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Abstract
Two long-standing challenges in theoretical population genetics and evolution are predicting the distribution of phenotype 
diversity generated by mutation and available for selection, and determining the interaction of mutation, selection and drift 
to characterize evolutionary equilibria and dynamics. More fundamental for enabling such predictions is the current inability 
to causally link genotype to phenotype. There are three major mechanistic mappings required for such a linking – genetic 
sequence to kinetic parameters of the molecular processes, kinetic parameters to biochemical system phenotypes, and 
biochemical phenotypes to organismal phenotypes. This article introduces a theoretical framework, the Phenotype Design 
Space (PDS) framework, for addressing these challenges by focusing on the mapping of kinetic parameters to biochemical 
system phenotypes. It provides a quantitative theory whose key features include (1) a mathematically rigorous definition of 
phenotype based on biochemical kinetics, (2) enumeration of the full phenotypic repertoire, and (3) functional characteriza-
tion of each phenotype independent of its context-dependent selection or fitness contributions. This framework is built on 
Design Space methods that relate system phenotypes to genetically determined parameters and environmentally determined 
variables. It also has the potential to automate prediction of phenotype-specific mutation rate constants and equilibrium 
distributions of phenotype diversity in microbial populations undergoing steady-state exponential growth, which provides 
an ideal reference to which more realistic cases can be compared. Although the framework is quite general and flexible, the 
details will undoubtedly differ for different functions, organisms and contexts. Here a hypothetical case study involving a 
small molecular system, a primordial circadian clock, is used to introduce this framework and to illustrate its use in a par-
ticular case. The framework is built on fundamental biochemical kinetics. Thus, the foundation is based on linear algebra 
and reasonable physical assumptions, which provide numerous opportunities for experimental testing and further elaboration 
to deal with complex multicellular organisms that are currently beyond its scope. The discussion provides a comparison of 
results from the PDS framework with those from other approaches in theoretical population genetics.

Keywords  Biochemical systems theory · Circadian clock circuitry · Theoretical population genetics · Fisher’s geometric 
model · Constructive neutral evolution · Evolutionary dynamics

Introduction

The concept of evolution is easily stated and understood: 
Mutation generates diversity of phenotypes and selection 
favors those with the greatest heritable fitness. However, 
there are many complex and inter-related issues that must be 
addressed to achieve a deeper understanding. Two prominent 
examples that continue to be fundamental challenges are (1) 
determining the distribution of phenotype diversity, which 
offers opportunities for innovation (Charlesworth 1996; 
Bataillon & Bailey 2014) and (2) determining the interac-
tion of mutation, selection, drift and population structure 
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to determine equilibria and the dynamics of evolution 
(Gillespie 2004; Orr 2005; Wakeley 2005).

While advances in genome sequencing technology 
(Metzker 2010) can provide distributions of the numbers 
and types of changes in DNA, determining the distribution 
of the resulting phenotypes and their fitness characteristics 
(determinants of total fitness) in natural populations is dif-
ficult in the extreme (Charlesworth 1996). The true number 
of phenotypes and fitness characteristics in the population 
is typically unknown and any observed distribution of total 
fitness (e.g., growth rate of bacteria) is skewed by what can 
be observed in the field, and measured or generated experi-
mentally in the laboratory (Gallet et al. 2012; Robert et al. 
2018; Bondel et al. 2019; Lebeuf-Taylor, et al., 2019). With 
large data sets, correlations can be established between 
genome changes and fitness changes in a given environment. 
However, at a fundamental level there are many fitness com-
ponents based on function that remain to be identified and 
characterized and many unsolved mappings that prevent a 
predictive, causal linking of mutations in DNA, properties of 
molecular components, integrated system function, pheno-
typic repertoire, and fitness. In short, there is little relevant 
theory for guidance.

There is a rich field of theoretical population genetics 
developed over more than a century that addresses the inter-
action of mutation, selection, drift and population structure 
(Gillespie 2004; Orr 2005; Wakeley 2005). However, aside 
from the simpler cases of one-to-one mapping between gene 
and phenotypic function, an appropriate theoretical frame-
work is lacking to pose and answer questions for the more 
complex cases that involve mappings between many genes 
and many functional contributions to phenotypes.

In reviewing the genetic theory of adaptation, Orr (2005) 
examined “the reasons a mature [mathematical] theory has 
been slow to develop and the prospects and problems facing 
current theory” and concluded that although recent models 
“seem to successfully explain certain qualitative patterns 
[…] future work must determine whether present theory 
can explain the genetic data quantitatively”. Experimental 
evolution studies have shown that mutations in a single gene 
affecting a specific enzyme can lead to a marked change in 
organismal fitness (Barrick & Lenski 2013; Gresham & Jong 
2015). Although the results might be explained qualitatively, 
without an adequate systems theory these explanations can-
not provide a rigorous, quantitative, causal understanding of 
the complex underlying events.

Can knowledge of molecular systems tell us anything 
about the distribution of mutant phenotypes and their evo-
lution? A large part of the problem in relating molecular 
mechanisms to phenotype distributions and evolution is 
the inability to relate the genotype and environment to the 
phenotype exhibited by a biological system, which is one 
of the ‘Grand Challenges’ in biology (Brenner 2000). The 

causal linking of genotype to phenotype involves at least 
three essential mappings (Fig. 1).

First is the mapping from the digital values of the genome 
sequence to the analogue values of the kinetic parameters 
that characterize the underlying molecular processes. Sec-
ond is the mapping from the kinetic parameters of the indi-
vidual component processes to the quantitative biochemical 
phenotypes of the integrated cellular system. Third is the 
mapping from the biochemical (endo-) phenotypes to the 
organismal (exo-) phenotypes, including observables such 
as growth rate, taxis and adhesion. The first of these map-
pings deals with protein structure function relationships, 
which relate DNA sequence to properties of the encoded 
protein. Recent success in solving the protein folding prob-
lem (Callaway 2020) bodes well for the eventual ability to 
predict kinetic parameters. The second mapping is the focus 
of Biochemical Systems Theory (Savageau 1971; 2009; Voit 
2000; 2013), which in the past decade has provided a novel 
system deconstruction that maps genetically determined 
parameters and environmentally determined variables to 
biochemical phenotypes. The result is a highly structured 
partitioning of parameter space that is defined as the System 
Design Space when referring to dynamics of the underlying 
molecular system (Savageau et al. 2009) and as the Phe-
notype Design Space (PDS) when referring to dynamics of 
the evolving population. A Design Space Toolbox (DST3) 
is available with numerous tools that automate the analysis 
(Valderrama-Gómez et al. 2020). The third of these map-
pings is perhaps the most difficult, in any but the simplest 
cases of one-gene one-protein one-phenotype, due to the 
large number of genes and phenotypes with many-to-many 
interactions that currently can only be characterized by large 
data sets and statistical correlations (McCarthy et al. 2008; 
Greenbury et al. 2016).

If one could enumerate the full repertoire of pheno-
typic functions that could be exhibited by a given biologi-
cal system and know the rates of transition among them 
in the population undergoing mutational exchange, then 

Fig. 1   Three major mappings between genotype and phenotype. The 
mapping from genetically determined kinetic parameters and environ-
mentally determined variables to biochemical system phenotypes is 
the subject of biochemical systems theory (BST) that is utilized for 
this work
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one would have a deep understanding of the functional 
basis for phenotypic diversity and plasticity available for 
selection to act upon. Here we address these issues in five 
parts. A schematic of the overall strategy is depicted in 
Fig. 2. The technical methods involve reasonable physical 
assumptions derived from fundamental biochemical kinet-
ics as well as linear algebra, as shown in the following 
sections and Supplemental Information (SI).

The first part introduces a small molecular system, a 
hypothetical primordial precursor to a circadian clock 
that provides a context and an aid to understanding the 
approach. This system is specifically selected for this pur-
pose because it provides a hypothesis-motivated example 
with unknown parameter values. Any real system will 
initially have many unknowns and involve the formula-
tion of, and discrimination among, many hypotheses that 
require experimental testing; the Design Space approach 
has advantages to offer specifically at this stage of an 
investigation (Lomnitz & Savageau 2016a). The second 
part extends the Design Space concepts (SI: Sect. 1) to 
the PDS framework by applying the phenotype-centric 
strategy to predict phenotype-specific mutation rate 
constants. This involves formulating phenotype-specific 
mutation rates based on transition probabilities between 
biochemical phenotypes. These rate constants are then 
used to formulate population dynamic equations for pre-
dicting equilibrium distributions of phenotype diversity 

under non-selecting and selecting conditions. The third 
part presents results for the population genetic model. The 
fourth part discusses specific predictions in the light of 
experimental challenges for their testing. The fifth part 
compares theoretical results provided by the PDS frame-
work with those provided by other approaches.

Putative Primordial Circadian Clock

The molecular system, treated as a case study here, is 
related to the positive–negative feedback module found 
at the core of nearly all circadian clocks (Bell-Pedersen 
et al. 2005; Hardin 2011; Cohen & Golden 2015; Nohales 
& Kay 2016; Papazyan et al. 2016; Creux & Harmer 2020) 
and several synthetic oscillator designs (Atkinson et al. 
2003; Stricker et al. 2008; Tigges et al. 2009; Lomnitz & 
Savageau 2014). In the transcription-translation oscilla-
tors, this module consists of a positive transcription fac-
tor that activates its own synthesis as well as synthesis 
of a negative transcription factor, which in turn represses 
synthesis of the positive transcription factor. The module 
originally identified in Drosophila is elaborated upon in 
animals (Preitner etal., 2002) and plants (Creux & Harmer 
2020) with numerous variations on the theme, including 
diverse input stimuli that modulate expression of one or 
both factors (Balsalobre, et al. 2000; O’Neill & Reddy 
2012) and rich output interactions with nearly all cellular 
functions (Creux & Harmer 2020).

In the cyanobacterial clock, the transcription-translation 
mechanism is a minor player whereas a posttranslational 
oscillator mechanism with different positive and negative 
interactions plays the dominant role (Cohen & Golden 
2015). When growing exponentially in a normal diurnal 
light cycle, phenotypes without the oscillatory charac-
teristic are at a selective disadvantage when compared 
to the wild-type (oscillatory phenotype); however, they 
exhibit no measurable disadvantage when grown under 
the non-selecting condition (constant light), as determined 
by growth competition between mutants and wild-type in 
an otherwise isogenic background (Ouyang et al. 1998).

Roenneberg & Merrow (2002) and many others have 
speculated that the robust limit cycle, or sustained oscil-
lation, exhibited by circadian clocks in modern organisms 
is unlikely to have arisen full blown. Some of the coor-
dinating functions could have been provided by a sim-
pler core module having a damped oscillation with a fre-
quency that resonates to and becomes synchronized with 
the diurnal cycle. Indeed, such damped oscillations have 
been experimentally observed in strains of cyanobacteria: 
namely, clock mutants of Synechococcus (Ouyang et al. 
1998; Kawamoto et al. 2020) and marine Prochlorococcus 
marinus (Holtzendorff et al. 2008).

Fig. 2   Schematic representation of the overall strategy. This figure 
depicts a two-dimensional slice of the n-dimensional space of molec-
ular parameters (k1, k2, …, kn) but shows only three planes of the m 
volumes that fill the entire space. Specific volumes (black polytopes) 
in the n-dimensional space correspond to qualitatively distinct system 
phenotypes (P1, P2, …, Pm). Transition probabilities among pheno-
types due to mutation (red arrows) are determined by mathematically 
defined volumes of phenotypes and distances and biases between 
phenotypes
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Because mutants without the oscillatory characteristic 
exhibit no measurable disadvantage when grown under the 
non-selecting conditions, this suggests a number of sce-
narios by which the elements of a primordial clock could 
evolve according to nearly neutral theory (Kimura 1983; 
Ohta 1992). The two-transcription factor bindings, which 
is the minimum number needed to form the necessary neg-
ative feedback loop, could arise in either order. Establish-
ing links to the input from the environmental signal and 
to the output to cellular metabolism, also could arise in 
either order. The combination of these events would form 
the basic architecture of the model in Fig. 3. However, this 
would still be insufficient to generate damped oscillations; 
this would require the evolution of sufficient cooperativity 
in the two bindings (e.g., by dimerization of each protein), 
which also could arise in either order. Lacking any one of 
these events, the primordial clock would still experience 
no measurable disadvantage. Only when all the events 
have been established would the oscillatory primordial 
clock have a selective advantage under selecting condi-
tions and its non-oscillatory mutants be at a disadvantage.

These novel elements might result from duplication and 
repurposing one of the duplicates (Stoltzfus 1999), although 
a more effective scenario for the acquisition of new func-
tions has been predicted based on the Demand Theory of 
gene regulation (Savageau 1989). The prediction consists 
of three elements (1) functions in low demand are predicted 
to be under negative control, (2) in any given context there 
are a large number of such quiescent functions and a loss-of-
function mutation in the regulator for any one will produce 
a greatly amplified increase in the expression of the corre-
sponding function, and (3) since most functions have a range 
of promiscuous activity for functions other than the native 
(Khersonsky & Tawfin, 2010; Rueda et al. 2019), even a 
small percentage of such activity will result in a substantial 
increase in activity for the realization of the newly acquired 

function. Experimental evidence confirms these predic-
tions of the Demand Theory: phenotypes determined by 
mechanisms subject to negative regulation frequently arise 
by loss-of-function mutations in their negative regulatory 
components to yield newly acquired functions (McDonald 
et al. 2009; Tenaillon et al. 2012; Lind et al. 2015, 2019; 
Fraebel et al. 2017).

For our purposes here, consider the primordial mecha-
nisms to involve only the negative feedback loop at the core 
of modern transcription-translation mechanisms, as shown 
schematically in Fig. 3. The equations used to model this 
putative primordial clock (SI: Section 2) are based on the 
foundation of fundamental biochemical kinetics. Such mod-
els have broad general applicability, as the vast majority of 
biochemical models are of this type (Chelliah et al. 2013). 
These equations, recast as an equivalent GMA-system 
of equations (SI: Section S3), become a set of differen-
tial–algebraic equations in the syntax of the Design Space 
Toolbox (Lomnitz & Savageau 2016b).

Three assumptions simplify the presentation. (1) The pre-
cursor is likely to involve a minimal number of processes 
and a minimal degree of cooperativity in the interactions. 
The two-transcription factor model involves at least four 
processes and two cooperative DNA interactions. For it to 
generate a damped oscillatory response, the system must 
be near the threshold of instability, which requires a value 
of loop cooperativity [(n*p) in the Eqn. (S1) to Eqn. (S4)] 
equal to 4 for a system with four temporally dominant stages 
(Savageau 1975; Thron 1991). Let the cooperativity param-
eters each have the minimum value n = p = 2. [Kawamoto 
et al. (2020) considered a three-factor model for Synecho-
coccus; but it requires a much higher degree of coopera-
tivity, n > 8 as shown in Savageau (1975).] (2) To provide 
the most challenging shape for testing different methods of 
volume calculation (SI: Section S5, Fig. S2), we select val-
ues for the two parameters (capacity for regulation for the 
two transcripts) with the potential to break the symmetry 
such that a skewed volume is generated for the phenotype 
with an oscillatory characteristic. (3) To aid visualization 
of the results we focus on a two-dimensional slice through 
the Design Space with the two binding constants displayed 
on the vertical and horizontal axes. This choice provides a 
representative view of the invariant for the Design Space of 
this system (SI: Section S4, Fig. S1A).

The Design Space Toolbox 3 (DST3, Valderrama-Gómez 
et al. 2020) is used to enumerate the repertoire of pheno-
types without assuming values for any of the model’s kinetic 
parameters, and the results demonstrate a maximum of nine 
possible phenotypes. These are listed in Table 1, along with 
the properties of their eigenvalues when n = p = 2. Each 
sequential pair of integers in the phenotype signature iden-
tifies the specific positive and negative terms in the corre-
sponding GMA equation that are instrumental in defining 

Fig. 3   Common genetic module for the putative precursor of the 
modern core mechanism of nearly all circadian clocks. Positive (P) 
and negative (N) transcription factor proteins and the corresponding 
mRNAs (mP and mN). Environmental input stimulus (S) and bio-
chemical output response (R) are suggestive only, other targets and 
coordinating signals could be considered. See also SI: Section S2
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the phenotype. A comparison of the phenotype signatures 
with the GMA equations (SI: Section S3) identifies the spe-
cific S-system equation for each phenotype. For example, 
the phenotype signature for phenotype #7 (11 11 21 11 21 
11) indicates that the first positive and first negative terms 
of the first GMA equation (Eqn. S5) are dominant, the first 
positive and first negative terms of the second GMA equa-
tion (Eqn. S6) are dominant, the second positive and first 
negative terms of the third GMA equation (Eqn. S7) are 
dominant, etc. When the resulting auxiliary variables DP 
and DN are substituted into the differential equations and 
these are converted back to their biochemical kinetic form, 
the corresponding S-system for phenotype #7 is given by 
Eqns. (1–4).

All phenotypes are stable (no eigenvalues with posi-
tive real part) with no complex conjugate eigenvalues (no 
possibility of oscillations), except for phenotype #7; thus, 
only phenotype #7 has the potential to initiate damped 
oscillatory behavior. This is the only phenotype for which 
both transcription factors are operating within their regu-
latable region.

(1)
dmP

dt
= �mPmax

(

N

KN

)

−n

− �mPmP

(2)
dP

dt
= �PmP − �PP

(3)
dmN

dt
= �mNmax

(

P

KP

)p

− �mNmN

(4)
dN

dt
= �NmN − �NN

It should be emphasized that the enumeration of the full 
phenotypic repertoire by DST3 is accomplished without 
having to specify values for any of the thermodynamic or 
kinetic parameters. By specifying the stoichiometry for 
binding repressor and activator as n = 2 and p = 2, DST3 
automatically predicts scaled values for all 12 thermody-
namic and kinetic parameter values of the system, iden-
tifies the region in Design Space for the realization of 
phenotype #7, the phenotype of interest here, as well as 
the steady-state values of the four dynamic variables. By 
choosing the simplest scaling, generating a skewed volume 
for phenotype #7, and shifting the entire Design Space to 
center the visualization on phenotype #7 (SI: Section S4, 
Fig. S1A), we predict values for the 12 parameters and 
the steady-state values for the four dynamic variables as 
shown in Table 2.

Although variation in all 12 parameters could be 
explored, we focus on the two equilibrium dissocia-
tion constants KP and KN, which will be allowed to vary 
because of mutation. This simplification reduces the 
dimensions of the Design Space for ease in visualizing 
the results while providing an accurate representation of 
the underlying Design Space invariant. The size of the 
regions in Design Space occupied by each of the pheno-
types (Fig. 4A) then can be determined by a vertex enu-
meration method (Avis 2000; Barber et al. 1996). These 
methods work well for small systems and other methods 
are available for large systems (SI: Section S5, Figs. S3 
& S4).

Phenotype‑Specific Mutation Rate Constants

The Design Space enables a novel ‘phenotype-cen-
tric’ modeling strategy that is radically different 
from the conventional ‘simulation-centric’ approach 

Table 1   Phenotypic repertoire for the model in Fig. 3

Results determined using only Eqns. (S5 to S12)

Phe-
notype 
Number

Phenotype Signature Eigenvalues with 
Positive real part

Complex 
Conjugate 
Eigenvalues

1 11 11 11 11 11 11 0 –
3 11 11 11 11 21 11 0 –
5 11 11 21 11 11 11 0 –
6 11 11 21 11 11 21 0 –
7 11 11 21 11 21 11 0  + 
8 11 11 21 11 21 21 0 –
11 21 11 11 11 21 11 0 –
15 21 11 21 11 21 11 0 –
16 21 11 21 11 21 21 0 –

Table 2   Scaled values for the parameters and steady-state concentra-
tions automatically determined at the centroid for phenotype #7 (11 
11 21 11 21 11). The behavior of the model is determined by these 
scaled parameter values

If necessary, twelve experimental measurements (e.g., maximum 
expression, minimum expression and lifetime of each mRNA and 
protein) are sufficient to determine the actual parameter values. How-
ever, as can be seen in Eq. (5), the methods involve differences in log 
space so the scale factors cancel out and thus there is no effect on the 
qualitative or quantitative results. Predicted normalized steady-state 
values: mP = 100.0; P = 1.0; mN = 3.16; N = 3.16

KN 0.316 aN 1.00
KP 1.78 aP 0.01
amNmax 10.0 bmN 1.00
amNmin 1.00 bmP 1.00
amPmax 10,000 bN 1.00
amPmin 1.00 bP 1.00
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(Valderrama-Gómez et al. 2018). A summary of Design 
Space concepts is provided (SI: Section S1) to facilitate 
understanding of the phenotype-centric strategy used to 
predict phenotype-specific mutation rate constants in the 
PDS framework.

The mechanistic PDS framework proposed here 
requires new concepts and methods; the reader is directed 
to Supplemental Information where these are fully 
developed. It involves analysis at two different levels of 
organization that must be clearly distinguished: dynamics 
at the intracellular level of biochemistry and dynamics at 
the extracellular level of population numbers. The former 
is well developed elsewhere and used as part of the analy-
sis; however, the latter is new and is the focus here. Four 
factors in Design Space contribute to the probability of 
transition between phenotypes at the population level as 
a result of mutational change in mechanistic parameters: 
(1) ‘volumes’ of phenotypes in parameter space, (2) ‘dis-
tance’ between phenotypes in parameter space, (3) ‘size 
scale’ of parameter changes between original (donor) 
and resultant (recipient) phenotypes, and (4) ‘directional 
bias’ of parameter changes that are more probable in one 
direction vs. the alternative more entropic direction. The 
elaboration of these four geometrical factors in the fol-
lowing sections can be visualized in the Design Space 
that is determined by the architecture of the underlying 
molecular system (SI: Sections S5 & S6).

Transition Probability Factors

Phenotype Volume

Because the volume of a phenotype becomes infinite when 
the phenotype is independent of some parameter in the 

model, we bound the universe of values for all parameters by 
a hyper-cube in log space that is Π-orders of magnitude on 
edge. The value of Π should be large enough to include all 
phenotypes in the Design Space but not so large as to exceed 
physically realistic parameter values; thus, phenotypes that 
can only be realized with unrealistic parameter values are 
excluded. We have set Π = 6, which seems large enough to 
cover all values that can be distinguished experimentally, 
which is typically about 3-orders of magnitude. For exam-
ple, the repressor for the lactose operon of Escherichia coli 
binds tightly to specific recognition sites in the DNA with an 
occupancy of nearly 100%, but reduction of its equilibrium 
dissociation constant by three orders of magnitude reduces 
the occupancy to nearly 0% (Lewin 2008). Moreover, it is 
very unlikely that parameter values ever go to zero because 
there are typically promiscuous proteins capable of perform-
ing the same function with at least some minimal activity 
(Khersonsky & Tawfin, 2010; Rueda et al. 2019). In any 
case, we have obtained similar results with Π = 8, and DST3 
allows users to select a custom value for Π.

Given a particular set of parameter values characterizing 
the donor in phenotype volume Vi, one of four contributions 
to the probability of mutating to any other set of parameter 
values characterizing the recipient in the phenotype volume 
Vj, is given by the ratio of the recipient volume to the total 
volume for all phenotypes in the repertoire. Thus, this con-
tribution to the probability of mutating from a phenotype 
with a small volume to one with a large volume is greater 
than in the opposite direction.

Fig. 4   Predicted phenotype characteristics in Design Space. A Visu-
alization of phenotype regions. Region of oscillatory phenotype #7 
is the central rectangular shape. B Steady-state concentration of total 
protein (N + P) plotted log10 as a heat map on the z-axis. C Validated 
oscillatory behavior for phenotype #7. Concentrations of activator P 
(left y-axis, Blue) and repressor N (right y-axis, Gold) as a function 
of time scaled by a factor of 1/3. Initial conditions are: mP = 100; 

P = 1.0; mN = 3.16; N = 1.58. Figures generated with the follow-
ing parameter values: KN = 0.316; KP = 1.78; aN = 1.0; aP = 0.01; 
amNmax = 10.0; amNmin = 1.0; amPmax = 10,000.0; amPmin = 1.0; 
bN = 1.0; bP = 1.0; bmN = 1.0; bmP = 1.0; Kinetic order(s): n = 2, 
p = 2; (The parametric constraints amPmax > amPmin and amN-
max > amNmin are automatically satisfied by this parameterization of 
the model.)
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Distance Between Phenotypes

We initially consider only mutational events that influence 
a single parameter at the cellular level. Such mutations can 
influence multiple systemic functions indirectly, which is 
pleiotropy at the phenotype level. The mapping from a ran-
dom change in the digital DNA sequence to the resulting 
change in the analog value of a kinetic parameter is one of 
the fundamental mappings that ultimately link genotype to 
organismal phenotype. Although there is no general under-
standing of this mapping, the changes in kinetic parameters 
have a well-defined distance separating their values; regard-
less of the true distribution of distances produced by the 
mapping, the PDS framework we are proposing provides 
a geometrical context for interpreting these distances in 
relation to the boundaries separating phenotypes, and thus 
to changes in phenotype. A given donor phenotype, which 
is characterized by a particular set of parameter values, is 
represented by a unique point within a volume in param-
eter space (polytope) associated with a qualitatively distinct 
phenotype. Mutation in a single parameter will result in a 
new value for the parameter that is represented by a different 
unique point located in one of a subset of different qualita-
tively distinct recipient phenotypes. The mutation may be 
forbidden from reaching some qualitatively distinct pheno-
types; it also may result in a failure to leave the qualitatively 
distinct phenotype of the donor (a form of robustness). For 
example, looking ahead to Fig. 4A, mutations that change 
the value of the binding constant for the positive transcrip-
tion factor (KP) of donor phenotype #8 can yield only recipi-
ent phenotypes #1, #3, #5, #7 or #8; but not #6, #11, #15 or 
#16. Mutations that change the value of the binding constant 
for the negative transcription factor (KN) of donor pheno-
type #8 can potentially yield any of the recipient phenotypes 
except for #1 and #5. The distance between phenotypes is 
rigorously defined by the vertices of the phenotype poly-
topes and thus is influenced by their shape and orientation 
(Fig. S3).

The single parameter restriction at the cellular level can 
be relaxed to consider mutations that influence multiple 
parameters of a single component, which might be consid-
ered pleiotropy at the single molecule level (e.g., the deg-
radation rate constant of a transcription factor and its DNA 
binding constant). The single parameter restriction can also 
be relaxed to consider simultaneously multiple mutations 
(e.g., rare double mutant events). However, to make causal 
predictions upon removal of the single parameter restriction 
will require formulation of testable mechanistic hypotheses 
(Lomnitz & Savageau 2016a).

At the population level, the transition between popula-
tions of donor and recipient phenotypes typically involves 
the sum of independent mutational events at the cellular 
level. For example, this occurs when two different cells, 

which exhibit the same qualitatively distinct donor phe-
notype, each undergoes a single mutation, but in different 
parameters, to yield two different cells that exhibit the same 
qualitatively distinct recipient phenotype. The transition 
probability between the two populations is thus the sum of 
the probability of the two independent mutational events at 
the cellular level.

Size Scale

Large scale mutations are rare; small scale mutations are 
frequent in well adapted systems (Bataillon & Bailey 2014; 
Tataru et al. 2017; Bondel et al. 2019; Templeton 2021). 
This size scale effect depends on the distance, s, between 
the operating point (a parameter set) of the donor pheno-
type and that of the recipient phenotype. By sampling each 
donor and recipient combination along the line representing 
the change in the mutated mechanistic parameter, the prob-
ability of each mutation can be calculated based on the vol-
ume of the recipient phenotype and the distribution of size 
scale effects for the mutations. Although, as noted above, 
the actual distributions for size scale effect are unknown, 
a reasonable assumption is that the probability of param-
eter change by mutation decreases exponentially with a size 
scale λ, i.e., ~ exp(-s/λ). This will be made more concrete in 
RESULTS (first subsection).

It may well be that the distribution will be different for 
different functions, which deep mutational scan experiments 
might help to clarify. For example, the results for ampicillin 
resistance in Escherichia coli under non-selecting conditions 
and 100% coverage of change in amino acid residues sug-
gest a nearly normal distribution (Stiffler et al. 2015; Sruthi 
et al. 2020) with slight asymmetry favoring reduction in 
activity. Liberles (2023) suggested that these two classes of 
distributions, exponential and left-truced-at-zero normal, are 
likely to have similar biological implications, and concluded: 
“However, it does not actually matter what the distribution 
looks like as long as the activity level that is being selected 
is different from the greatest part of the density.”

The size scale effect of mutations can be calculated as an 
average distance over all combinations of donor and recipi-
ent values of the mutated parameter, which is computation-
ally demanding, or by considering the distance between 
‘phenotype centroids’, which is analogous to the distance 
between ‘centers of mass’ for the gravitational force in celes-
tial mechanics. The results are the same for both methods so, 
since it is computationally more efficient, we use an approxi-
mation to the centroid method based on the mid-point of 
the upper and lower tolerances for each phenotypic volume 
(red dots in Fig. S3B,C,D). The error introduced by this 
approximation averages less than 10%. Further discussion 
of this and related issues can be found in the supplemental 
information (SI: Section S6, Fig. S5).
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Directional Bias

The probability of phenotype-specific transition can be 
further refined by considering “directional bias”. The prob-
ability is larger when a parameter change is in the direc-
tion of increasing entropy; it is smaller when the change is 
in the direction of decreasing entropy. Although the actual 
differences in value are currently unknown, we account for 
these directional biases by assigning a multiplicative weight-
ing factor δ that increases the effective size scale λ when a 
parameter change is in the direction of increasing entropy 
and decreases it when the parameter change is in the direc-
tion of decreasing entropy (SI: Section S6, Table S1).

Phenotype‑Specific Mutation Rate Constants

Phenotype-specific mutation rate constants refer to transi-
tions at the population level and are determined in three 
steps. First, for each donor i and recipient j phenotype, the 
mechanistic parameter contribution to the mutation, Kij , 
is determined with an exponential distribution (Table S1) 
involving size scale � , directional bias � , and the magnitude 
of parameter difference s, between phenotype centroids Ci , 
i.e.,

Depending on whether the mutation involves an increase 
( 1∕� ) or decrease ( � ) in entropy. The product of the mecha-
nistic contribution, Kij , and the volume of the recipient phe-
notype, Vj, is proportional to the probability of a mutation 
from donor phenotype i to recipient phenotype j. The Kij are 
also the sum of independent events when there are multiple 
paths involving different parameter mutations between the 
donor i and recipient j phenotype populations.

Second, the normalized probability of a mutation from 
donor phenotype i to recipient phenotype j is written

where nj is the number of recipient phenotypes that phe-
notype i can reach by independent single mutations in the 
parameters under consideration.

The phenotype-specific mutation rate is proportional to 
the general mutation rate, represented by the parameter m. 
There is a great deal of variation in m among species and 
ecological contexts (Westra et al. 2017). In humans, muta-
tions/base pair is estimated at ~10–8 per generation (Nach-
man & Crowell 2000) and, assuming an average gene size 
of ~1000 base pairs, this results in a general mutation rate 
m on the order of 10–5 mutations/locus per generation. In E. 
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Kij ∼ exp(−
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coli, mutations/base pair is estimated at ~10–10 per genera-
tion (Foster, et al. 2015). Thus, for an average gene size, the 
estimated general mutation rate m is on the order of 10–7 
mutations/locus per generation. Matic et al. (1997) found 
that values for the E. coli mutation rate to drug resistance are 
typically in agreement with this figure (~10–7), but they also 
found examples as high as ~10–5. The values that might have 
been relevant for early periods of evolution are unknown, but 
likely to be on the higher end because of error-prone condi-
tions thought to have prevailed at that time. This would be a 
relevant issue for our case study of a putative primordial cir-
cadian clock, which will be treated in RESULTS. We focus 
on spontaneous point mutations resulting from replication 
that are the major source of variation in a bacterium like 
E. coli (Foster, et al. 2015). The general mutation rate is 
subject to evolution in various contexts (Sniegowski et al. 
2000; Raynes et al. 2018) and, as we will show for our clock 
model, different values of the general mutation rate are opti-
mal for individual phenotypes in the context of near-neutral 
fitness effects (i.e., growth rates, as a measure of total fitness, 
are nearly equal for all phenotypes).

Finally, the phenotype-specific mutation rate constant mij 
between phenotypes i and j is given by the product of two 
factors mkij , where m is the general mutation rate constant 
given by the number of mutations per generation and kij is 
the probability of a transition from phenotype i to pheno-
type j. The production rate of a phenotype (mutant) in units 
of mutations/time is then the product of mij the phenotype-
specific mutation rate constant, �i  the exponential growth 
rate constant of the donor phenotype (related to the doubling 
time, ln 2∕�D ), and Ni the size of the donor population. Note 
that this differs from the conventional description in that the 
product mkij is typically represented by a single specific rate 
constant per generation (e.g., Levin et al. 2000; Reams et al. 
2010) that is not predicted but measured or estimated for a 
particular mutant phenotype.

Population Dynamic Equations

We initially restrict consideration to asexual haploid 
organisms in a spatially homogenous context growing in 
an exponential steady-state, which is the most rigorously 
defined state for a cellular population (Maaløe & Kjeld-
gaard 1966). Under these idealized conditions, all effec-
tive population sizes Ne are equal to the census population 
size N, mutants are never lost from the population, and 
the equilibrium distribution can be rigorously determined 
under non-selecting and selecting conditions. Lethal muta-
tions (~1%) can be subsumed within a net growth rate 
constant since there is evidence that these mutants occur 
by a first-order process (Robert et al. 2018).
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Of course, steady-state exponential growth cannot con-
tinue indefinitely. Nevertheless, results obtained under 
these conditions provide a rigorous reference or standard 
to which results under more realistic conditions can be 
compared, analogous to the historical role played by the 
frictionless plane in mechanics (Hawking 2002) and by the 
Hardy–Weinberg law in population genetics (Crow 1988; 
Wakeley 2005). As with these idealizations, the intention 
in the present case is to get at something essential with 
the understanding that refinements will undoubtedly be 
added in the future; just as wind resistance and static fric-
tion were eventually added in mechanics and selection, 
drift and population structure were eventually added in 
population genetics. In each case, the expectation is that 
more realistic aspects will be added as the theory becomes 
refined. In the DISCUSSION we will suggest methods to 
relax our initial restrictions.

The population dynamic equations for steady-state 
exponential growth can be written in terms of numbers N 
for each of the n phenotypes in the population:

The first sum is the rate of increase by mutation, the 
second sum the rate of loss by mutation, and the final term 
the rate of increase by net exponential growth, with �i in 
doublings per unit time. These equations have the undesir-
able feature that the population is continually increasing. 
However, by expressing the population numbers Ni as a 
fraction of the total population NT (or relative frequency) 
the resulting equations have a more convenient form with 
a well-defined steady-state. Thus, the relative frequency 
of phenotype i is

(7)
dNi

dt
=

n
∑

j=1
j≠i

mkji�jNj −

n
∑

j=1
j≠i

mkij�iNi + �iNi i = 1,⋯ , n

Starting with the derivative of the relative frequency

Substituting dNi∕dt from Eq.  (7), and noting the 
cancelation of the mutation terms in dNT∕dt , we obtain

In anticipation of the case study to follow, we shall con-
sider the situation in which phenotype k has growth rate �k 
in a non-selecting condition and �∗

k
 in a selecting condition. 

By adding and subtracting the same terms, normalizing time 
t by �k(� = �kt in generations) and defining relative growth 
rates �i = �i∕�k , Eq. (10) can be rearranged and rewritten 
for phenotype k and for all other phenotypes i to emphasize 
three separate contributions to their rate of change:

where the seledtion coefficient is defined as �∗

k
− 1 . If there 

are no fitness effects in the non-selecting condition (all 
growth rates identical), then the form of the above equations 
in the selecting condition has the meaning:

The middle term involves mutations generated spe-
cifically by replication of the phenotype with the selective 
advantage; hence, it is the only term that involves both a 
mutation rate and the selection coefficient. The above equa-
tions can be considered one of several alternative forms of 
the standard population genetic equations (Wilke 2005); 
however, the alternative form used here most clearly reveals 
the three distinct rate contributions we wish to consider.
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Results

The Design Space Toolbox 3.0 has algorithms for the auto-
matic prediction of numerous characteristics within and 
between phenotypes. Examples of characteristics within 
phenotypes include the predicted volume (global robustness) 
of individual phenotypes, protein burden due to differential 
protein expression, dynamic behavior, and system design 
principles for the realization of the phenotype. Volumes 
are shown with identifying phenotype numbers in Fig. 4A. 
There are numerous phenotypic characteristics that can be 
plotted on the z-axis as a heat map; an example is the protein 
burden of each phenotype due to differential protein expres-
sion in the non-selecting condition (Fig. 4B). Simulation of 
the full system, with time t scaled by a factor of 1/3 ( � = t∕3 ) 
to match a 24-h cycle time, produces the results in Fig. 4C, 
which validates the prediction of a damped oscillatory char-
acteristic for phenotype #7.

Characteristics that distinguish between phenotypes 
include phenotype-specific mutation rate constants and sys-
tem design principles. In the first case, phenotype-specific 
mutation rate constants distinguish between phenotypes in 
the context of dynamics at the population level of organ-
isms with the different phenotypes rather than dynamics of 
the biochemical molecules of the system (oscillator). In the 
second case, system design principles distinguish between 
phenotypes based on the definition of a “qualitatively-dis-
tinct phenotype” as a combination of dominant processes 
operating within an intact biochemical system (Savageau 
et al 2009). For example, phenotype #5 (signature 11 11 21 
11 11 11) and phenotype #7 (signature 11 11 21 11 21 11) 
in Table 1 are distinguished by a single change in domi-
nance involving the rate of transcription of the mRNA for 
the activator (bold digits in the signature). With only the two 
equilibrium dissociation constants to vary by mutation, the 
distinction is the following:

This suggests that a mutation increasing KN alone by a 
sufficient amount can convert phenotype #7 to #5. In the 
more general context of distinguishing phenotype #7 from 
its neighbors, phenotype #7 in Fig. 4A must be to the left of 
phenotypes #5 and #8 and to the right of phenotypes #3 and 
#15. The result is not at all obvious or intuitive, rather it is 
a subtle system design principle (Savageau & Fasini, 2009; 
Savageau 2013) defined by four boundaries (SI: Section S7). 
Thus, all system parameters must satisfy constraints involv-
ing specific constellations of values with many opportuni-
ties for compensation; there is no single parameter capable 
of distinguishing between phenotypes. This is particularly 
apparent in the case of complex diseases for which many 
genes and parameters interact in subtle ways that are difficult 

(14)
Phenotype #5 KNK

2
P
> 3162 and Phenotype #7 KNK

2
P
< 3162

to identify; there is no single effective target for treatment, 
rather there are many potential targets with a spectrum of 
effectiveness.

Small changes, in the limit of linearization, within a 
phenotypic region eliminates the possibility of epistatic 
interactions. Larger changes, but still within a phenotypic 
region, can account for a variety of epistatic interactions. For 
example, the simple conditions in the previous paragraph 
show an epistatic interaction between two mutations with 
one affecting KN and the other affecting KP . This is clear 
from the fundamental product of power law nonlinearities 
found in biochemical kinetics. Moreover, with changes large 
enough to move the system from one qualitatively distinct 
phenotypic region to another, nearly any type of epistatic 
interaction can be realized.

Fixing The Two Free Parameters λ and δ

Two features that any population model should capture are 
that “large-effect” mutations are rare whereas “small-effect” 
mutations are abundant in well adapted systems (Bataillon & 
Bailey 2014; Tataru et al. 2017; Bondel et al. 2019; Temple-
ton 2021) and detrimental mutations outnumber beneficial 
ones. Although there are exceptions, which we discuss later, 
these two features must be considered in the context of a 
particular model before we can predict phenotype-specific 
mutation rate constants and fitness effects.

Although terms such as large-, small-, zero-, positive-, 
and negative-effect are often applied to mutations in describ-
ing their effects on fitness, these terms only apply to popu-
lations in a given environment. With a change in environ-
ment the same mutation can have a different, indeed often an 
opposite, effect on fitness (Templeton 2021). This is because 
fitness is a property of the phenotype, which in turn is a 
function of both genotype and environment. To separate 
these issues, we use the terms “size scale” (i.e., whether 
the change in value of a kinetic parameter caused by muta-
tion is large or small) and “directional bias” (i.e., whether 
parameter change caused by mutation is in the direction of 
increasing or decreasing entropy) to characterize mutations 
without regard to fitness. Fitness is then a function of the 
environmental context and the phenotype, not of the muta-
tion per se. This separation has the advantage of allowing 
us to characterize the frequency distribution of phenotypes 
under non-selecting and selecting conditions.

In the PDS framework, we account for the size scale and 
directional bias of mutations with an exponential distribu-
tion having scale factor λ and directional bias parameter δ 
that increases or decreases the effective scale factor. Unlike 
the other parameters in this theoretical framework, these 
two must be estimated from experimental data. For this 
purpose, we draw upon the best studied specific function in 
molecular biology, LAC repressor binding to its recognition 
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sites in the DNA of E. coli. Markiewicz et al. (1994) gener-
ated ~ 4000 protein variants by making substitutions at each 
amino acid position. After being transformed through the 
molecular mechanisms that provide the causal connection 
between the gene sequence and the integrated function of the 
lac system, a corresponding distribution of phenotypes was 
determined. As Markiewicz et al. (1994) showed, there are 
essentially three qualitatively distinct phenotypes involving 
LAC binding: (1) the inducible “wild-type”, (2) non-induc-
ible constitutive, and (3) non-inducible super-repressed. 
Under the conventional laboratory conditions used to detect 
these three phenotypes, the data in their Fig. 1 show that 
changes at ~67% of the positions were tolerant to substitu-
tions (no change in DNA binding), 31% were intolerant with 
an increase in binding entropy (decrease in DNA binding), 
and ~2% were intolerant with a decrease in entropy (increase 
in DNA binding).

Markiewicz et al. (1994) suggested that this distribution 
is likely to be similar for other proteins. For example, they 
examined the sequence alignment of proteins in the LAC 
family of proteins (which includes proteins of unrelated 
function in addition to other transcription factors) and found 
that 61% of the residues were not conserved (tolerant of 
evolutionary changes) and 39% were conserved (intolerant 
of evolutionary changes).

The actual distribution will undoubtedly be different for 
different functions, organisms and contexts, which deep 
mutational scan experiments might help to clarify. For 
example, the results for ampicillin resistance suggests that 
the ratio of negative to positive effects in the non-selecting 
condition is approximately twofold (Stiffler et al. 2015: 
Fig. 3A), which is smaller than the 15-fold value observed 
for the LAC repressor. The value of δ, which is fitted over all 
relevant qualitatively distinct phenotypes will also be less. 
Similarly, the size scale parameter for the quantitative distri-
bution in the ampicillin case (Log10 σ = 0.07 of a log unit) 
is smaller than that estimated for the LAC case (λ = 0.6 of a 
log unit). However, the percent of conserved residues in the 
ampicillin case is 35% (Sruthi et al. 2020: Table 1) is similar 
to that in the LAC case (33% = 31% + 2%), which suggests 
that the ampicillin data are no consistent: the percentage of 
conserved residues (similar to LAC) but the size scale very 
different (much smaller than LAC). Sruthi et al. (2020) ana-
lyzed conservation for six proteins with partial coverage of 
residue changes from E. coli (1), Streptomyces sp (1), Sac-
charomyces cerevisiae (1) and Homo sapiens (3) and found 
a mean of 60% with a standard deviation of 20%, which is 
consistent with the notion that distributions will be different 
for different functions, organisms and contexts. The implica-
tions for the clock repressor are unclear, particularly at the 
unknown presumptive early stage in its evolution assumed 
here as compared to existing highly evolved clocks.

In the prediction of phenotypes resulting from mutations 
in the N gene of the clock model, there are three qualita-
tively distinct phenotypes analogous to the LAC case: the 
oscillatory “wild type”, the non-oscillatory constitutive, and 
non-oscillatory super-repressed (Fig. S6). Although the dis-
tribution among these would be unknown, let us assume for 
our case study that these have the same distribution as the 
LAC repressor. Values of λ = 0.6 and δ = 1.85 then provide 
the best fit to the experimental data and the predicted dis-
tribution of fitness effects in this case is ~ 67% oscillatory 
(wild-type DNA binding), ~ 31% non-oscillatory constitutive 
(decreased DNA binding), and ~ 2% non-oscillatory super-
repressed (increased DNA binding).

To summarize, there are two free parameters in this 
model, λ and δ, that must be estimated from experimental 
data. Based on the above considerations, for our case study 
we assign the following model values for these two parame-
ters: λ = 0.6 and δ = 1.85. All the remaining parameters have 
values predicted solely based on the underlying mechanistic 
model using methods from the Design Space Toolbox (Val-
derrama-Gómez et al 2020) and used for further predictions, 
as described in the following sections.

Predicting The Equilibrium Distribution 
of Phenotype Diversity

In what follows we predict the equilibrium distribution of 
phenotype diversity under non-selecting conditions in three 
stages to clearly distinguish different contributions. First, we 
consider the idealized case in which there is no size scale 
or directional bias for mutations that have neutral fitness 
effects and show that the distribution differs from the expec-
tation of a uniform distribution. Second, we add size scale 
and directional bias and find that the distribution exhibits 
an increasing gradient from phenotypes with low entropy 
to those with high entropy. Third, as a specific example 
involving phenotypes with mixed fitness effects, we consider 
their protein burdens to obtain a distribution with a central 
peak resulting from entropy – selection balance. It should 
be noted that this type of balance is different from other 
types of specific mutation – selection balance (Barton 2007; 
Lynch 2010; Orlenko et al. 2016b) and the general mutation 
– selection balance that always exists at equilibrium. Finally, 
we illustrate the shift in the distribution when the oscillatory 
phenotype is subject to various degrees of selection.

Distributions for Neutral Mutations Without Size Scale 
or Directional Bias Effects

Neutral mutations without size scale or directional bias 
effects produce a uniform distribution of values in param-
eter space; however, the partitioning of Design Space, which 
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is dictated by the architecture of the underlying molecular 
system, results in an equilibrium distribution of phenotype 
frequencies that is determined by the normalized values of 
the phenotypic volumes (Fig. 5A, Blue), as obtained ana-
lytically. Large volumes (e.g., phenotype #6) imply robust 
phenotypes that are tolerant to large changes in parameter 
values; small volumes (e.g., phenotype #15) imply fragile 
phenotypes that are easily disrupted by small changes. The 
absence of size scale and directional bias is of course an 
idealization, but useful for identifying the volume contribu-
tion and providing a baseline on which to characterize more 
realistic features, as described below.

Distributions for Neutral Mutations with Size Scale 
and Directional Bias Effects

In the presence of size scale and directional bias effects 
(λ = 0.6 and δ = 1.85), the equilibrium distribution exhibits 
a gradient from phenotypes with lower entropy (lower left 
corner in Fig. 4A) toward phenotypes with higher entropy 
(upper right corner in Fig. 4A), as obtained numerically 
from the steady-state solution of the population dynamic 
equations and shown in Fig. 5A (Black). Note that the 

phenotype with highest entropy, based on directional bias, 
is phenotype #1, which corresponds to mutations in both 
transcription factors that essentially eliminate the ability 
to recognize their DNA binding sites. Conversely, the phe-
notype with the lowest entropy, based on directional bias, 
is phenotype #16, which corresponds to mutations in both 
transcription factors that make for overly tight binding. The 
gradient in this case is approximately 4-orders of magnitude.

Distributions for Mixed Mutations with Size Scale 
and Directional Bias Effects

In the non-selecting constant light environment, in which 
mutants are assumed to exhibit fitness differences unrelated 
to the specific phenotype characteristic of oscillation, the 
equilibrium distribution is among mutations with mixed fit-
ness effects, positive, negative and neutral. As an example 
of a phenotype- specific fitness characteristic that can be 
predicted, we consider the size of the protein coding regions 
and the protein burden of extraneous protein expression for 
each phenotype.

Experimental evidence in the case of lac operon expres-
sion in E. coli suggests that inappropriate constitutive 

Fig. 5   Equilibrium distributions of phenotype diversity. Mutational 
entropy is increasing from left to right, from the phenotype with both 
equilibrium dissociation constants having the lowest values (pheno-
type #16) to that with both having the highest values (phenotype #1). 
Fitness effects are shown in the lower panels. A Mutations with neu-
tral fitness effects (all �

i
= 1 ) under non-selecting conditions (Blue) 

in the absence of size scale ( � → ∞ ) and directional bias ( � = 1 ), 
and shifted down (Black) in the presence of size scale ( � = 0.6 ) 
and directional bias ( � = 1.85 ). In the absence of directional bias 
there is a minimal gradient; whereas this gradient is approximately 
4-orders of magnitude when directional bias is present. B Mutations 
with mixed fitness effects ( �

i
 different) under non-selecting condi-

tions in the presence of size scale ( � = 0.6 ) and directional bias 

( � = 1.85 ). The distribution is shifted to the left with decreasing val-
ues of m = 10–4 (Blue), 10–5 (Yellow), 10–6 (Orange) and 10–7 (Red) 
compared with the strictly neutral results in (Black). The distribution 
changes dramatically, increasing, reaching a peak, and then decreas-
ing when directional bias is present. Fitness effects normalized with 
respect to the experimental data for E. coli ß-galactosidase burden. 
C Mutations with mixed fitness effects ( �

i
 different) under selecting 

conditions with various degrees of selection. The peak of the distribu-
tion under the non-selecting conditions (m = 10–7) shifts to the right, 
from phenotype #11 (non-oscillatory, Red) to phenotype #7 (oscilla-
tory, Black) and its frequency increases with increasing values of the 
selection coefficient whereas the frequency of the other phenotypes 
decrease according to their selective disadvantage
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expression (nevertheless within the normal range for expres-
sion of the wild-type-induced state) decreases the growth 
rate by <  ~ 0.1%. (Koch 1983). The decrease would be even 
less if we consider only the contribution from ß-galactosi-
dase, and neglecting that from the permease and transacety-
lase, in making estimates for our clock module. Given the 
tenfold larger size of the ß-galactosidase monomer, its tetra-
meric structure and the 1000-fold protein burden (difference 
between wild-type uninduced expressed and mutant con-
stitutive expression), compared to the assumed 100 amino 
acid length, dimer structure and predicted 100-fold protein 
burden for our molecular model, allows the appropriately 
scaled decrease in growth rate to be <  ~ 0.001%. The fol-
lowing relative growth rates (fitness effects) for each phe-
notype, relative to phenotype #7 in the non-selecting condi-
tion, follow from the predicted levels of protein expression 
for each phenotype (Fig. 5B):  �1 = 0.999997573 (-2.43E-
04%), �3 = 1.000000322 (3.22E-05%), �5 = 0.999997527 
(-2.47E-04%), �6 = 0.999997357 (-2.64E-04%), �7 = 1.0 
(0%), �8 = 0.999999693 (-3.07E-05%), �11 = 1.000000412 
(4.12E-05%), �15 = 1.000000115 (1.15E-05%), and 
�16 = 0.99999976 ( -2.40E-05%). Note that these small dif-
ferences in growth rate that are undoubtedly overestimates 
would be considered neutral, given the technical limitations 
of experimentally determining growth rate differences less 
than ~ 0.1% (Gallet et al. 2012).

When both size scale and directional bias effects are 
present, the graded distribution in the strictly neutral case 
(Fig. 5A,B, Black) is dramatically changed to a peaked dis-
tribution that is increasingly weighted to the left (Fig. 5B 
Orange, Red) as the general mutation rate is decreased. The 
result is what might be called entropy-selection balance.

Note that all the distributions in Fig. 5A and 5B occur 
under the non-selecting condition with respect to the oscil-
latory phenotype characteristic. Moreover, despite the dif-
ficulty distinguishing between mutations with neutral fitness 
effects and mutations without detectable fitness effects, these 
results show that the equilibrium distributions are radically 
different. It is also clear that there is an optimal value for the 
general mutation rate that favors each phenotype.

Equilibrium Distribution of Phenotype Diversity Under The 
Selecting Condition

When connections to both the synchronizing environmental 
signal and the integrated cellular biochemistry are made by a 
critical new mutation, it would confer no selective advantage 
if it were to occur in one of the phenotypic regions that lack 
the ability to oscillate. For example, it has the highest proba-
bility of occurring in phenotype #11 because its frequency in 
the population is nearly 100% before the mutation occurred. 
More rarely, it would occur in the region of phenotype #7, 
but then there would be the potential to synchronize with the 

light–dark environment (the selecting condition) and have 
a selective advantage. The predicted equilibrium distribu-
tion of phenotype diversity under the selecting condition 
as a function of the selection strength is shown in Fig. 5C. 
Beyond a critical level of selection, the peak of the equilib-
rium distribution shifts from phenotype #11 to phenotype 
#7. Although we cannot currently predict the fitness of phe-
notype #7 under selecting conditions, if it were possible to 
estimate the distribution of phenotype diversity (e.g., from 
deep mutational scan experiments), then one could back cal-
culate the selection strength that produces the best fit to the 
estimated distribution (Fig. 9 and SI: Section S8, Fig. S7).

The three separate contributions to the rate of change in 
phenotype frequency in the neutral case (Eq. 13, mutation, 
mutation-x-selection, and selection) are shown in Fig. 6 as a 
function of selection strength and general mutation rate. The 
rate of change at equilibrium is equal to zero and the con-
tributions of mutation alone and selection alone are nearly 
opposite and equal. The contribution from mutation-x-selec-
tion is negligible at the selection strengths shown. Note the 
differences in scale: the maximum contribution to the rate at 
equilibrium is proportional to the general mutation rate, and 
the degree of selection necessary to achieve the maximum 
rate increases rapidly with the general mutation rate.

Non‑Equilibrium Distribution of Phenotypes Under 
the Selecting Condition

In this and the following subsection, instead of determin-
ing the phenotype distribution at equilibrium under either 
the non-selecting or selecting condition, we determine 
the temporal changes in distribution during the transition 
between the two equilibria – from non-selecting to select-
ing or from selecting to non- selecting. The light–dark 
environment generates the selecting condition. The ability 
to synchronize with the light–dark environment generates 
a selective advantage for the oscillatory phenotype (#7) 
greater than that of the other phenotypes. Aside from #7, 
all the other phenotypes have either a mixed distribution 
or a neutral distribution of fitness effects.

Results with a neutral distribution of fitness effects for 
phenotypes other than #7 are shown in Fig. 7A, starting 
from the equilibrium distribution under the non-selecting 
condition (Fig. 5A,B: Black) and evolving to the equilib-
rium distribution under the selecting condition (selection 
coefficient μ7

*—1 = 6.0E-3%, all other μi = μ7 and fixed). 
Phenotype #7 increases rapidly with a time scale dominated 
by selection, while there is little change in the other pheno-
types until ~ 5.0E + 04 generations (Fig. 7A, vertical dashed 
line). After this point, phenotype #7 approaches its maxi-
mum at ~ 1.5E + 05 and all other phenotypes slowly decrease 
asymptotically toward the new equilibrium distribution with 
a time scale dominated by mutation. There are no changes in 
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the ranking of phenotype frequencies in the population after 
3.5E + 05 generations.

Non‑Equilibrium Distribution of Phenotypes 
with Removal of the Selecting Condition

Experimental studies have explored the evolutionary loss 
of phenotypes in response to the relaxation of selection. 
For example, the ability of Bacillus subtilis to sporulate is 
lost when it is no longer under selection (Maughan et al. 
2007). In the clock model, relaxation of selection occurs 
when the selective advantage of phenotype #7 is removed 
(switched to constant light) and the population returns 
with time to the equilibrium distribution under the non-
selecting condition.

Results with a neutral distribution of fitness effects for 
phenotypes other than #7 are shown in Fig. 7B, starting from 
the equilibrium distribution under the selecting condition 
(selection coefficient μ7

*—1 = 6.0E-3%, all other μi = μ7 and 
fixed) and evolving to the distribution under the non-select-
ing condition (Fig. 5A,B: Black). The large number of the 
selected phenotype (#7) in the initial equilibrium distribu-
tion is rapidly lost and redistributed to all the other pheno-
types within ~ 7.5E + 07 generations. There is a subsequent 
slow redistribution and decrease among all the phenotypes 
except #1, #5 and #6 (high entropy phenotypes) until a new 
equilibrium distribution is approached asymptotically with 
a time scale dominated by mutation. There are no changes 
in the ranking of phenotype frequencies in the population 
after ~ 2.5E + 08 generations. Comparison of the time scales 
in Fig. 7A and B shows that the response to the removal of 
selection is approximately ~ 1000-times slower than that to 
the imposition of selection.

Results with a mixed distribution of fitness effects for 
phenotypes other than #7 are shown in Fig. 7D, starting 

from the equilibrium distribution under the selecting con-
dition (selection coefficient μ7

*—1 = 6.0E-3%, all other μi 
determined by protein burden and fixed) and evolving to 
the distribution under the non-selecting condition (Fig. 5B: 
red). The large number of the selected phenotype (#7) in the 
initial equilibrium distribution is rapidly lost and redistrib-
uted to all the other phenotypes within ~2.5E + 07 genera-
tions. There is a subsequent slow redistribution and decrease 
among all the phenotypes except #11 (low entropy pheno-
type) until a new equilibrium distribution is approached 
asymptotically with a time scale dominated by mutation. 
There are no changes in the ranking of phenotype frequen-
cies in the population after ~6.3E + 07 generations. These 
results are in qualitative agreement with those of Maughan 
et al. (2007) when the larger target size of the sporulation 
machinery and the higher mutation rate of their mutator 
strain are considered. Comparison of the time scales in 
Fig. 7C and D shows that the response to the removal of 
selection is approximately ~400-times slower than that to 
the imposition of selection.

The large differences in time scale indicate that alternat-
ing between equal periods in selecting and non-selecting 
environments before reaching equilibria would lead not to an 
average of the two distributions but to a distribution closer 
to that in the selecting environment, which is reminiscent of 
“conflict between selection in two directions” (Haldane & 
Jayakar 1963).

Experimental Implications

There are two major challenges in determining the distribu-
tion of phenotypes available for selection to act upon. One is 
the time of sampling relative to the evolutionary dynamics of 
natural populations and the second is technical limitations in 

Fig. 6   Three separate contributions to the steady-state rate of change 
in frequency for the oscillatory phenotype #7. The three panels show 
results for mutations with neutral fitness effects and general muta-
tion rate A m = 10–7, B m = 10–6, and C m = 10–5. The contributions 
(Eq. 13) are shown as a function of selection strength at equilibrium. 
Selection alone (Blue) is balanced with mutation alone (Red); the 

contribution by mutation-x-selection (Green) is negligible for the 
strengths of selection shown. The maximum rates of change are pro-
portional to the general mutation rate (note the change of scales), and 
stronger selection is required to overcome the effects of higher gen-
eral mutation rates
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the ability to identify and measure phenotypes. Both help to 
explain the pessimism expressed by Charlesworth (1996) in 
determining the distribution of phenotypes and their fitness 
characteristics in natural populations.

Experimental studies based on mutants constructed 
from a highly evolved system (wild type) in a given envi-
ronment (in the extreme, optimized according to Fisher’s 
Geometric model) may have only a very narrow distribu-
tion of alternative phenotypes capable of improvement in 
that environment. Those based on mutants constructed from 
a system that is far from its optimal state in a new envi-
ronment, are likely to offer a more fertile distribution of 
phenotypes capable of improvement. Indeed, Matuszewski 
et al. (2014) pointed out a violation of Fisher’s prediction 

that mutations of small effect are the primary raw material 
of adaptive evolution. They considered a geometric model 
like Fisher’s but with environmental change. In contrast to 
Fisher’s predictions, larger adaptive steps often occur with 
a moving optimum. Mutations of small effect are not always 
the main material of adaptive change even when there is 
a single adaptive optimum, albeit a moving one. However, 
determining the natural distribution from subsequent meas-
urements depends on the time of sampling following the 
construction, with the actual distribution of fitness effects 
bounded by two extremes: sampling at time zero and sam-
pling at the time to reach equilibrium. The time zero sample 
has not involved any exchange; thus, it simply reflects the 
construction and may have little to do with any subsequent 

Fig. 7   Temporal response in relative frequency of phenotypes fol-
lowing imposition and removal of the selecting condition. A, B 
Neutral distribution of fitness effects. A The increase of phenotype 
#7 (Red) is accompanied initially by very little change in the other 
phenotypes, followed (after the dashed line) by a slow decrease in all 
other phenotypes. All changes in the rank of the relative frequencies 
occur before 3.5E + 05 generations. B The decrease of phenotype #7 
(Red) is accompanied initially by a rapid increase in all other phe-
notypes, a peak (the last occurring at the dashed line) followed by a 
slow decrease in all other phenotypes except for phenotypes #1, #5 
and #6, which continue to increase slowly. All changes in the rank of 
the relative frequencies occur before 2.5E + 08 generations. The over-
all response is ~ 1000-times slower than A. C, D Mixed distribution 

of fitness effects. C The increase of phenotype #7 (Red) is accompa-
nied initially by very little change in the other phenotypes, followed 
(after the dashed line) by a slow decrease in all other phenotypes. All 
changes in the rank of the relative frequencies occur before 4.0E + 05 
generations. D The decrease of phenotype #7 (Red) is accompanied 
initially by a rapid increase in all other phenotypes, a peak (the last 
occurring at the dashed line) followed by a slow decrease in all other 
phenotypes except for phenotype #11, which continues to increase. 
All changes in the rank of the relative frequencies occur before 
6.3E + 07 generations. The overall response is ~ 400-times slower than 
C. Imposition occurs by a change from a non-selecting (μ7* = 1.0) to 
a selecting (μ7* = 1.00006) environment and removal by the reverse. 
The general mutation rate m = 10–7



702	 Journal of Molecular Evolution (2023) 91:687–710

1 3

distribution in nature. The equilibrium sample in some cases 
might be the more relevant distribution in nature, but there 
is insufficient time to test this in practice. Thus, the natu-
ral distribution undoubtedly lies somewhere between these 
extremes. There is the additional difficulty of identifying 
the phenotypes because of technical limitations. Experi-
mental studies based on natural variants face the same two 
challenges.

Orr (2005) also identifies challenges in two related prob-
lems. “The first is the current theory is limited in several 
ways – all the models that have been mentioned rest on 
important assumptions and idealizations. Although they 
are reasonable starting points for theory, none of these 
assumptions is necessarily correct and changing any might 
well change our predictions. […] The second problem con-
cerns testability. The difficulty is practical, not principled. 
Whereas current theory does make testable predictions, the 
effort required to perform these tests is often enormous (par-
ticularly as the theory is probabilistic, making predictions 
over many realizations of adaptation). Given, for example, 
the inevitable and often severe limits on replication in micro-
bial evolution work, we can usually do no more than test 
qualitative predictions.” Our theory is grounded in meas-
urable biochemical parameters, and thus a different set of 
assumptions and idealizations need experimental testing.

Experimental Evolution Studies in a Chemostat

The equilibrium distributions of phenotype diversity under 
selecting and non-selecting conditions can be approximated 
experimentally by growing populations in a chemostat/turbi-
dostat (Bustos & Golden 1992; Gresham & Jong 2015). This 
allows us to relax the assumptions concerning the ideal con-
text. If a one- liter chemostat is initialized with a single cell 

and the population grows exponentially until reaching typi-
cal densities of 108 to 1010 cells/ml (Gresham & Jong 2015), 
at this point nearly all phenotypes will be present in the 
population (Fig. 8). If the flow of fresh media into the chem-
ostat is initiated at this point, the doubling of the population 
in each subsequent generation due to growth coupled with 
the 50% reduction in population size per generation due to 
dilution will introduce fluctuations in the numbers of cells. 
Phenotypes with a low frequency must be treated stochasti-
cally when the differences between effective population size 
and the census population size become significant. All other 
phenotypes are expected to persist in the chemostat.

Under non-selecting conditions, the case with neutral fit-
ness effects is the most difficult. At the time when the che-
mostat reaches the full operating density, all phenotypes in 
the population will be present with a significant frequency 
except for #11, #15 and #16 (~ 10 cells in Fig. 8A). The 
issue of genetic drift could be introduced here by the addi-
tion of stochastic changes (replication vs. removal) in each 
generation. In the case of mixed fitness effects due to protein 
burden, even those phenotypes with the smallest frequency 
will have a census size of ~ 1000 cells (Fig. 8B). Under 
selecting conditions, at the time when the chemostat reaches 
the full operating density, even those phenotypes with the 
smallest frequency will have a census size of ~ 100,000 cells 
(Fig. 8C).

Measuring Qualitatively Distinct Phenotypes

Although current experimental limitations make it difficult 
to measure individual phenotypes, there are some cases in 
which relevant aggregate phenotypes can be measured. In 
the classic studies of Markiewicz et al. (1994), the authors 
constructed a collection of LAC mutants, measured their 

Fig. 8   Non-equilibrium distributions of phenotype diversity under 
non-selecting and selecting conditions after exponential growth 
from one to 1013 cells. Cells  with general mutation rate m = 10–7 are 
inoculated into fresh media in a one-liter chemostat without flow. A 
Under non-selecting conditions with neutral fitness effects, pheno-
types with the lowest frequency (#11, #15 and #16) are expected to 
have ~10 cells in the chemostat. B Under non-selecting conditions 
with a protein burden spectrum of fitness effects, phenotypes with the 

lowest frequency (#15 and #16) are expected to number ~1000 cells. 
C Under selecting conditions with a protein burden spectrum of fit-
ness effects, nearly all phenotypes are expected to be present at more 
than ~100,000 cells. Size scale effects and directional bias effects are 
present in all cases. The initial distributions (Blue) can be expected to 
approach the equilibrium distributions (Red) asymptotically with time 
following long-term exponential growth with the flow of fresh media 
to the chemostat



703Journal of Molecular Evolution (2023) 91:687–710	

1 3

β-galactosidase expression, grouped the results into quali-
tatively distinct phenotypes (constitutive, super-repressed 
or inducible), and determined the resulting distribution of 
phenotypes measured at time zero. They found 2% super-
repressed, 67% inducible, and 31% constitutive. This is not 
surprising, given a low mutation rate (m = 10–7) and that the 
construction started with the highly evolved and presumably 
fit lac system of E. coli.

Fluorescently tagged protein might be an updated 
approach for other proteins. In our case study, measuring the 
activity of the N gene protein and classifying the results as 
constitutive (phenotypes #6 and #8), super-repressed (phe-
notypes #3 and #11) or oscillatory (phenotype #7) leads to 
the following predictions. In analogy with the LAC stud-
ies, and sampling the distribution at time zero, our results 
would match those of Markiewicz et al. (1994) because 
these values were used to fit the two free parameters of our 
model λ and δ. The distribution of phenotypes measured 
after reaching equilibrium under non-selecting conditions 
(loss of selection) with neutral fitness effects is predicted 
to be 2% super-repressed, 5% oscillatory and 93% constitu-
tive (Fig. 9A, �∗

7
= 1 ). This reflects the dominant influence 

of entropy. The distribution of phenotypes measured after 
reaching equilibrium under non-selecting conditions with 
mixed fitness effects based on protein burden is predicted to 
be 96% super-repressed, 3% oscillatory and 1% constitutive 
(Fig. 9B, �∗

7
= 1 ). Under selecting conditions, the degree of 

selection required to reach a distribution with 60% oscilla-
tory phenotype with mixed fitness effects is four-fold greater 
than that with neutral fitness effects. These differences, sug-
gesting that the results with a neutral distribution of fitness 
effects can be achieved more easily than with the protein 
burden distribution, might be relevant for the evolution of 

LAC repressor as well. Furthermore, an examination of dif-
ferent values for the general mutation rate, m, at equilibrium 
with mixed fitness effects shows that even when the rela-
tive frequency of the oscillatory phenotype is maximum at 
m = 3 × 10–6, the results are still very different from that of 
wild-type LAC repressor selected in nature (SI: Section S8, 
Fig. S7).

Testing such predictions would require finding rare cells 
in the population, at the limit of detection for many methods. 
Based on the start of a chemostat experiment as described 
in the previous section, the effluent at any subsequent time 
during the experimental evolution could be collected and the 
cells subjected to counting or sorting. Counting might well 
be able to determine the numbers of rare cells, sorting would 
allow sufficient material for further experimental tests. A 
double-sieve strategy would have advantages. First, the 
cells are grown under non-selecting conditions and sorted 
into two abundant classes, those with constitutive and non-
constitutive expression. Second, the sorted cells with non-
constitutive expression are grown under selecting conditions 
and sorted into those enriched for super-repressed and wild-
type expression. This approach would require ~ 1010 cells to 
be collected and sorted within a reasonable amount of time 
and cost, which should be feasible with recent advances in 
high-throughput sorting methods (Fan et al. 2013; Zhukov 
et al. 2021).

Discussion

Two complex and interrelated issues in evolution are the 
distribution of phenotype diversity, which offers opportuni-
ties for innovation, and the interaction of phenotype-specific 

Fig. 9   Equilibrium distributions of qualitatively distinct phenotypes 
under selecting conditions with various degrees of selection. Compar-
isons made with general mutation rate m = 10–7 and A neutral fitness 
effects (all �

i
= 1 ), and B a protein burden spectrum of fitness effects 

( �
i
 different) under non-selecting conditions ( �∗

7
= 1 ). The degree of 

selection required to reach a distribution with 60% oscillatory pheno-

type (dashed line) with mixed fitness effects is ~ four-fold greater than 
that with neutral fitness effects. The second most common phenotype 
is super-repressed with mixed and constitutive with neutral fitness 
effects. Thus, only the results predicted in A match the experimental 
results of Markiewicz et al. (1994)
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mutation rates and phenotype fitness differences, which 
determines population dynamics and the subsequent evolu-
tion of the population. Some experimental approaches to 
determining the distribution of mutant effects only address 
large effect mutations because there are technical limita-
tions to the size of changes in growth rate that can be meas-
ured (Gallet et al. 2012). Others only address small effect 
mutations in the context of nearly neutral theory (Kimura 
1983; Ohta 1992). As Bondel, et al. (2019) pointed out, 
together the two provide a bigger picture by complement-
ing one another. However, neither of these approaches deal 
with the causal linkages between genotype/environment and 
phenotype.

There are few examples attempting to determine the dis-
tribution of mutant effects by addressing the mechanistic 
link, and they use a simulation-centric approach that differs 
methodologically from the phenotype-centric approach used 
in the PDS framework. Orlenko et al. (2016a; 2016b) have 
examined unbranched pathways in which classical Michae-
lis–Menten kinetics were assumed, kinetic parameters were 
sampled, and the system of ordinary differential equations 
was repeatedly solved. They note that more complex realis-
tic systems remain to be studied in this context. Examples 
include systems involving more complex forms of regula-
tion, enzyme-enzyme complexes and cascades, as well as 
branched and cyclic pathways. Loewe & Hillston (2008) 
focused on the simple limit cycle model of Leloup, et al. 
(1999) for circadian rhythms with a set of assumed parameter 
values as reference. They converted the biochemical kinetic 
equations from ordinary differential equations into pseudo-
chemical kinetic equations for stochastic simulations. They 
employed dense sampling of parameter values and repeated 
stochastic simulations to generate statistical data for analysis 
in terms of various fitness correlates. Brajesh et al. (2019) 
focused on the lac operon of E. coli because it is a simple, 
specific system that has been studied for decades (Muller-
Hill 1996; Ullmann 2003) and for which there are experi-
mental values for nearly all the key parameters. Starting with 
this well-characterized system, they explored its phenotypic 
repertoire by dense sampling of the parameter space com-
bined with numerical solution of the ordinary differential 
equations for the nonlinear mechanistic model. It will be 
difficult to replicate these approaches for other systems in 
which there are a large number of parameters with unknown 
value that are difficult or currently impossible to measure or 
estimate. This is precisely the bottleneck currently limiting 
the successful application of the conventional simulation-
centric modeling strategy. This ultimately becomes a scaling 
issue for large systems because of the magnitude of sampling 
required, coupled with the repeated deterministic and sto-
chastic numerical simulations of the nonlinear differential 
equations. Moreover, with certain combinations of param-
eter values these numerical solutions often fail for technical 

reasons (e.g., ‘stiffness’ of the nonlinear kinetic equations), 
which makes automation of the process problematic.

The phenotype-centric modeling strategy largely circum-
vents the bottleneck presented by a mechanistic model with 
a large number of unknown parameter values (Valderrama-
Gómez & Savageau, 2018). Here we showed that it also can 
predict phenotype-specific mutation rates and the distribu-
tion of mutant effects under non-selecting and selecting con-
ditions. It must be noted that the phenotype-centric approach 
does not escape the issue of scaling to large realistic systems, 
although it does not involve the limitations of sampling and 
repeated simulation mentioned above. The issue is the large 
number of phenotypes that must be treated analytically for 
any realistic system. However, each phenotype is a separate 
linear algebraic problem, which makes it what computer 
scientists call ‘embarrassingly parallelizable’, and therefore 
amenable to cloud computing.

By way of conclusion, we discuss differences between 
the PSD theoretical framework and other theoretical frame-
works, similarities between them, and potential areas of 
mutual interest for further development. We finish with 
a summary of results, some that are consistent with well-
known results in theoretical population genetics and others 
that are new.

Differences and Similarities Between Theoretical 
Frameworks

The broad context of theoretical population genetics is found 
in the historical review of Orr (2005). He focused on the 
advances and limitations involving the two main classes of 
mathematical models: older phenotype-based models fol-
lowing in the spirit of Fisher’s Geometric model and newer 
DNA sequence-based models emphasizing nearly neutral 
and extreme value theory.

The Phenotype Design Space model has some superfi-
cial similarity to the Geometric model of Fisher (1930), but 
it is fundamentally different. Although both prominently 
feature geometry, quantitative phenotype traits and size of 
mutational changes, a brief comparison of Fisher’s Geo-
metric model vs. the PDS model shows there is little else 
in common:

•	 Phenotype definition is generic, descriptive, and ad hoc 
(height, weight, etc.) vs. specific, mathematical, and rig-
orous (genetically determined parameters and environ-
mentally determined variables).

•	 Phenotypic traits are for unspecified systems in unstruc-
tured Cartesian space vs. biochemically specified systems 
in structured logarithmic space.

•	 Mutation causing symmetric changes involving any com-
bination of the orthogonal traits (omnidirectional) vs. 
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asymmetric (entropic) changes involving one mechanistic 
trait (bidirectional).

•	 Mutations simultaneously affect all n traitsl (general 
pleiotropic) vs. a single specific trait (model-dependent 
pleiotropic).

•	 Organizing principle is random variation in proximity to 
an optimum vs. deterministic structure of a global Design 
Space.

•	 Methodology focused on statistical analysis and com-
puter simulation vs. analytic geometry and computa-
tional algebra.

•	 Focus on new mutations vs. standing genetic variation.

Although these theories are very different, there are a 
few connections between them that might be worth explor-
ing. For example, two strong results from Fisher’s model 
and the extreme value theory are that an exponential dis-
tribution of positive effect mutations may be universal (Orr 
2005) and that there is a progression of size effects from 
initially large to subsequently smaller (Gillespie 2004). 
In PDS theory, the first of these results might have a con-
nection to the assumption of exponential distributions for 
both positive and negative-effect mutations. However, 
these exponential distributions are in logarithmic coor-
dinates, which in Design Space theory means that they 
could also be considered power law in Cartesian coor-
dinates. Regarding the second of the above results, we 
can speculate that if the initial mutation takes the system 
from an optimal state into a qualitatively different region 
of Design Space, then the first significant mutation taking 
it back will likely have a large effect on average. Once 
back near the optimum, then smaller quantitative changes 
will add refinements. However, back mutations with small 
changes at the level of kinetic parameters could lead to 
large qualitative changes at the phenotype level, but only 
when the phenotype undergoing back mutation is quan-
titatively near the common boundary with the recipient 
phenotype. This is also related to the long-standing robust-
ness vs. evolvability issue (de Visser et al. 2003; Draghi 
et al. 2010; Payne & Wagner 2014; Greenbury et al. 2016; 
Wei & Zhang 2017). In our mechanistic framework phe-
notypes with large volumes in Design Space are globally 
the most robust to mutation (to changes in the qualitatively 
distinct phenotype). Mutations with large-size effects can 
explore distant phenotypes infrequently. However, if there 
is a more favorable adjacent phenotype, then there will 
always be a minority of cells with parameters that locate 
them near the boundary with the more favorable phenotype 
so that even mutations with small-size effects can result in 
movement into a qualitatively different phenotypic region 
that is favorable. Thus, evolvability coexists with robust-
ness. A statistical approach within the PDS framework 
could be used to test these speculations.

The results in Fig. 8, which represent the most extreme 
bottleneck with a single founder cell, suggest that most of 
the phenotypes are regenerated with sizable cell numbers 
within the initial growth phase. A stochastic approach could 
be used to study the long-term fate of the remaining pheno-
types whose population sizes are <  ~100 cells, each of which 
is retained or lost in each generation.

Liberles (2023) reviewed problems inherent in the com-
mon assumption that mutational effects will be symmetri-
cally distributed about a static mean (as in Fisher’s model) 
and, conversely, calls attention to the under-appreciated 
ideas of Constructive Neutral Evolution (Stoltzfus 1999; 
Muñoz-Gómez et al. 2021) that has its roots in biased (asym-
metrical) mutational processes.

The key concepts of CNE (Stoltzfus 1999) tend to be 
general, descriptive and qualitative but have some similarity 
to specific quantitative aspects of our PDS framework, as 
shown in the following comparisons.

•	 Biased variation (via mutational machinery) in CNE is 
made concrete and quantitative in the PDS treatment of 
bias

•	 Biased variation (via systemic aspects of organization 
and interaction) in CNE is made concrete and quantita-
tive in the PDS treatment of relative volumes and global 
robustness of phenotypes

•	 Excess capacity in CNE is made concrete at the precur-
sor stage in any PDS analysis, as discussed in the intro-
duction of the model in Fig. 3

•	 Epistasis in CNE occurs when effects of a mutation are 
dependent on the context provided by other mutations or 
genes and is a consequence of excess capacities, e.g. the 
result of gene duplication, whereas in the PDS framework 
epistasis is quantitative and specific to the integrated sys-
tem in question

The contrast between the neutral (symmetrical) and 
biased (asymmetrical) views is especially apparent in the 
context of multi-layered genotype – phenotype maps. For 
example, the analysis of the glycolytic pathway by Orlenko 
et al. (2016a, 2016b) shows that the neutral (symmetrical) 
model yields stasis over long-term evolution, whereas the 
biased (asymmetrical) model gives shifting patterns of rate-
limiting enzymes for pathway flux that is consistent with 
observations of such shifting patterns across the tree of life. 
Their introduction of systems biology into the analysis has 
also been my motivation for developing the general frame-
work presented here for mechanistically linking genotype 
to phenotype based on a mathematically rigorous defini-
tion of biochemical phenotypes (Savageau et al. 2009) and 
their integration into a space-filling structure in the space 
of biochemical parameters (Valderrama-Gómez et  al. 
2020). Another set of problems noted by Liberles is the full 
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reconciliation of observations over short-term vs. long-term 
evolution, which is an open question. Nevertheless, here the 
implications of bias mutational processes on phenotype evo-
lution are likely to be of general importance.

The phenotype-centric approach provides a novel theoret-
ical framework to pose and answer questions of phenotype-
specific mutation rates and ranking of phenotype frequencies 
in the population under non-selecting and selecting condi-
tions. The PDS framework makes a key distinction between 
‘entropy increasing/entropy decreasing’ mutations, which 
cause genetically determined parameter values to change in 
the direction of an increase/decrease in entropy [see also 
Stoltzfus (1999)], and ‘beneficial/detrimental’ mutations, 
which cause the integrated activities of the entire system to 
change in the direction of an increase/decrease in phenotype 
fitness. The two causes are separable. The importance of 
the distinction can be exemplified by considering the conse-
quence for a population evolving in a temperature gradient 
(Zhang et al. 2018; Wooliver et al. 2020).

In an idealized case, if the population finds itself in a 
new environment with a higher temperature than the one 
in which it was previously adapted, the binding of a regula-
tor will now be less effective (higher temperature implies 
looser binding). The fitness of the organisms will typically 
decrease. An entropy-decreasing mutation causing tighter 
binding of the regulator can improve fitness. Conversely, an 
entropy-increasing mutation causing an even looser binding 
can cause a further reduction in fitness. The argument is dif-
ferent if the population finds itself in a new environment that 
has a lower temperature. The binding of the regulator will 
now be too tight (lower temperature implies stronger bind-
ing). The fitness of the organisms will typically decrease. 
Now, an entropy-increasing mutation that causes a looser 
binding of the regulator can improve fitness. Conversely, 
an entropy-decreasing mutation that causes an even tighter 
binding can cause a further reduction in fitness. Thus, 
depending on the environmental condition, an entropically 
probable mutation at the level of the molecular mechanism 
can cause either a beneficial or detrimental effect on fitness 
at the level of the integrated system (Figs. 5 and 9). These 
same distinctions provide a mechanistic context for inter-
preting the large differences in frequency of positive-effect 
mutations that have been discussed by Bondel, et al. (2019).

The PSD framework can distinguish and quantify vari-
ous phenomena. For example, it distinguishes among three 
contributions to phenotype-specific mutation rates: pheno-
type volume [related to the “systemic/organizational” biases 
of Stoltzfus (1999)], size effect and directional bias, and 
selection (Fig. 5); it distinguishes among three contributions 
to the equilibrium distribution with neutral fitness effects 
(Eq. 13): mutation alone and selection alone, which nearly 
balance, and mutation-x-selection (mutations generated spe-
cifically by the selected phenotype), which is only significant 

with extremely strong selection (Fig. 6); it quantifies the 
different time scales of evolution between equilibria under 
selecting and non-selecting conditions (Fig. 7).

Summary of Results Old and New

The findings in RESULTS agree with many well-known 
phenomena in theoretical population genetics. Examples 
include stronger selection is needed to counteract higher 
mutation rates, evolution can be faster with higher muta-
tion rates, positive-effect mutations are rare in well adapted 
systems and small effect mutations are common, and the 
characteristic distributions observed in directional (Darwin 
1859; Mitchell-Olds et al. 2007) and stabilizing (Charles-
worth et al. 1982; Campbell & Reece 2002) selection; muta-
tion-selection balance (Barton 2007; Lynch 2010), and cryp-
tic variation under non-selecting conditions (Paaby et al., 
2014; Zheng et al. 2019).

However, in all these cases the PDS framework provides 
a more nuanced understanding of their underlying molecular 
mechanisms with phenotype-specific mutation playing a role 
in each. For example, the phenotype distribution with no size 
effect, directional bias or differences in growth rate under 
the non-selecting condition, which might be expected to 
produce a uniform distribution of mutant effects, is weakly 
directional even though no selection is involved (Fig. 5A, 
Blue); the causal fitness characteristic is the robustness 
(polytope volume) of phenotypes with phenotype #6 domi-
nating. The phenotype distribution with size effect and 
directional bias but no differences in growth rate under the 
non-selecting condition is more strongly directional even 
though no selection is involved (Fig. 5A, Black), with phe-
notype #6 dominating; the causal fitness characteristics are 
robustness and entropy. Although the phenotype distribution 
with size effect, directional bias and protein burden differ-
ences in growth rate under the non-selecting condition may 
also appear to be directional (Fig. 5B, Red), with phenotype 
#11 dominating, it is actually balancing since the causal fit-
ness characteristics are a balance between protein burden 
differences in growth rate in one direction and entropy in 
the other. Furthermore, the point of balance is a function 
of the general mutation rate m, which is 10–7 in this case. 
With a higher general mutation rate m, the balance shifts 
in favor of entropy (Fig. 5B), and as m approaches 10–4, 
entropy dominates to such an extent that the distribution 
suggests directional selection. The phenotype distribution 
with size effect, directional bias and protein burden differ-
ences in growth rate under the selecting condition is a more 
complex balancing selection (Fig. 5C, Black), with pheno-
type #7 dominating; the causal fitness characteristics are a 
balance between protein burden differences in growth rate 
in one direction and the selective advantage of oscillation 
and entropy in the other. The general mutation rate (m = 10–7 
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in this case) also plays a causal role in the balance. The 
distribution of cryptic variation present under non-selecting 
conditions differs, depending on whether the fitness effects 
of mutations are neutral (Fig. 5A, Black) vs. near-neutral 
(Fig. 5B, Red). Although it is difficult to measure such small 
differences in fitness experimentally, the resulting distribu-
tions are markedly different, as are the results under selec-
tion (Fig. 9). The causal fitness characteristics involved in 
the balance are entropy, protein burden differences in growth 
rate, and genomic mutation rate; the first is dominant in the 
neutral case, the second is dominant in the near-neutral case, 
and the third can eliminate the distinction between neutral 
and near-neutral at sufficiently high rates (Fig. 5B, Blue).

Other results are new, e.g., there is an optimal mutation 
rate for each phenotype (Figs. 5 and S7); the percentage 
of positive effect mutations is smaller when equilibrium is 
dominated by phenotypes with high entropy and larger when 
dominated by those with low entropy (Fig. 9); evolution is 
slower in the former and faster in the latter; there are many 
changes in population rank with weak selection (Fig. 7), and 
few with strong selection (not shown); a non-selected phe-
notype can increase (without hitch-hiking) as an indirect 
result of selection for a different phenotype connected by a 
high phenotype-specific mutation rate (Fig. S8); and back 
calculation of selection coefficients is possible from well-
characterized distributions (Fig. 9). We also provide evi-
dence suggesting that experimental evolution in chemostats 
can be used to experimentally test predictions made possible 
by the PDS framework (Fig. 8).

We return to the fundamental question raised at the outset 
and ask, what is the relevant distribution of phenotype fre-
quencies to consider from which there is evolution of new 
phenotypes? This is still an open question. New phenotypes 
will grow to dominance when the population suddenly finds 
itself in a selecting condition because of a change in geno-
type or a change in environment. The results for the clock 
model suggest that the equilibrium distribution of the full 
repertoire in the non-selecting condition with neutral fit-
ness effects, might be the most relevant to consider (Fig. 9). 
However, even small differences from neutrality that are 
experimentally undetectable, such as protein burden effects, 
can result in a marked difference in the distribution (Fig. 5) 
that argue against its relevance in the case of the natural lac 
operon.

Finally, it should be noted that although we have empha-
sized qualitatively distinct phenotypes, quantitative variants 
exist within each phenotypic region in Design Space. Thus, 
the phenotype-centric approach also provides the opportu-
nity to explore finer changes in quantitative characteristics 
such as frequency, phase and amplidude of the oscillations 
within the region of phenotype #7 (Lomnitz and Savageau 
2013). Such results would be relevant to the work of Ouyang 
et al. (1998) showning that mutants with small changes in 

frequency of the cyanobacteria circadian clock experience 
negative selection when their frequency differs from that of 
the environmental light–dark cycle.

Methods

Methods developed in this work are described in the sec-
tions DERIVATION OF PHENOTYPE-SPECIFIC MUTA-
TION RATE CONSTANTS and POPULATION DYNAMIC 
EQUATIONS. Associated computational tools with further 
details can be accessed through the Design Space Toolbox 
v.3.0, which is freely available for all major operating sys-
tems via Docker. After Docker has been installed, running 
the following commands in a terminal window will provide 
access to the software:

1.	 docker pull savageau/dst3
2.	 docker run -d -p 8888:8888 savageau/dst3
3.	 Access the software by opening the address  

http://localhost:8888/ on any internet browser.

Please refer to Valderrama-Gómez et  al. (2020) for 
detailed installation instructions and troubleshooting. Sev-
eral iPython notebooks are provided for tutorial purposes 
and others for reproducing figures in the main text and sup-
plementary information. These notebooks can be found 
within the Docker image (savageau/dst3).
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