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Abstract

Rationale and Objective: Cardiovascular disease is common and overall graft survival 

suboptimal among kidney transplant recipients. While albuminuria is a known risk factor for 

adverse outcomes among persons with native chronic kidney disease, the relationship of 

albuminuria with cardiovascular and kidney outcomes in transplant recipients is uncertain.

Study Design: Post-hoc, longitudinal cohort analysis of the Folic Acid for Vascular Outcomes 

Reduction in Transplantation (FAVORIT) Trial

Setting and Participants: Stable kidney transplant recipients with elevated homocysteine level 

from 30 sites in the United States, Canada and Brazil

Predictor: Urine albumin-creatinine ratio (ACR) at randomization.

Outcomes: Allograft failure, cardiovascular disease (CVD), and all-cause death.

Analytical Approach: Multivariable Cox models adjusted for age, sex, race, randomized 

treatment allocation, country, systolic and diastolic blood pressure, history of CVD, diabetes and 

hypertension, smoking, cholesterol, body mass index, estimated glomerular filtration rate (eGFR), 

donor type, transplant vintage, medications, and immunosuppression.

Results: Among 3,511 participants with complete data, median ACR was 24 (Q1-Q3, 9–98) 

mg/g, mean eGFR 49 ± 18 (standard deviation) ml/min/1.73m2, mean age 52 ± 9 years, and 

median graft vintage 4.1 (Q1-Q3, 1.7–7.4) years. There were 1017 (29%) with ACR <10 mg/g, 

912 (26%) with 10–29 mg/g, 1,134 (32%) with 30–299 mg/g, and 448 (13%) with ACR ≥300 

mg/g. Over approximately 4 years, 282 allograft failure events, 497 CVD events, and 407 deaths 

occurred. Event rates were higher at both lower eGFR and higher ACR. ACR of 30–299 and ≥300 

mg/g relative to ACR <10 mg/g were independently associated with graft failure [HRs of 3.40 

(95% CI, 2.19–5.30) and 9.96 (95% CI, 6.35–15.62), respectively], CVD events [HRs of 1.25 

(95% CI, 0.96–1.61) and 1.55 (95% CI, 1.13–2.11), respectively], and all-cause death [HRs of 

1.65 (95% CI, 1.23–2.21) and 2.07 (95% CI, 1.46–2.94), respectively].

Limitations: No data on rejection; single ACR assessment

Conclusion: In a large population of stable kidney transplant recipients, elevated baseline ACR 

is independently associated with allograft failure, CVD, and death. Future studies are needed to 

evaluate whether reducing albuminuria improves these outcomes.

Keywords

albuminuria; kidney failure; allograft failure; death; cardiovascular disease (CVD); kidney 
transplant outcomes; urinary albumin-creatinine ratio (UACR); graft survival; renal 
transplantation; end-stage renal disease (ESRD); protein excretion; biomarker
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Introduction

Despite substantial decreases in rates of acute rejection of kidney transplants, improvements 

in long term graft survival have not kept pace (1, 2). Accordingly, improving patients’ long 

term outcomes by preventing late allograft loss and adverse patient events remains a clinical 

priority (3). While immunologic factors are important, patient clinical factors may also be 

associated with adverse patient and graft outcomes (4). Specifically, the association of 

allograft function measures, including albuminuria, with transplant recipient outcomes 

including cardiovascular disease, mortality, and kidney outcomes, remains less certain.

In diseases of the native kidneys, lower estimated glomerular filtration rate (GFR) and 

greater albuminuria are risk factors for subsequent kidney failure, cardiovascular disease, 

and death (5, 6). Additional risk factors that associated with primary kidney failure include 

cardiovascular disease, diabetes, hypertension, obesity, hypercholesterolemia, and smoking 

(7), many of which also are associated with albuminuria (8). Albuminuria in kidney 

transplant recipients (KTRs) may reflect different pathogenesis than in patients with native 

kidney disease. First, protein excretion from the native kidneys may muddle the prognostic 

significance of ACR (9). Second, although even low levels of albuminuria are a strong risk 

factor in native CKD as albuminuria likely reflects systemic vascular disease (10), the 

transplanted kidney has not been exposed to a life-time of risk factors of the host, such as 

diabetes and hypertension, suggesting either more rapid kidney injury associated with these 

risk factors than is typical, recurrence of a primary kidney disease, or use of medications 

such as mammalian target of rapamycin (mTOR) inhibitors that may specifically predispose 

to proteinuria (11–13). Third, both albuminuria and lower GFR in KTRs may reflect both 

donor and immunologic factors. Many of these risk factors are potentially modifiable; 

accordingly, a better understanding of the association among albuminuria, modifiable risk 

factors and kidney and patient outcomes in KTRs could suggest treatment targets for future 

clinical trials to prevent cardiovascular disease, death and late allograft loss (11).

The Folic Acid for Vascular Outcomes Reduction in Transplantation (FAVORIT) Trial was a 

large randomized controlled trial designed to test whether high dose folic and vitamins B6 

and B12 reduced CVD events in over 4000 kidney transplant recipients, with systematic and 

detailed ascertainment of CVD risk factors, CVD events, and kidney disease events (14–16). 

In prior work, we showed that an estimated GFR below 45 ml/min/1.73m2 was associated 

with an increased risk of cardiovascular disease, suggesting that reduced kidney function 

itself rather than preexisting comorbidity may lead to CVD (17). Additionally, we have 

shown associations between markers of kidney tubular injury (18) and of fibrosis (19) with 

cardiovascular outcomes, suggesting that systemic risk can also be captured by markers of 

kidney damage from the allograft. Thus, whether or not albuminuria in KTRs captures 

systemic kidney, cardiovascular and mortality risk is of particular interest, especially 

considering that albuminuria is more easily and commonly measured than many other 

biomarkers.
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Methods

This is a post hoc analysis of data from the FAVORIT trial (NCT00064753), a multicenter 

double-blind randomized controlled clinical trial conducted in the United States, Canada and 

Brazil that evaluated whether lowering homocysteine levels with vitamin therapy reduced 

the rate of CVD outcomes in first time prevalent KTRs (14, 15). There was no benefit 

associated with the high dose treatment arm, thus permitting the two treatment groups to be 

combined for analyses as a single cohort (14, 15). The FAVORIT trial protocol was 

approved by the human subjects research entity with oversight at each center, and patients 

provided written informed consent prior to trial participation. The data coordinating center at 

the University of North Carolina tracked institutional review board approvals for all sites. 

The current research was conducted under a Data Use Agreement between Tufts Medical 

Center and the University of North Carolina.

Population

Kidney transplant recipients were eligible for the study if they were at least 6 months post-

transplantation, had elevated total serum homocysteine levels (≥ 11 µmol/L for women; and 

12 µmol/L for men), and had stable kidney function, initially defined by an estimated 

creatinine clearance ≥ 30mL/min in men and ≥ 25 mL/min in women (14). From August 

2002 through January 2007, 4,110 participants were randomized to receive either a standard 

multivitamin with high doses of folic acid (5 mg), vitamin B6 (pyridoxine; 50 mg) and 

vitamin B12 (cyanocobalamin; 1 mg) or a multivitamin containing low doses of vitamin B6 

(1.4 mg) and vitamin B12 (2 µg) without folic acid. Since the high dose vitamin intervention 

did not reduce the risk of kidney failure, CVD, or all-cause death in comparison to the low 

dose vitamin (16), data from the two treatment groups were combined with a term retained 

for randomization allocation in all analyses. Details of baseline characteristics of study 

participants have been described previously (15).

Study Variables

Characteristics assessed at enrollment include kidney measures (albuminuria and eGFR), 

patient characteristics, and transplant factors. Urine creatinine and albumin were measured 

by modified Jaffe kinetic reaction and immunoturbidimetric method, respectively (Olympus 

AU400 analyzer); the albumin-creatinine ratio (ACR) was log transformed for use in 

modeling. Serum creatinine was measured using frozen sera from the baseline visit at the 

FAVORIT central lab using an IDMS calibrated assay; GFR was estimated using the 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine equation (20), 

which has been validated for KTRs (21). Other covariates included baseline demographics, 

country, smoking status, lipid profile, blood pressure, diabetes, and medication use. Baseline 

CVD was defined as the presence of prior myocardial infarction, coronary artery 

revascularization, stroke, carotid arterial revascularization, abdominal or thoracic aortic 

aneurysm repair, and/or lower extremity arterial revascularization. Diabetes mellitus was 

defined as use of insulin or oral hypoglycemic medications or patient history. Smoking 

status was classified as current, former, or never by patient report. Seated blood pressure was 

measured twice at 5–10 minute intervals during each clinic visit, with the average value used 

for analyses. Body mass index (BMI) was calculated as weight in kilograms divided by 

Weiner et al. Page 4

Am J Kidney Dis. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



height in meters squared. Total cholesterol, high density lipoprotein (HDL) cholesterol and 

triglycerides were measured at baseline. Low-density lipoprotein (LDL) cholesterol was 

estimated using the Friedewald equation at triglyceride levels below 400 mg/dL and 

measured in the 234 participants with triglyceride levels above 400 mg/dL (22). Transplant 

characteristics include donor type defined as living versus non-living donor, time since 

transplantation, and immunosuppression regimen.

Outcomes

The primary outcomes for this analysis were time to allograft failure (defined as initiation of 

dialysis) and time to a CVD event (defined by CVD death, myocardial infarction, 

resuscitated sudden death, stroke, coronary revascularization or peripheral, carotid, aortic or 

renal artery procedures). Secondary outcomes included all-cause mortality and a composite 

of allograft failure and all-cause mortality. The first four components of the CVD outcome 

were centrally reviewed and adjudicated by the FAVORIT Clinical Endpoints Committee; 

the remaining outcomes were identified through medical records.

Statistical Analyses

Baseline characteristics were compared across clinically relevant ACR categories (23) using 

one-way ANOVA for normally distributed variables or Kruskal-Wallis for non-normally 

distributed variables and chi-square tests for categorical variables. Kaplan-Meier survival 

curves were constructed by strata of baseline ACR and the log-rank test was used to 

compare these survival curves. Poisson regression was used to calculate adjusted event rates. 

Cox proportional-hazards regression was used to examine the association between ACR and 

time to primary and secondary study outcomes in unadjusted and adjusted models, and 

restricted cubic splines were constructed to display multivariable adjusted continuous 

associations between ACR and outcomes. The proportional hazards assumption was 

examined by regressing the scaled Schoenfeld residuals against follow-up time. Reported 

hazard ratios show the association of each two-fold higher ACR with outcomes.

Parsimonious models were a priori adjusted for age, sex, race, country, study treatment 

assignment, aspirin use, statin use, transplant graft vintage, donor type, and calcineurin 

inhibitor and sirolimus use. Extended multivariable models were a priori further adjusted for 

estimated GFR, history of CVD, history of diabetes, smoking status, systolic BP, diastolic 

BP, BMI, HDL cholesterol, LDL cholesterol, and triglyceride levels, and use of an ACE 

inhibitor or angiotensin receptor blocker. GFR was modeled using 2-slopes with an 

inflection at 45 ml/min/1.73m2 while diastolic BP was modeled using 2-slopes with 

inflection at 70 mm Hg (17, 24). Interactions between ACR and eGFR and between ACR 

and systolic BP were assessed a priori (25). Additional tested interactions included eGFR, 

diabetes and CVD. Sensitivity analyses used the Fine and Gray method to account for 

competing risks of death for outcomes where death was not included.

Analyses were performed using SAS 9.4 and R language (version 3.3.1, R Foundation for 

Statistical Computing, Vienna Austria). Authors H.T. and D.E.W. had full access to the data 

and take responsibility for the accuracy of data analyses.
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Results

Baseline Characteristics

Among 4110 enrolled participants from 30 transplant centers in the United States (n=27), 

Canada (n=2), and Brazil (n=1), 599 participants were excluded from analyses for missing 

outcome data, resulting in a final population of 3,511 participants (Figure 1). Selected 

characteristics of included participants did not differ substantially from those excluded, with 

the exception that more participants with missing data were from sites located in the United 

States (Table S1).

At baseline, mean age was 52 ± 9 (standard deviation) years; 17% were black, 37% were 

women, median graft vintage was 4.1 (1.7–7.4) years, 43% had a living donor kidney, and 

20% had prior CVD. Median ACR was 24.1 (Q1-Q3, 8.5–97.8) mg/g; 1017 (29%) had ACR 

below 10 mg/g, 912 (26%) had ACR of 10 to 29 mg/g, 1134 (32%) 30 to 299 mg/g, and 448 

(13%) 300 mg/g or higher. Mean eGFR was 48.9 ± 17.5 ml/min/1.73m2. Participants with 

higher urine ACR had longer time since kidney transplantation (graft vintage), and were 

more likely of African American race, to have deceased donor transplants, prior CVD, 

diabetes, higher systolic and diastolic BP, and lower eGFR (Table 1).

Allograft Failure

Over mean follow-up of 3.9 ± 1.6 years, there were 282 allograft failure events. Figure 2 

presents adjusted event rates for eGFR and ACR strata. In unadjusted models and in 

parsimonious models, each two-fold higher ACR was associated with a 47% (HR, 1.47; 95% 

CI, 1.40–1.54) and 48% (HR, 1.48; 95% CI, 1.41–1.56) higher risk for allograft failure, 

respectively. In the extended adjusted model, each two-fold higher ACR was associated with 

a 43% (HR, 1.43; 95% CI, 1.36–1.51) higher risk of allograft failure (Figure S1). Risk by 

ACR strata is shown in Table 2 and Figure S2, demonstrating a statistically significant 

increased risk of allograft failure among those with ACR 30 to <300 mg/g and 300+ mg/g 

[HRs of 3.40 (95% CI, 2.19–5.30) and 9.96 (95% CI, 6.35–15.62), respectively, compared 

with ACR <10 mg/g].

Cardiovascular Outcomes

Over mean follow-up of 3.8 ± 1.7 years, there were 497 CVD events. Figure 2 presents 

adjusted event rates for eGFR and ACR strata. Event rates were higher at higher levels of 

albuminuria (Figure 3). In unadjusted and parsimonious models, each two-fold higher ACR 

was associated with an 11% (HR, 1.11; 95% CI, 1.08–1.15) and 12% (HR, 1.12; 95% CI, 

1.09–1.17) higher risk for CVD outcomes, respectively. In the extended adjusted model, 

each two-fold higher ACR was associated with a 6% (HR, 1.06; 95% CI, 1.02–1.10) higher 

risk for CVD outcomes (Figure S1). Risk by ACR strata is shown in Table 2 and Figure S2; 

compared with ACR < 10 mg/g, in those with ACR 30 to <300 mg/g the CVD risk was 

nominally elevated but this was not statistically significant (HR, 1.25; 95% CI, 0.96–1.61), 

and among those with ACR 300+ mg/g, the increased risk of CVD was statistically 

significant (HR, 1.55; 95% CI, 1.13–2.11).
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Mortality Outcomes

Over mean follow-up of 4.0 ± 1.5 years, there were 407 deaths; Figure 2 presents adjusted 

event rates for eGFR and ACR strata. In unadjusted models and in parsimonious models, 

each two-fold higher ACR was associated with an 18% higher risk for all-cause mortality 

outcomes (HRs of 1.18 (95% CI, 1.14–1.23) and 1.18 (95% CI, 1.13–1.22), respectively). In 

the extended adjusted model, each two-fold higher ACR was associated with a 13% (HR, 

1.13; 95% CI, 1.09–1.18) higher risk of all-cause mortality (Figure S1). Risk by ACR strata 

is shown in Table 2 and Figure S2, demonstrating a statistically significant increased risk of 

death among those with ACR 30 to <300 mg/g and 300+ mg/g [HRs of 1.65 (95% CI, 1.23–

2.21) and 2.07 (95% CI, 1.46–2.94), respectively, compared with ACR <10 mg/g].

Composite Outcome

Over mean follow-up of 3.9 years, there were 624 episodes of either allograft failure or all-

cause mortality. Figure 2 presents adjusted event rates for eGFR and ACR strata. In 

unadjusted models and in parsimonious models, each two-fold higher ACR was associated 

with a 30% higher risk of the composite outcome (HRs of 1.30 (95% CI, 1.27–1.34) and 

1.30 (95% CI, 1.26–1.34), respectively). In the extended adjusted model, each two-fold 

higher ACR was associated with a 26% (HR, 1.26; 95% CI, 1.22–1.31) higher risk of the 

allograft failure-mortality composite (Figure S1). Risk by ACR strata is shown in Table 2 

and Figure S2, demonstrating a statistically significant increased risk of the allograft failure-

mortality composite among those with urine ACR 30 to <300 mg/g and 300+ mg/g [HRs of 

2.20 (95% CI, 1.71–2.83) and 4.55 (95% CI, 3.46–5.99), respectively, compared with ACR 

<10 mg/g].

Secondary and Sensitivity Analyses

Competing risks models had similar results to primary analyses (Table S2). The interaction 

between urine ACR and systolic blood pressure was not significant for any outcome; 

additionally, the interactions between urine ACR and eGFR stratified at 45 ml/min/

1.73m2and between ACR and history of cardiovascular disease were not significant for any 

outcome the presence of albuminuria was of greater import for composite outcomes among 

those without diabetes (Figure S3). There was a significant interaction between baseline 

ACR and diabetes, such that the presence of albuminuria was of greater import for 

composite outcomes among those without diabetes (Figure S3).

Discussion:

In a large, well-characterized cohort of stable KTRs, higher levels of ACR were associated 

with higher risk of graft failure, CVD, and death independent of allograft function, 

traditional CVD risk factors, and limited transplant characteristics. Although these 

associations were strongest for graft failure, the presence of elevated urine ACR was 

strongly associated with both all-cause mortality and CVD events. These findings expand on 

prior work through inclusion of a large, multicenter, multinational population with detailed 

comorbidity assessment, central laboratory measures, and consensus outcomes 

ascertainment with a focus on CVD. These findings are especially interesting considering 

the parallel associations of ACR with CVD and mortality events in native kidneys and the 
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relatively limited explorations to date of the association between albuminuria and CVD 

among kidney transplant recipients (6, 26).

Viewed in conjunction with other studies, these results demonstrate that kidney damage not 

only is associated with risk of CKD progression but also with cardiovascular and mortality 

outcomes, potentially suggesting that comorbid conditions associated with development and 

progression of albuminuria may concurrently impact cardiovascular risk. The magnitude of 

the associations of ACR with outcomes in the current study exceeded that seen previously 

with tubular injury markers in a subset of the FAVORIT Trial (19, 27). ACR is more easily 

measured than many other urine biomarkers of kidney injury, has a stronger and more 

consistent association with outcomes, and, in the general population, can be used to assess 

the potential effectiveness of treatments, such as renin-angiotensin-aldosterone system 

blockade (28).

Our findings are notable considering that increased CVD and mortality risk was seen even at 

moderately elevated levels of albuminuria (30–300 mg/g) at all levels of kidney function, 

suggesting that even mild damage identified in the allograft reflects systemic cardiovascular 

and mortality risk in the recipient and that, regardless of the etiology of albuminuria, its 

presence is clinically important. In other words, ACR may capture a systemic microvascular 

and vascular disease that indicates cardiovascular and mortality risk beyond kidney function, 

with the association in KTRs similar in magnitude to that seen for albuminuria and outcomes 

in native kidney disease (29). Alternatively, inflammation or other disease processes 

contributing to cardiovascular disease may also induce microvascular damage in the 

transplanted kidney, accelerating kidney disease and albuminuria (7, 30).

The associations of kidney function assessed by eGFR and long-term graft function have 

been well described, including in the FAVORIT Trial (17, 31). Previous studies also have 

evaluated the association of ACR with outcomes in KTRs (32–38). A study by Nauta et al 

found that ACR predicted graft loss in a single-center study of 606 KTRs with 42 graft 

failure events (39). More recently, a longitudinal cohort study of 1490 KTRs at a single 

European center showed that proteinuria measured by 24-hour urine collection was 

independently associated with graft failure, independent of kidney pathology (40). Similarly, 

a recent Canadian study evaluating 900 KTRs between 2002 and 2011, using administrative 

data to assess outcomes, found that the KDIGO staging used in native CKD had graded 

associations with outcomes of graft loss and mortality in transplant recipients (41). Overall, 

these studies focused on graft loss and mortality using various measures of graft function. 

Our study adds significantly to this literature as the FAVORIT study performed careful 

prospective adjudication of CVD events, and we showed that a simple measure of ACR was 

strongly associated not only with allograft failure but also with CVD events and mortality 

after multivariate adjustment, including adjustment for kidney function.

Among KTRs chronic allograft rejection, recurrent or de novo glomerulonephritis and 

transplant glomerulopathy are leading causes of proteinuria (40,42). The majority of cases of 

transplant glomerulopathy are secondary to chronic antibody-mediated rejection, suggesting 

that immune-mediated injury may be a more important cause of proteinuria than previously 

thought (3, 43–47), with medication non-adherence a major cause of graft failure from 
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rejection (46). Accordingly, the current study is important as available therapeutic 

interventions may be considered to reduce ACR in KTRs, including RAAS blockade, 

immunosuppression strategies, and strategies to improve medication adherence (48, 49), 

although existing data, including a recent, 4-year randomized trial evaluating the effect of 

ramipril on clinical outcomes in 213 KTRs with 200 mg or more of proteinuria per day, do 

not show a significant beneficial effect with ramipril as compared to placebo despite 

modestly lower proteinuria in ramipril recipients (50). Further study is needed to determine 

how to incorporate albuminuria assessment into risk assessment and to evaluate whether it 

has utility in guiding non-immunologic therapies. The optimal choice of immunosuppression 

to mitigate ACR and improve cardiovascular outcomes is also of great interest (51, 52). 

Finally, use of ACR to guide decisions about cardiovascular testing and imaging is another 

potential application of these findings.

Our study has several strengths. FAVORIT study participants are well characterized, with 

adjudicated cardiovascular events as the main outcome of the parent study. The FAVORIT 

trial is large and represents stable KTRs at least six months post transplantation from 

multiple centers across US, Canada, and Brazil. This study also has limitations. We used 

ACR measured at one time point only from spot urine samples collected at baseline; 

however, this would likely bias to a null finding (53). Similarly, we used kidney function 

data from baseline only. While including both ACR and eGFR as time varying terms could 

further elucidate the associations among kidney markers and kidney and CVD outcomes, 

absence of measures at one year in many participants would render conclusions uncertain. 

Kidney biopsy pathologic data, pre-transplantation dialysis vintage, HLA status, and anti-

HLA antibody status are not available. As acute and chronic rejection can contribute to 

albuminuria and cardiovascular risk (44), this is an important consideration; notably, 

enrollment in the FAVORIT trial required participants to be stable and confounding by 

presence of acute rejection at enrollment is unlikely to have markedly influenced our results 

while future acute rejection episodes are likely to bias to the null finding unless prevalent 

albuminuria is a marker of future rejection. Recruitment focused on prevalent KTRs also 

likely minimized the possibility that albuminuria reflected disease in functioning native 

kidneys. Additionally, we do not have data on whether participants died of kidney failure 

without initiating dialysis; accordingly, we included a composite outcome that shows 

consistent associations between albuminuria and events. Finally, as with any observational 

study, we can neither exclude the possibility of residual confounding nor determine 

causality.

In conclusion, among stable KTRs in the FAVORIT trial, we found that ACR is 

independently and strongly associated with graft failure, CVD events and mortality. The 

association of ACR with outcomes in KTRs is similar to that seen between ACR and 

outcomes in the general population. As ACR is easily obtained in clinical practice, its 

uniform use in KTRs may be important in helping to assess risk of adverse outcomes, 

including cardiovascular disease outcomes. Future studies should further evaluate methods 

to reduce ACR as an intervention to improve outcomes in KTRs as well as mechanisms by 

which ACR and kidney injury lead to systemic disease and poor outcomes.
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Figure 1. 
Derivation of the study population
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Figure 2. Adjusted event rates per 1000 patient years by eGFR and urine albumin-creatinine 
ratio strata.
Rates are presented per 1,000 person-years of clinical outcomes calculated using Poisson 

regression. Data are presented as the number of individuals with an event/number in the 

eGFR/ACR stratum followed by the adjusted rate (95% confidence interval). For CVD, 

mortality, and the composite of allograft failure and mortality outcomes, as compared to the 

lowest group, green shading indicates a 1 to 1.5 fold increased event rate; yellow a 1.5–2 

fold increased rate; orange a 2–3 fold increased rate; red a 3–5 fold increased rate, and dark 

red a 5+ fold increase. For allograft failure, green shading indicates a 1–2 fold increased 
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rate; yellow 2–5; orange, 5–10; red, 10–20 and dark red, 20+. For the composite of allograft 

failure and death, green shading indicates a 1–2 fold increased rate; yellow 2–5; orange, 5–

10; red, 10–20 and dark red, 20+. Models adjust for age, sex, race, study allocation, country, 

graft vintage, donor type, calcineurin inhibitor use, sirolimus use, diabetes, history of 

cardiovascular disease, smoking status, systolic blood pressure, diastolic blood pressure, 

body mass index, HDL cholesterol, LDL cholesterol, triglycerides, angiotensin converting 

enzyme inhibitor or angiotensin receptor blocker use, aspirin use, and statin use. ACR, 

albumin-creatinine ratio in mg/g; eGFR, estimated glomerular filtration rate in mL/min/

1.73m2.
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Figure 3. 
Event rates stratified by urine ACR level
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Table 1.

Baseline characteristics of participants stratified by Urine ACR category

Urine ACR Category

Total
(N=3511)

<10 mg/g
(n=1017; 29%)

10-<30 mg/g
(n=912; 26%)

30-<300 mg/g
(n=1134; 32%)

>=300 mg/g
(n=448; 13%) Trend p

Age (y) 51.8 ± 9.4 51.2 ± 9.0 52.6 ± 9.5 52.0 ± 9.5 50.9 ± 9.6 0.8

Women 1309 (37%) 389 (38%) 341 (37%) 398 (35%) 181 (40%) 0.8

Race <0.001

  White 2679 (76%) 811 (80%) 721 (79%) 830 (73%) 317 (71%)

  Black 609 (17%) 140 (14%) 134 (15%) 231 (20%) 104 (23%)

  Other 223 (6%) 66 (6%) 57 (6%) 73 (6%) 27 (6%)

Treatment group 0.4

  High dose vitamin 1755 (50%) 505 (50%) 450 (49%) 564 (50%) 236 (53%)

  Low dose vitamin 1756 (50%) 512 (50%) 462 (51%) 570 (50%) 212 (47%)

Location 0.02

  United States 2508 (71%) 758 (75%) 657 (72%) 773 (68%) 320 (71%)

  Canada 394 (11%) 94 (9%) 103 (11%) 140 (12%) 57 (13%)

  Brazil 609 (17%) 165 (16%) 152 (17%) 221 (19%) 71 (16%)

Graft vintage (y) 4.1 (1.7–7.4) 3.6 (1.6–6.9) 3.3 (1.3–6.8) 4.4 (1.9–8.0) 5.3 (2.4–9.2) <0.001

Living donor kidney 1497 (43%) 473 (47%) 395 (43%) 458 (40%) 171 (38%) <0.001

Medications

  Cyclosporine 1774 (51%) 542 (53%) 467 (51%) 569 (50%) 196 (44%) 0.002

  Tacrolimus 1334 (38%) 410 (40%) 361 (40%) 403 (36%) 160 (36%) 0.02

  Any CNI 3101 (88%) 948 (93%) 826 (91%) 971 (86%) 356 (79%) <0.001

  Sirolimus 293 (8%) 35 (3%) 72 (8%) 124 (11%) 62 (14%) <0.001

  ACEi/ARB 1557 (44%) 428 (42%) 382 (42%) 505 (45%) 242 (54%) <0.001

  Statin 1833 (52%) 510 (50%) 496 (54%) 597 (53%) 230 (51%) 0.6

  Aspirin 1460 (42%) 441 (43%) 409 (45%) 446 (39%) 164 (37%) 0.003

Medical History

  CVD 703 (20%) 164 (16%) 189 (21%) 247 (22%) 103 (23%) <0.001

  Diabetes Mellitus 1403 (40%) 374 (37%) 360 (39%) 481 (42%) 188 (42%) 0.01

  Hypertension 3228 (92%) 892 (88%) 833 (91%) 1071 (94%) 432 (96%) <0.001

Smoking 0.03

  Never 1703 (49%) 494 (49%) 444 (49%) 534 (47%) 231 (52%)

  Former 1422 (41%) 422 (41%) 380 (42%) 465 (41%) 155 (35%)

  Current 386 (11%) 101 (10%) 88 (10%) 135 (12%) 62 (14%)

Examination Findings

  SBP (mm Hg) 136.2 ± 19.8 130.4 ± 17.0 134.4 ± 18.5 139.4 ± 20.9 144.9 ± 21.2 <0.001

  DBP (mm Hg) 78.8 ± 12.4 76.6 ± 11.3 77.5 ± 11.8 80.4 ± 12.9 82.6 ± 13.3 <0.001

  BMI (kg/m2) 29.2 ± 6.2 29.3 ± 6.3 29.0 ± 6.1 29.1 ± 6.1 29.4 ± 6.2 0.6
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Urine ACR Category

Total
(N=3511)

<10 mg/g
(n=1017; 29%)

10-<30 mg/g
(n=912; 26%)

30-<300 mg/g
(n=1134; 32%)

>=300 mg/g
(n=448; 13%) Trend p

Laboratory Results

  Total cholesterol,
mg/dL 185.0 ± 44.2 181.4 ± 38.7 181.4 ± 40.9 185.7 ± 45.5 199.1 ± 54.7 <.001

  HDL cholesterol,
mg/dL 46.2 ± 13.9 46.4 ± 13.2 46.2 ± 14.2 46.0 ± 14.1 46.6 ± 14.8 0.4

  LDL cholesterol,
mg/dL 101.3 ± 34.6 99.9 ± 31.8 98.3 ± 32.0 101.9 ± 35.8 109.1 ± 41.1 0.001

  Triglycerides 164 (113–238) 157 (106–224) 163 (112–235) 167 (114–239) 184 (124–266) <0.001

  Scr, mg/dL 1.7 ± 0.6 1.5 ± 0.5 1.6 ± 0.5 1.7 ± 0.6 1.9 ± 0.7 <0.001

  eGFR, mL/min/1.73
m2 48.9 ± 17.5 52.7 ± 17.0 50.1 ± 16.9 47.0 ± 17.7 42.7 ± 17.3 <0.001

  ACR (mg/g) 24.1 (8.5–97.8) 5.4 (3.6–7.6) 16.8 (12.8–22.4) 75.2 (44.4–
136.2)

682.3 (408.8–
1347.3)

Values for categorical variables are given as count (percentage); for continuous variables as mean ± standard deviation or median (25th –75th 

percentile). ACR, albumin-creatinine ratio; ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; DBP, diastolic 
blood pressure; SBP, systolic blood pressure; BMI, body mass index; HDL, high density lipoprotein; LDL, low density lipoprotein; CVD, 
cardiovascular disease; Scr, serum creatinine.
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Table 2.

Albuminuria strata and risk of cardiovascular disease, mortality and dialysis outcomes

Urine ACR Category
Continuous:
Per ACR
doubling*

< 10 mg/g
(n=1017)

10-<30 mg/g
(n=912)

30-<300 mg/g
(n=1134)

>=300 mg/g
(n=448)

Allograft Failure

Unadjusted 1.00 (ref) 1.27 (0.74, 2.16) 4.46 (2.91,
6.83)

15.00 (9.81,
22.94)

1.47 (1.40,
1.54)

Parsimonious
Adjusted

1.00 (ref) 1.32 (0.77, 2.25) 4.63 (3.02,
7.10)

14.89 (9.66,
22.96)

1.48 (1.41,
1.56)

Extended Adjusted 1.00 (ref) 1.24 (0.73, 2.11) 3.40 (2.19,
5.30)

9.96 (6.35,
15.62)

1.43 (1.36,
1.51)

Cardiovascular Disease

Unadjusted 1.00 (ref) 1.16 (0.89, 1.52) 1.65 (1.30,
2.09) 2.29 (1.74, 3.02) 1.11 (1.08,

1.15)

Parsimonious
Adjusted

1.00 (ref) 1.09 (0.84, 1.43) 1.68 (1.32,
2.15) 2.44 (1.83, 3.25) 1.12 (1.09,

1.17)

Extended Adjusted 1.00 (ref) 0.99 (0.75, 1.29) 1.25 (0.96,
1.61) 1.55 (1.13, 2.11) 1.06 (1.02,

1.10)

All-Cause Mortality

Unadjusted 1.00 (ref) 1.23 (0.90, 1.68) 2.25 (1.71,
2.95) 2.98 (2.18, 4.09) 1.18 (1.14,

1.23)

Parsimonious
Adjusted

1.00 (ref) 1.09 (0.79, 1.49) 2.05 (1.56,
2.71) 2.80 (2.02, 3.89) 1.18 (1.13,

1.22)

Extended Adjusted 1.00 (ref) 1.02 (0.74, 1.39) 1.65 (1.23,
2.21) 2.07 (1.46, 2.94) 1.13 (1.09,

1.18)

Allograft Failure or All-Cause Mortality

Unadjusted 1.00 (ref) 1.28 (0.97, 1.70) 2.84 (2.24,
3.61) 6.25 (4.84, 8.07) 1.30 (1.27,

1.34)

Parsimonious
Adjusted

1.00 (ref) 1.23 (0.93, 1.64) 2.76 (2.17,
3.53) 6.04 (4.64, 7.87) 1.30 (1.26,

1.34)

Extended Adjusted 1.00 (ref) 1.17 (0.88, 1.56) 2.20 (1.71,
2.83) 4.55 (3.46, 5.99) 1.26 (1.22,

1.31)

ACR of <10 mg/mg is considered normal; 10-<30 mg/mg is considered high-normal (mildly increased); 30-<300 mg/g is moderately increased; 
>=300 mg/g is severely increased

Rates are unadjusted. Models present the hazard ratio (95% confidence interval). The parsimonious model is adjusted for age, sex, race, study 
allocation, country, graft vintage, donor type, calcineurin inhibitor use and sirolimus use, aspirin use, and statin use, while the extended model is 
adjusted for age, sex, race, study allocation, country, graft vintage, donor type, calcineurin inhibitor use, sirolimus use, diabetes, history of 
cardiovascular disease, smoking status, systolic blood pressure, diastolic blood pressure, body mass index, HDL cholesterol, LDL cholesterol, 
triglycerides, angiotensin converting enzyme inhibitor or angiotensin receptor blocker use, aspirin use, statin use, and estimated GFR. PY, person-
year.

*
based on data from participants in all ACR categories
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