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Abstract

RNA is integral to the regulatory circuits that control cell identity and behavior. Cis-regulatory 

elements in mRNAs interact with RNA binding proteins (RBPs) that can alter RNA sequence, 

stability, and translation into protein. Similarly, long noncoding RNAs (lncRNAs) scaffold 

ribonucleoprotein complexes that mediate transcriptional and post-transcriptional regulation of 

gene expression. Indeed, cell programming is fundamental to multicellular life, and in this era of 

cellular therapies, it is of particular interest in T cells. Here, we review key concepts and recent 

advances in our understanding of the RNA circuits and RBPs that govern mammalian T cell 

differentiation and immune function.

RNA Circuitry in T cells

Gene expression programs define cell identity and govern cell behavior. Layered regulatory 

circuits sculpt spatiotemporal patterns of gene activity to create impressive complexity and 

environmental responsiveness from a single genomic blueprint. RNA molecules are integral 

to almost all of these regulatory circuits. RNA is the synthetic product of transcription 

and the template for protein translation, but also act as substrates for post-transcriptional 

regulation and as active mediators of regulatory processes. In this review, we discuss 

RNA circuits that operate in T cells to regulate their development, differentiation, and 

function in mammalian immunity. We aim to illuminate RNA circuits through the lens of 

cis-regulatory logic, focusing on the RNA sequence and structural elements that function 

through interaction with RNA binding proteins (RBPs) and/or other RNA molecules. Our 

increasing understanding of RNA circuits sharpens our view of cell programming and may 

enable their use in genomic and cell therapies.

RNA Binding Proteins

RNA binding proteins (RBPs) bind to linear and structural motifs in the coding region, 

introns, and untranslated regions (UTR) of transcripts to mediate alternative splicing, 

alternative polyadenylation usage (APA), RNA modifications, localization, stability, and 
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translation. Upon exposure to environmental stimuli or internal signaling, RBPs can 

relocalize and shuttle transcripts to different subcellular compartments to undergo different 

processes, including degradation and translation to generate an appropriate cellular response 

[1,2]. Regulatory circuits involving RBPs and their target transcript(s) modulate T cell 

differentiation and immune functions. Our expanding knowledge of the RBP repertoire and 

RNA binding sites in T cells provides an opportunity to deploy RNA-centric approaches for 

uncovering regulatory circuits that govern T cell function (Box 1).

Experimental approaches for mapping RBP-RNA interactions

A variety of forward proteomic methods detect interactions between specific RBPs and 

their target transcripts. RNA immunoprecipitation (RNA IP) pairs immunoprecipitation of 

a specific RBP with quantitative RT-PCR (qPCR) to identify its associated transcripts (Fig. 

1A). High throughput sequencing of crosslinking immunoprecipitation (HITS-CLIP) was 

developed to map the specific binding sites of an RBP (Fig 1B). This and many refined 

methods utilizing UV-crosslinking and RNAse digestion to produce small RNA libraries of 

bound sequences are widely used to produce transcriptome-wide RBP binding profiles at or 

near nucleotide resolution [3–7]. Conversely, RNA-centric reverse proteomics can be used 

to identify the RBP(s) that bind to known cis-regulatory regions (Fig. 1C). For example, 

RNA aptamers (See Glossary) have been instrumental in identifying RBPs that bind to AU 

rich elements (AREs) in the 3’UTR of mRNAs that encode the cytokines TNF-α and IFN-γ 
[8,9].

Recently developed methods profile the entire RBP repertoire and global RBP occupancy 

on transcripts. Both RNA interactome capture (RNA IC) [10–15] and the organic 

phase separation methods OOPS and XRNAX [16–18] systematically capture RBP:RNA 

complexes for downstream identification of proteins through mass spectrometry and binding 

sites through small RNA sequencing (Fig. 1D–E). Performed in the human Jurkat T cell line 

and in mouse and human primary T cells, these methods expanded the known repertoire of 

proteins that bind RNA [12,19] including non-canonical RBPs such as signal transducer and 

activator of transcription 1 (STAT1) and STAT4 [19]. Of the RBPs identified through RNA 

IC and OOPS, 439 were uniquely expressed in primary human T cells when compared to 

non-immune HEK293, U2OS and MCF10a cells [19]. These global RBP interactome data 

can guide the dissection of RBP-mediated post-transcriptional regulatory circuits modulating 

T cell function.

RBP-mediated post-transcriptional processes

Signal responsive alternative splicing and polyadenylation

Alternative splicing generates mRNA isoforms that can encode proteins with different 

localization, catalytic activity, or stability [20]. Splicing factors, including multifunctional 

RBPs, regulate splice site usage in a context-specific manner in T cells, forming signal-

responsive RNA circuits that modulate T cell activation and immune function. To take a 

classic example, CD45, a transmembrane tyrosine phosphatase encoded by Ptprc, regulates 

cell signaling in T cells and other hematopoietic cells. Naïve T cells express long isoforms 

of the protein (e.g. CD45RA), but alternative splicing produces a shorter form (CD45RO) 
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in activated and memory T cells (CD4+ and CD8+). The interaction of Heterogeneous 

Nuclear Ribonucleoprotein L (HNRNPL) [21,22], HNRNPL-like (HNRNPLL) [23] and 

PTB-associated Splicing Factor (PSF) [24] with activation responsive sequences in the Ptprc 
mRNA regulates this process.

Antigen and costimulatory receptor signaling induce alternative splicing of many transcripts 

during T cell activation. For instance, activated human primary CD4+ T cells generate 

alternatively spliced transcripts involved in apoptosis, including CASP9, BIM, and BAX 
[25]. The resulting shortened, inactive forms of CASP9, BIM, and BAX proteins inhibit 

apoptosis and instead promote cellular proliferation upon activation [25]. Binding motifs for 

CUGBP Elav-Like Family Member 2 (CELF2), Serine and Arginine Rich Splicing Factor 5 

(SRSF5) and Polyprimidine Tract Binding Protein 1 (PTBP1) near the splice site in CASP9 
suggest a role for these RBPs [25]. In murine CD8+ OT-I T cells, activation with antigen 

and costimulation via CD134 (OX40) and CD137 (41BB) induced TAR DNA Binding 

Protein (Tardbp)-mediated alternative splicing [26]. OT-I cells targeted with CRISPR to 

delete Tardbp generated a smaller pool of antigen-specific cells with less IFN-γ expression 

compared to non-targeted control OT-I cells [26]. Additionally, RBPs can regulate their 

own expression and function through splicing in response to TCR engagement. Downstream 

of TCR engagement, c-Jun N-terminal kinase (JNK) induces the expression of CELF2, 

which alternatively splices Map Kinase Kinase 7 (MKK-7) in Jurkat and primary human 

CD4+ T cells [27,28]. The shorter isoform of MKK-7 phosphorylates JNK and reinforces 

CELF2 activity [28], generating a feedforward loop. RBP splicing proteins, such as SRSF1, 

can also regulate T cell homeostasis and development. [29,30]. Mice with T cell-specific 

(LckCrexSrsf1fl/fl) and regulatory CD4+ T cell-specific (Treg) (Foxp3YFP-CrexSrsf1fl/fl) 

depletion of SRSF1 develop systemic autoimmunity as well as express higher proportion 

of proinflammatory IL-17a+, IL-4+ and IFN-γ+ CD4+ effector T cells and Tregs [29,30]. In 

the thymus, LckCrexSrsf1fl/fl mice showed reduction in mature single positive thymocytes as 

well as a reduction in peripheral T cells, suggesting a critical role of this RBP in late-stage 

thymocyte development [31]. Whether SRSF1 regulates T cell development and homeostasis 

through splicing mechanisms remains to be confirmed.

In addition to alternative splicing, transcripts can undergo alternative polyadenylation 

(APA). In most mRNA and many noncoding RNAs, the newly transcribed transcript is 

cleaved at the 3’ end by a multi-protein complex that recognizes the polyadenylation signal 

(PAS) composed of an AAUAAA motif and flanking U/G rich sequences [20], followed 

by non templated addition of adenosines. APA is regulated by RBPs that bind to regions 

in the 3’UTR to regulate PAS site usage. Activated mouse and human T cells engage APA 

to undergo global 3’UTR shortening, eliminating binding sites for trans factors including 

micro (mi)RNAs and RBPs [32,33]. Information on the regulatory circuits modulating APA 

in a cell-type or context specific manner remains limited. However, CELF2, a splicing 

protein [30] regulates APA upon T cell activation as shown by RNA-sequencing analysis and 

3’RACE in Jurkat T cells, and induces preferential usage of certain PAS sites in including 

in its own 3’UTR [34]. CELF2 competed with other RBPs in the polyadenylation complex 

for PAS sites in vitro [34]. However, further study is needed to elucidate this and other APA 

regulatory circuits in T cells.
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RNA methylation in T cells

RNA is subject to modification, such as methylation, that can affect its immunogenicity 

and stability within cells. The reversible methylation process is mediated by “writer” 
complexes comprised of the methyltransferases METTL3 and METTL14 and adaptor 

proteins, “reader” proteins including YTH N6-Methyladenosine RNA Binding Proteins 

(YTHDF1–3) and “eraser proteins” such as AlkB Homolog 5 (ALKBH5) that remove 

the methyl group [36]. Most research on RNA modification in T cells has focused on 

methylation of adenosine at the nitrogen-6 position (m6A) as it is one of the most 

abundant RNA modifications in eukaryotic cells [36]. However, recent work showed that 

5-methylcytosine deposition on mRNA by NOP2/Sun RNA methyltransferase 2 (Nsun2) 

stabilizes Il17a mRNA in mouse T helper 17 (Th17) cells, as evidenced by shorter Il17a 
mRNA half-life in Nsun2-depleted (CD4CrexNsun2fl/fl) Th17 cells compared to WT Th17 

cells [35], demonstrating a critical role for another RNA modification in regulating effector 

T cell function.

Studies that modulate m6A expression through removal of the writer or eraser RBPs 

demonstrated that this modification is crucial for regulating T cell function in different 

cellular and environmental contexts. After adoptive transfer of mouse naïve CD4+ T cells 

into immunodeficient Rag2−/− recipient mice in a transfer mouse model of colitis, donor 

CD4+ mouse T cells deficient for METTL3 (CD4CrexMettl3; Mettl3-cKO) or METTL14 

(CD4CrexMettl14; Mettl14-cKO) expressed lower levels of m6A as detected by high 

performance liquid chromatography, lower numbers of donor T cells, decreased proliferation 

as detected using CellTrace labeling, and remained in a CD4+TGF-β+CD45RBhi naïve 

state compared with donor WT T cells [37]. In vitro cultured Mettl3-cKO naïve CD4+ T 

cells displayed longer transcript half-lives for Socs1, Socs3 and Cish, negative repressors 

of IL-7 mediated STAT5 signaling [37]. Mettl3-deficient Tregs from Foxp3CrexMettl3fl/fl 

mice also expressed higher transcript levels of these negative repressors and decreased 

phosphoSTAT5 signaling after treatment with IL-2 in vitro [38]. Removing the eraser 

ALKBH5 also alters T cell function. For instance, conditional deletion of Alkbh5 in 

CD4+ T cells (CD4CrexAlkbh5fl/fl) led to shorter IFN-γ transcript half-life and decreased 

proinflammatory cytokine response in an experimental autoimmune encephalomyelitis 

(EAE) model [39].Together, these studies suggest that modulation of m6A methylation 

through “writer” and “eraser” RBPs is necessary for regulating T cell responses to 

environmental cues, specifically IL-7 and IL-2 mediated STAT5 signaling in mouse CD4+ T 

cells [37,38], as well as production of proinflammatory cytokines [39].

Wilms Tumor-1 associated protein (Wtap) encodes an essential adaptor protein in m6A 

writer complexes. In contrast to Mettl3-cKO and Mettl14-cKO mice [37], mice with 

conditional deletion of Wtap in all T cells (CD4CrexWtapfl/fl) or only in Tregs (Foxp3YFP-

CrexWtapfl/fl) developed spontaneous gut inflammation as evidenced by an increased colitis 

score and greater proportion of IFN-γ+ and IL-17A+ conventional CD4+ T cells and Tregs, 

despite low or no expression of m6A [40]. While depletion of either the “writer” [37] 

or adaptor proteins [40] impaired proliferation, these studies differed on the effects on T 

cell receptor versus cytokine signaling. As described above, METTL3 Mettl3 deficiency 

affected IL-7 signaling [37], whereas Wtap-deficient T cells revealed that m6A destabilizes 
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transcripts that encode proteins involved in TCR signaling, such as Orai1 and Ripk1, to 

inhibit TCR-induced cell death upon activation with anti-CD3 and anti-CD28, as shown 

by the increased half-life of these transcripts in Wtap1-deficient CD4+ T cells (CD4Cre-

ERT2xWtapfl/fl) compared to WT cells [40]. The discrepancy between the two models may 

be due to differences in the degree of reduced m6A deposition, although this remains to be 

further studies. Indeed, a comparison of the residual m6A and the transcripts that remained 

methylated could provide insight into this difference.

From another angle, m6A also contributes to regulating CD4+ T cell differentiation through 

stabilization of transcription factor transcripts. For instance, in an acute Lymphocytic 

Choriomeningitis Virus (LCMV-Armstrong) mouse infection model, METTL3 was 

necessary for stabilization of Tcf7 and other transcripts involved in T follicular helper cell 
(Tfh) differentiation, as evidenced by decreased half-life of Tcf7 mRNA in Tfh cells from 

Mettl3-cKO mice [41]. In culture, METTL3-deficient naïve CD4+ T cells skew towards 

T helper 2 (Th2) over T helper 1 (Th1) and Th17 cell fates, with greater proportion of 

IL-4+ and IL-13+ CD4 cells compared to IFN-γ and IL-17 producers [37]. Wtap-deficient 

and m6A-low thymocytes showed decreased CD8 expression on CD8+ single-positive 

cells, suggesting a role for m6A in controlling the expression of key genes in T cell 

development [39]. m6A and the RBP machinery compose an important circuit for regulating 

transcript stability and various T cell functions. However, the balance between stabilizing 

and destabilizing certain transcripts in different cellular contexts in T cells is unknown. 

Targeting YTHDF2 with RNAi in HeLa cells caused accumulation of m6A-modified mRNA 

in the cell [42], while targeting members of the Insulin-like Growth Factor 2 Binding Protein 

(IGF2BP) family decreased m6A-modified mRNA expression transcriptome-wide in HeLa 

and HepG2 cells [43]. Taken together, these data suggest that YTHDF2 and IGF2BP2 

may act antagonistically to destabilize or stabilize transcripts through m6A binding. This 

regulatory circuit may also modulate transcript stability in T cells, which express both 

YTHDF2 and IGF2BP family members.

mRNA Stability and Translation

In the cytoplasm, RBPs bind cis-regulatory elements with specific RNA sequence and/or 

structural motifs to regulate transcript degradation by multiple mechanisms including 

endonuclease cleavage [44,45], decapping of the 5’ end [46] and deadenylation of the 3’ 

end [47,48] followed by exonuclease digestion. RBPs can also engage or inhibit translation 

to further fine-tune protein expression [9,44,49]. The following sections highlight these 

properties through discussion of select RBP families with prominent functions in T cell 

biology.

AU Rich Elements (ARE) and ARE-BPs—AU rich elements (ARE) and ARE binding 

proteins (ARE-BP) form complex circuits that modulate the duration and intensity of 

immune responses. AREs are typically characterized by the canonical pentamer AUUUA, 

though functional noncanonical sequence motifs also exist. AREs are common in 3’UTRs 

of cytokines, early activation genes and signal transduction genes such as Nur77 and IL-17 
[50–53]. The loss of an individual ARE can lead to hyperinflammation and autoimmunity in 

mouse models, as was observed in TNF ΔARE mice, which lacked an ARE in the 3’UTR 
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of TNF, and developed chronic arthritis and inflammatory bowel disease marked by immune 

cell infiltration and tissue damage [54]. ARE-BP exert different regulatory mechanisms to 

modulate T cell effector function in a temporal and cell-type specific manner. For instance, 

Zinc finger protein 36 (ZFP36; also known as tristetraprolin, or TTP) is rapidly upregulated 

in activated mouse CD4+ and CD8+ T cells and maintained for several days [55]. During 

this time, ZFP36 and its family member ZFP36 like 1 (ZFP36L1) bind to AREs to regulate 

the stability and translation of mRNAs involved in T cell activation [55]; they can also 

functionally limit proliferation, effector cell function and inflammatory cytokine production 

[55,56]. In resting mouse CD8+ memory T cells, ZFP36 like 2 (ZFP36L2) regulates IFN-γ 
production by repressing its translation in an ARE-dependent manner [9]. In contrast to 

the ZFP36 family, HuR (ELAVL1) binding to AREs can stabilize transcripts. Specifically, 

targeting HuR with RNAi increased the half-life of the ARE-containing mRNAs encoding 

GATA-3 and IL-13 in human in vitro cultured Th2 cells [57,58], and Il17a mRNA half life 

similarly increased in HuR-deficient mouse Th17 cells [59]. The mechanisms that determine 

ARE-BP specificity require further investigation. In T cell lines, incubation of ZFP36 and 

HuR with probes containing AREs from different genes showed competitive binding to a 

GM-CSF ARE probe, but also distinct binding specificity to IL-2 and c-Jun AREs. [60]. 

Additional ARE-BPs may also contribute to the regulation of ARE-containing mRNAs in T 

cells. Together, these studies demonstrate the complexity of ARE-directed RNA circuits that 

can regulate T cell responses.

miRNA binding sites and Argonaute proteins—RBPs of the Argonuate (Ago) family 

are programmed by miRNAs to recognize linear sequence motifs, and mediate translational 

repression and transcript instability of target transcripts. T cells exploit this flexibility in 

Ago target specificity by increasing Ago turnover and dynamically regulating their miRNA 

repertoire in response to activation [61]. HITS-CLIP revealed thousands of Ago2 binding 

sites in T cells [62,63]. Each miRNA can regulate tens to hundreds of mRNAs, sometimes 

through multiple binding sites in the same transcript. The myriad roles of individual 

miRNAs and families of miRNAs in T cell function has been reviewed elsewhere [64–66].

Ago and miRNAs participate in complex RNA circuitry with other RBPs. For example, the 

transcription factor BHLHE40 inhibits the expression of Regnase-4 and miR-146 in human 

memory CD4+ T cells, both of which inhibit NF-kB signaling and cytokine expression 

by independently binding to an overlapping set of target mRNAs [67]. In primary mouse 

Tregs, Mtor is repressed by the cooperative activity of miR-150 and miR-99a, as elucidated 

using an Mtor 3’UTR reporter in mouse embryonic fibroblasts transfected with each miRNA 

alone, or both in combination [68]. In addition, RBPs and miRNAs can compete for binding 

sites. In primary mouse CD4+ T cells, Roquin binds to Pten mRNA at a site that overlaps 

a miR-17 binding site [69]. Compared with wildtype cells, Roquin-deficient CD4+ T cells 

exhibited increased Ago protein binding and decreased overall expression of Pten, consistent 

with a model wherein Roquin protects Pten from miR-17-mediated inhibition [69].

Secondary Structures and RBPs

Many RBPs interact with RNA structures, or a combination of structural and linear 

motifs. In mouse and human T cells, Roquin (both Roq1 and Roq2) and the RNA-binding 
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endonuclease Regnase-1 recognize constitutive decay elements (CDE), alternative decay 
elements (ADE) and other variations of a stem loop to exert regulatory function [47,70]. 

In steady state conditions, Roquin and Regnase bind to motifs in the 3’UTR to initiate 

transcript decay [44,71,72] or translational silencing [44,49]. Mutating multiple stem loops 

in the Nfkbid 3’UTR in a HeLa cell reporter system dramatically increased reporter 

mRNA half-life and enriched the transcript in translated polysomal fractions, suggesting 

that Roquin binding can induce translational repression in addition to mRNA decay for 

a target transcript. [49]. Upon TCR activation, both Roquin and Regnase are cleaved by 

paracaspase MALT1, releasing the regulatory circuits restraining the cells and promoting 

proinflammatory NFκB signaling and cytokine production, as was shown in mouse CD4+ T 

cells and Jurkat cells [71,72].

Roquin proteins bind and repress the expression of Icos, Ox40, and transcripts in the 

NF-kB signaling pathway to maintain T cell quiescence [69,72,73]. Enhanced proportions 

of IL-17-producing Th17 cells [72] and CXCR5hiPDhi Tfh cells were observed in mice with 

conditional deletion of Roquin in T cells (CD4CrexRc3h1fl/flxRc3h2fl/fl). Limiting Roquin 

deficiency to Tregs (in Foxp3YFP-CrexRc3h1fl/flxRc3h2fl/fl mice) led to an expansion of 

CXCR5hiPD1hi Tregs [69]. Together, these data suggest that Roquin restrains differentiation 

towards Th17, Tfh and follicular regulatory T cells (Tfr) [69,72]. In CD4CrexRc3h1fl/

flxRc3h2fl/fl mice, absence of Roquin in CD8+ T cells induces greater proportions of 

Granzyme B (GzB)+ and IFN-γ+TNF-α+ cells, thereby restraining proinflammatory and 

cytotoxic function [74].

Regnase1 binds to similar target transcripts as Roquin and also restrains hyperinflammatory 

and autoimmune states, as observed in a genetic mouse model (CD4CrexRegnase-1fl/fl) 

[71,74]. Specific examination of ICOS expression in in vitro polarized mouse Th1 cells 

revealed sustained ICOS expression throughout culture in Th1 cells lacking Roquin and 

Regnase-1 compared to deletion of either protein [74]. Additionally, co-immunoprecipitation 

assays in mouse CD4+ T cells revealed that Roquin and Regnase-1 can interact with each 

other [74]. Mutagenesis of this interaction site in HeLa cells transfected with Roquin 

and Regnase plasmids decreased binding between the two RBPs [74]. Together, this 

suggests that while Roquin and Regnase can work independently, they may also interact 

and cooperatively regulate T cell function [74]. In contrast, AT rich interaction domain 

5a (ARID5A) antagonizes Regnase function by competing for the same stem loops to 

stabilize target transcripts [75–78]. One such example is the Stat3 3’UTR which contains 

stem loops motifs for Regnase-1 and ARID5A. In HEK293 cells co-transfected with Stat3 
3’UTR reporter and Regnase-1 plasmid, the addition of ARID5A into the system stabilized 

the reporter and enhanced reporter activity in a dose-dependent manner, demonstrating a 

competitive interaction between Regnase-1 and ARID5A. Additionally, ARID5A stabilizes 

Ox40 and other target mRNAs, and increases Th17 differentiation, as evidenced by 

reduction of in vitro polarized Th17 cells from Arid5a deficient mice [77,78]. These findings 

add an additional layer of regulation beyond binary interactions between cis-elements and 

trans-acting RBPs.

From a clinical perspective, recent studies have leveraged RBPs, specifically Roquin and 

Regnase function, to generate new putative T cell therapies to treat cancer. For instance 
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deletion of these proteins in human chimeric antigen receptor (CAR) T cells or mouse 

antigen-specific CD8+ T cells increases IFN-γ, TNF-α, IL-2 and GzB expression. Increased 

cell expansion and T cell persistence in tumors was also observed in models of pancreatic 

adenocarcinoma, OVA-expressing melanoma (B16-OVA) and OVA-expressing lymphoma 

(EL-4 OVA)[79–81]. Importantly, transfer of Regnase-1, Roquin, or double-deficient CAR 

T cells or CD8+ OT-I cells slowed tumor growth in all the tumor models described [79–81]. 

Recipient mice given OT-I T cells with non-functional mutant Roquin-1 that also cannot 

interact with Regnase (Roquin-1M199R/E212K) showed increased frequency of donor cells in 

the tumor and slower tumor growth in the B16-OVA model compared to recipients with 

WT OT-I donor cells [74]. Together, these studies have illuminated a potential avenue for 

targeting RBPs and their target mRNAs for potential therapeutic interventions in oncology.

Long noncoding RNAs

Long non-coding RNA (lncRNA) are genomically encoded RNAs that do not contain an 

open reading frame and are not translated into proteins [82]. lncRNAs constitute a large 

portion of the human transcriptome with 96411 lncRNA genes annotated compared to 19890 

coding genes [83,84]. Mouse annotations are similar with 87890 lncRNA genes annotated 

compared to 22186 coding genes [84,85]. lncRNAs have drawn significant research interest 

due to a high degree of cell type and tissue specificity in their expression [86]. Together, 

these observations suggest that lncRNAs perform important regulatory functions in a variety 

of cellular contexts.

LncRNA discovery and annotation

The proliferation of annotated lncRNAs is the direct result of advances in long and short 

read sequencing technologies. Short read sequencing has been used to deeply and broadly 

survey the RNA landscape in many cells and tissue types, while long read sequencing has 

improved annotation of lncRNAs by capturing whole or nearly whole transcripts [87]. This 

is especially important for circular RNAs (circRNA), which are often the result of splicing 

events where the ends of the removed intron are ligated to create a circular topology. Long 

read sequencing greatly increases the likelihood that the ligated junction will be completely 

read through and correctly attributed to the circRNA rather than an un-spliced transcript 

[88]. There are other examples of post-transcriptional processing of lncRNAs, such as 

the Malat1-associated small cytoplasmic RNA (mascRNA), which is liberated from the 

parental Malat1 transcript by RNase P cleavage [89]. Attention to these details is important 

when annotating and detecting lncRNAs, especially for assays that rely on aligning short 

reads.

LncRNA function in regulatory circuits

LncRNAs as a class do not have a specifically defined function but they contribute to a 

variety of regulatory circuits through their interaction with RBPs, other RNAs, and DNA 

[90]. Here, we focus on lncRNA-mediated regulatory mechanisms that have been described 

in T cells including transcriptional regulation, post-translational modification, and miRNA 

inhibition as a competing endogenous RNA (ceRNA) (Fig. 2).
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Transcriptional Regulatory Mechanisms

Many lncRNAs regulate gene transcription (Fig. 2A). Abundant lncRNAs can act at a 

distance on suites of target genes, while others act locally on genes in the same locus, 

as has been clearly defined for immunoglobulin locus lncRNAs in B cell class switch 
recombination [91]. Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells highly 

express both NOTCH1 and NALT (Notch associated lncRNA in T-ALL), which is located 

less than 100 bp away [92]. shRNA knockdown of NALT reduced NOTCH1 expression in 

Jurkat T cells and slowed their growth when implanted into immunodeficient mice [92]. 

Importantly, a Gal4-λN/BoxB reporter system indicated that transcriptional activation is 

conferred by the lncRNA, as NALT tethering to the promoter induced the transcription 

of a reporter gene. Genetic deletion of the polyfunctional lncRNA Malat1 increased the 

expression of its neighboring genes, though no mechanism has so far been described [93]. 

The genomic locus of the lncRNA Morrbid in mice positively regulates the expression of 

Bcl2l11 in cytotoxic CD8+ T cells, but negatively regulates Bcl2l11 expression in short-lived 

myeloid cells, suggesting that lncRNA loci can exhibit cell-type specific transcriptional 

regulation [94,95]. Morrbid overexpression did not alter Bcl2l11 expression, but did reduce 

AKT signaling in cytotoxic T cells [95]. Thus, Morrbid is a functional lncRNA, but may 

not be responsible for the regulation of nearby genes. Further studies are needed to elucidate 

the genomic components and/or functional elements that confer Bcl2l11 regulation in T cells 

and other immune cell types.

One common mechanism by which lncRNAs regulate transcription is by scaffolding 

transcription factors and chromatin modifiers (Fig. 2B), particularly proteins of the 

Polycomb repressive complexes (PRC). Malat1 associates with the PRC2 proteins EZH2 

and SUZ12 and with nucleosomes bearing the repressive histone-3 trimethyl (H3K27me3) 

modification in HH cells, a human cutaneous T cell lymphoma cell line [96]. Another 

recent study showed that Malat1 interacts with Ezh2 in mouse CD8+ T cells to maintain 

H3K27me3 marks on memory associated genes such as Tcf7, Eomes, Zeb1, Lef1, and 

Bcl2 [97]. Moreover, in an adoptive transfer model, Malat1-deficiency in transgenic TCR 

P14 LCMV-specific CD8+ T cells resulted in a greater proportion and number of memory 

cells [97]. Th17 cell differentiation and cytokine production is regulated by lncRNAs 

in a similar manner in both mice and humans. In mice, Malat1 is downregulated upon 

T cell activation and differentiation into the Th17 lineage [98,99]. Similar to CD8+ T 

cells, Malat1 binds to Suz12 and enhances H3K27me3 deposition at the Il17a-Il17f locus, 

decreasing cytokine expression and colonic inflammation [98]. In contrast, lncRNA MIAT 

(Myocardial Infarction Associated Transcript) enhances Th17 differentiation and cytokine 

production in primary human T cells [100]. Of note, MIAT is highly expressed in T cells 

isolated from the synovium of rheumatoid arthritis (RA) patients, and targeting MIAT with 

locked nucleic acid oligonucleotides decreases chromatin accessibility at the IL17A locus 

[100]. Other lncRNAs have been shown to exhibit similar behaviors. For instance, T cell 

lymphoma-associated lncRNA1 (TCLlnc1) can modularly scaffold heterogeneous nuclear 

ribonucleoprotein D and Y-box binding protein 1 complexes to induce the expression of 

TGF-β in Jurkat T cells [101]. These examples demonstrate the modularity of lncRNA 

function in transcriptional regulation.
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LncRNAs can also regulate post-translational modifications on transcription factors and 

other proteins (Fig. 2C). In mouse primary CD4+ T cells, lncRNA-GM inhibits the 

dephosphorylation of FOXO1 by PP2A, which increases IL-23 Receptor expression [102]. 

This effect led to enhanced Th17 differentiation and increased pathology in EAE. The 

human orthologue of lncRNA-GM similarly enhanced Th17 transcriptional signature genes 

in CD4+ T cells [102]. shRNA knockdown of NEAT1 (Nuclear paraspeckle assembly 

transcript 1) in human T cells enhanced ubiquitination of STAT3 [103]. The subsequent 

reduction in STAT3 abundance correlated with reduced IL-17 production [103]. Moreover, 

NEAT1 is upregulated in human RA peripheral blood mononuclear cells, and lentiviral 

delivery of NEAT1 shRNA into the joints relieved the degree of Type 2 collagen induction 

in the collagen-induced arthritis mouse model [103]. These findings suggest that NEAT1 

may be of clinical relevance in human autoimmune diseases, although this remains to 

be robustly studied. Another notable example of lncRNA mediated modulation of protein 

abundance is the regulation of the vesicular trafficking system by the lncRNA Snhg1 (Small 

nucleolar RNA host gene 1) [104] (Fig. 2D). RNA immunoprecipitation showed that Snhg1 

interacts with the vesicular sorting protein VPS13D and enhances its shuttling of CD127 

to the cell surface of mouse and human CD8+ T cells [104]. shRNA inhibition of either 

Snhg1 or VPS13D reduced cell surface CD127 expression and memory cell numbers in 

LCMV-Armstrong infected mice, as detected by flow cytometry [104]. Together, these 

findings further illuminate the great diversity of mechanisms by which lncRNAs mediate 

their cellular functions.

Post-transcriptional Regulatory Mechanisms

LncRNAs can also regulate gene expression and cellular function post-transcriptionally 

by sequestering RBPs and miRNAs that regulate other mRNAs (Fig. 2E). For example, 

NORAD (Non-coding RNA Activated by DNA damage) binds to Pumilio proteins through 

multivalent interactions to induce their subcellular compartmentalization via liquid-liquid 

phase separation in the HCT116 human cancer cell line [105]. LncRNAs can also inhibit 

miRNA function through stoichiometric sequestration (as a decoy or “sponge”), miRNA 

degradation, or other yet to be defined mechanisms (Box 2). This phenomenon has gained 

substantial interest outside of T cell biology, and has been demonstrated in T cells as well.

In CD8+ T cells, Malat1 inhibits miR-15/16 family miRNAs to enhance memory cell 

formation [63,106]. Precise disruption of the miR-15/16 binding site in Malat1 decreased 

expression of miR-15/16 targets including CD28 and Bcl-2 in mouse T cells, with 

reduced costimulation-associated gene expression and IL-2 production [106]. The murine 

circular RNA circRNA-1806 sponges miR-126, which targets adrenomedullin, which in turn 

induces the phosphorylation of c-Jun and JNK to regulate cell cycle progression in human 

glioblastoma cells [107] [108]. Targeting circRNA-1806 with RNA interference in mice 

reduced the clearance of the fungus Cryptococcus neoformans [107]. Lnc-AIFM2–1 sponges 

miR-330–3p in human CD8+ T cells, and may thereby promote hepatitis B virus immune 

escape [109]. CD244 was identified as a key miR-330–3p target that exhibited reduced 

expression in Jurkat cells transfected with siRNA against Lnc-AIFM2–1. CD244 expression 

was associated with increased T cell apoptosis, and miR-330–3p mimics decreased HBV 

control in an in vitro co-culture model [109]. In CD4+ T cells, Th17 differentiation 
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can be regulated by the lncRNA:miRNA circuit composed of LncITSN1–2 (LncRNA 

intersectin 1–2) and miR-125a [110]. IL-23R is a key target of miR-125a and Lnc-ITSN1–

2 overexpression increased IL-17 and RORC mRNA expression in in vitro differentiated 

Th17 cells [110]. Together, these and additional emerging studies demonstrate that 

lncRNA:miRNA circuits modulate T cell activation, apoptosis, and differentiation, although 

the exact mechanisms and biological impact often remain to be further investigated.

Experimental Approaches to Studying lncRNA Function

The tool kit to study lncRNA function is expanding. Previous genetic approaches have 

relied on the excision of large portions of the genetic locus of a given lncRNA [93,95] 

or the insertion of an early poly-A signal [111]. These interventions can cause significant 

disruption to the locus and regulatory regions such as enhancers for nearby or distant genes, 

confounding interpretation of observed phenotypes. To address this problem, many studies 

have focused solely on the transcript instead and employed RNAi to post-transcriptionally 

degrade a given lncRNA [97,103,107,109]. This approach has been best applied in 

mouse models where TCR transgenics are available and virally delivered shRNAs can be 

stably expressed in transduced T cells [97]. The limitations of RNAi include incomplete 

knockdown that may make observations of subtle phenotypes difficult, and the inability to 

attribute function to specific sequences within lncRNAs. LncRNA fragments can also be 

transcribed to probe protein binding through methods such as RNA-IP [101]. However, the 

advent of a multitude of CRISPR based technologies now allows more directed approaches 

to dissecting lncRNA function and mechanism of action (Box 3).

Concluding Remarks

RNA circuits are a ubiquitous feature of genome regulation, and they play specific, essential 

roles in T cell proliferation, differentiation, and effector function – properties that are 

critical for effective immunity against pathogens and cancer, and for the prevention of 

allergy and autoimmunity. Cis-regulatory approaches that leverage high resolution RNA 

interactome mapping facilitate rigorous interrogation of RBP and lncRNA biological 

functions and mechanisms of action. Moreover, Recent findings and improved technologies 

for detecting and manipulating RNA circuits have accelerated progress in immunology 

and biomedicine, and are propelling the clinical translation of these discoveries. However, 

functional dissection of all the RBPs and lncRNA circuity, especially in primary T cells, 

remains limited and requires further investigation to fully leverage these mechanisms for T 

cell therapies (see Outstanding questions). Nevertheless, modulating T cell function through 

post-transcriptional processes represents a fruitful and exciting area of investigation.
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Box 1.

Integrating genetic data to identify cis-regulatory elements

Mutations that alter RBPs and their regulatory activity can lead to hyperinflammation, 

autoimmunity and other immune disorders [46,112]. Polymorphisms that alter cis-

regulatory regions bound by RBPs (as well as those that change RBP proteins 

themselves) alter cell states and affect immune responses. For example, GWAS studies 

showed that a common single nucleotide polymorphism (SNP) in the 3’UTR of 

interferon lambda 3 (IFNL3) is strongly associated with hepatitis C virus (HCV) 

clearance (i.e. versus chronic infection). This SNP disrupts a cis-regulatory sequence 

through which RBPs and miRNAs induce IFNL3 transcript instability in the Huh7 

hepatocyte cell line, modulating expression of the antiviral protein it encodes and 

subsequent clearance of HCV [113].

Genome-wide association studies (GWAS) have identified numerous genetic variants 

associated with immune-mediated diseases, some of which were identified to be highly 

probable causal variants through fine-mapping [114–116]. For instance, expression 
quantitative trait loci (eQTL) analyses have been used to understand which disease-

associated SNPs affect gene expression in immune cells, thereby identifying candidate 

DNA cis-regulatory elements [117,118]. However, using eQTL and GWAS alone to 

dissect individual functional cis-elements can be challenging, as individual variants 

may only work in a cell-specific and/or context-specific manner. Biochemical data that 

illuminate the activity of cis-regulatory sequences can aid the interpretation of genetic 

and gene expression data, as illustrated by the discovery of a stimulation-responsive 

IL2RA enhancer through integrating GWAS and gene expression data with biochemical 

maps of chromatin accessibility in human T cell subsets [119].

Similar approaches can be used to discover cis-regulatory elements involved in 

post-transcriptional regulation. With large RBP binding data repositories available 

from the encyclopedia of RNA elements (ENCORE; https://www.encodeproject.org/

encore-matrix/?type=Experiment) [120] and other sources, future studies can combine 

biochemical analyses with genetic and gene expression data to identify regions 

containing functional RNA cis-regulatory elements that might impact human health and 

disease.
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Box 2.

Mechanisms of miRNA inhibition by lncRNAs

Despite numerous studies suggesting that large ceRNA networks regulate gene 

expression in a variety of cellular contexts, how exactly lncRNA:miRNA interactions 

lead to the inhibition and/or degradation of miRNAs remains generally uncharacterized. 

A notable study involving the lncRNA Cyrano demonstrated that extensive 5’ and 

3’ base pairing between miR-7 and Cyrano led to the degradation of miR-7 in the 

mouse brain [121]. Subsequent mechanistic studies in mouse cell lines elaborated on 

these findings, reporting that extensive 3’ binding in addition to seed sequence pairing 

between a miRNA and its target can lead to target mediated miRNA degradation 

(TDMD) and Zswim8-mediated ubiquitination of Ago2 [122,123]. However, many of 

the lncRNA:miRNA interactions characterized in T cells do not involve extensive 3’ 

binding [109,124,125]. Furthermore, some lncRNAs can reduce miRNA activity without 

notable degradation of the target miRNA [106], indicating that abundant ceRNAs may 

be able to operate via competitive binding alone, perhaps by redirecting the subcellular 

localization of target miRNAs [106]. Resolving the mechanisms by which lncRNAs and 

other ceRNAs regulate miRNA-driven circuits is a key area for further research that may 

reveal new strategies for therapeutic application.
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Box 3.

Genomic and Transcriptomic Editing Approaches for Dissection of lncRNA 
and RBP Function

Genome editing technologies allow detailed interrogation of specific sequences and 

binding site-dependent lncRNA functions. The non-viral targeting of human T cells 

with CRISPR-Cas9 systems opened the door to efficient and rapid genetic editing in T 

cells [126–129]. These systems have most often been employed to induce insertions and 

deletions (indels) in an exon of a coding gene [130], which is often insufficient to change 

the function of a lncRNA or the global function of a 3’ UTR. There are instances where 

traditional Cas9 induced indels may have functional outcomes for RBP and lncRNA 

function. For instance, the miR-15/16 binding site within Malat1 in humans T cells? can 

be directly targeted by Cas9, and indels at this site disrupt miRNA binding [106]. Where 

a single guide targeting approach is insufficient, paired single guide RNAs can be used to 

excise portions of the genome containing putative functional sequences [131,132]. These 

larger deletions may alter neighboring functional DNA or RNA regulatory elements, but 

they can be precisely targeted in somatic cells without the use of recombinase ,or the 

insertion of residual foreign sequences.

Homology directed repair (HDR) templates can be used to create more specific 

mutations, albeit with reduced efficiency [133]. This approach can be used to disrupt 

binding sites while maintaining nucleotide content and RNA length [104]. It can also be 

used to insert large novel sequences [134]. Genomic base editing can also be targeted 

with sgRNAs by fusing catalytically inactive Cas9 to an adenosine deaminase [135]. For 

instance, CD3δ was recently targeted in human hematopoietic stem cells to restore T 

lymphopoiesis in immunodeficient patients bearing a pathogenic mutation in this gene 

[135]. In this context, base editing produced higher desired mutation rates with lower 

indel byproducts compared to HDR strategies.

Cas13 systems target RNA transcripts directly. Cas13 exhibits equivalent or better 

depletion of transcripts compared to RNAi, can be provided transiently or stably, and 

does not alter genomic sequences [136]. In addition, catalytically inactive Cas13 paired 

with fluorescent labeling allows dynamic tracking of specific RNA transcripts in living 

cells [137]. This has been used to reveal the dynamics of NEAT1 interaction with 

paraspeckles in HeLa cells, and might be paired with orthogonal Cas13 or Cas9 probes 

to investigate RNA-RNA or RNA-DNA interactions in a sequence-specific fashion.
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Highlights

• Recent work has defined the RBPome of human and mouse T cells and 

generated transcriptome-wide maps of RBP occupancy.

• mRNAs encoding crucial T cell functional proteins are regulated by AU-rich 

elements and Roquin/Regnase-binding RNA structural elements.

• m6A modification of RNA is essential for proper differentiation, homeostasis, 

and function of multiple types of T cells.

• Technological advances have driven extensive annotation of lncRNAs 

expressed in T cells, and new methods for functional as well as the 

mechanistic interrogation of these regulatory RNAs.
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Outstanding Questions

• How are sequence and structural determinants, RNA modifications, and RBP 

cooperation/competition integrated to regulate RNA circuit outputs?

• By what mechanism(s) do lncRNA ceRNAs inhibit miRNAs, and do 

lncRNAs perform this function differently than protein-coding mRNAs?

• How can RNA circuits be manipulated in T cells to enhance immunity or treat 

autoimmunity and allergy?
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Significance

RNA circuits are key regulators of cytotoxic and helper T cell activation, survival, 

differentiation, and function in immunity. Moreover, Emerging technologies and 

increased interest in RNA circuits involving RBPs and lncRNAs has accelerated the pace 

of discovery in RNA immunology. This is relevant, as RNA circuits might be targeted 

directly, or used to enhance cellular and gene therapies in a variety of disorders.
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Figure 1. 
Ribonucleoprotein capture methods performed in T cells (and other cell types). (A) RNA 

immunoprecipitation (RNA IP) captures RBP-RNA interactions using antibody-coated beads 

to pull down specific RBPs and their bound transcripts in the cell under native conditions. 

The bound transcript is processed for quantitative PCR to determine target transcripts by the 

specific RBP.

(B) Crosslinking immunoprecipitation with high throughput sequencing (HITS-CLIP) 

methods use UV radiation to covalently bind RBPs to their transcripts. The 

ribonucleoprotein complexes (RNPs) are captured using antibody coated beads and undergo 

RNase digestion to generate small RNAs containing the bound region. These fragments are 

then sequenced to determine the transcriptomic binding profile.
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(C) RNA aptamers contain small, structured motifs that recognize small molecules and can 

be used to pull down and identify RBPs that bind to a sequence of interest. The illustration 

depicts an aptamer with modified streptavidin binding structures (S1m) and the sequence of 

interest. Streptavidin matrix is used to pull down the protein-bound aptamer and the proteins 

are processed for mass spectrometry.

(D) RNA interactome capture methods (RNA IC) biotinylate the proteins and use 

streptavidin beads to extract RBP-bound RNA. Captured RPBs are identified using mass 

spectrometry and RNA undergoes library preparation and sequencing to determine RBP 

binding sites.

(E) Organic phase separation can be used to systematically identify RBPs and RBP binding 

profiles of a cell. These methods use phenol phase separation which partitions proteins and 

RNA into the organic and aqueous phase respectively. RNPs that separate into the interphase 

are captured and processed for mass spectrometry and/or sequencing. Figure was created 

using Biorender.com.
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Figure 2. 
lncRNA Functions Identified in T cells (A) Transcription of lncRNAs has significant 

impacts on the expression of other genes in the same locus. In T cells the mechanisms 

of these cis-regulatory effects are still not well defined.

(B) lncRNAs often regulate a host of other protein-coding genes via trans-regulatory 

mechanisms. This is often done via the scaffolding of various transcription or epigenetic 

factors and facilitating their binding to chromatin. This can influence the deposition of 

histone regulatory modifications such as H3K27me3.

(C) lncRNAs can regulate transcription factors in a post-translational fashion by influencing 

the addition of ubiquitin or phosphoryl groups resulting in degradation, inhibition, or 

activation of the transcription factor.

(D) lncRNAs can influence protein activity of the golgi vesicle trafficking network. In 

particular VPs13d activity is enhanced by the presence of a lncRNA and this is essential for 

the cell surface expression of important cytokine receptors such as CD127/IL7R.
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(E) lncRNAs act as ceRNAs for miRNAs, which reduces the amount of miRNA 

induced inhibition of protein coding targets. lncRNA acting as a ceRNA often leads to 

the degradation of the miRNA but in some cases may inhibit the miRNA solely via 

stoichiometric competition.

Figure was created using Biorender.com.
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