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ABSTRACT
Sequence alignment has had an enormous impact on our

understanding of biology, evolution, and disease. The alignment
of biological networks holds similar promise. Biological networks
generally model interactions between biomolecules such as proteins,
genes, metabolites, or mRNAs. There is strong evidence that the
network topology— the “structure” of the network—is correlated with
the functions performed, so that network topology can be used
to help predict or understand function. However, unlike sequence
comparison and alignment—which is an essentially solved problem—
network comparison and alignment is an NP-complete problem for
which heuristic algorithms must be used.

Here we introduce SANA, the Simulated Annealing Network Aligner.
SANA is one of many algorithms proposed for the arena of biological
network alignment. In the context of global network alignment,
SANA stands out for its speed, memory efficiency, ease-of-use, and
flexibility in the arena of producing alignments between 2 or more
networks. SANA produces better alignments in minutes on a laptop
than most other algorithms can produce in hours or days of CPU time
on large server-class machines. We walk the user through how to use
SANA for several types of biomolecular networks.

Availability: https://github.com/waynebhayes/sana
Contact: whayes@uci.edu
Supplementary information: Available online.

1 INTRODUCTION
A biological network consists of a set of nodes representing entities,
with edges connecting entities that are related in some way. They
come in many varieties, such as protein-protein interaction (PPI)
networks (Williamson and Sutcliffe, 2010; Jaenicke and Helmreich,
2012), gene regulatory networks (Davidson, 2010; Karlebach and
Shamir, 2008), gene-µRNA networks (Chen and Rajewsky, 2007;
Prescott, 2012; Farazi et al., 2013; Kotlyar et al., 2015; Tokar
et al., 2017), metabolic networks (Fiehn, 2002), brain connectomes
(Milano et al., 2017), and many others (Junker and Schreiber, 2011).
It is believed that the structure of the networks, in the form of the
network topology, is related to the function of the entities (Davidson,
2010; Davis et al., 2015; Sporns, 2010). The alignment of such
networks aims to use connectivity between nodes—the topology of
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the network—to aid extraction of information about the nodes and
their function. Network alignments can be used to build taxonomic
trees and find highly conserved pathways across distant species
(Kuchaiev et al., 2010); and by extension finding such topological
similarities may aid in transfering functional knowledge from better-
understood species to less well-understood ones, much like how
sequence alignment has been doing so for sequence for decades.
Networks are even starting to have an influence on individual human
health (Van El et al., 2013)

Network alignment is a fundamentally difficult problem: it
is a generalization of the NP-Complete subgraph isomorphism
problem (Cook, 1971; Garey and Johnson, 1979); and adding to the
difficulty is that current data sets are very noisy (Von Mering et al.,
2002). Therefore, modern alignment algorithms try to approximate
solutions using heuristic approaches.

There are several sub-classes of network alignment. Global
Network Alignment (GNA) is the task of attempting to completely
align entire networks to each other; GNA applied to just two
networks is called pairwise GNA (Kuchaiev et al., 2010; Malod-
Dognin and Pržulj, 2015; Saraph and Milenković, 2014; Mamano
and Hayes, 2017; Hashemifar and Xu, 2014; Sun et al., 2015; Patro
and Kingsford, 2012), while aligning more than two whole networks
is called multiple GNA. In contrast, Local Network Alignment
(LNA) attempts to find similarity in the local wiring patterns among
small groups of nodes, either in the same network, or across many
networks. In all of these cases, alignments can map nodes 1-to-
1, or many-to-many; the latter is more biologically realistic since,
for example, one gene in yeast may have multiple homologs in
mammals. However, the 1-to-1 assumption makes programming
simpler and so the majority of aligners take the 1-to-1 mapping
as a simplifying assumption. A more recent version of network
alignment looks into modeling dynamic networks (see for example
Vijayan and Milenković (2017)). An excellent comprehensive
survey of all these types of alignments is provided by Faisal et al.
(2015a). SANA was originally a 1-to-1 pairwise global network
alignment algorithm, although we here also introduce a prototype
multiple network alignment version.

1.1 User/System requirements
Source code to SANA is available on GitHub at
http://github.com/waynebhayes/SANA, and is best
cloned from github on the Unix command line using
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git clone http://github.com/waynebhayes/SANA
SANA is written in C++ and runs best on the Unix command line.

It has been tested with gcc 4.8, 4.9, 5.2, and 5.4, and runs on Unix,
Linux, Mac OS/X, and under the Windows-based Unix emulator
Cygwin (http://cygwin.com), 32-bit or 64-bit. SANA has
a rudimentary Web interface at http://sana.ics.uci.edu,
and a rudimentary SANA app is available in the Cytoscape app
store. SANA expects its input networks to be in a two-column
ASCII format we call edge list format: each line is one edge,
specified by listing the two nodes at each end of the edge in arbitrary
order (unless -nodes-have-types is specified, see below).
Duplicate edges and self-loops are not allowed. We also supply a
program called createEdgeList that can convert the following
types of formats into SANA’s edgeList format: XML, GML, LEDA,
.gw, CSV, LGF.

1.2 Alignment measures & objective functions
An alignment measure is any quantity designed to evaluate the
quality of a network alignment. Alignment measures can be
classified along many axes.

1.2.1 Objective vs. non-objective measures. The first axis is the
distinction between objectives and what we call post-hoc measures.
While both can be evaluated on any given alignment, any measure
used to guide an alignment as it is being created is called an
objective function; any measure not used to guide the alignment
is generally applied after-the-fact as an independent measure of
quality. A good alignment algorithm should be able to use virtually
any measure as an objective, and also evaluate the alignment
after-the-fact using any other measures which were not used as
objectives.

1.2.2 Graph topology vs. biological measures. Another axis
along which measures can be classified is topological vs biological.

A topological measure quantifies a network alignment based solely
on graph-theoretic grounds. Several such measures exist: EC
(Kuchaiev et al., 2010), ICS (Patro and Kingsford, 2012), and
S3 (Saraph and Milenković, 2014) quantify the number of edges
in one network that are mapped to edges in the other network(s);
they are all described in more detail below. Other topological
measures use graphlets to quantify local structure (Pržulj et al.,
2004b; Milenković and Pržulj, 2008; Yaveroğlu et al., 2014; Malod-
Dognin and Pržulj, 2015), while still others use graph measures
such as spectral analysis (Patro and Kingsford, 2012) and degree
similarity-based measures such as Importance (Hashemifar and Xu,
2014).

Biological measures. In contrast, biological measures are usually
used to compare the nodes from different networks that have been
paired together by the alignment. For genes or proteins, a common
measure is the sequence similarity or BLAST score between the
aligned nodes (Camacho et al., 2009); sequence similarity is also
frequently combined with topology to produce a hybrid objective
function (see for example Kuchaiev and Pržulj (2011); Saraph and
Milenković (2014); Mamano and Hayes (2017); Malod-Dognin and
Pržulj (2015), among many others). Another biology-based measure
is the functional similarity between pairs of aligned proteins as
expressed by GO (Gene Ontology) terms (Consortium, 2008).

While many authors quantify the functional similarity exposed
by an alignment using the mean value of various pairwise GO
similarity measures across the alignment, such mean-of-pairwise-
scores assume each pair of aligned proteins is independent of
all others, which is not true in an alignment since every pair is
implicitly related to every other pair via the alignment itself. This
problem is alleviated by the NetGO score as implemented in SANA
(Hayes and Mamano, 2017), which is a global rather than local
scoring mechanism (see below for the meaning of local vs. global
measures).

1.2.3 Local vs. global measures. The final axis along which
network alignment measures can be classified is what we refer as
local vs. global measures.

A local measure is one that involves evaluating node pairs that
are aligned to each other, and has no explicit dependence on the
alignment edges and thus has no explicit dependence on network
topology. Examples of local measures include sequence similarity
and pairwise GO term similarity as described above; some local
measures such as graphlet similarity (Kuchaiev et al., 2010; Malod-
Dognin and Pržulj, 2015; Saraph and Milenković, 2014) and
Importance (Hashemifar and Xu, 2014) include topology indirectly
by pre-computing all-by-all pairwise local topological similarities
between all pairs of nodes in one network and all pairs of nodes in
the other.

Global measures are ones that implicitly or explicitly can be
computed only on the entire alignment and have nothing to do with
pairwise node similarities. The most common global measures are
EC, ICS, and S3, described in more detail below.

1.3 Major Topological Measures
1.3.1 A useful analogy for topological measures. In order to
more easily understand and discuss topological measures, we
introduce an analogy between pairwise network alignment, and the
old board game of Battleship. A Battleship game consists of many
holes in a board, and some pegs that are placed into the holes. In our
analogy, assume G1 is a “smaller” network with n1 nodes and m1

edges, and G2 is a “larger” network with n2 nodes and m2 edges,
and we assume that n1 ≤ n2—that is, G1 is the smaller network
in terms of number of nodes. We will furthermore depict G1 as
blue and G2 as red. Consider Figure 1: this board has n2 = 6 red
holes with red edges painted between two holes if there is an edge
between the two corresponding nodes in G2. The smaller network
G1 is represented by n1 = 4 blue pegs; edges between the pegs are
represented by blue “laser beams” between the corresponding pegs
(because laser beams don’t get tangled as pegs are moved from hole
to hole). Any placement of the n1 pegs into the n2 holes represents
an alignment between G1 and G2; for now we assume that each
peg is placed into exactly one hole, so that there are exactly n2−n1

empty holes. Furthermore, since mixing red and blue creates purple,
we depict the alignment (far right of Figure 1) in purple: a blue peg
in a red hole is purple, and a blue edge lying on top of a red one is
also depicted as purple.

1.3.2 Edge-based measures: EC, ICS, S3 We can now define
some edge-based topological measures based on this analogy. The
fraction of laser beams that lie on top of painted edges is called the
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Fig. 1. A simple example of a network alignment. The smaller network G1

(far left) has its pegs, numbered 1–4, and edges (“laser beams”) depicted
in blue; the larger network G2 (middle) has its holes and painted edges
depicted in red. One possible alignment (in this case the “visually obvious”
one) is depicted at the far right. Here, aligned nodes and edges are depicted
as purple; unaligned laser beams from G1 are still blue, and unaligned holes
and edges from G2 are still red. As stated in the text, in an alignment figure
like the one on the right, the number of edges in G1 is always m1 =(purple
+ blue edges), and the number of edges in G2 is always m2 =(purple + red
edges). Thus, from the figure, it can be easily seen that EC = 3/5, and
S3 = 3/6 (where 6 is the total number of edges visible across all colors
on the subgraph induced by the alignment); also ICS = 3/4, since there
are 4 edges induced in G2 by the alignment (ie., by purple nodes). The
purple network is called the Common Subgraph, and it can consist of several
connected components. In this case there is only one Common Connected
Subgraph consisting of 4 nodes and 3 edges.

EC1 (Kuchaiev et al., 2010). The numerator of EC is the number
of (purple) edges that are aligned between the two networks, call
it AE (an integer), while the denominator is m1; note that since
at most m1 edges can be aligned, the value EC = AE/m1 is
always less than or equal to 1. The authors of MAGNA (Saraph
and Milenković, 2014) noted that EC is asymmetric: in particular,
if n1 = n2 then we can “turn the board upside down”, swapping
the roles of pegs and holes. In that case, the EC changes because
G1 and G2 are swapped: in particular, the numerator is always the
number of aligned edges AE, but the denominator switches from
m1 to m2.

The authors of MAGNA fixed the asymmetry of EC by
introducing the Symmetric Substructure Score or S3. Consider the
rightmost section of Figure 1, which depicts a proposed alignment.
In our analogy, if we “look down” on the alignment from above,
we can see four different types of edges. There are: (i) AE
aligned (purple) edges; (ii) UE1 unaligned (blue) edges from G1;
(iii) UE2in unaligned (red) edges in G2 induced between purple
nodes; and (iv) UE2out unaligned (red) edges outside the alignment
(ie., not induced between purple nodes). Note that the following
equations always hold: m1 = AE + UE1 and m2 = AE +
UE2in + UE2out. Whereas EC = AE/m1, S3 is defined as
AE/(AE + UE1 + UE2in), and is thus symmetric with respect
to the interchange of G1 and G2. Another way of saying this
is that both EC and S3 are rewarded for purple edges in the
numerator, but EC’s denominator is penalized only for blue edges
in its denominator, whereas S3 is penalized in its denominator for
both blue and red edges induced by the alignment.

Another measure called ICS Induced Conserved Substructure
(Patro and Kingsford, 2012) measures AE divided by the number
of painted edges that exist only between holes that have pegs in
them. ICS has the significant disadvantage that it can be maximized
by finding a network alignment that minimizes the number of edges

1 Variously called Edge Coverage, Edge Correspondence, or Edge
Correctness by various authors

between filled holes(Saraph and Milenković, 2014; Vijayan et al.,
2015; Mamano and Hayes, 2017), which can hardly be said to be
a good alignment. Consider again Figure 1. The reason ICS is a
bad measure is because we could make it equal to 2/2, ie. 1, by
moving node 2 to align with e and 3 to align with f ; then there
would be 2 purple edges (a-1 to d-4, and e-2 to f -3) and no red
edges induced by the alignment onG2, even though there would be 3
blue edges (1-2, 4-3, and 1-3) unaligned from G1. Thus there exists
an alignment with ICS = 1 even though it only exposes 2 edges
of common topology, which is less common topology discovered
by maximizing either EC or S3. This demonstrates the general
principle that choosing the right objective function is crucial to
getting good alignments.

1.3.3 Graphlet-based measures. Graphlets (Pržulj et al., 2004a,b)
are small, connected, induced subgraphs on a larger graph. They
have myriad uses, such as quantifying global topological structure
(Pržulj et al., 2004b; Yaveroğlu et al., 2014). Enumerating graphlets
in a large graph is an NP -hard problem and much work has gone
into heuristics to make their enumeration more efficient. SANA
uses ORCA (Hočevar and Demšar, 2014) to exhaustively enumerate
graphlets in a network. By computing an orbit degree vector
(Milenković and Pržulj, 2008), one can create a local measure that
compares the orbit degree vectors of two nodes (one from each
network); that local measure can then be used as an objective
to guide the alignment. GRAAL (Kuchaiev et al., 2010) was the
first to use orbit degree vectors2, and SANA uses the exact same
mechanism. However, as networks grow larger, the exhaustive
enumeration of its graphlets is becoming very expensive. For
example, ORCA takes more than 24 hours to compute the orbit
degree vectors when aligning the 2018 BioGRID (Chatr-Aryamontri
et al., 2017) networks of H. sapiens and S. cerevisiae. Instead,
we intend to move SANA towards statistical sampling of graphlets
which can be accomplished far faster and produce results with low
frequency error and high confidence (see for example Rossi et al.
(2017); Yang et al. (2018); Hasan et al. (2017)).

1.3.4 Which topological score to use? We believe that one of
the major outstanding questions in network alignment is the design
of good topological objective functions. While most measures
that currently exist have been shown to correlate with interesting
biological information, none have been shown to be substantially
better than any other in terms of recovering relevant biology. For
example, while S3 is symmetric and can thus be considered a more
aesthetically pleasing measure from a mathematical standpoint, it’s
by no means clear that it actually produces better correlations with
biology thanEC. And while graphlets have been shown to correlate
with biological information (Kuchaiev et al., 2010; Malod-Dognin
and Pržulj, 2015; Davis et al., 2015), it is not clear that we know
the best way to use them to recover the greatest amount of relevant
biological information (cf. Section 3.1, especially Table 4). In
general, the design of good topological objective functions is a
wide-open area of research that deserves to be explored. SANA,
with its speed and accuracy, is an ideal playground for exploring
objective functions.

2 In the GRAAL paper we used the term “graphlet degree vector” but it’s
more correctly called an “orbit degree vector” because it’s a vector of orbit
counts, not graphlet counts.
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To explain what we mean by experimenting with objective
functions, consider Figure 2. There are three orthogonal components
to network alignment: (1) a (possibly vague) scientific or
informational goal G; (2) an objective function M created by the
user that attempts to formally encode G; and (3) an alignment
algorithm S that builds an alignment trying to optimize M . In
sequence alignment, the three orthogonal components are clearly
delimited: the substitution/indel cost matrix encodes the goal the
user wants, and tools like BLAST (Camacho et al., 2009) quickly
find (near-)optimal solutions. Practitioners can use BLAST without
having to understand the details of how it works. It is a trusted
tool, like a C++ compiler is to a developer, or a linear solver
to a scientist solving a linear system; practitioners iterate the
familiar edit-compile-debug loop, gaining knowledge from the
feedback process until they are satisfied that they have achieved
their goal. Unfortunately, this edit-compile-debug loop is virtually
impossible in the network alignment arena, due to (i) the the lack of
an algorithm fast enough to perform effective edit-compile-debug
loops, (ii) the lack of a generally-accepted “gold standard” of
network alignment, and (iii) the lack of a clear separation of the
goal, its formalized objective, and the alignment tool. SANA fixes
the first two; the third is a matter of scientific culture in the network
alignment community that we hope to influence by spreading the
use of SANA in conjunction with the process depicted in Figure 2.

The Software Development Cycle 
1. Edit source of program P to implement 

ideas/changes/fix bugs to so it implements 
your science goal. 

2. Compile P: create correct, efficient 
executable E(P) implementing P at machine 
level. 

3. Run E(P), producing output. 
4. Evaluate output, decide if P did what you 

wanted or expected. 
5. Think how to modify P to better obtain your 

science goal. 
6. Go back to step 1 (or possibly change 

science goal). 

Proposed Alignment Objective Development Cycle 
1. Edit objective function F to implement 

ideas/changes/fix bugs to so it implements 
your science goal. 

2. Create an efficient algorithm S that 
optimizes the objective F(A, G1,G2) across 
all possible alignments A. 

3. Run S(F, G1, G2), producing alignment A. 
4. Evaluate alignment A, decide if F did what 

you wanted or expected 
5. Think how to modify F to better obtain your 

science goal. 
6. Go back to step 1 (or possibly change 

science goal). 

Fig. 2. Comparison of the standard software development cycle
(left), and proposed cycle for developing new objective functions
for alignment (right). Red highlights the step that should be entirely
automated and requiring no effort on the user’s part.

1.3.5 Using sequence similarity as an objective—a necessary but
hopefully temporary evil It may help here to (re-)state the obvious:
the whole point of network alignment is to align networks based
upon their network topology. This is a desirable goal because
there is a strong belief that the topology of a network is somehow
related to its function. For example, we believe that humans and
chimpanzees are very close relatives, taxonomically speaking. If
there is a particular protein h0 in humans that performs a certain
function by interacting with seven other proteins h1, h2, . . . , h7,
then it is quite likely that there is a very similar protein c0
in chimpanzees that also interacts with (close to) seven proteins
c1, c2, . . . , c7 to perform virtually the same function. Another way
of saying this is that the network topology of the protein-protein
interaction networks of human and chimp are likely to be very
similar in the vicinity of h0 and c0, respectively. As such, a natural
network alignment between human and chimp should contain the
ordered pairs (h0, c0), (h1, c1), . . . , (h7, c7). If the network of

interactions around h0 and c0 are in fact similar, then any network
alignment algorithm worth its mettle, optimizing an objective that
highlights such network similarities, should include the above pairs
with high likelihood.

The problem, at least in the research area of protein-protein
interaciton (PPI) networks, is that the data on current PPI networks
is extremely incomplete in terms of enumerating the edges in the PPI
networks. For example, as of 2018, the most complete PPI network
is that of S. cerevisiae, and it may be only about 50% complete;
the human PPI network is probably less than 10% complete (Vidal,
2016); other species are even far less complete. For instance,
we’d expect most mammals to have about the same number of
interactions in their PPI networks, and yet the 2018 BioGRID
Human network has almost 300,000 interactions, but mouse and
rat have only 38,000 and 5,000 interactions listed, respectively.
If Human is only 10% complete and currenthly contains 300,000
interactions, then we may expect the complete interactome to have
over 1 million interactions. By this measure, mouse and rat are
at most a few percent, and well less than one percent complete,
respectively. Here’s the crux: if we are missing 90% or more of
the edges in most mammal PPI networks, no network alignment
algorithm based solely upon network topology has any hope of
providing good alignments. This is the state of affairs in PPI network
alignment.

Thus, it is no surprise that virtually every network alignment
algorithm currently in existence must rely on using sequence
similarity information to help give network alignments that show
decent functional similarity. However, if network alignment is of any
worth whatsoever, the use of sequence similarity should be viewed
only as a temporary crutch—a necessary evil—until such time as
the interactions in PPI networks are more completely enumerated.

On the other hand, since protein function is defined by the shape
of the folded protein, and disrupting the function of a protein can be
lethal, the folded structure of a protein tends to be better conserved
than its sequence (Lesk and Chothia, 1986). This in turn suggests
that the network of interactions may also be better conserved than
sequence. If this is the case, then network alignment may ultimately
be at least as useful as sequence alignment in terms of learning about
protein function. Alas, we must wait until PPI networks are far more
complete than they are today to test this hypothesis.

1.4 Search Algorithms
Given two networks with n1 ≤ n2 nodes, respectively, the number
of possible 1-to-1 pairwise global network alignments between them
is exactly n2!

(n2−n1)!
. This is an enormous number; for example if

the two networks each have thousands of nodes (not uncommon
for protein-protein interaction networks), the the number of possible
alignments can easily exceed 10100,000. This is an enormous search
space, far larger, for example, than the number of elementary
particles in the known universe—which according to Wikipedia is
a paltry 10100.

The task of a network alignment algorithm is to search through
this enormous space of possible alignments, looking for ones that
score well according to one or more of the measures described in
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Section 1.2. Since network alignment is an NP-complete problem3,
all such algorithms must use heuristics to navigate this enormous
search space. Search methods abound; several good review papers
exist (Clark and Kalita, 2014; Faisal et al., 2015b; Milano et al.,
2017; Guzzi and Milenković, 2017); for an extensive comparison
specifically showing that SANA outperforms about a dozen of the
best existing algorithms, see Mamano and Hayes (2017). SANA is
virtually unique in that it was designed from the start to be able to
optimize any objective function, including the objective functions
introduced by other researchers; a preliminary report shows that
SANA outperforms over a dozen other algorithms at optimizing
their own objective functions (Kanne and Hayes, 2017).

1.5 Requirements of a good alignment algorithm
We believe that, in order to be of general use, a network alignment
algorithm must satisfy the following properties:

Speed, if so desired. SANA can produce better alignments in
minutes that most other aligners can in hours. This is useful for
many reasons: to perform test alignments; to experiment with
objective functions; to perform multiple alignments of the same pair
of networks in order to see which parts of the alignment, if any,
come out the same each time (more on this later).

High quality of results, if so desired. SANA’s primary user-tunable
parameter is the amount of time the user wishes to wait. While
SANA can produce better alignments in one minute on a laptop
than many existing algorithms can do given hours of CPU, users
can also tell SANA to spend any amount of time improving the
alignment, such as 5 minutes, 3 hours, or a week. SANA generally
produces better scoring alignments with longer run times, although
we generally see a point of diminishing returns beyond a few hours.

It should be simple to use. By this we mean that if there are
any algorithmic parameters that crucially control the quality of the
result, those parameters should be tuned automatically without user
input—in other words, the user should not need be an expert on the
algorithm in order to understand how to use it. The primary internal
parameters controlling the anneal is the temperature schedule, and
by default SANA spends a minute or two automatically finding
a near-optimal temperature schedule before starting the anneal.
(Another algorithm called SailMCS (Larsen et al., 2016) also uses
simulated annealing but fails to automatically determine a good
temperature schedule, and so SANA produces alignments that are
far superior to those of SailMCS (Kanne and Hayes, 2017).)

Providing confidence estimates on the quality of the alignment. For
example, if some set of pegs P1 always end up in the same holes
every time SANA is run and another set of pegs P2 end up in
different holes each time SANA is run, this suggests the set P1

is confidently aligned, whereas we should be suspicious about the
alignment of pegs in P2. Few algorithms are capable of this sort of
confidence testing of the alignment; SANA, on the other hand, is
so fast that it is easy to look for such core alignments (Milenković
et al., 2010)—cf. Section 3.1.

3 For those who are inclined to graph theory, the proof is trivial: finding
a network alignment with an EC of exactly 1 is equivalent to solving the
subgraph isomorphism problem.

Flexible with objective functions. SANA has over a dozen pre-
programmed objective functions that users can experiment with.
In addition, users can supply SANA with externally computed
similarity matrices, either node-to-node, or edge-to-edge. Finally,
we have tried to make the code base of SANA clear so that anybody
familiar with C++ can program new objective functions easily.

Able to handle nodes that have ASCII names rather than only
allowing integers as node identifiers. To a programmer, creating
a mapping between ASCII names and integers is easy. To non-
programmers this is not so easy, and many aligners have the
inexcusable fault of insisting that nodes are named by sequential
integers. SANA does this internally but allows users to use whatever
names they want to identify nodes.

Available to plug in to existing popular tools such as Cytoscape.
SANA is available in the Cytoscape App store.

Able to handle multiple input graph formats. Currently SANA
only natively accepts networks in edge list format, and LEDA.gw
format. The former is a line-by-line list of edges (two nodes from
the same network listed on one line), while the latter is a rather
deprecated format used by an old version of LEDA (Mehlhorn
and Naher, 1999). However, we do provide a converter called
createEdgeList that outputs our edge list format given any of
the following input formats: GML, XML, graphML, LEDA, CSV,
and LGF.

1.6 The value of randomness: core alignments
SANA shares one important aspect with a few other aligners
including MAGNA (Saraph and Milenković, 2014; Vijayan et al.,
2015) and OptNetAlign (Clark and Kalita, 2015): it is a randomized
search algorithm. Like these other algorithms, SANA starts with
a random alignment and then starts to move pegs around between
holes; each time it tries to swap or move pegs around, it asks if
the objective function has gotten better or not. As time progresses,
the alignment gets better according to the objective function. If the
objective function is an easy one to optimize, SANA will quickly
find the optimal or near-optimal alignment (Mamano and Hayes,
2017; Kanne and Hayes, 2017); in harder cases it will simply find
better-and-better solutions as it is given more time.

The fact that SANA intentionally injects randomness has some
surprising positive aspects. In particular, if there exist highly similar
regions between the two networks G1 and G2, SANA is likely to
find them and align them identically every time, despite starting with
a different random alignment each time. If there are other parts of
the networks that are dissimilar and there is no obvious way to align
them correctly, those regions are likely to get aligned differently
each time SANA is run. Given two regions R1 in G1 and R2 in
G2, the more topologically similar R1 is to R2, the more likely it
is that SANA will align them the same way every time it is run,
independent of the randomness. Since SANA is extremely fast, and
since it has this random aspect, it is relatively painless to run SANA
many times on the same pair of networks and look for pairs of
nodes that are aligned together frequently. We use the term core
alignment to refer to pairs of nodes that are stable across many runs
of SANA; the more frequently a pair of nodes is aligned together,
the more confident we are that they truly belong together according
to the objective function being optimized. So for example, if we
run SANA 10 times on the same 2 networks and produce output
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files out0.align, out1.align, out2.align, . . ., out9.align, then we can
trivially measure the core frequencies on the Unix command line as
follows:
$ sort out?.align | uniq -c | sort -nr
The first sort puts identical lines from all 10 files side-by-side;
the uniq -c counts how many unique lines are side-by-side (thus
measuring core frequency), and the final sort -nr then sorts the
aligned pairs of nodes by frequency, most frequent pairs of nodes
first—that is, the most confident parts of the alignment are listed
first. Note that the output of the above command line is a list
of pairs precedid by their frequency. Note in particular that, even
though SANA is a 1-to-1 aligner per run, with multiple runs we can
produce non-1-to-1 mappings between the two networks, along with
a confidence level for each particular pair.4

1.7 Limitations of SANA
Currently, SANA aligns only two networks at a time. Each time,
it produces a 1-to-1 mapping between the nodes of the smaller
network to the nodes of the larger one (ie., an arrangement of
pegs into holes). So technically, SANA is a global, pairwise, 1-
to-1 alignment algorithm—the simplest type of global alignment
algorithm. However, as we described above, SANA produces good
alignments so quickly that it can be run many times on the same pair
of networks in the same time it takes to run most other algorithms
just once; by running SANA many times we effectively produce not
only a non-1-to-1 mapping, but also a confidence estimate of each
pair of nodes we output. So far as we are aware, no other algorithm
produces such confidence estimates.

Furthermore, even though SANA technically aligns only 2
networks at a time, in the Appendix of this paper we describe a
prototype version of multi-SANA that uses pairwise alignments to
construct a multiple network alignment.

Thus, although SANA is technically only a 1-to-1 pairwise
network aligner, it can effectively produce both many-to-many
alignments (with confidences), and multiple alignments.

2 EXAMPLES OF USAGE
2.1 Getting started with SANA
Table 1 contains a sequence of Unix Shell commands that will
download the repo from GitHub, compile SANA, and perform your
first test of SANA to ensure everything works.

The most basic run of SANA requires the user only to specify
which two networks to align; in Table 1 it is the 2018 BioGRID
renditions of Rattus norvegicus (the common sewer rat, aka lab rat),
and the single-celled yeast Schizosaccharomyces pombe. SANA
defaults to using S3 as the objective function, and 5 minutes as
the amount of time to perform simulated annealing. Total run
time is about 6–7 minutes including the initial computation of the
temperature schedule, which we now describe.

Simulated annealing only works well if the temperature schedule
is chosen carefully. We must start with a temperature high enough
that moves are essentially random, so that even bad moves are

4 We are also working on functionality to produce core alignments in one
run of SANA; that functionality may exist by the time this article goes to
press and accessible via the command-line option “-cores”.

frequently accepted (this keeps us out of local minima); and then
end with a temperature low enough that only good moves are
accepted (to hone in on the best local maximum once we’ve found
its general vicinity). Empirically, we are controlling the probability
of accepting a bad move, or pBad; it must start close to 1, and
end close to zero. Unfortunately there’s no analytical method to
compute these extremes, so the first 1-2 minutes of SANA are spent
estimating the initial temperature tinitial, the final temperature
tfinal that gives a pBad starting near 1 and ending near zero, along
with the tdecay , the temperature decay rate that gets us from one to
the other in the allotted time (5 minutes by default).

Next you will see the statement, Start execution of
SANA s3 which says SANA is finally starting the anneal,
optimizing s3. After that, you’ll see updates every few seconds
as SANA progresses. These updates show the update number, the
elapsed time so far, the current score, some statistical theoretical
values that don’t concern us here, and the sampled pBad, which
should start above 0.98 and end somewhere below about 1e-6.

Once SANA is finished running, there are exactly two output files
(whose names can be changed with the “-o” option): sana.out
contains as its first (long) line an internal representation of the
alignment, followed by some human-readable statistics; an example
is in Table 2. The second file, called sana.align, contains
the actual alignment in two-column format: on each line, the left
column contains a node (“peg”) fromG1 and the right column is the
aligned node (“hole”) from G2.

The default objective function is S3; changing the objective
function is easy on the command line. For example to have SANA
optimize a 50-50 combination of EC and S3, type
./sana -ec 0.5 -s3 0.5 -fg1 ...
To turn off S3 entirely and perform an EC-only alignment, do
./sana -s3 0 -ec 1 -fg1 ...
To perform an alignmet that optimizes 90% Importance as defined
by HubAlign (Hashemifar and Xu, 2014) 5% graphlets as used by
GRAAL (Kuchaiev et al., 2010), 5% EC, and no S3, do
./sana -s3 0 -importance 0.9 -graphlets 0.05 -ec
0.05 ...
Note that one does not need to manually ensure that all the weights
specified on the command line add to 1; if they do not, SANA will
simply re-normalize them all so that they add to 1.

Similarly, the are many other objective functions defined by
SANA; currently implemented ones are listed in Table 3.

2.2 Direct comparison with other aligners
As a part of our first publication on SANA (Mamano and Hayes,
2017), we wanted to automate the process of directly comparing
to many other existing aligners. Thus, the external source code
of over a dozen existing aligners were directly incorporated into
SANA so that they can be called from the SANA command
line. This was done to ensure consistent calling conventions
to these other aligners during our comparisons. These other
methods can be called from the SANA command line using the
-method argument. In the SANA repo, these other aligners are
in the directory wrappedAlgorithms; see the online SANA
documentation for more details.5 The other aligners currently

5 If you are an author of one of these aligners and notice that SANA is not
using your algorithm optimally, feel free to contact us with any corrections.
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# Lines like this are comments. The Unix/Bash prompt is the dollar sign.
# First use "git" to clone the repo:
$ git clone http://github.com/waynebhayes/SANA
Cloning into ’SANA’... #git output deleted
$ cd SANA; make # now wait a few minutes...
# Run SANA for the first time on the 2018 BioGRID networks of rat and S. pombe:
$ ./sana -fg1 networks/RNorvegicus18.el -fg2 networks/SPombe18.el
# wait while SANA computes a temperature schedule and then performs the alignment...
$ cat sana.out # look at the output file; first line is an internal
# representation of the alignment and can be ignored.
$ head -3 sana.align # left column is a BioGRID node name from rat, right from S.pombe.
361207 2542195
316265 2541287
499382 2539901
$

Table 1. Getting started with SANA on the Unix command line. We first clone the repo from GitHub, then “make” SANA, then run it on the two smallest
BioGRID 2018 networks: R. norvegicus and S. pombe. We then look at the output file sana.out, which contains scores and other useful information, as well
as the actual alignment file sana.align. SANA has many command-line options; type “../sana -h | less” to see a long list of them.

incorporated into SANA are LGRAAL (Malod-Dognin and Pržulj,
2015), MAGNA++ (Vijayan et al., 2015), HubAlign (Hashemifar
and Xu, 2014), WAVE (Sun et al., 2015), NETAL (Neyshabur
et al., 2013), MIGRAAL (Kuchaiev and Pržulj, 2011), GHOST
(Patro and Kingsford, 2012), PISWAP (Chindelevitch et al., 2013),
OptNetAlign (Clark and Kalita, 2015), SPINAL (Aladağ and
Erten, 2013), GREAT (Crawford and Milenković, 2015), NATALIE
2.0 (El-Kebir et al., 2011), GEDEVO (Ibragimov et al., 2013),
CytoGEDEVO (Malek et al., 2016), BEAMS (Alkan and Erten,
2014), HGRAAL (Milenković et al., 2010), PINALOG (Phan and
Sternberg, 2012).

3 AN EXAMPLE OF OBJECTIVE FUNCTION
EXPERIMENTATION

As shown in Figure 2, SANA can be used to experiment with
objective functions; we believe that such experimentation is one
of the most important but apparently under-appreciated aspects
of the science of network alignment. Here we describe one such
experiment with a very well-defined scientific goal.

3.1 Gene–microRNA networks
Consider a set of gene-microRNA (mRNA) networks (Tokar et al.,
2017), one network for each species. These networks are bipartite,
meaning that genes interact with microRNAs, but neither genes nor
microRNAs interact with their own type. Thus, when aligning two
gene-mRNA networks, we wish to align genes from one network to
genes in the other, and mRNAs in one to mRNAs in the other, but we
should never align a gene to an mRNA or vice-versa. In essence, the
nodes have two types, and we must provide a type-specific network
alignment.

At first, SANA did not have the functionality to provide a typed-
node alignment.6 The question was: how do the various topological

6 It does now, using the -nodes-have-types argument, in which case
we assume that the first column in the edge list is one type, and the second
column is the other type. Only two types are supported at the moment.

objective functions compare in their ability to automatically align
types correctly, given that typing is not enforced by the alignment
algorithm?

Referring to Figure 2, the scientific goal is clear: maximize the
fraction of nodes that are aligned to like-type nodes in the other
network. The question is now, which topological objective function
best achieves this scientific goal?

We received 535 networks directly from one of the authors of
Tokar et al. (2017). We chose 1,000 pairs of networks at random
out of the

(
535
2

)
= 142, 845 possible pairs of networks. For each

pair of networks, we tested the following objective functions for
their ability to correctly align nodes of like type to each other
when this was not enforced: EC, S3, Importance (Hashemifar and
Xu, 2014), GRAAL-type graphlet orbit signatures (Milenković and
Pržulj, 2008; Kuchaiev et al., 2010), and LGRAAL-type graphlet
orbit signatures (Malod-Dognin and Pržulj, 2015). To further test the
dependence on runtime, we ran SANA on all the above objectives
for all 1,000 networks for runtimes of 1 and 4 minutes. Finally, to
look at the frequency of core alignments, we performed each of the
above pairs 5 times each. The results are in Table 4.

One column of great interest is the “mix” column, which counts
the number of times, out of the approximately 30 million pairs of
aligned nodes, in which a gene from one network was aligned to an
mRNA in the other network—which is the kind of mis-typed node
alignment we are trying to avoid. The rows are sorted best-to-worst
by this measure, in each of the 1-minute and 4-minute sub-tables.
As we can see, the EC objective scores best at avoiding this kind of
mis-typed alignment. In the 1-minute runs, EC aligns unlike typed
node-pairs in only 0.65% of cases; S3 is a close second, mis-typing
just under 1% of the aligned pairs of nodes. In contrast, HubAlign’s
Importance measure (Hashemifar and Xu, 2014) is almost 20 times
worse in terms of incorrectly aligning nodes of different types, doing
so in about 15% of aligned pairs of nodes, while both graphlet
measures fare the worst, aligning unlike-type nodes in over 20%
of cases.

Even more interesting is the 4 minute runs, in which EC cuts its
mis-typed node alignment in half, down to about 0.3% of aligned
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Table 2. The sana.out file (whose name can be changed using the -o command-line option) contains information about the input networks (nodes,
edges, connected components) and an analysis of the alignment (various measures applied to the entire alignment, and also applied to the common connected
subgraphs).

2018-06-15 15:21:57

G1: yeast
n = 2390
m = 16127
#connectedComponents = 158
Largest connectedComponents (nodes, edges) = (1994, 15819) (10, 32) (6, 11)

G2: human
n = 9141
m = 41456
#connectedComponents = 94
Largest connectedComponents (nodes, edges) = (8934, 41341) (5, 4) (4, 3)

Method: SANA_s3
Temperature schedule:
T_initial: 0.000316228
T_decay: 6.61993
Optimize:
weight s3: 1
Requested Execution time: 5 minutes

Actual execution time = 300.976 seconds

Random Seed: 514154230

Scores:
ec: 0.397966
mec: 1
ses: 35381
ics: 0.831563
s3: 0.368279
lccs: 0.248768
sec: 0.222913

Common subgraph:
n = 2390
m = 6418
#connectedComponents = 395
Largest connectedComponents (nodes, edges) = (1059, 4805) (53, 263) (48, 69)

Common connected subgraphs:
Graph n m alig-edges indu-edges EC ICS S3
G1 2390 16127 6418 7718 0.397966 0.831563 0.368279
CCS_0 1059 4805 4805 5790 1.000000 0.829879 0.829879
CCS_1 53 263 263 268 1.000000 0.981343 0.981343
CCS_2 48 69 69 73 1.000000 0.945205 0.945205
CCS_3 34 68 68 70 1.000000 0.971429 0.971429
CCS_4 33 50 50 52 1.000000 0.961538 0.961538
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Table 3. Measures accepted by SANA on the command line. Note that “Name” means “command-line option”, so for example to give ec a weight of 0.5, use
“-ec 0.5” on the SANA command line.

Name Description
s3 Symmetric Substructure Score (Saraph and Milenković, 2014)
ec Edge Coverage/Correspondence/Correctness (Kuchaiev et al., 2010)
ics Induced Conserved Structure (Patro and Kingsford, 2012)
graphlet Orbit Degree Vector (ODV) Similarity (Milenković and Pržulj, 2008; Kuchaiev et al., 2010)
graphletlgraal LGRAAL-normalization of ODV sim (Malod-Dognin and Pržulj, 2015)
go Mean ResnikMax GO similarity (Resnik, 1995; Ashburner et al., 2000)
NetGO Network-alignment-based GO similarity (Hayes and Mamano, 2017)
wec Weighted EC (Sun et al., 2015)
esim External file defining node-pair similarities
sequence BLANT-based sequence similarities (Camacho et al., 2009)
lccs Largest Common Connected Subgraph (Kuchaiev et al., 2010)
nc Node Correctness (if known, defines the exact alignment)
spc Shortest Path Conservation (Mamano and Hayes, 2017)
edgeCount degree difference
edgeDensity relative degree difference
importance HubAlign’s Importance (Hashemifar and Xu, 2014)
nodeDensity local node density
ewec External edge-based similarity matrix, eg., edge-graphlet similarity(Crawford and Milenković, 2015)
sequence BLAST bit scores based on protein sequence similarity (Camacho et al., 2009)

Table 4. Table of results when testing various objective functions (leftmost column) for their ability to correctly align genes-to-genes, and mRNAs-to-mRNAs,
when aligning a pair of gene-mNRA networks (Tokar et al., 2017). Objectives tested were EC (Kuchaiev et al., 2010), S3 (Saraph and Milenković, 2014),
Importance (Hashemifar and Xu, 2014), graphlet (Milenković and Pržulj, 2008; Kuchaiev et al., 2010), and graphlet-LGRAAL (Malod-Dognin and Pržulj,
2015). The columns are as follows. pairs: total number of pairs of nodes aligned in all 1,000 network pairs that were run 5 times each. 2*Gene: number of
pairs in which a gene was correctly aligned to another gene. mix: number of pairs in which a gene in one network was aligned to an mRNA in the other.
2*RNA: number of pairs in which an mRNA was aligned to another mRNA. coreFreq(XY)> 1: the number of aligned pairs that had a core frequency greater
than 1 (indicating the objective function strongly prefers to align this pair of nodes together) for type-pairs GG, MG, and MM.

1 minute runs
objective pairs 2*Gene mix 2*RNA coreFreq(GG)> 1 coreFreq(MG)> 1 coreFreq(MM)> 1

ec 30424880 29953074 198792 273014 1268806 570 3169
s3 30424880 29986047 284470 154363 1093307 2947 688
importance 30241594 25434876 4658345 148373 651969 114137 1386
graphlet-GRAAL 30424880 24109670 6176510 138700 1902554 449738 17331
graphlet-LGRAAL 30424880 23056815 7305611 62454 1718519 584735 7086

4 minute runs
objective pairs 2*Gene mix 2*RNA coreFreq(GG)> 1 coreFreq(MG)> 1 coreFreq(MM)> 1

ec 30424880 30055465 97811 271604 1245103 208 5908
s3 30424880 29953309 283313 188258 1092319 3779 1508
importance 30292547 25473995 4669942 148610 652830 114815 1621
graphlet-GRAAL 30424880 24104880 6180836 139164 2208583 502806 25308
graphlet-LGRAAL 30424880 23051615 7310109 63156 2090416 692752 10504

pairs, while all other measures fail to improve their “mix” column
with the longer runtime.

Recall that if SANA aligns the same pair of nodes together in
more than one run, we say that pair is in the core alignment, because
the objective function is unlikely to align two nodes together more
than once by chance. Another column of great interest is thus the
coreFreq(MG)> 1 column, which tells us how frequently the
objective function seems to strongly prefer mis-aligning a pair of
nodes of different types. Again we see that the EC measure is by
far the best measure by this criterion: in the 1 minute runs, only 570
mistyped pairs appear out of 30 million (about 2 per 100,000 pairs),

while the 4 minute runs cut that “error rate” in half, suggesting
that longer runs will do a better job of correctly aligning types.
Meanwhile, S3 does 10x worse at 1 minute and gets more bad in
the 4 minute runs, while importance and both graphlet measures
misalign orders of magnitude more typed pairs, presenting a strong
preference for misaligning nodes in about 1–2% of pairs.

We conclude that theEC measure is, by far, the best available
objective function for this particular purpose among those we
tested. For the moment we do not hypothesize why this is the case,
but empirically the result seems iron-clad. While we agree that
the S3 measure is mathematically more aesthetically pleasing and
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would seem to be a better measure intuitively, for this particular
purpose EC seems to work better. The author finds the poor
performance of graphlet-based measures particularly surprising,
since the author is a strong believer that graphlets are a useful
tool for network analysis (see for example Hasan et al. (2017))—
and graphlets have certainly demonstrated their value in other
contexts (Davis et al., 2015; Yaveroğlu et al., 2014). However,
these results suggest that perhaps orbit degree signatures as they
are currently defined (Milenković and Pržulj, 2008; Kuchaiev et al.,
2010; Malod-Dognin and Pržulj, 2015) may not be the best way
to leverage graphlet-based information in the context of global
pairwise network alignment.

4 CONCLUSION
We have described the use of SANA (Mamano and Hayes, 2017),
the Simulated Annealing Network Aligner, in the context of the
pairwise 1-to-1 global alignment of biological networks. SANA
provides many advantages over the many other aligners currently
available: as a search algorithm, it is lightning fast, producing well-
scoring alignments in minutes rather than hours; it provides a large
array of objective functions users may wish to experiment with, as
well as the facility to add more objectives in the future; it does not
require the user to know much about the internal workings of the
aligner in order to use it; and it is well on the way towards being fully
integrated into popular network analysis tools such as Cytoscape.

We have introduced the concept of objective function experimentation
(cf. Figure 2 and Section 3.1), which we believe is at the core
of future developments in network alignment. SANA’s speed and
effectiveness makes it the ideal aligner to implement the process
depicted in Figure 2.

APPENDIX
A prototype of a multiple-network-alignment version of SANA
is available in the SANA GitHub repo. Simply re-compile
SANA with the -DWEIGHTED option on the command line
(see the Makefile), and the consult the Bourne shell script
multi-pairwise.sh; running it without any arguments
provides a short help message.

Questions about SANA, comments, or feature requests should be
directed to the author at whayes@uci.edu.
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