Supplementary Table 2. As indicated, α-LNA 

composition was 4.6%, 3.5%, 2.7%, 5.1%, 0.8% and 0% in the 4.6%, 3.8%, 2.7%, 1.8%, 

0.9% and 0.2% groups, respectively. This suggested that the fatty acid composition was 

close to the expected amount for each diet, except for the 1.8% α-LNA diet, which 

contained 5.1% α-LNA. The composition of this diet was confirmed by repeating the 

analysis on separate pellets. Thus, rats infused with radiolabeled DHA from this group were 

removed from further analyses, because they did not receive the targeted amount of α-LNA.

3.2 Surgery and infusion parameters

One control rat (4.6% α-LNA diet) died after arterial catheter implantation surgery of 

unknown causes. One rat from the 0.2% α-LNA groups was euthanized after the catheter 

surgery and prior to tracer infusion because it was bleeding from the site of incision. One rat 
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in the 2.7% α-LNA group was excluded from further analysis because its plasma 

radioactivity over the 5-minute infusion period was 10–20 times lower than the median, 

suggesting incomplete delivery of the tracer. These three rats were therefore excluded from 

further measurements and analyses.

3.3 Physiologic parameters

Supplementary Table 3 shows median body weight, body temperature, heart rate and blood 

pressure (systolic and diastolic) at the time of surgery. Kruskal–Wallis non-parametric one-

way ANOVA showed no significant difference amongst the groups.

3.4 Plasma Kinetics

Steady-state [1-14C]DHA concentration was achieved within approximately one minute in 

all groups (data not shown). Median area under the curve for plasma radioactivity in TLs 

(nCi.s/mL), which represents the input function, did not significantly differ between the 

groups (4.6% α-LNA, 145833 (118862,198587); 3.8% α-LNA, 163394 (154436,193831); 

2.7% α-LNA, 151649 (119008,259096); 0.9% α-LNA, 187843 (129706, 298374); 0.2 % α-

LNA, 149899 (107216,174873)).

3.5 Unlabeled plasma fatty acid concentrations

Table 1 shows median plasma unesterified LA, AA, n-6 DPA, α-LNA, EPA and DHA 

concentrations (nmol/ml). Unesterified LA and AA did not significantly differ amongst the 

groups. Unesterified n-6 DPA was significantly increased by 8–12 fold in the 0.9% and 

0.2% groups compared to 4.6% controls. Unesterified α-LNA and EPA were significantly 

reduced in the 0.9% and 0.2% α-LNA dietary groups by 85–100% compared to 4.6% α-

LNA controls. Unesterified DHA was significantly reduced by 63% in the 0.2% group 

compared to the 4.6% α-LNA group.

3.6 Brain [1-14C]DHA incorporation kinetics

The incorporation coefficient, k* (Eq. 1), of [1-14C]DHA into brain lipid compartments is 

shown in Figure 1. The incorporation coefficient did not significantly change in TLs, 

ChoGpl, PtdIns, PtdSer, TG or CE fractions (1-A, C-G). Compared with 4.6% α-LNA 

controls, k* was significantly increased in the 0.2% α-LNA group by 51% in EtnGpl (1-B).

3.7 Brain [1-14C]DHA incorporation rate

Reflecting the reduction in unesterified DHA concentration, brain DHA incorporation rate, 

Jin, into TLs and phospholipid subfractions (EtnGpl, ChoGpl, PtdIns and PtdSer), TG and 

CE was significantly reduced by 48–76% in the 0.2% dietary α-LNA group compared to 

4.6% α-LNA controls (Figure 3).

3.8 Brain fatty acid concentrations

Table 2 shows median TL, phospholipid and unesterified brain α-LNA, LA, AA, n-6 DPA 

and DHA concentrations. α-LNA was measurable only in brain TLs, and its concentration 

did not differ significantly between the groups.
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LA concentration in ChoGpls was significantly lower in the 0.9% α-LNA group than the 

4.6% group. PtdSer LA was also significantly reduced in the 0.2% α-LNA group compared 

to the 4.6% group. LA concentration did not change significantly within TLs, EtnGpl, PtdIns 

and unesterified fatty acids.

ChoGpl AA concentration was lowest in the 3.8% α-LNA group (median of 2903), which 

differed significantly from the 0.2% α-LNA group (median of 3089). No other significant 

changes in AA were observed.

N-6 DPA was not detected in TLs, ChoGpls and PtdIns at 4.6%, 3.8% or 2.7% α-LNA. It 

was detected in these fractions when dietary α-LNA reached 0.9% and 0.2%, being 3–6 

times higher in the 0.2% α-LNA group than the 0.9% α-LNA group. One way ANOVA 

showed that the differences between the 0.2% and 0.9% α-LNA groups were not statistically 

significant, although both groups differed significantly from 4.6% α-LNA controls. N-6 

DPA was detectable in all groups in EtnGpl and PtdSer phospholipids. Its concentration in 

both fractions was significantly higher by 4–25 fold in the 0.9% and 0.2% α-LNA groups 

compared to 4.6% α-LNA controls. In unesterified fatty acids, n-6 DPA concentration, 

which was only detectable in the 0.2% and 0.9% groups, was significantly higher in the 

0.2% α-LNA group compared to 4.6% α-LNA controls.

Brain TL and ChoGpl DHA concentration was significantly reduced in the 0.9% (13–16%) 

and 0.2% (45–52%) α-LNA groups compared to 4.6% α-LNA controls. DHA concentration 

was significantly reduced in EtnGpls, PtdIns and PtdSer by 40–47% in the 0.2% α-LNA 

group compared to 4.6% α-LNA controls. No significant differences in brain unesterified 

DHA were seen.

4. Discussion

This study showed statistically significant reductions in plasma unesterified and brain TL 

and phospholipid DHA concentrations, increased brain DHA incorporation coefficient k* 

into EtnGpl, and reduced DHA incorporation rate, Jin, into brain TL, TG, CE and 

phospholipid subfractions, at or below 0.9% dietary α-LNA treatment for 15 weeks, 

compared to 4.6% α-LNA controls. N-6 DPA was significantly increased in plasma and 

brain TLs, phospholipid subfractions and unesterified fatty acids at or below 0.9% dietary α-

LNA. The concentration changes in plasma and brain are largely confirmatory of the recent 

results of Kim et al [21], except for plasma uensterified DHA, which was reduced at 0.2% 

α-LNA in this study and at 2.6% α-LNA in the Kim et al study. Those authors also reported 

concurrent concentration reductions in n-3 PUFAs in liver, and related them to changes in 

brain activity of cPLA2 IVA, COX-2 and iPLA2 VIA.

The incorporation coefficient, k*, was selectively increased in EtnGpl at 0.2% α-LNA, 

consistent with a study that found a significant increase in EtnGpl k* following three 

consecutive generations of dietary α-LNA deprivation (0.2%), compared to an adequate 

4.6% α-LNA diet [19]. The increase in k* in EtnGpl, into which DHA is preferentially 

incorporated [31], could have occurred through increased activity of enzymes involved in 

DHA incorporation into membrane phospholipids [32], or esterification of DHA-CoA into 
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membrane phospholipids by an acyltransferase [33]. Threshold changes in acyl-CoA 

synthetase or acyltransferase enzyme activity following graded α-LNA reduction should be 

tested in future studies.

Significant reductions in plasma unesterified DHA occurred at 0.2% α-LNA, in contrast to a 

similar threshold study which showed significant reductions in unesterified DHA at 2.6% α-

LNA [21]. The discrepancy between studies is likely due surgical stress or the use of 

heparinized isotonic saline to prevent the formation of blood clots within the arterial / 

venous catheter lines, unlike the Kim et al study in which no surgeries were conducted and 

blood was collected from the abdominal aorta following CO2 asphyxiation [21]. Heparin 

could increase circulating unesterified DHA by increasing its hydrolysis from esterified lipid 

pools [34] because it activates lipase and esterase enzymes [35]. This effect, however, would 

have been consistent across all groups, since all animals received the same heparin 

treatment. It is likely that stress associated with the infusion surgery in this study may have 

contributed to the mobilization of unesterified fatty acids, including DHA, from adipose 

tissue, resulting in increased variability and loss of statistical power to detect significance at 

2.6% α-LNA. The variability in plasma unesterified DHA is approximately 2 to 8 times 

higher in rats subjected to femoral vein / artery catheter implantation surgery, heparin 

injection and arterial blood withdrawals [36–40], compared to rats killed with CO2 [21].

The variability in plasma unesterified DHA poses a limitation with the interpretation of the 

incorporation rate, Jin, values, which are derived from the product of k* and plasma 

unesterified DHA. Since k* did not significantly change (except in EtnGpl), the 48–76% 

reduction in brain TL, phospholipid, TG and CE Jin at 0.2% dietary α-LNA was driven by 

the significant decrease in plasma unesterified DHA. It is likely that threshold changes in 

Jin, would have occurred at a higher dietary α-LNA threshold dose than 0.2% had it not 

been for the unesterified plasma DHA variability. Nonetheless, because the k* values are 

independent of unlabeled plasma unesterified DHA concentration, the 51% reduction in 

EtnGpl k* at 0.2% dietary α-LNA compared to 4.6 α-LNA controls reflects a low threshold 

for changes in brain DHA metabolism in response to reduced dietary α-LNA.

Compared to 4.6% dietary α-LNA controls, statistically significant reductions in brain TL 

and ChoGpl DHA concentrations were seen at 0.9% α-LNA, and in brain EtnGpl, PtdIns 

and PtdSer DHA at 0.2% α-LNA. The decrease in brain EtnGpl, PtdIns and PtdSer DHA 

concentrations reflects the reduction in DHA incorporation rate (Jin) at 0.2% dietary α-LNA, 

in association with reduced rate of DHA loss from membrane phospholipid [20]. The 

nonsignificant but 25–50% reduction in Jin, at 0.9% dietary α-LNA, when maintained 

chronically for 15 weeks, could account for the significant reduction in TL and ChoGpl 

DHA concentrations at 0.9% α-LNA. A larger sample size may have pushed this reduction 

towards statistical significance.

In the present study, brain DHA metabolism was measured by infusing radiolabeled 

unesterified DHA to steady-state levels in plasma, and measuring DHA incorporation into 

the brain after correcting for its fractional uptake from the plasma [14C]DHA concentration 

(Equation 1) [26]. Several studies reported that DHA esterified to a lysophospholipid enters 

the brain via the Mfsd2a orphan transporter, and that esterified DHA is a better source of 
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DHA to the brain than unesterified DHA [41, 42]. In these studies, however, brain DHA 

uptake was assessed by quantifying the percent 14C of injected radioactivity, and without 

correcting for the fractional uptake of 14C-DHA from the plasma, since 14C-DHA was not 

infused to steady-state levels. A recent study that quantitatively compared the incorporation 

of free and esterified DHA into the brain by infusing both to steady-state levels, reported 

that unesterified DHA is the main source of brain DHA [43].

Liver synthesis-secretion rate of DHA was reported to decrease following 15-weeks of α-

LNA deprivation (0.2% or less) [6, 44], in agreement with the observed reduction in plasma 

unesterified DHA and brain DHA metabolism at 0.2% α-LNA. Since the liver is the main 

site of DHA synthesis and supply to the brain when DHA is missing from the diet, it would 

be worthwhile to determine threshold changes in liver DHA synthesis-secretion rates 

following graded α-LNA reduction [6, 44].

One surprising finding in this study is that threshold changes in brain DHA metabolism, 

particularly the 51% increase in EtnGpl k*, occurred at a very low dietary α-LNA threshold 

of 0.2%. Changes in DHA-metabolizing enzymes (iPLA2 and COX-1) occurred at a higher 

dietary α-LNA threshold, above 0.9% [21]. This suggests that changes in brain DHA 

kinetics likely follow changes in brain DHA-metabolizing enzymes, which occur in 

response to reduced plasma unesterified DHA concentration [21].

Many rodent studies reported deleterious effects of n-3 PUFA deficient diets (0.2% α-LNA) 

on brain neuropathology and behavior [15–18], particularly when challenged with trauma or 

a neurotoxin [3, 22, 45]. While these studies demonstrate the essentiality of dietary α-LNA 

for maintaining brain DHA levels and function, they are not likely to be clinically relevant 

because extreme n-3 PUFA deficiency may not be common in humans. We are aware of a 

few case studies of clinical n-3 PUFA deficiency in which patients receiving 0.02 to 0.09 % 

energy α-LNA (0.02% energy equals 0.66% of total fatty acids) through parenteral nutrition, 

developed neurological symptoms or dermatitis after a few months of being on the diet [46–

49]. Estimated α-LNA intakes in North America range between 0.64 to 0.73% of total 

energy [50, 51], which is within the 0.6–1.2 energy % range recommended by the Institute 

of Medicine [52], and likely meets the 2.1–3.8 mg daily rate of brain DHA consumption in 

humans established with positron emitting tomography (PET) [53, 54]. Worldwide intakes 

of α-LNA, however, vary by region and range between 0.1 to 1.4% energy (200–3000 mg/

day) [55]. Future rodent studies should explore the effects of dietary α-LNA on brain lipid 

metabolism and behavior with or without an experimental challenge at clinically relevant 

doses. It is worth noting, however, that the dietary requirements for humans and rodents are 

likely to differ, since omega-3 deficiency symptoms occur at 0.02 to 0.09% energy α-LNA 

in humans [46–49], whereas the deficiency range in rats based on this study and others is 

between 0.002–0.03% energy [12, 13].

A limitation of this study, aside from the low sample size, is that the 15 week duration of 

graded α-LNA reduction may not necessarily represent longer periods of low α-LNA intake. 

Supporting this suggestion is evidence of altered k* in several brain lipid pools (increased in 

TLs, PtdSer and EtnGpl, and decreased in TGs) in a study which reduced α-LNA from 4.6% 

to 0.2% α-LNA for three consecutive generations [19], compared to increased k* in EtnGpl 
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at 0.2% α-LNA in this study. It is possible that with prolonged α-LNA administration below 

4.6%, k* may change in other lipid pools, or at dietary thresholds above 0.2% α-LNA. Also, 

dietary α-LNA thresholds and brain DHA requirements are likely to change during 

development, aging, liver malfunction, or the presence of neuropathological conditions, 

consistent with one study which reported increased k* for DHA in chronic alcoholics [53].

The finding that the 1.8% α-LNA diet contained 5.1% α-LNA instead of the targeted 

amount of 1.8% α-LNA emphasizes the importance of confirming fatty acid composition of 

purchased diet prior to initiating an animal trial. The lack of a 1.8% α-LNA group does not 

change the conclusion that threshold reductions in k* and Jin occurred at 0.2% α-LNA. It 

also does not change the conclusion that reductions in brain DHA concentrations occurred at 

0.2–0.9% α-LNA, since a similar study by Kim et al. reported no change in brain DHA 

concentrations at 1.7% α-LNA compared to 4.6% α-LNA controls, but significant 

reductions in brain DHA at 0.2 and 0.9% α-LNA [21].

In summary, threshold changes in brain DHA concentration, incorporation coefficient and 

incorporation rate occurred at or below 0.9% dietary α-LNA, which is at least 2.5 times 

below the minimum recommended amount of 2.3% α-LNA established by Bourre et al. 

[13]. PET imaging could be clinically considered to quantify brain DHA consumption in 

relation to changes in dietary α-LNA and neurological outcome, to better establish optimal 

human α-LNA requirements [53, 54] .
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Abbreviations

α-LNA alpha-linolenic acid

AA arachidonic acid

cPLA2 Ca2+-dependent cytosolic phospholipase A2

iPLA2 Ca2+-independent phospholipase A2

ChoGpl choline glycerophospholipid

COX cyclooxygenase

DHA docosahexaenoic acid

EtnGpl ethanolamine glycerophospholipid

FAMEs fatty acid methyl esters

GC gas-chromatography
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LA linoleic acid

PtdIns phosphatidylinositol

PET positron emitting tomography

PtdSer phosphatidylserine

PUFA polyunsaturated fatty acids

TL total lipids

TLC thin layer chromatography
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Figure 1. 
Incorporation coefficient (k*) in A) TLs, B) aqueous phase, C) EtnGpl, D) ChoGpl, E) 

PtdIns, F) PtdSer, G) TG and H) CE in rats fed a 4.6%, 3.8%, 2.7%, 0.9% and 0.2% α-LNA 

diet for 15 weeks. Data are graphed as median and interquartile ranges (error bars). The 

lower and upper boundaries of the error bars indicate 25th and 75th percentile values, 

respectively. Sample size (n) is 6–8/group. Data were analyzed by Kruskal–Wallis one-way 

ANOVA followed by Dunn’s multiple comparison post-hoc test. Different superscripts 

show significant differences at the P<0.05 level. ChoGpl, choline glycerophospholipid; CE, 

cholesteryl ester; EtnGpl, ethanolamine glycerophospholipid; PtdIns, phosphatidylinositol; 

PtdSer, phosphatidylserine; TG, triglyceride; TL, total lipid.
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Figure 2. 
Incorporation rate (Jin) into A) TLs, B) aqueous phase, C) EtnGpl, D) ChoGpl, E) PtdIns, F) 

PtdSer, G) TG and H) CE in rats fed a 4.6%, 3.8%, 2.7%, 0.9% and 0.2% α-LNA diet for 15 

weeks. Data are graphed as median and interquartile ranges (error bars). The lower and 

upper boundaries of the error bars indicate 25th and 75th percentile values, respectively. 

Sample size (n) is 6–8 / group. Data were analyzed by Kruskal–Wallis one-way ANOVA 

followed by Dunn’s multiple comparison post-hoc test. Different superscripts show 

significant differences at the P<0.05 level. ChoGpl, choline glycerophospholipid; CE, 

cholesteryl ester; EtnGpl, ethanolamine glycerophospholipid; PtdIns, phosphatidylinositol; 

PtdSer, phosphatidylserine; TG, triglyceride; TL, total lipid.
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