
UC Irvine
ICS Technical Reports

Title
Exploiting ultra-fine grain parallelism for machines with parallel pipelined datapaths

Permalink
https://escholarship.org/uc/item/7qx957kd

Authors
Gong, Jie
Gajski, Daniel D.

Publication Date
1992-12-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qx957kd
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Exploiting Ultra-fine Grain Parallelism for
·----

/)!}.'('fl !!fl

(\ '

Machines With Parallel Pipelined Datapath~

Jie Qong_
Dani~l D. Gajski

Technical Report #92-112
December 20, 1992

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

Abstract

This report examines ultra-fine grain machine parallelism determined by various hard­
ware styles and constraints. Two major components are incorporated in our system: (1)
A generalized parameterized architecture model which characterizes different design styles
and constraints based on parallel pipelined machines. (2) A retargetable compiler which
maps instruction parallelism to ultra-fine grain machine parallelism for target architectures.
Basically the generalized parameterized model is used to specify different target machines,
and the retargetable compiler compiles and schedules applications, codes written in high­
level language, into control codes for given target machines. The resulting control codes
are run through a simulator, after which dynamic statistics of the execution are recorded
and the ultra-fine grain parallelism of target machines is assessed. A set of studies has been
conducted to demonstrate how ultra-fine grain machine parallelism is affected by various
hardware parameters and how performance is affected by both instruction parallelism and
machine parallelism.

Contents

1 Introduction

2 The Architecture Model

3 The Parallel Compiler

3.1 Gnu C Compiler
3.2 V1IW Compiler
3.3 Ultra-fine-grain Parallel Compiler .

3.3.1 Algorithm for Basic Block Recognizer

3.3.2 Algorithms for Dependence Graph Builder .

3.3.3 Algorithms for the Scheduler and Binder .

4 System Overview and Experimental Results

4.1 Bus Constraints

4.2

4.3

4.4

4.5

Functional Unit Constraints

Memory Port Constraints

Temporal Parallelism vs. Spatial Parallelism .

Pipeline Constraints

5 Conclusion

6 Acknowledgements

7 References

List of Figures

1 An architecture instance • • 0 o 0 0 0 0 0 I

2 Connection table for architecture in Fig. 1
3 Two abstract architectures
4 The ultra-fine-grain parallel compiler

5 The overall system
6 Several bus configurations
7 A study for bus constraints
8 A study for functional unit constraints

9 A study for memory port constraints

10 A study for pipeline vs. nonpipeline

11 A study for pipeline constraints on 1119

1

1

3

5

5

6

6
7

8

9

14

15
17

18

19
20

20

22

22

4

4

5

7
14

15
16
17

18

19
21

1 Introduction

Many researches have been working on exploiting instruction parallelism [NF84] [WS84]
[AKT86] [SV87] [PS88]. The instruction parallelism of a program is a measure of the av­
erage number of instructions executable at the same time. The instruction parallelism is
constrainted by the program i.e. by the number of data dependencies and the number of
branches in relation to other instructions. Basically there are two ways of exploiting instruc­
tion parallelism. One is the static approach in which the selection of which instructions to
issue in a given cycle is performed at compiler time. Another is the dynamic approach in
which the instruction issuing is determined at run time. In static approach, since the in­
structions are issued during compiler time, aggressive optimization techniques such as loop
unrolling, software pipelining[La88J, percolation scheduling[Ni85] can be applied to exploit
massive interbasic-block instruction parallelism. But in dynamic approach, instruction de­
code unit must look ahead at a sequence of instructions and issue each instruction based
on instructions already issued and data dependencies between results and operands of in­
structions. It is very difficult, if not impossible, to encorporate those static parallelizing
techniques into the hardware decode unit because of the complexity of these techniques and
timing constraints of the hardware decode unit. Therefore, the static approach is more
appropriate for exploiting global instruction parallelism.

To improve performance, not only instruction parallelism but also machine parallelism
should be required. Machine parallelism is a measure of the ability of the processor to
take advantage of the instruction parallelism. It is determined mostly by the processor
organization i.e. by the number of actions or instructions that can be taken or executed
at the same time. Performance is essentially affected by both instruction parallelism and
machine parallelism. If the instruction parallelism in the applications exceeds the parallelism
of the machine, then usually most of parallelism of the machine will be utilized and the
performance will be limited by the parallelism of the machine. Similarly, if the instruction
parallelism is less than the machine parallelism, then the performance will be limited by the
instruction parallelism inherent in the applications[Jo89].

Machine parallelism is determined by processor organizations. Generally there are two
datapath designs to achieve machine parallelism: (1) using parallel datapath, such as one
containing multiple functional units; (2) using pipelined datapath, such as one containing
pipelined functional units. In the first approach, several instructions may be issued per cycle
and spatial parallelism is achieved. In the second approach, only one instruction may be
issued per cycle, but the cycle time is shorter than the propagation time of the functional
unit, thus temporal parallelism is achieved. Since these two approaches are orthogonal, we
could have parallel pipelined datapath organizations. Of course the machine parallelism is
not only affected by number and style of functional units, but it is also affected by other
constituents of the processor such as size of register file, number of register file ports, number
of memory ports, number of buses and connection style among different components.

In previous work, machine parallelism is abstracted by instruction set. For example, in

1

VLIW, very long instruction word machines, machine parallelism is determined by the prede­
fined instruction sets. VLIW machines exploiting different amounts of machine parallelism
would require different instruction sets because VLIW's that able to exploit more parallelism
would require larger instructions. Basically VLIW machines exploits the machine parallelism
at the register transfer level. This kind of parallelism is called fine-grain parallelism. The
term "fine" is used to distinguish this level of parallelism from coarse-grain parallelism which
refers to higher level of constructs such as loop iterations, parallel processors etc. Generally,
the finer the granularity, the better the parallelism extraction. This is because irregular
forms of parallelism are often not visible at coarser levels. Register transfer level is not the
lowest level in which computation is carried out. It does not consider detailed architectural
components such as internal latches, buses, register file ports which implement the actual
data transfers. Predefined instruction set may not fully expose the parallelism available in
machine organizations. To exploit ultra-fine grain machine parallelism existing in the level
below instruction set, instead of generating parallel instructions, we produce control codes
which are used for issuing parallel micro-actions for datapath per cycle. Because of more
flexibilities existing in the control code than that in the instruction set, more machine par­
allelism can be exposed at ultra-fine grain level. Furthermore, effect of various processor
constituents on the machine parallelism can be studied at this level whereas the effect of
many processor components such as register file ports, buses etc. is ignored at instruction
set level since the instruction set hardly reflects those organization aspects.

To exploit ultra-fine grain machine parallelism offered by the machine organization, we
must consider the detailed target machine organizations which contain functional units,
storages elements and interconnection units. In order to characterize various machine styles
and constraints, a generalized parameterized architecture model is proposed. The model
is based on RISC-like load/store architecture extended with a parallel pipelined datapath.
It can have multiple functional. units, a multi-port register file or memory, and multiple
buses with arbitrary bus connections among different components. Each functional unit can
be of single or multiple cycle latency and can be non-pipelined or pipelined. A concrete
architecture can be instantiated from this generic model by specifying values for various
parameters.

In our approach, machine parallelism is constrainted by the target architecture speci­
fied by the generalized model and instruction parallelism and ultra-fine grain parallelism
is exploited by a retargetable compiler. The compiler has two major phases which exploit
instruction parallelism and ultra-fine grain parallelism respectively. In the first phase of op­
timization, percolation scheduling, loop pipelining and memory disambiguation are applied
to the applications to achieve massive instruction parallelism across basic blocks. In the
second phase each pseudo-basic block obtained from the previous phase is scheduled by a
generalized mapping algorithm onto the target machine and corresponding control codes for
the target machine are generated.

The remainder of this report is organized as follows. In next section we describe the
generalized architectural model. In section 3 the retargetable parallel compiler is shown and
algorithms for mapping instruction parallelism down to machine parallelism is presented. In

2

section 4, an overview of our system is shown and a set of experimental results are discussed
Finally a conclusion is drawn in section 5.

2 The Architecture Model

The generic parameterized architecture model is described as follows:

• There are n functional units, ni functional units of type Ti, i = 1, ... , k, n = L:7=l n;.

• Each functional unit of type Ti has latency of Ni clock cycles, i = 1, ... , k. Latency is
defined as the delay from input ports to the output port of functional unit.

• Each functional unit may or may not have two input latches and one output latch.
Each functional unit can be pipelined or non-pipelined. Each functional unit may have
bypass route around its output latch.

• There is one register file, with P ports and r registers. Reading from and writing to
the register file are assumed to take one clock cycle.

• There are one memory module, with m ports. Each port has one MAR and one MBR
latch associated with it, and memory module has latency of M clock cycles.

• Units can be interconnected with one or more buses. Interconnections are specified by
a connection table M. The row indices of the matrix are buses. The column indices of
the matrix are components. Entry M[i,j] has value '1' if there is connection between
busi and componentj, otherwise M[i,j] has value '0'.

This proposed architecture model is general since it incorporates various design con­
straints and design styles. Based on a bus_oriented topology, the architecture displays some
regularities. It is also very flexible since architecture components can be added or removed
simply by redefining values for hardware parameters.

Fig. 1 shows a concrete architecture which consists of three functional units: two ALUs
and one multiplier. ALUl is a single cycle unit with bypass route around its output latch.
ALU2 and MUL3 are multi-cycle functional units which can be pipelined or non-pipelined.
11-13 are left operand latches in front of functional units while Rl-R3 and 01-03 are right
operand latches and output latches respectively. OUTl denotes the output port of ALUl.
There is one register file which has two ports Pl and P2 and a memory which has one port
associated with two latches: MAR and MBR. The memory has multiple cycle latency. The
interconnection table for this concrete architecture is shown in Fig. 2.

3

81

82

83 ~1---t-~~;--~-1-~..--t--t-~ ... ~~~~~~+-~-+~~~-+-

84

Bus1

Bus2

Bus3

Bus4

P1 P2

REGISTER
FILE MEMORY

Figure 1: An architecture instance

L 1 R1 01 Outf L2 R2 02 L3 R3 03 P1 P2 MAR1 MBR1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1

"1 s" indicate connections

Figure 2: Connection table for architecture in Fig. 1

4

3 The Parallel Compiler

The retargetable parallel compiler maps applications onto given target architectures. It is
composed of three parts: (1) Gnu C front end compiler; (2) VLIW (Very Long Instruction
Word) compiler; (3) UP (Ultra-fine-grain Parallel) compiler.

3.1 Gnu C Compiler

Memory Memory

Store
Load

Register File

Op

(a) Serial Data Path Architecture (b) VLIW Architecture

Figure 3: Two abstract architectures

The Gnu C Front End Compiler compiles an application written in the C language
into a register transfer level intermediate format which is serial three-address code (Each
instruction only consists of one three-address operation). The three-address operation (two
source operands and one result) is based on the operations of load/ store architecture in which
only loads and stores can access memory and other operations solely work on the registers.
The three-address operation has following formats:

• des f- srcl op src2; ("arithmetic or logic" operation)

• mem(addr) f- src; ("store" operation)

• des f- mem(addr); ("load" operation)

• if cond goto label; ("conditional jump" operation)

• goto label; ("unconditional jump" operation)

5

"des", "src", and "addr" are either registers or constants. "cond" is a one-bit register.
"label" is the label of each three-address operation.

In this stage register allocation has been done and the compiler tries to use the avail­
able registers as much as possible to reduce load/store operations. The serial three-address
code produced by the Gnu C Compiler can be viewed as the instructions executed on the
architecture shown in Fig. 3 (a).

3.2 VLIW Compiler

The VLIW Compiler takes serial three-address code as input and generates parallel three­
address code in which one instruction can consist of multiple three-address operations. Ad­
vanced compiler techniques (percolation scheduling, loop pipelining, memory disambigua­
tion, etc.) are implemented in the VLIW compiler to achieve the fine grain paralielism
across basic blocks(Po91). In order to exploit massive instruction parallelism in the code,
an unlimited number of resources is assumed and each operation is assumed to take one
clock cycle. The architecture on which the parallel three-address code is executed is shown
in Fig. 3 (b). There are multiple functional units and one register file with multiple ports.
The register file and functional units are fully connected, i.e. every register file port has
connections to inputs/output of every functional unit.

3.3 Ultra-fine-grain Parallel Compiler

The ultra-fine-grain parallel (UP) compiler takes either serial three-address code or par­
allel three-address code as input and maps it onto the target architectures specified by the
architecture model described in section 2. The UP compiler compiles a register-transfer
level description down to microcode which essentially describes movement between storage
elements, e.g. movement from register to latch, from latch to latch, from latch to memory
location etc. Those microcode serves as the control code for the given target architecture.

The UP parallel compiler consists of three main parts including a basic block recognizer, a
dependence graph builder and a scheduler and binder shown in the dash rectangles of Fig. 4.
The dependence graph builder and the scheduler and binder consider different architectural
parameters in their algorithms. The algorithms used by each part will be described in
following sections.

6

I

.------'---------
Basic Block '

, Recognizer

.'~~~~~~I~~~~~~~~
I

Dependence Graph 1

1 Builder 1

:~ ~ -_ ~ ~ -_ r_ -_ -_ ~--~ -_ ~
I I

1 Scheduler & Binder
I I •- - - - - - - - - - - - - - - -

Figure 4: The ultra-fine-grain parallel compiler

3.3.1 Algorithm for Basic Block Recognizer

The basic block recognizer takes serialized program graph as input and enumerates basic
blocks of the program. A program graph is a directed graph G = (V, E). For serial three­
address code, each node in V consists of only one three-address operation. This type of node
is called a serial node. For parallel three-address code, each node in V may contain multiple
three-address operations which can be executed concurrently. This type of node is called a
parallel node. Each edge in E represents execution sequencing. If there is an edge from node
a to node b, it means that node a is a predecessor of node b (or node b is a successor of node
a) and node a needs to be executed before node b. A parallel node in G can be split into
multiple serial nodes which have the same semantics as the parallel node. This is called a
serialization process. A program graph G consisting of only serial nodes is called a serialized
program graph.

In the following algorithm, procedure NUM_OF YRED(m) returns the number of pre­
decessors of m; NUM_OF_SUCC(m) returns the number of successors of m; JS_STARTING
_NQDE(m) returns TRUE if m is the starting node of the program graph; SUCC(m) re­
turns the unique successor of node m when m has only one successor; NEW _LJ ST(m)
creates a new list with m as the first element.

Basically what the algorithm does is to find the entry node of a basic block first, then
list the nodes which belong to the same basic block until entry node of a new basic block is
found.

7

Algorithm: Find basic blocks of a serialized program graph G

for each node n E V of G do
m=n;
if (NUM_OFYRED(m) > 1) or (IS-5TARTING_NODE(m)) then

/* create a new basic block with m as the entry node * /
b = NEW _LIST(m);
while (NUM_OF_SUCC(m) = 1) and (NUM_OFYRED(SUCC(m)) = 1) do

append SUCC(m) to b;
m = SUCC(m);

endwhile
endif

end for

3.3.2 Algorithms for Dependence Graph Builder

The dependence graph builder takes each basic block as input and produces a data depen­
dence graph (DDG) for the list of three-address operations of a basic block. The DDG is
a directed acyclic graph G = (V, E). Each node in V is a three-address operation. There
are three types of dependence edges in E: (1) fl.ow dependence (write-read) edges; (2) anti­
dependence (read-write) edges; (3) output dependence (write-write) edges.

In the following algorithm, L is a list of three-address operations. FIRST(L) returns the
first element of L. P REV(n) or N EXT(n) returns the previous or next element of n in list
L. The previous element of the first element is </>, as is the next element of the last element.
S RC (n) returns the two source variables of the three-address operation n. DE ST (n) returns
the destination variable of n. ADD_NODE(DDG, n) adds a node containing n to DDG.
ADD_EDGE(DDG, m, n, TYPE) builds a edge of type "TYPE" from node m ton if there
is no any path from m ton in the DDG.

Basically the algorithm creates a node for each three-address operation in DDG. After
that the algorithm builds the flow dependence edges, output dependence edges and anti­
dependence edges among the nodes in DDG by scanning each operation and its previous
operations in the list L. An edge is built between two nodes only if there is no path between
those two nodes in order to avoid redundant edges.

Algorithm: Build DDG for a list L of three-address operations

DDG = ¢;
n = FIRST(L);
while n f. ¢ do

/* build a node * /

8

ADD_NODE(DDG, n);
/* build flow dependence edge * /
m = PREV(n);
while m =/= </> do

if (SRC(n) n DEST(m)) =/=</>then
ADD_EDGE(DDG, m, n, fiow_dependence);
exit while loop;

else
m = PREV(m);

endif
end while
/* build output dependence edge * /
m = PREV(n);
while m =/= </> do

if (DEST(n) n DEST(m)) =J </>then
ADD_EDGE(DDG, m, n, output_dependence);
exit while loop;

else
m = PREV(m);

endif
end while
/* build anti-dependence edge * /
if m = </> then m = FIRST(L) endif
k = PREV(n);
while k =/= PREV(m) do

if (DEST(n) n SRC(k)) =J </>then
ADD_EDGE(DDG, k, n, antLdependence);

else
k = PREV(k);

endif
end while
/* do for next node * /
n = NEXT(n);

endwhile

3.3.3 Algorithms for the Scheduler and Binder

The scheduler and Binder takes a DDG as input and does scheduling and binding for the
DDG based on the given parameterized target architectures.

Each node in DDG is assigned a weight which is the number of executing stages of the
operation in the node. The executing stages of a operation depends on the type and latency
of the unit used. It also depends on whether there are input/output latches for the unit.

9

For example, assume some functional unit has a clock cycle latency of n, Suppose operation
'op' is executed on this functional unit. Then the weight of three-address operation "Rl
+-- R2 op R3" will be n if there are no input/output latches for the functional unit, n + 1
if there are only input latches, n + 2 if there are both input and output latches. For a
memory with latency of n clock cycles, the executing stages of the LOAD operation will be
n + 2, the executing stages of the STORE operation will be n + 1. Basically based on the
parameterized target architecture, the weight of each operation can be formulated. After
this weight assignment process, the DDG becomes a weighted DDG Gweighted = (V, E, vV),
lvVI =IV!·

The ASAP(As Soon As Possible) value, ALAP (As Late As Possible) value and Mobility
for each node in the weighted DDG is computed since they are used as priority functions in
the scheduling and binding algorithm. The following algorithm assigns each source node an
ASAP value, each sink node an ALAP value, then traverses the weighted DDG to get ASAP
and ALAP values for each node. The mobility for each node can be easily calculated using
ASAP and ALAP values.

In the following algorithm, PRED(v) or SUCC(v) returns a set of all immediate pre­
decessors or successors of v. NO_ASAP(v) or NO_ALAP(v) returns TRUE if v has
not be assigned an ASAP value or an ALAP value. ALLYRED_HAVE_ASAP(v) or
ALL_SUCCJIAVE_ALAP(v) returns TRUE if all predecessors or successors of v have
their ASAP or ALAP values calculated respectively. MAX_ASAP(PRED(vi)) returns the
maximum ASAP value among the set of predecessors of node Vj. MJN_ALAP(SUCC(vi))
returns the minimum ALAP value among the set of successors of node Vi. ABS (x) returns
the absolute value of x.

Algorithm: Compute ASAP, ALAP, and Mobility for a weighted DDG

/* compute As Soon As Possible values * /
for each node Vi E V do

if PRED(vi) =</;then
ASAP(vi)= 1;

endif
endfor
for each node Vi E V do

if (NO.ASAP(vi)) and (ALL_PRED_HAVKASAP(vi)) then
ASAP(vi) = MAX_ASAP(PRED(vi)) +Weight(vi);

endif
endfor
/* compute As Late As Possible values * /
for each node Vi E V do

if SUCC(vi) =</;then
ALAP(Vi) = length_oJ _criticaLpath - Weight(vi);

endif

10

endfor
for each node Vi E V do

if (NO_ALAP(vi)) and (ALLSUCC__HAVE_ALAP(vi)) then
ALAP(vi) = MJN_ALAP(PRED(vi)) - Weight(vi);

endif
endfor
/* compute mobilities * /
for each node Vi E V do

Mobility(vi)= ABS(ALAP(vi) - ASAP(vi));
endfor

Basically the algorithm for the scheduler and binding is a variation of list scheduling. It
incorporates various architecture parameters into scheduling and binding process.

Assume that the target architecture has n resources (including functional units and mem­
ory), ni resources of type Ti. i = 1, ... , k. n = I:7=1 ni. The algorithm uses a priority list
PList for each type resource of Ti, i = 1, ... , k. These lists are denoted by the variables
P Listr1 , • •• , P Listrk. There is also a priority list BusP List used to queue the operations
competing for the bus resources. The BusP List is a list of tuples < op, resrc > which means
that operation op is allocated to the resource resrc. Initially all priority lists are empty.

The priority lists are maintained as follows: first, nodes are sorted in ascending order of
their mobilities. All nodes with identical mobilities are sorted in increasing order of their
ALAP values. At last the unique sequence number of each operation is used to break tie if
there is one.

There is one queue for each type of resource. These queues are denoted by the variables
RQueuer1 , ••• , RQueuerk' Initially there are ni resources of type Ti in RQueuer;· For
example, suppose three ALUs exist in the given architecture, then initially there are three
resources ALUl, ALU2, ALU3 in RQueueALU·

There are two auxiliary queues: RRQu (Resource Ready Queue) and EDQu (Edge
Deletion Queue). RRQu is used to queue "at which control step the occupied resources can
be released". It is a queue of tuples < resource, Cstep >. EDQu is used to queue "at
which control step the edges of DDG can be deleted from the DDG". It is a queue of tuples
<edge, Cstep >. Initially both RRQu and EDQu are empty.

A ready node in DDG is one whose in-degree is zero i.e. it has no incoming edges.
INSERT _READY _OPS(DDG, P Listr1 , ••• , P Listrk, Cstep) scans the set of nodes of DDG,
determines if any of the nodes are ready at control step C step, deletes the ready node from
DDG (but not its associated outcoming edges), and appends the ready nodes to one of the
priority lists based on their operation types.

INSERT_OP(op,r,BusPList) inserts the tuple< op,r >into BusPList. Here opera-

11

tion op has been bound to resource r. INSERT _READY_RESO,URCES(RRQu,
RQueuer1 , ••• , RQueuerk, C step) scans queue RRQu, finds out all resources released at the
control step C step, appends them to one of the resource queues based on their resource types.
DELETE_EDGE(EDQu, DDG, Cstep) scans queue EDQu, finds out all edges need to be
deleted from DDG at control step Cstep, then deletes them from DDG.

DELETE(L,x) returns the new Lin which x has been removed out. INSERT(L,x)
returns the new L in which x has been inserted in. FI RST(L) returns the first element of
L. N EXT(x) returns the next element of x in L.

The connection of the architecture is represented by a matrix M. The row indices of
the matrix are buses. The column indices of the matrix are components. Entry M[i, j] has
value 'l' ifthere is connection between busi and componentj, otherwise M[i,j] has value '0'.
There is another matrix which is called bus reserve table (BRT). The row indices of BRT
are buses. The column indices of BRT are control steps. BRT[i,j] is '1' if busi is reserved
at control step j, otherwise it is '0'.

BUS_RESERVED(op,r,Cstep,BRT) returns TRUE and sets 'l' to the reserved en­
tries of BRT if the bus resources required by op have be fulfilled in the BRT, otherwise
returns FALSE. The bus reservation process uses a lookahead approach starting from cur­
rent step C step. For example, suppose resource r is a functional unit and has both input
and output latches. Basically the reservation procedure will try to look up column C step
and column Cstep +latency+ 1 of BRT as well as connection matrix M to decide if there
are buses available for scheduling the operation op since op will consume bus resources at
control step C step and control step C step+ latency+ 1 to move data between register file
and latches.

SCHEDULE_OP(op,r,Cstep) binds operation op to resource rand reserved bus re­
sources and creates the scheduling sequence for op starting from control step C step. For
example, suppose r has both input and output latches and has latency of 1 clock cycle and
the required bus resources are satisfied, the scheduling sequence for op will be (1) In step
Cstep contents of source registers are moved to input latches of r. (2) In step Cstep+ l, 'Lr
op Rr' are moved to Or where Ln Rr and Or are left, right, output latches of r respectively.
(3) In step Cstep + 2, content of output latch is moved to the destination register.

RESOURCE_AVAILABILITY(r,Cstep) returns the control step at which the occu­
pied resource r is released based on the resource type, latency, and style(e.g. pipelined/non­
pipelined) as well as the current control step C step. For example, suppose r is a functional
unit with latency of n, r will be available at one step later of the control step where r is used
if r is pipelined. If r is not pipelined, r will be available n steps later of the step where r is
used.

EDGE_DELET JON(op, Cstep) returns the control steps at which outcoming edges of
op in DDG should be deleted based on the allocated resource type, latency, style, current
control step C step as well as types of the edges. For example, a flow dependence edge of

12

op can be deleted only after the step where the destination register of op is written while a
anti-dependence edge can be deleted after the source registers of op are read.

x, <Yi, ... ' Ye>,< op, r >, < OPnext, rnext >, i, Cstep, Ei, ... 'Ee are temporal variables.

Algorithm: Scheduling and binding of DDG for Target Architecture

Cstep = O;
INSERT..READY_OPS(DDG, P Listrn ... , P Listrk, Cstep+l);
while (PListr1 -/:- ¢>)or ... or(PListrk-/:- cjJ)or(BusPList-/:- cjJ)or(DDG-/:- ¢>)do

Cstep = Cstep + 1;
/* assign resources to ready lists * /
for i = 1 to k do

while RQueuer; -/:- ¢> do
r = FIRST(RQueuer;);
if P Listr; -/:- ¢> then

op = FIRST(P Listr;);
RQueuer; = DELETE(RQueuer;, r);
PListr; = DELETE(PListr;, op);
INSERT_OP(op, r, BusPList);

else
break;

endif
end while

endfor
/* assign buses to bus queue * /
<op, r > = FIRST(BusPList);
while < op, r >-/:- ¢> do

< OPnext, rnext > =NEXT(< op, r >);
if BUS.RESERVED(op, r, Cstep, BRT) then

SCHEDULE_OP(op, r, Cstep);
x = RESOURCE_AVAILABILITY(r, Cstep);
RRQu =INSERT(< r, x >, RRQu);
/* assume 'op' has e outcoming edges E1, ... , Ee * /
<Yi, ... , Ye> = EDGE_DELETION(op, Cstep);
for t = 1 to e do

EDQu = INSERT(< Et, Yt >, EDQu);
endfor
BusPList = DELETE(BusPList, <op, r >);

endif
< op, r > = < OPnext' rnext >

end while
/* prepare for next control step * /
INSERT _READY ..RESOURCES(RRQu, RQueuer1 , • •• , RQueuerk, Cstep+ 1);

13

DELETE_EDGE(EDQu, DDG, Cstep+l);
INSERT.READY_OPS(DDG, PListT1 , ••• ,PListTk' Cstep+l)

end while

4 System Overview and Experimental Results

r-----------------~

: Number of Registers :- - - - - -
I I , __________________ ..

C Li~ii,;it~ci-R~;;~r~;;-:
: Uni-cycle Operations :- - - - -
,_ -.. ------------... --..

C Program

GNUC
Compiler

Serial 3_addr Code

VLIW
Compiler

:1-~~g~t-A~;hlt~~r~~ - -: Ultra-fine-grain
:constraints and Styles :- - - - - - Parallel Compile , __________________ ..

Simulator

Parallel Control Codes r---1--t.... ____ _J

Figure 5: The overall system

Fig. 5 shows a block diagram of our system. The design constraints and styles specified
in the architecture model will be fed into different stages of the parallel compiler. A bypass is
provided so that application can be compiled onto the parameterized target architecture with
or without going through the VLIW compiler. Therefore code with either less instruction
parallelism or more instruction parallelism can be mapped onto the given target architecture.
A simulator is implemented to mimic the execution of the serial three-address code, parallel

14

three-address code as well as the parallel microcode. Based on the input values of program
variables specified in the memory locations, the simulator will r~m through the codes and
produce the resulting values in memory locations. Also, the simulator records dynamic
statistics such as the number of cycles executed, and the number of registers used. The
absolute performance is measured by the time used to execute the control code, which is
the number of clock cycles executed times clock cycle duration. For relative performance
measuring, speed_up is used. Speed_up is defined as x + y where x is the execution time
on the reference target machine, and y is the execution time on the target machine whose
performance is to be rated.

To see how various architecture constraints affect the machine parallelism, several or­
thogonal experiments have been conducted. Four applications are chosen: the fast Fourier
transformation FFT, a cosine computation COS from Stanford benchmarks, and two Liver­
more loops LLl and LL19.

4.1 Bus Constraints

(a) 1 bus, fully connected (b) 2 buses, partially connected

(c) 3 buses, partially connected (d) tour buses, partially connected

Figure 6: Several bus configurations

After giving a concrete architecture, we study how bus constraints affect the machine
parallelism. The given architecture has one ALU and one Multiplier. Both are pipelined.
The ALU has a 1 clock cycle latency while the multiplier has a 3 cycle latency. Both units
have input and output latches. Therefore the ALU operation has 3 pipeline stages (1 stage
from register file to input latches, 1 stage from input latches to output latch, 1 stage from
output latch back to register file), the multiplication has 5 pipeline stages (1 stage from

15

register file to input latches, 3 stages from input latches to output latch, 1 stage from output
latch back to register file). The architecture has one memory with a latency of 2 cycles.
The memory has one port associated with MAR and MBR latches. Therefore the LOAD
operation takes 4 cycles (1 cycle from register file to MAR, 2 cycles to load data into MBR,
1 cycle from MBR back to register file). The STORE operation takes 3 cycles (1 cycle from
register file to MAR and MBR, 2 cycles to write data into memory). There is a register
file which has same number of ports as buses. Register file ports are fully connected to the
buses. Functional units and memory can be fully or partially connected to the buses. Fig.
6 shows several bus configurations of those we examined in the experiment.

3.1

2.9

2.7

2.5

2.3

a. 2.1

:JI
"O
Q)
Q) 1.9
a.

U)

1.7

1.5

1.3

1.1

0.9

___________.. Without VLIW
o- - ... With VLIW

I
I

I

I
I

I

~

/"

I
I .. - - - ...

/
/

/
/

I
I

I

I

I
I

I

/ ·---·

/

'-."

I

/

/

I
I

" I

/..., ___ .., LL19

,.•---•---• LL1
/

~>-----+ LL 19

I II - - - -e - - - -e CQS
/

FFT

0.7 ~-~-~-~-~--~-~-~-~-~--
(1. fUly) (2, partially) (2, fully) (3, partially) (3, fully) (4, partially) (4, fully) (5, fully) (8, fully)

(Number_of_buses, Connection style)

Figure 7: A study for bus constraints

Fig. 7 shows how machine parallelism is affected by bus constraints. From the graph we
can observe that for such an architecture, one or two buses will limit the machine parallelism.
On the other hand more than four buses in the architecture will not help improving the

16

machine parallelism any more due to the number of memory ports used. Basically one
memory port in this given architecture creates a bottleneck after the number of buses are
more than four. Therefore machine parallelism does not improve even when number of
buses are increased afterwards. This graph also shows that not only machine parallelism but
also instruction parallelism affects the performance. With same machine parallelism, more
instruction parallelism will lead to better performance.

4.2 Functional Unit Constraints

1.9

1.8

1.7

1.6

1.5
a.

.--. Wnhout VLIW

.. - _. Wnh VLIW

~----+-----e LL1
I

I
.. , I ,....• - - - -•

/,,, ' I ,,,
/)"' ,,, "'

,,,,,,. I ' /
fl I 'fl'

LL19

I I

.. - - - -· - - - I-• - - - - •
I

I
I

I

I
I

~I
0,) 1.4

I
I ,

/

___ .. ----• FFT
/ ... -

8.
(/)

1.3

1.2

1.1

1.0

0.9

I
I

•

I
I

I

I
I

I
I

,. .. ---
,,,.,,,."",,,.

/

/// ,~-----.-------.cos

-fl I

I

I
I

I LL19

FFT

cos

0.8 '-----'------'----..L-----'----'----'----..__ _ __,

1 /1 /2 211 /2 3/1 /2 411 /2 3/2/2 4/2/2 4/3/2

Number_of_ALU/Number_of_Multiplier/Number_ot_Memory_Port

Figure 8: A study for functional unit constraints

To study how the number of functional units affect the machine parallelism. we consider
an architecture which has ALUs with 1 cycle latency, multipliers with 3 cycle latency, one
memory with a 2 cycle latency and 2 ports. Every unit has input-output latches. The AL Us

17

and multipliers are not pipelined. There are 4 buses which are fully connected with units
and ports. There is a register file with 4 ports.

Fig. 8 shows the results obtained from the simulation. For some applications the per­
formance improves along with the increasing in number of ALUs. For other applications
increasing the number of multipliers improves the performance. This shows that for differ­
ent types of applications, different types of machine parallelism should be provided in order
to improve performance.

4.3 Memory Port Constraints

+---. Wtthout VLIW ... _____
LL1

.. - --. Wtth VLIW I
I

I

1.8 I
I

I
I

I
I

I .. ------'

1.6

a.
::>I

"O
Q)
Q)
a.

----~-----~------· LL19 if)

1.3
... --

_ ... _______
FFT

r cos ... -----r-------~------·
I

I z: : : FFT

1.1
LL19
LL1

cos

0.8 '-------'------'---------'----'----------'
312/1 3/2/2 3/213 312/4

Number_of_ALUs/Number_of_Multipliers/Number_ot_Memory_Ports

Figure 9: A study for memory port constraints

In this experiment, we study how number of memory ports affects the design performance.
The architecture we use has 2 multipliers with 3 cycle latency, 3 ALUs with 1 cycle latency.

18

1 memory with 2 cycle latency. Every unit has input-output latches. AL Us and multipliers
are not pipelined. There are 3 buses that are fully connected with units and ports. There is
a register file with 3 ports.

Fig. 9 shows the results obtained from the simulation. We notice that increasing the
number of memory ports helps applications which have more memory accesses such as the
FFT and 111. For applications with few memory accesses such as 1119 and COS, increasing
the number of memory ports does not help the performance improvement at all. Therefore
when increasing different dimensional machine parallelism, application characteristics should
be considered. Otherwise some machine parallelism may be wasted.

4.4 Temporal Parallelism vs. Spatial Parallelism

c.
::::J

-6
Q)
Q)
c.

(/)

2.0

1.8

1.6

1.4

1.2

1.0

+--+WITHOUT VLIW, PIPELINED
• - -e WITH VLIW, PIPELINED
~WITHOUT VLIW, NON-PIPELINED
G - -0 WITH VLIW, NON-PIPELINED

/
/ •

•

I

0

1 /1

/
/

/

·-----·-------------.-.-----· / --
II .,.,,.,()-,...

/
I . - - -)- ·- - - - - .. - ----___ __ ____

,," / ;::r-----0--
/ /

I -'
I -'

0 ,,"
(z{

1,
I

I
JI

//
II
ILl_.>------==-9-------------------.
I

2/2 3/3 414 5/5 6/6
Number_ of_ALUs/Number _ ot_Multipliers

LL19

FFT

LL19

FFT

Figure 10: A study for pipeline vs. nonpipeline

19

There are two types of parallelism: temporal parallelism which is achieved by pipeline
technique and spatial parallelism which is achieved by multiple functional units. Here we
compare those two types of parallelism. The architecture we use has 6 buses, fully connected
to units and ports. There is a memory with 4 ports, 1 register file with 6 ports. ALU has
1 cycle latency, multiplier has 3 cycle latency and memory has 2 cycle latency. Every unit
has input-output latches.

Fig. 10 shows the results obtained from the simulation. From the graph we observe that
a design of 1 pipelined ALU and 1 pipelined Multiplier results in machine parallelism similar
to a design with 2 or 3 non-pipelined ALUs and 2 or 3 non-pipelined multipliers. Basically
to achieve similar performance, pipelining uses less hardware.

4.5 Pipeline Constraints

We study how pipeline stages affect the machine parallelism. The architecture we use has 6
buses, fully connected to units and ports, 1 memory with 4 ports, 1 register file with 6 ports.

Fig. 11 shows the result from a non-pipelined (1 stage pipelined) situation to an 8 stage
pipelined situation. When the number of stages increases, the clock cycle duration decreases.
We assume the clock cycle duration is reduced in a factor of (n + 2) + 2 when n 2: 2 and n is
the number of pipeline stages. The result shows that the performance improves along with
the increment of the number of pipeline stages until some point where the performance starts
to degrade. Basically after those saturated points, the loss of performance due to pipeline
dependences introduced by the number of pipeline stages outweighs the gain obtained from
more parallelism offered by the number of pipeline stages. For more functional units, the
saturated points are reached faster due to more parallelism provided in the datapath.

5 Conclusion

We have studied ultra-fine grain machine parallelism available at the level below instruction
set. Our system consists of a generalized architecture model which is used to specify the
target machines and a retargetable compiler which does the mapping from fine grain instruc­
tion parallelism to ultra-fine grain machine parallelism. Through a simulator, we are able to
evaluate the machine parallelism of the design. A set of experiments are conducted to show
how machine parallelism is affected by different hardware parameters. The experimental
results also show how performance is affected by both instruction parallelism and machine
parallelism.

20

0.
::J
"O

<I>
<I>
0.

(/)

1.8

1.6

1.3

1.1

I
I

~

,... "' ' ,... ,... ' fl' ' I ' I ' I
..

' I ' '
: 2 ALUs/1 MULT ' •

/ ',
I /

I /

I /
/

I •
I /

/
I ,.
I

,...
1 ALU/1 MULT

I .- - - _.,,
I I

I I

I I
I I

I I
I I
I I

I I
I I
I I
I I

I
I
I 2 ALUs/1 MUL T

___. WITHOUT VLIW
• - .. WITH VLIW

......
'• -- '•

2 3 4 5 6 7
Number of Pipelined Stages

8
0.8 '----'-----'--~-__j.---'-----'----'----'-------'

Figure 11: A study for pipeline constraints on 1119

21

6 Acknowledgements

Our system is built on the VLIW compiler implemented in Dept. of Information and Com­
puter Science, UC Irvine by Roni Potasman et al. We would like to thank Dr. Roni Potas­
man and Prof. Alex Nicolau for their discussions and suggestions for this work. We are also
grateful for the support from the Semiconductor Research Corporation (grant #92-DJ-146).

7 References

[AKT86] R. D. Acosta, J. Kjelstrup and H. C. Torng, "An instruction issuing approach
to enhancing performance in multiple functional unit processors," IEEE Trans.
Comput., vol. C-35, Sept. 1986.

[Br91] M. Breternitz Jr, "Architecture synthesis of high-performance application­
specific processors," Ph.D thesis, Carnegie Mellon University, April 1991.

[JaMu91] R. Jain, A. Mujumdar, A. Sharma and H. Wang, "Empirical evaluation of
some high-level synthesis scheduling heuristics," Proceedings of the 28th Design
Automation Conference, 1991.

[Jo89] N. P. Jouppi, "The distribution of instruction-level and machine parallelism and
its effect on performance," IEEE Trans on Comput, vol. 38, no. 12, Dec. 1989.

[La88] M. Lam, "Software pipelining: An effective scheduling technique for VLIW
machines," Proceedings of the SIGPLAN'88 Conf. on Prog. Lang. Design and
Implementation, June 1988.

[NF84] A. Nicolau and J. A. Fisher, "Measuring the parallelism available for very long
instruction word architectures," IEEE Trans. Comput. vol. C-33, Nov. 1984.

[Ni85] A. Nicolau, "Uniform parallelism exploitation in ordinary programs," Proceed­
ings of the 1985 International Conference on Parallel Processing, 1985.

[Po91 J R. Potasman, "Percolation-based compiling for evaluation of parallelism and
hardware design trade-offs", UC Irvine, Technical report 91-80,1991.

[PoLi90] R. Potasman, J. Lis, A. Nicolau, D. Gajski, "Percolation based synthesis",
Proceedings of the 27th Design Automation Conference, 1990.

[PS88] A. R. Pleszkun and G. S. Sohi, "The performance potential of multiple func­
tional unit processors," in Proc. 15th Annu. Syrnp. Cornput. Architecture, IEEE
Computer Society Press, May 1988.

22

[SV87]

[WS84]

G. S. Sohi and S. Vajapeyam, "Instruction issue logic for high-performance
interruptable pipelined processors," in Proc. 14th Annu. Symp. Comput. Ar­
chitecture, IEEE Computer Society Press, June 1987.

S. Weiss and J. E. Smith, "Instruction issue logic for pipelined supercomputers,"
in Proc. 11th Annu. Symp. Comput. Architecture, IEEE Computer Society
Press, June 1984.

23

