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Abstract

Curvature Bounds in Riemannian Geometry

by

Michael Smith

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Richard Bamler, Chair

We first review a number of well known theorems in Riemannian geometry, and we
discuss in detail some of their proofs. We then present, in chapters 2, 3 and 4,
proofs of three results: a local Lp bound on ||Ric|| for p < 1

2
under a lower Ricci

curvature bound, the lower semicontinuity of volume on surfaces of bounded Euler
characteristic, and a construction for metrics of nonpositive sectional curvature that
develop a positive sectional curvature somewhere with respect to the Ricci flow.
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Chapter 1

Review

1.1 Background

We begin with a survey of a number of results in Riemannian geometry that re-
late bounds on curvature of various sorts to geometric and topological control of
Riemannian manifolds. The first collection of results, section 1.1.2 below, focuses
primarily on the bound Ric ≥ K, and the second, section 1.1.3, on bounds of the
form |sec| ≤ K, |Ric| ≤ K etc. Section 1.1.1 reviews background material and
discusses some fundamental ideas that support the subsequent discussion.

1.1.1 General Preliminaries and Motivation

We define a Riemannian manifold as a pair (M, g), where M is a smooth manifold
and g is a Riemannian metric on M , i.e. a smoothly varying inner product

g : TpM × TpM → R

on the tangent spaces TpM of M . g induces a connection

∇ : Γ(TM)× Γ(TM)→ Γ(TM),

where Γ(TM) denotes the set of all vector fields on M , that satisfies

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

∇XY −∇YX = [X, Y ]

for all vector fields X, Y and Z, where [X, Y ] denotes the Lie bracket of the vector
fields X and Y . We define the Riemann curvature tensor in terms of the connection
as,

Rm(X, Y, Z,W ) := g(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W ),

We define the sectional curvature by normalizing Rm,

sec(x, y) :=
Rm(x, y, y, x)

g(x, x)g(y, y)− g(x, y)2
.

We say sec ≥ K if, for any pair x, y we have sec(x, y) ≥ K.
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We define the Ricci curvature as the trace,

Ric(X, Y ) := Rm(ei, X, Y, ei),

where {e1, ..., en} are locally defined orthonomral vector fields. We say Ric ≥ K ∈ R
if all of the eigen values of Ric are greater than or equal to K.

We lastly define the scalar curvature,

R := Ric(ei, ei).

Example 1.1.1. Let (S2, grnd) denote the 2-sphere with standard metric grnd of
sectional curvature σrnd = 1 and (N2, ghyp) a genus 2 surface with uniform sectional
curvature σhyp = −1. Let M = S2 × N denote their product, with metric g =
grnd +ghyp. Taking s ∈ S2, n ∈ N , u ∈ TsS2 and v ∈ TnN , it follows from the general
case for product metrics (see Chapter 3 of citepetersen) defined this way that

Rm(u, v, v, u) = 0

and thus that
R = 1 + 0 + 0− 1 = 0.

As such, we see that (M, g) has zero scalar curvature while Rm does not vanish
identically. We also have

Ric(u, u) = 1

and
Ric(v, v) = −1.

Thus, the condition R ≡ 0 is not restrictive enough to provide control over Rm or
Ric. It is also the case that there exist Ricci flat (M, g), i.e. Ric ≡ 0, such that
Rm does not vanish identically, although constructions are more subtle. See [18],
for instance, for examples.

The metric g induces a length l of curves, defined as

l(γ) :=

ˆ b

a

g(γ′(t), γ′(t))dt,

where γ : [a, b]→M , as well as a distance function d satisfying, for p, q ∈M ,

d(p, q) := inf
γ
l(γ),

where this infimum is taken over curves γ satisfying γ(a) = p, γ(b) = q. We say γ
is a minimizing geodesic if

l(γ) = d(γ(a), γ(b)).

The distance d gives rise to the standard notion of the diameter of M ,

diamM := sup{d(p, q) | p, q ∈M}

as well as of the injectivity radius of p ∈M ,

inj(p) := sup{r | B(p, r) is diffeomorphic to B(r) ⊂ Rn},
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where B(p, r) is the r−ball in M and B(r) denotes the r-ball in Rn. Note that,
because we only require the two balls to be diffeomorphic, these two radii need not
be equal. We then define the injectivity radius of M as

injM := inf{inj(p) | p ∈M}.

See Chapter 5 of [24] for a thorough presentation of the injectivity radius.
The metric g also induces, for a point p ∈ M , a volume form dvolg that by

definition satisfies, for any positively oriented orthonormal basis {e1, ..., en} ⊂ TpM ,

dvolg(e1, ..., en) = 1,

which gives rise to a volume for open sets U ⊂M :

Vol(U) :=

ˆ
U

1 · dvolg.

Finally, recall that g induces a norm | · | on tensor products of TpM and its
dual T ∗pM in the standard way.

Gromov Hausdorff metric and convergence

In studying the influence of curvature on various geometric quantities, it is useful
to have in place the notion of Gromov-Hausdorff convergence of metric spaces, as it
is often the case that geometric restrictions on a sequence of Riemannian manifolds
results in the existence of convergent subsequences in the Gromov-Hausdorff sense,
where the limit is, in general, only a metric space. To that end, we define, for metric
spaces X and Y ,

dGH(X, Y ) = inf{dH(f(X), g(Y ))}
where this infimum is taken over all metric spaces M and isometric embeddings
f : X → M and g : Y → M , and where dH( , ) denotes the Hausdorff distance
between subsets of a metric space. We then say a sequence of metric spaces Xi has
the Gromov-Hausdorff limit X if

dGH(Xi, X)→ 0.

If in fact the sequence of metric spaces and the limit space are smooth manifolds
then we can talk about stronger notions of convergence. If, for instance, there
exist, for large enough i, diffeomorphisms φi : X → Xi, then we can examine the
pullbacks φ∗gi of the Riemannian metrics gi on Xi to X, and define the Cm, C∞,
Cm,α etc. sense of convergence of (Xi, gi)→ (X, g) by requiring that these pullback
metrics converge to g in the appropriate topology. Because we do not always assume
(Xi, gi) and their limits are closed, it is also useful to have the notion of pointed
convergence, which, among other things, allows for the convergence of a sequence of
closed Riemannian manifolds to something unbounded. We fix a sequence of points
pi ∈ Xi, p ∈ X and we say (Xi, gi, pi) → (X, g, p) in the pointed Gromov-Hausorff
(or Cm etc.) sense if for all R > 0

(B(pi, R), gi)→ (B(p,R), g)
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in the Gromov-Hausdorff (or Cm etc.) sense. Note that the existence of diffeomor-
phisms between B(pi, R) and B(p,R) for large i does not imply that X is diffeomor-
phic to any of the manifolds Xi.

We briefly review some fundamental results related to Gromov-Hausdorff con-
vergence. For the material here and a more in depth discussion, see [petersen].

The strongest bounds we consider take the form |sec| ≤ K paired with a lower
bound inj ≥ i0, in which setting the resulting subclasses of Riemannian manifolds
are in fact compact. To show this, one defines a Cm,α norm at the scale of r on
subsets A of a Riemannian manifold (Mn, g) as follows: we say

||A||Cm,α,r < Q

if we can find charts φs : B(0, r) ⊂ Rn → Us ⊂M such that

1. Every ball B(p, 1
10
e−Qr), p ∈ A is contained in some Us

2. |Dφs| ≤ eQ on B(0, r) and |Dφ−1
s | ≤ eQ on Us

3. r|j|+α||Djgs·||α ≤ Q for all multi indices j with 0 ≤ |j| ≤ m.

4. ||φ−1
s ◦ φt||Cm+1,α ≤ (10 + r)eQ

Now consider the following theorem [24]

Theorem 1.1.2. (Fundamental Theorem of Convegence Theory) For given Q > 0,
n ≥ 2, m ≥ 0 α ∈ (0, 1] and r > 0 consider the class Mm,α(n,Q, r) of complete,
pointed Riemannian manifolds (M, p, g) with ||(M, g)||Cm,α,r < Q. Mm,α(n,Q, r) is
compact in the pointed Cm,β topology for all β < α.

Utilizing (1.1.2), it is then possible to show [24]

Theorem 1.1.3. For every Q > 0 there exists r > 0 depending only on io and K
such that any complete (M, g) with |secM | ≤ K, injM ≥ io has ||(M, g)||C0,r ≤ Q.
Furthermore, if (Mi, pi, gi) satisfy injMi ≥ io and |secMi ≤ Ki → 0, then a sub-
sequence will converge in the pointed Gromov-Hausdorff topology to a flat manifold
with inj ≥ io.

See [24] for generalizations of Theorem (1.1.3) as well as other compactness
results which follow from Theorem (1.1.2).

The spaces in Theorem (1.1.3) are too restrictive for most of our discussion,
but it turns out the less restrictive bounds Ric ≥ K lead to spaces which are not
compact. Nonetheless we have the following [11]

Theorem 1.1.4. (Gromov) Let (M, dGH) denote the space of isometry classes of
metric spaces equipped with the Gromov-Hausdorff distance. Let M(n,K,D) denote
the space of all n dimensional Riemannian manifolds with Ric ≥ K and diam ≤ D.
Then M(n,K,D) is precompact in (M, dGH).
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Theorems (1.1.3) and (1.1.4) provide fundamental compactness results necessary
to begin a study of spaces of Riemannian manifolds defined by various curvature
bounds. As we describe in various theorems below, Gromov-Hausdorff convergence
paired with appropriate geometric constraints on the sequence of Riemannian man-
ifolds induces a smooth structure on the limit space, or some subset thereof, and
implies some form of stronger convergence of the metrics as well. This can also lead
to other implications for the structure of limits of Riemannian manifolds belonging
to certain classes, and this in turn leads to implications about the classes themselves.

We say (M, g) is non collapsed if Vol(B(p, 1)) > ν > 0 for some ν and all balls
B(p, 1) ⊂M of radius 1. We say a sequence of noncollapsed Riemannian manifolds
(Mi, gi) is uniformly non-collapsed if ν can be chosen independently of i.

Example 1.1.5. To observe the significance of this condition, consider the sequence
of cylinders

Ci := (εiS1)× R

where εS1 denotes the circle of circumference ε and εi is any sequence of positive
numbers tending to zero. Then it is immediate that

Ci →
GH
R

and we therefore have an example where dim(Ci) = 2 for all i but their limit is a
one dimensional manifold. Observe however that the sequence Ci is not uniformly
non-collapsed. It turns out that the added assumption of a non-collapsed condition
coupled with bounds on the curvature has a number of implications.

Ricci curvature as an “elliptic” operator

The coordinate expressions for Rm and its traces can be simplified by choosing
coordinate functions that behave well with respect to the underlying metric. In
particular, if locally defined coordinate functions xi are harmonic with respect to g,
i.e. for each i

∆xi = 0,

where ∆ = ∇ · ∇ is the Laplace-Beltrami operator, then with respect to these
coordinate we have

Ricij = −1

2
∆(gij) + lower order terms

and, while the general expression for Ric is more complicated and the operator
g → Ricg taking a metric to its Ricci curvature is not elliptic and therefore general
regularity results do not apply, it is often thought of as a multiple of the Laplacian
and this thinking motivates a number results. To that end, we might consider bounds
either of the form

Ric ≥ K or Ric ≤ K

with the hope that we are led to some kind of control on g, and this is broadly
speaking what we investigate below.
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There are a plethora of results that demonstrate how the Riemann tensor and
these traces determine the shape of a Riemannian manifold, and therefore how apri-
ori restrictions on their behavior lead to restrictions on various geometric quantities.
To motivate the kind of results we discuss here,

To motivate the restriction of our attention to either Ric or R, we observe that
there are geometric interpretations for these traces that lend intuition to how they
control the geometry of a manifold, and we describe some of these now.

Over any set U ⊂ Rn where the exponential map (see Chapter 5 of [24]) is a
diffeomorphism, the volume form can be expressed as

dvol = vdr ∧ dθ

for some function v : U → R, and where r > 0, θ ∈ Sn−1. Letting f(x) := d(x, p),
in these coordinates, v and f satisfy

∂v

∂r
= ∆f · v (1.1.1)

∂

∂r
∆f +

(∆f)2

n− 1
≤ ∂

∂r
∆f + (∇2f)2 = −Ric(∇f,∇f) (1.1.2)

A lower bound on the Ricci curvature Ric ≥ K therefore gives an upper bound on
∆f , as we can solve

∂

∂r
m+

m2

n− 1
= −K (1.1.3)

directly to show that

∆f(r, θ) ≤ mK(r) := (n− 1)
sn′K(r)

snK(r)
, (1.1.4)

where snK(r) = sin(
√
Kr) for K > 0, sn0(r) = r and snK(r) = sinh(

√
Kr) for

K < 0. Observe that m0(r) = n−1
r

and as such, is asymptotic to ∞ at the origin
and to 0 at ∞. Consider below the graphs of m−1 and m1, which demonstrate
fundamentally different behavior for the laplacian in negatively and positively curved
manifolds respectively.

We remark that in this setting, ∆f is the mean curvature m of the level sets of f .
Since we have lim

r→0
(m −mK) = 0, it follows that m(r) = mK(r) → m(r′) = mK(r′)

for all r′ < r. We collect this into the following theorem [24]

Theorem 1.1.6. (mean curvature comparison) If RicM ≥ K, then along any min-
imal geodesic segment from p,

m(r) ≤ mK(r).

Moreover, equality holds if and only if all radial sectional curvatures are equal to
1

n−1
K.

More generally, we have the following theorem [24],
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Figure 1.1.1: Unlike in the case of K = 0, we can see from the graph of m−1
that, for K < 0, lim

r→∞
mK > 0. Furthermore, from the graph of m1 we can see

that, for K > 0, mK approaches a singularity at finite distance. This second
fact corresponds to the phenomenon that lines of longitude emanating from
the north pole on a sphere converge on a single point at the south pole, and
demonstrates the kind of collapsing that positive curvature can induce.

Theorem 1.1.7. (Bochner) For a smooth function f on a complete Riemannian
manifold (M, g),

1

2
∆|∇f |2 = |∇2f |2 + g(∇f,∇(∆f)) + Ric(∇f,∇f).

Observe that in the special case that f is a distance function and Ric ≥ K,
because where f is smooth we have,

|∇f | = 1 and ∇f = ∂r,

where ∂r is coordinate direction for r in exponential coordinates, and therefore at
such places (1.1.7) reduces to (1.1.3).

Example 1.1.8. Consider the manifold M := S2 × R equipped with the product
metric

g = grnd + dr2.

Let r denote the projection onto R. On the set {p ∈ M | r(p) ≥ 0} the function r
thus represents the distance from the sphere r−1(0) and thus satisfies, by (1.1.3),

∂

∂r
∆r ≤ −|∆r|

2

2
− Ric(∇r,∇r).

Now, this also follows from the fact that ∆r ≡ 0, but let us observe what happens
if we perturb g to

g′ := g + a (1.1.5)

such that a has support compactly contained within the set {p ∈M | r(p) > 0} and
the resulting metric g′ is smooth over all of M with Ricg′ ≥ 0. Assume for simplicity
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that the resulting distance function r′( · ) := dg′(r
−1(0), · ), where r−1(s) denotes

the preimage of s with respect to r, remains smooth and that there exists a point p
with r(p) > 0 such that

Ricg′(∇r′,∇r′)(p) > 0.

In this case we have

∂

∂r′
∆r′(p) ≤ −|∆r

′(p)|2

2
− Ricg′(∇r′,∇r′)(p) < 0.

Now, for any s there exists q(s) such that d(p, q(s)) = d(p, (r′)−1(s)). If γs is a
minimizing geodesic with γs(0) = q(s) and γs(r

′(p)−s) = p, then the concatenation,
for s > r′(p), γ0 · γ−1

s is a minimizing geodesic connecting q(0) and q(s). Taking
s to ∞, these curves converge to a geodesic ray γ with γ(0) = q(0), γ(r′(p)) = p
and γ′ = ∂r′ , and because r and r′ agree in a neighborhood of r−1(0), we have
∆r′(q(0)) = 0. Furthermore, by (1.1.4), ∆r′ ≤ 0 everywhere on γ. Now, moving
along γ, we see that

∂

∂r
∆r(γ(r′(p))) ≤ −|∆r(γ(r′(p)))|2

2
− Ricg′(∇r,∇r)(γ(r′(p))) < 0,

and thus, by comparing to solutions to (1.1.3) for K < 0, we see that ∆r′ becomes
singular at γ(t̄) for some finite t̄. By (1.1.1), dvolg′ becomes singular at this point as
well and we reach a contradiction to the assumption that g′ defines a smooth metric
over all of M . This shows that metrics of the form (1.1.5) cannot satisfy Ric ≥ 0.
See also Theorem (1.1.19) below, which takes this idea significantly further.

1.1.2 lower bounds

To begin, we recall some classical theorems, proven for instance in [24], which lend
a basic intuition to the geometric influence of the Ricci curvature

Theorem 1.1.9. (Myers) Suppose (M, g) is a complete Riemannian manifold with
Ric ≥ (n − l)k > 0. Then diam(M, g) ≤ π√

k
. Furthermore, (M, g) has finite

fundamental group.

Observe in particular that the universal cover of any complete (M, g) satisfying
Ric(M) ≥ (n − l)k > 0 must also satisfy this diameter bound, and in particular
must be compact. It follows that the fundamental group of M is finite.

Cheng showed in the rigidity case for (1.1.9) that we recover the sphere

Theorem 1.1.10. (Cheng) Suppose (M, g) is a complete Riemannian manifold with
Ric ≥ (n− l)k > 0 and diam(M, g) = π√

k
. Then (M, g) is isometric to Snk .

We remark that Theorem (1.1.9) is a consequence of the inequality (1.1.4). We
also have the following theorem, which relies on (1.1.4) as well

Theorem 1.1.11. (Bishop-Cheeger-Gromov) Suppose (M, g) is a complete Rieman-
nian manifold with Ric ≥ (n− 1)k. Then

r → Vol(B(p, r))

V n
k (r)

is a non-increasing function whose limit as r → 0 is 1.

8



Remark 1.1.12. (1.1.11) is in fact a key element in the proof of Theorem (1.1.4).
To illustrate this, we define the capacity of the metric space X at scale r > 0 as

CapX(r) := |{B(x,
r

2
) | B(x,

r

2
) ⊂ X are pairwise disjoint}|.

For anyM ∈M(n,K,D), and x1, ..., xN ∈M such thatB(xi,
r
2
) are pairwise disjoint.

We then have
Vol(M) ≥

∑
i

Vol(B(xi,
r

2
)),

and, because for each xi we have, by Theorem (1.1.11),

Vol(B(p, r
2
))

V n
k ( r

2
)

≥ Vol(B(p,D))

V n
k (D)

=
Vol(M)

V n
k (r)

it follows that

Vol(M) ≥ N
V n
K( r

2
)

V n
K(D)

Vol(M)

and thus that

Lemma 1.1.13. There exists N(n,K,D, r) > 0 such that

CapM(r) ≤ N(n,K,D, r)

for any M ∈M(n,K,D).

Utilizing this upper bound it is possible to argue by a diagonalization argument
that any sequence Mi ∈M(n,K,D) has a convergent subsequence, and thus Theo-
rem (1.1.4) follows.

The preceding theorems illustrate how negativity in Ricci curvature allows a
manifold locally to have more volume relative to a given radius and, conversely, that
positive Ricci curvature forces a certain amount of boundedness of volume locally.
This leads to a general insight that certain pathological behaviors can be avoided if
one assumes a lower bound on the Ricci curvature. Consider the following theorems
that illustrate this [16]

Theorem 1.1.14. (Lohkamp) Let (Mn, g) be a compact Riemannian manifold of
dimension n ≥ 3 and K > 0 a constant. Then there is a sequence of Riemannian
metrics gi on M such that Ricgi ≤ −Kgi for all i and

(M, gi)→ (M, g)

in the Gromov-Hausdorff sense.

Theorem (1.1.14) demonstrates in particular that a restriction like Ric ≤ K leads
to a set of Riemannan metrics on M that is dense in the set of Riemannian metrics
on M , and therefore does not restrict the possible large scale geometry. Coonsider
in contrast the following [9]

Theorem 1.1.15. (Colding) For r > 0, consider all metric balls of radius r in all
complete n-dimensional Riemannian manifolds with Ric ≥ −(n − 1). Equip this
space with the Gromov-Hausdorff topology. Then the volume function is continuous.

9



Discussion of theorem (1.1.15)

To illustrate how Theorem (1.1.15) shows that Ric ≥ −(n− 1) does in fact restrict
the local volume, we describe here a well-known counter example in the case that
the curvature assumption is dropped and n = 2, i.e. we describe a sequence of
pointed Riemannian manifolds (Mi, gi, pi) such that BMi

(pi, 1), the ball of radius 1
at pi, Gromov-Hausdorff converges to B(0, 1), the Euclidian 2-ball, but such that
the volumes of these balls approach 0:

Example 1.1.16. For ε > 0, consider the set in R3 of points (x, y, z) = (nε,mε, 0),
with n,m ∈ Z, and consider the subset of such points contained in the unit ball in
R3. connect each pair of these points by the unique line segment they determine.
The union of such line segments is a lattice Lε. ”Fatten” Lε by replacing it with

Figure 1.1.2: Pictured are Lε for ε = 8
15 ,

4
15 . As ε is chosen smaller, Lε

approaches, in the Gromov-Hausdorff sense, the unit disc in the xy-plane. Any
suitably chosen tubular neighborhood in R3 of Lε will also approach the unit
disc.

the tubular neighborhood of points {x ∈ R3| d(x, Lε) = δ} for some δ > 0, δ << ε.
For small δ, we can smooth out this set to create a Riemannian manifold T δε , with
induced metric from R3. The volume T δε at each step can be made arbitrarily small
by choosing δ appropriately. Note, however, that the L∞-bound on the curvature of
T δε approaches ∞ as ε→ 0 and in fact, so does the genus. It is clear, however, that
these manifolds Gromov-Hausdorff converge to the intersection of B(0, 1) with the
plane z = 0.

While the surfaces constructed above do contain neighborhoods where the cur-
vature is very large, intuitively, they seem to have small area because they contain a
large number of holes, i.e. the genus grows without bound as the manifolds converge
in the Gromov-Hausdorff sense. By [colding], this is only possible on account of the
presence of arbitrarily negative curvature in the sequence above, and so it serves to
illustrate more concretely how allowing for arbitrarily negative curvature allows for
more freedom than we see in the case of a bound like Ric ≥ k ∈ R.

We discuss here the proof of Theorem (1.1.15) that appears in [9], and we mention
that our result Theorem (1.1.18) below and its proof are similar.
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Firstly, consider the n vectors {re1, ..., ren} ⊂ Rn, where ei form an orthonormal
in Rn with respect to the Euclidian metric. Let

bri (·) := r − d(rei, ·)

and consider the map Φr(x) = (br1(x), ..., brn(x)). If we fix a bounded neighborhood
U ⊂ Rn of the origin, then for large r, Φr : U → Rn is a near isometry. This follows
from the fact that on U

lim
r→∞

bri = xi,

where xi are the standard coordinates with respect to the basis vectors ei. Note
also that similarly, if we restrict attention for instance to Φ := Φ1 and restrict our
attention to neighborhoods U ε := B(0, ε), then, for small ε, Φ : U ε → Rn is a near
isometry. This approach provides a way of mapping a neighborhood U of a general

Figure 1.1.3: Concentric circles about e1, e2 in R2 determine coordinates
in a small neighborhood of the origin. At the scale of smaller neighborhoods,
these coordinates are closer to standard Euclidian coordinates. This technique
generalizes to give local coordinates on an arbitrary Riemannian manifold, but
only at sufficiently small scales, depending on the metric.

Riemannian manifold M to Rn provided functions bi on M can be found that behave
sufficiently like the coordinate functions xi, which in particular sastisfy the following
expression:

xi(γv(r)) = 〈∇xi, v〉 · r

which holds for all v ∈ Rn and r > 0. This equation states that we can predict the
coordinates of the end point of a curve given the values v and r. If, in general, we
were to try to construct a map in this way, we might start with functions

b+(·) = d(q, ·)− d(q, p)

and ask when the quantity

|b+(γv(r))− b+(γv(0))− 〈v,∇b+〉r| (1.1.6)

is small. We in fact have the following, from [9]

11



Theorem 1.1.17.

1

Vol(SB(p,R))

ˆ
SB(p,R)

|b+(γv(r))− b+(γv(0))− 〈v,∇b+〉r| < εR

and
1

Vol(SB(p,R))

ˆ
SB(p,R)

|(b+ ◦ γv)′(r)− 〈v,∇b+〉| < ε

Here SM denotes the unit tangent bundle of a manifold M (See the preliminaries
of Chapter 2 below for a precise definition).

Theorem (1.1.17) states that (1.1.6) is small in a certain integral sense when we
have a lower Ricci curvature bound. This in turn provides a measure of how well
we can predict the local behavior of distance functions on (M, g) given a function’s
linearization at a point, and it is by the existence of such near isometries that
Theorem (1.1.15) is proved.

Returning to the counter example described above, one can imagine how Theorem
(1.1.17) implies Theorem (1.1.15). The fact that on average we can estimate, in
comparison to Euclidian geometry, where the end point of a geodesic parametrized
over an interval lies heuristically tells us that, if there were something like the holes
in the example above, we could reach a contradiction by aiming toward these holes
and finding points within them. This motivates the question of whether a restriction
on the topology of M in place of a curvature condition also results in (at least partial)
continuity of the volume function. We have the following

Theorem 1.1.18. For r > 0, consider all metric balls of radius r in all complete
2-dimensional Riemannian manifolds with Euler characteristic uniformly bounded.
Equip this space with the Gromov-Hausdorff topology. Then the volume function
is lower semi-continuous. i.e. for any ε > 0 there exists δ(ε) > 0 such that if
B(p, r) ⊂M and B(pi, r) ⊂Mi are as described and satisfy

lim
i→∞

dGH(B(pi, r), B(p, r)) = 0

then
lim
i→∞

Vol(B(pi, r)) ≥ Vol(B(p, r))

Note, if the surfaces in question are closed, then the Euler characteristic can
be bounded in terms of the genus, and the statement of Theorem (1.1.18) can be
simplified to reflect that. We provide a proof of Theorem (1.1.18) in chapter 3.

Now, recall Example (1.1.8) above. We saw there that certain perturbations
of the standard metric on S2 × R cannot satisfy Ric ≥ 0 without forcing some
kind of singularity. It turns out that this is an example of a more general phe-
nomenon described by the following theorem, where we define a line to be a curve
γ : (−∞,∞) → M such that its restriction to any finite sub-interval of its domain
is a minimizing geodesic [6]

Theorem 1.1.19. (Cheeger Gromoll) Let M be a complete manifold of nonnegative
Ricci curvature. Then M is the isometric product M̄ × Rk where M̄ has no lines
and Rk has its standard flat metric.

12



Discussion of theorem (1.1.19)

The idea of Example (1.1.8) is that, by (1.1.4), the presence of positive Ricci cur-
vature curbs the spread of a family of geodesics, and ultimately can cause them to
begin to converge on one another. Along with the condition Ric ≥ 0, we then see
that Theorem (1.1.19) illustrates the incompatibility of the presence of geodesic lines
γ in spaces satisfying Ric ≥ 0 unless they result from the trivial case of a product
with R, which in particular implies

Ric(γ′, γ′) = 0

everywhere, and thus that such curves do not experience any of the influence of
positive Ricci curvature.

Example 1.1.20. similarly to Example (1.1.8), consider the scenario where we know
that M splits isometrically as

M ∼= M̄ × R

and observe that local coordinates {x1, ..., xn−1} on U ⊂ M̄ extend in an obvious
way to coordinates on U × R ⊂ M by the introduction of xn = πR, where πR is
projection onto R, and that the function xn satisfies, for any p, q ∈M ,

d(S(p), S(q)) = |xn(p)− xn(q)|

where the sets S(p) := {y ∈M | xn(y) = xn(p)} are the level sets of xn. Furthermore,
we have that ∇xn is parallel, i.e. ∇( · )∇xn ≡ 0, and in particular ∆xn ≡ 0. While
this all follows immediately from the decomposition of M , we illustrate it because
the proof of Theorem (1.1.19) relies on the introduction of a superharmonic function,
which we denote b : M → R, that is in fact a Riemannian projection onto R exactly
like xn, and which arises as the limit of distance functions like f above.

To see the role Ricci Curvature plays in this result, let us illustrate the proof of
Theorem (1.1.19) found in [6]. Recall again that Ric ≥ 0 implies that the distance
function f from a point p ∈M satisfies

∂

∂r
∆f +

(∆f)2

n− 1
≤ 0,

so that

∆f ≤ (n− 1)
sn′0
sn0

= (n− 1)
1

r
, (1.1.7)

which in particular tends to zero for large r. This indicates that for (M, g) with
nonnegative Ricci curvature and p ∈M that for any ε > 0 we can choose D > 0 such
that ∆f < ε on the (possibly empty) set B(p,D)c ⊂ M . One way of interpreting
this is that for large r the distance function f behaves almost superharmonically.

Now, assume that M contains a line. Similarly to the discussion for Theorem
(1.1.15), define the functions

bγ,t(q) = d(q, γ(t))− t.

13



By the triangle inequality,

|bγ,t(q1)− bγ,t(q2)| = |d(q1, γ(t))− d(q2, γ(t))| ≤ d(q1, q2)

and so these functions are uniformly equicontinuous, and furthermore t → bt(q) is
decreasing and bounded below by −d(γ(0), q) for any fixed q. Thus these functions
converge to a continuous function

bγ := bγ,t
t→∞

.

Remark 1.1.21. In the case of Rn with the Euclidian metric for instance, it is clear
that the function thus defined is a linear function, and thus splits the space in an
obvious way,

Rn = {x | b(x) = 0} × {s∇b | s ∈ R} ∼= Rn−1 × R.

Now consider the following theorem, also proven in [6]

Theorem 1.1.22. If M has non-negative Ricci curvature, then the functions bγ are
superharmonic.

Heuristically, Theorem (1.1.22) follows from our discussion regarding the impli-
cations of (1.1.7), but there are a number of technical details arising from the fact
that distance functions cannot be assumed to be differentiable everywhere on M
(see [6] for a proof).

Now, assuming Theorem (1.1.22), we proceed by defining

b+ := bγ and b− := b−γ

and observing that, again by the triangle inequality and recalling that γ is a line,

d(q, γ(t))− t+ d(γ(−s), q)− s ≥ 0,

and thus,
b := b+ + b− ≥ 0,

with equality holding for all points on γ. We have furthermore that b is superhar-
monic, and thus for any neighborhood intersecting γ we have b ≡ 0. By the strong
maximum principle, this implies b ≡ 0 over M and thus

b+ = −b−.

Thus b+ is subharmonic as well, and in particular it is harmonic. This constitutes
the contribution to the structure of M resulting from the condition Ric ≥ 0 that we
hope to convey. With a little more work, it also follows that

||∇b|| = 1

and in particular, ∇∇b+∇b+ ≡ 0, and subsequently that

∇(∇b+) ≡ 0.

The properties of the function b+ then imply, by the De Rham decomposition the-
orem [23], that, locally, M decomposes isometrically as the product of an n − 1
dimensional manifold and an interval in R. This splitting is in fact global, given by
the level sets of b+, and the proof is complete.

.
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1.1.3 two sided bounds

For some stronger upper bound conditions on curvature, sec < 0 for instance, there
is much that can be said, but we remark here that the condition Ric < K offers
much less. There are, however, a number of results that follow from the combination
of upper and lower bounds.

Sphere Theorems

We briefly mention the well-known sphere theorems, the first proven by Berger [2]
and Klingenberg [15]

Theorem 1.1.23. (Berger, Klingenberg) If M is a complete, simply-connected, n-
dimensional Riemannian manifold with sectional curvature taking values in the in-
terval (1, 4] then M is homeomorphic to the n-sphere.

and its differentiable analogue, proven by Chen [7]

Theorem 1.1.24. (Chen) If M is a complete, simply-connected, n-dimensional Rie-
mannian manifold with sectional curvature taking values in the interval (1, 4] then
M is diffeomorphic to the n-sphere.

We also remark in passing that the upper bound in Theorem (1.1.23) can be
replaced by a lower diameter bound:

Theorem 1.1.25. Let M be a compact Riemannian manifold with sectional curva-
ture greater than 1. If the diameter of M is greater than π

2
, then M is homeomorphic

to Sn.

Integral Bounds

It has already been made clear in the introduction that, without restrictions, a limit
of a sequence of manifolds of dimension n may have dimension d < n. On the other
hand, consider the following 2 dimensional example of a sequence of non-collapsed
positively curved manifolds, where the limit space is a 2 dimensional orbifold, i.e. a
topological space that is locally a finite group quotient of two dimensional Euclidian
space:

Example 1.1.26. Let

gc,k = dr2 + r

√
1 + (ckr)2

1 + (kr)2
dθ2.

For all k, gc,k is a smooth metric on R2, and we have the limit metric

gc := lim
k→∞

gc,k = dr2 + crdθ2

which defines a smooth metric over all of R2 when c = 1. Taking instead c = 1
2

for
instance, g 1

2
is the quotient metric of the Euclidian metric on R2 by the action of
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Figure 1.1.4: As k increases, the curvature at the apex r = 0 grows without
bound, producing a singularity in the limit.

rotation by 180o, i.e. v = −v for all v ∈ R2. The pair (R2, g 1
2
) is then an orbifold,

and g 1
2

is not smooth at the origin ~0.
In general, we have

(R2, gc) = C(S1
2πc),

where S1
β denotes the circle of radius β and C(Z) denotes the metric cone over a

metric space Z. Recall that C(S1
2πc) is only smooth at its vertex when c = 1.

Thus, while the dimension is not reduced in these examples, we see that limits
are not Riemannian manifolds in general. Geometrically, it is clear that these ex-
amples form a singularity at the cone vertex because the curvature of the metrics
gc,k becomes arbitrarily large at this point. To qualify this further, and following
the material presented in [5], for a metric space (X, d) we define a tangent cone of
X at x as any limit point, for t→∞, of (X, x, td) in the pointed Gromov-Hausdorff
sense, where td denotes the rescaled distance by the parameter t. This generalizes
the notion of a tangent plane in the sense that every tangent cone to a point in
an n dimensional Riemannian manifold is isometric to Rn. Observe also that C(S1

β)
occurs as a tangent cone at its own vertex.

It turns out that if (X, d) occurs as the Gromov-Hausdorff limit of (Mn
k , gk) with

Ricgk ≥ K, then, if a tangent cone at x ∈ X is isometric to Rn, every tangent cone
at x is isometric to Rn. Thus, we call a point x regular if Rn occurs as a tangent cone
at x, and singular otherwise. This creates a dichotomy between points near which
the metric is smooth and those at which it isn’t. Thus, every point in a Riemannian
manifold is regular.

Now, for a limit (X, d), let S ⊂ X denote the set of singular points. We have the
following, from [4]

Theorem 1.1.27. (Cheeger, Naber) Let (Mn, gi, pi) →
GH

(X, d, p) be a Gromov-

Hausdorff limit of manifolds with ||Ricgi || ≤ n − 1 and Vol(B(pi, 1)) > v > 0.
Then the singular set S satisfies

dimS ≤ n− 4.

The dimension can be taken to be the Hausdorff or Minkowski dimension.
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Discussion of theorem (1.1.27)

Regarding the structure of the set S, let the stratum Sk ⊂ S be defined as the set of
points for which no tangent cone splits off isometrically a factor Rk+1. Intuitively,
this decomposes S into isolated vertices, edges, etc. similarly to a simplicial complex.

Example 1.1.28. In the example C2 of the boundary of the unit cube I3 embedded
in R3,

the set of 8 corners comprise S0. Their union is S, which has codim(S) = 2.
Observe how a neighborhood of p ∈ C2\S0 is isometric to a neighborhood of q =
(x, z∗) ∈ R1 × C(S0), where z∗ denotes the vertex in C(S0), and no neighborhood
of p ∈ S0 can be decomposed in a similar way. In the analagous example of the
boundary C4 of I5 ⊂ R5, we have I5 = I3 × I2, so

C2 × I2 ⊂ C4

and thus codim(S) ≤ 2. It then follows that the C4 does not arise as the limit of a
sequence of surfaces with Ricci curvature bounded from below.

it is shown in [5] that, in the non-collapsed setting and with a lower Ricci curva-
ture bound, not only is dim S ≤ n−2, but the set S can be stratified in the following
way:

S0 ⊂ S1... ⊂ Sn−2 = S (1.1.8)

dim(Sk) = k in the sense of Hausdorff dimension (1.1.9)

These statements show that S can be controlled so that it does in fact behave in a
geometric way similarly to (1.1.28). Now, (1.1.26) suggests a relationship between
unbounded curvature and the set S. Specifically, the singular region in the limit
arises through the presence of unbounded curvature in the sequence. It follows that
if S is suitably sparse in X, then one may hope that this in turn implies a bound on
some form of curvature in an integral sense for the sequence of manifolds.

Pursuing this, we review the ideas of quantitative stratification, introduced in [5],
which provide local control over the measure of tubular neighborhoods of S. Firstly,
denote by (0, z∗), a vertex of the metric cone with isometric splitting Rk+1 × C(Z).
Define the k-th effective singular stratum Skη,r ⊂ X by

Skη,r := {x | dGH(B(x, s), B((0, z∗), s)) > ηs for all Rk+1 × C(Z) and r ≤ s ≤ 1}

Thus, Skη,r is those x ∈ X locally, down to the scale of r, are not η close to splitting
off a factor of Rk+1. We have the following [5]
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Theorem 1.1.29. There exists c(n, ν, η) > 0 such that if Mn
i →
GH

X, and the (Mn
i , gi)

satisfy the lower Ricci curvature bound Ric ≥ −(n− 1), and ν-noncollapsing condi-

tion Vol(B(p,1))
V−1

> ν > 0, then for all x ∈ X and η > 0,

Vol(Tr(S
k
η,r) ∩B(x,

1

2
)) < c(n, ν, η)rn−k−η

The combination of Theorems (1.1.27) and (1.1.29) are used in [4] to prove

Theorem 1.1.30. There exists C = C(n, v, q) such that if Mn satisfies ||Ric|| ≤
n− 1 and V ol(B(p, 1)) > v > 0, then for each q < 2,

ˆ
B(p,1)

||Rm||qdvol ≤ C

Example 1.1.31. Similarly to Example (1.1.1), let (S2, grnd) and (H2, ghyp) denote
the two dimensional round sphere and hyperbolic space respectively. Using (1.1.1)
and (1.1.2) it can be calculated that the area of a disc of radius r in two dimensional
hyperbolic space with sectional curvature K is given by

VK(r) = 2π

ˆ r

0

sinh
√
Kt√

K
dt

which in particular grows exponentially as K →∞. On the other hand, we have

Vol√Kgrnd(S
2) =

4π

K
.

Combining these, the volume of a ball of a given radius in (M, gK), where M =
S2×H2 and gK =

√
K(grnd+ghyp), can be made arbitrarily large by choosing K suffi-

ciently large. As in (1.1.1), we have RgK = 0, but ||RicgK || =
√
K2 +K2 +K2 +K2 =

2K and thus, for x ∈M , the quantity
ˆ
B(x,1)

||Ric||pdvolgK

can be made arbitrarily large, for any p ≥ 1.

Example (1.1.31) is significant in that it shows that pointwise or integral control
over R in the Lp sense for 1 ≤ p ≤ ∞ are insufficient to bound ||Ric||Lp or ||Rm||Lp
in the limit, in contrast to Theorem (1.1.27).

Regarding integral bounds in general, we remark here that the following is proven
in [21]

Theorem 1.1.32 (Petrunin). Let (Mn, g) be a Riemannian manifold satisfying
sec ≥ k for some k ∈ R and p ∈M . There exists C = C(n, k) such that

ˆ
B(p,1)

|R|dvol < C.

Lastly, we have the following
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Theorem 1.1.33. Let (Mn, g) be a complete Riemannian manifold and p0 ∈ M .
Assume the Ricci curvature satisfies Ric ≥ −1 on the ball B(p0, 5). Then for any
0 < q < 1/2 there exists C(q, n) such that

||Ric||qLq(B(p0,1)) ≤ C(q, n)V ol(B(p0, 1))(1−2q)

Which we discuss and prove in chapter 2.
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1.2 Santaló’s Formula

We include in this section a proof of the well-known Santaló’s Formula, as it plays a
role in some of our work below, but its proof does not often appear. Before stating
the theorem we review some background and notation.

The tangent bundle TM splits locally so that, for small neighborhoods U ⊂M ,
we have π−1(U) ∼= U ×Rn, where π : TM →M is the projection onto M . Thus, we
freely use the notation (p, v) ∈ TM , where p ∈ M and v ∈ TpM . The connection
gives a unique way to define a lift

dπ−1
(p,v) : TpM → T(p,v)(TM)

by the property that, if Y ∈ TpM and we extend v to a section v ∈ Γ(TM) such
that ∇Y v = 0, then, recalling that a section v is a map v : M → TM , we have

dπ−1
(p,v)(Y ) = dv(Y ).

We then say a vector field Y ∈ Γ(T (TM)) is horizontal if for any (p, v),

dπ−1
(p,v) ◦ dπ(Y (p, v)) = Y (p, v).

Now define the horizontal vector field X ∈ T (TM) by the further property that
dπ(X(p, v)) = v for all (p, v) ∈ TM . There exists a smoothly varying family of
diffeomorphisms Φt : TM → TM such that

d

dt
Φt(p, v) = X(Φt(p, v))

and
Φ0(p, v) = (p, v).

Φ is called the geodesic flow, as the curves t → π ◦ Φt(p, v) are geodesics for any
initial (p, v).

Now consider local coordinates xi : U ⊂ M → R. These give rise pointwise to
a basis {∂x1(p), ..., ∂xn(p)} ⊂ TpM . Using these vectors, xi lift to coordinates x̃i, yi

on TU ⊂ TM by the properties

x̃i(p, v) = xi(π(p, v))

and
v = yi(p, v)∂xi.

We extend g to a metric, which we also denote by g, on TM so that in these
coordinates

g(∂x̃i, ∂x̃j) = g(∂yi, ∂yj) = g(∂xi, ∂xj)

and, at an arbitrary point (p, v),

g(∂x̃i, ∂yj) = yk(p, v)g(∇∂xi∂xk, ∂xj),

where the right-hand side is evaluated at p ∈M .
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We denote the unit tangent bundle onM by SM ⊂ TM , where (p, v) ∈ SM ⇐⇒
g(v, v) = 1 and we remark that the metric g restricts to SM in an obvious way.
We similarly define, for s ≥ 0, the sets sSM ⊂ TM , where (p, v) ∈ sSM ⇐⇒
g(v, v) = s. Because X is horizontal, it is easy to check that for any t, (p, v) ∈
sSM → Φt(p, v) ∈ sSM , and thus that Φt restricts to a diffeomorphism on sSM
for any s as well. Furthermore, TM =

⋃
s≥0

sSM and, by Fubini’s theorem,

ˆ
TM

f dvolTM =

ˆ ∞
0

ˆ
sSM

f dvolsSMds

where f is any integrable function, dvolTM denotes the induced volume form on
TM and dvolsSM denotes its restriction to sSM . We denote the pullback of dvolTM
through Φt by Φ∗tdvolTM .

recall finally that for any vector field F on a smooth manifold N and correspond-
ing flow ΦF,t, for Y ∈ Γ(TN), if we define the new vector fields Yt by the relation
Yt(ΦF,t(p)) = dΦF,t(Y (p)), then

d

dt

∣∣∣
t=0

(Yt(ΦF,t(p))− Y (ΦF,t(p))) = [F, Y ], (1.2.1)

where [·, ·] denotes the Lie bracket on vector fields. Furthermore, since

d

dt

∣∣∣
t=0
Y (ΦF,t(p)) = (∇FY )(p), (1.2.2)

we have for Y1, ..., Yn ∈ Γ(TN), with Yi,t defined as above and using (1) and (2),
that

d

dt

∣∣∣
t=0
dvolN(Y1,t(ΦF,t(p)), ...,Yn,t(ΦF,t(p)))

= (F · dvolN)(Y1, ..., Yn)+

dvolN(∇FY1, ..., Yn) + ...+ dvolN(Y1, ...,∇FYn)+

dvolN([[F, Y1], ..., Yn) + ...+ dvolN(Y1, ..., [F, Yn])
(1.2.3)

= F · (dvolN(Y1, ..., Yn))+

dvolN([[F, Y1], ..., Yn) + ...+ dvolN(Y1, ..., [F, Yn]).

We can now state Santaló’s formula, :

Theorem 1.2.1. The induced volume form dvolTM on TM (or dvolSM on SM) is
preserved with respect to Φt, i.e. for any t > 0

dvolTM = Φ∗tdvolTM

or equivalently, for any U ⊂ TM (or SM) we have

vol(U) = vol(Φt(U)).
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Proof. Firstly, observe that if we prove the theorem for TM , then it follows for SM
as well, since, by Fubini’s theorem,

ˆ ∞
0

ˆ
U∩sSM

dvolsSMds =

ˆ
U⊂TM

dvolTM =

ˆ
Φt(U)

dvolTM =

ˆ ∞
0

ˆ
Φt(U)∩sSM

dvolsSMds,

where U ⊂ TM is any measurable set. This implies that vol(U∩SM) = vol(Φt(U)∩
SM) measured as subsets of SM and, since U is arbitrary, that the theorem holds.

Proceeding with the proof for the case of TM , observe that it is sufficient to
show that

d

dt

∣∣∣
t=0

Φ∗tdvolTM = 0 (1.2.4)

since, for any 0 < s < t, Φt = Φs ◦ Φt−s implies that

d

dt

∣∣∣
t=s

Φ∗tdvolTM = Φ∗s

(
d

dt

∣∣∣
t=0

Φ∗s+tdvolTM

)
.

Thus, let p ∈ M and a neighborhood U ⊂ M with p ∈ U be given. we shall show
that

d

dt

∣∣∣
t=0
dvolTM(dΦt(∂x̃1), ..., dΦt(∂x̃n), dΦt(∂y1), ..., dΦt(∂yn)) = 0

holds for any element of π−1(p). Since p is arbitrary this is equivalent to (4). To do
so, we lift coordinates xi on U to coordinates x̃i, yi on TU as above. Because X is
horizontal and dπ(X(p, v)) = v, we have the following:

X(p, v) = yi∂x̃i −
g(∂x̃i, ∂yi)

g(∂yi, ∂yi)
∂yi.

Thus, if we have chosen our coordinates (see [24] for a description of exponential
coordinates for instance) so that at p we have gij = δij and Γijk = 0, then the above
implies for any v ∈ TpM that

X(p, v) = yi(p, v)∂x̃i

and furthermore by direct computation that

(∇∂x̃iX)(p, v) = 0, (∇∂yiX)(p, v) = ∂x̃i(p, v).

It then follows that

[X, ∂x̃i](p, v) = 0, [X, ∂yi](p, v) = −∂x̃i(p, v)

and thus that, at p,

g
(
∂x̃i, [X, ∂x̃i]

)
= g
(
∂yi, [X, ∂yi]

)
= 0.
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Combining all of this, using (3), and restricting to points (p, v) ∈ π−1(p), we have

d

dt

∣∣∣
t=0
dvolTM(dΦt(∂x̃1), ..., dΦt(∂x̃n), dΦt(∂y1), ..., dΦt(∂yn))

= X · (dvolTM(∂x̃1, ..., ∂x̃n, ∂y1, ..., ∂yn))

+ dvolTM([X, ∂x̃1], ..., ∂x̃n, ∂y1, ..., ∂yn)+

...+ dvolTM(∂x̃1, ..., [X, ∂x̃n], ∂y1, ..., ∂yn)

...+ dvolTM(∂x̃1, ..., ∂x̃n, [X, ∂y1], ..., ∂yn)

...+ dvolTM(∂x̃1, ..., ∂x̃n, ∂y1, ..., [X, ∂yn]),

= 0 + 1 ·
(
g
(
∂x̃1, [X, ∂x̃1]

)
+

...+ g
(
∂x̃n, [X, ∂x̃n]

)
+

...+ g
(
∂y1, [X, y1]

)
+

...+ g
(
∂yn, [X, yn]

))
= 0.

Since coordinates as above can be chosen for any (p, v) ∈ TM , we are done.
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Chapter 2

An Integral Curvature Bound

2.1 Introduction

The main result of this section is the following:

Theorem 2.1.1. Let (Mn, g) be a complete Riemannian manifold and p0 ∈ M .
Assume the Ricci curvature satisfies Ric ≥ −1 on the ball B(p0, 5). Then for any
0 < q < 1/2 there exists C(q, n) such that

||Ric||qLq(B(p0,1)) ≤ C(q, n)V ol(B(p0, 1))(1−2q)

Where we define the above norm

||f ||Lq(B(p0,1)) :=

(ˆ
B(p0,1)

|f |qdvol

) 1
q

Note that the bound does not deteriorate as volume collapses. We are unable
to immediately push the result to the case q = 1/2 for the obvious reason that the
constant C(q, n) in Theorem (2.1.1) blows up too quickly as q → 1/2. In the course
of the proof of Lemma (2.1.2) below, we show that C(q, n) behaves roughly like
(1

2
− q)−1 as q → 1

2
. It is possible that with other techniques the result extends

beyond q = 1/2. Our proof of Lemma (2.1.2) relies on Hölder’s inequality in a
way that requires q < 1/2, and it is for this reason that we can’t directly extend
the result. We also note that we have no examples to demonstrate whether these
bounds are optimal.

To get an idea of what is happening we sketch a few examples. Firstly we consider
(Sn, λ2gSn), the n-dimensional sphere with round metric gSn scaled to have diameter
λ. Of course Theorem (2.1.1) is most interesting for small λ, where the curvature
is large. Because volume scales like λn and ricci curvature scales like λ−2, for any
center point p0 the term on the left in Theorem (2.1.1) is roughly λn−2q for small λ
and the term on the right is roughly λn(1−2q), and we just check that

λn−2q ≤ λn−2qλ−2(n−1)q = λn(1−2q)

for small λ. Regarding the question of optimality, note that the term on the left
approaches 0 even for q = 1

2
but that the term on the right is simply equal to 1.
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Next we look at non-collapsed, rotationally symmetric metrics ga = dr2+φa(r)gSn−1

on Rn that behave like the the round sphere near the origin, but which flatten out,
approximating a cone. If we choose φa(r) = a−1 sin(ar) for r ≤ π

4a
and for φa to

equal its tangent line at r = π
4a

for all r > π
4a

, we achieve such a metric. If we choose
p0 to be the apex of the approximate cone, similarly to above, the term on the left in
Theorem (2.1.1) is kan−2q for some k but the term on the right does not deteriorate.
As an inequality this says,

kan−2q < C

Which is also clearly not optimal.
Lastly we note that, by taking a product of a manifold as above with Rk, we can

find examples of dimension n+k exhibiting the behavior expressed in the inequalities
above (i.e. not depending on k).

Petrunin [21] obtains an integral bound for the scalar curvature assuming a
lower bound on the sectional curvature which also holds in the collapsed setting,
and Cheeger and Naber [4] obtain integral bounds for the full Riemann curvature
tensor for q < 2 assuming both upper and lower bounds on the Ricci curvature, but
with the assumption that the volume is sufficiently noncollapsed.

The idea of the proof is the following: we show that we can achieve a similar
bound to the one in Theorem (2.1.1) for the Ricci curvature along a geodesic. i.e.

Lemma 2.1.2. Let Mn a Riemannian manifold. Let γ : [0, l] → M a minimizing
geodesic parametrized by arc-length with l ≤ 2, and assume that Ric ≥ −1 on the
image of γ. Then ˆ l

0

|Ric(γ′(t), γ′(t))|qdt ≤ C(q)

This bound passes immediately to a similar bound over an open collection of
such geodesics in the tangent bundle. Our main goal is to show that we can then
pass to Theorem (2.1.1) if the collection of geodesics suitably ”covers” B(p0, 1). The
technicalities essentially involve relating integrals over different sets (i.e. on subsets
of TM versus M) by showing that, for manifolds with Ric ≥ −1, the measures of
the various sets are comparable.

2.2 Notation and Preliminaries

Let (Mn, g) be an n-dimensional complete Riemannian manifold and TM its tangent
bundle. Let SM be the sub-bundle of unit length vectors. We use the notation
u = (p, v) ∈ TM (or SM), where p ∈ M and v ∈ TpM , to identify an arbitrary
point in TM . Furthermore, we take for granted the inclusion TpM ⊂ TM , so that
we can for example take U ∈ TM , define Vp := U ∩ TpM and think of Vp as a set of
vectors in the tangent space at p, rather than a set in the tangent bundle. Ignoring
this detail simplifies notation. We let π : TM(or SM) → M be the standard
projection and also take for granted expressions like

U =
⋃

p∈π(U)

Vp
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for U and Vp above.
We define the geodesic flow, φ : R × TM → TM , and the flow restricted to

time t, φt : TM → TM , as follows: there is an obvious identification T(p,v)TM =
TpM ⊕TpM and we let X be the vector field on TM such that X(p, v) = (v, 0). Let
φ and φt satisfy

d

dt
φ(t, u) = X(φ(t, u))

and
φt(u) = φ(t, u)

Then geodesics are smooth curves in M that satisfy

γ(t) = π
(
φt(uγ(0))

)
where uγ(t) = (γ(t), γ′(t)). We will take the liberty of sometimes referring to curves
in TM as geodesics rather than their projections into M , again to reduce the need
for more definitions and notation, but because it is a natural correspondence we
don’t expect it to cause any confusion.

Santaló’s formula states that, with respect to the product measure on SM , the
geodesic flow preserves volume. This means we can equivalently integrate a function
f over the image of a set U ⊂ SM under φt or pull back f through φt and integrate
over U itself, i.e. let f : SM → R. For an open set U ⊂ SM and t ∈ R the following
holds ˆ

φt(U)

f(u)du =

ˆ
U

(φ∗tf)(u)du

=

ˆ
π(U)

ˆ
U∩SpM

f(φt(u))dpu dp (2.2.1)

The notation in the third expression is more cumbersome but it allows us to work
on each tangent plane separately, which will be necessary below. Above du is the
product measure on SM , dp expresses the volume form inM , and dpu is the Lebesgue
measure on SpM , i.e. it locally satisfies dpu× dp = du.

To make use of lemma (2.1.2), we must restrict our attention to geodesics which
are minimizing. We define the segment domain:

seg(p) := {v ∈ TpM | expp(tv) : [0, 1]→M is minimizing}

and its interior:
seg0(p) := {tv| 0 < t < 1, v ∈ seg(p)}

It turns out that we will need to restrict our attention even further, to geodesics
which are both minimizing and at least of a specified length. This motivates the
definitions of the following sets. Let

Wt,p := {v ∈ SpM | tv ∈ seg0(p)}

Strictly speaking, this is the collection of unit vectors based at a point p that de-
termine geodesics that, when parameterized by unit speed, are minimizing on the
interval [0, t].
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Figure 2.2.1: Given an open set U ⊂ TM , By Santaló’s formula, the volumes
of U and φt(U) are equal. If t is not too large, their projections onto M will
have significant overlap. Thus, we can determine a basic relationship between
volume and integrals in subsets of TM and in sets they cover in M . This idea
is central to our proof of Theorem (2.1.1). See also Lemmas (2.2.1) and (2.2.2)
below.

We will actually be more interested in unit vectors as above based at any of an
open set of points in M . Furthermore it turns out that the only open sets we need
are balls of a fixed radius and we now fix that radius to 3. Thus, let

Wt(p0) :=
⋃

p∈B(p0,3)

Wt,p (2.2.2)

(We remind the reader that we take for granted the inclusion Wt,p ⊂ SM) The
significance of the radius 3 comes from the following statement: if we move along a
unit speed geodesic for t < 2 and end at a point in B(p0, 1) then our starting point
must have been within B(p0, 3). This significance will become more precise in the
proof.

Observe that with these new sets defined, (1) gives

ˆ
φt(Wt(p0))

f(u)du =

ˆ
Wt

(φ∗tf)(u)du

=

ˆ
B(p0,3)

ˆ
Wt,p

f(φt(u)) dpu dp (2.2.3)

Let Ricp denote the Ricci tensor at p ∈ M and |Ric|(p) denote its magnitude,
i.e.

|Ric|(p) :=< Ricp, Ricp >
1
2

Ultimately, our goal is to find an integral bound for |Ric| in the manifold M .
When we apply (3) we will use powers of the following function, which evaluates the
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magnitude of the Ricci curvature at points along a geodesic in the direction of the
geodesic (compare with the integrand of Lemma (2.1.2)): for u = (p, v) ∈ SM , let

R(u) := |Ric(v, v)|

We clarify that R is a function defined on the unit tangent bundle SM , and does not
denote, as R often does, the scalar curvature on M . Observe also that this function
extends naturally to a homogeneous function of degree zero (i.e. constant on rays)
over TM that we also denote R.

For every p ∈ M , let vp ∈ SpM be an eigenvector corresponding to the largest
(in absolute value) eigenvalue of Ricp. Keep in mind the relation

|Ricp(vp, vp)| ≥
1

n
|Ric|(p)

Now let µ > 0 be a small constant whose exact value will be determined later. let

Sp,µ := {v ∈ SpM ||g(v, vp)| > µ}

which we think of as the set of those unit vectors who point ”roughly” in the same
direction as vp, i.e. it can easily be shown that for v ∈ Sp,µ

|Ricp(v, v)| ≥ µ2

n
|Ric|(p) (2.2.4)

It follows from finite dimensional analysis that for all p ∈ M we can control the
measure of the complement of Sp,µ in SpM

dpu(SpM\Sp,µ) ≤ Cµ (2.2.5)

for some constant C depending only on the dimension.
Finally, let Sµ be the union of Sp,µ over all p ∈M . Sµ is a particular set of based

vectors in SM that, up to a multiplicative constant that depends only on µ and the
dimension, realize the magnitude of Ric at the corresponding base point.

With the notation clarified, we now state two lemmas. They provide the control
over volume that we need to pass between integrals over open collections of geodesics
in TM and open balls in M .

The idea of Lemma (2.2.1) is that many minimizing geodesics emanating from
points within B(p0, 5) should indicate that the ball has sufficient volume.

The idea of Lemma (2.2.2) is slightly subtler. It says that for every point p ∈
B(p0, 2) and every time 1 < t < 2, there are sufficiently many minimizing geodesics
passing through p in a direction where |Ricp(·, ·)| is comparable to |Ric|p in the sense
of (2.2.4). This means that we can choose an open collection of geodesics so that,
along each geodesic, the integral in Lemma (2.1.2)

ˆ l

0

|Ricγ(t)(γ
′(t), γ′(t))|qdt

is comparable to ˆ l

0

|Ric|q(γ(t))dt
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We save their proofs for after the proof of Theorem (2.1.1). It may be useful
throughout to keep in mind that, by the Bishop Gromov volume comparison [3 ch.
9, lemma 36], for any r1, r2 > 0, a term C1V ol(B(p0, r1) appearing in an inequality
can always be replaced by a term C2V ol(B(p0, r2)) for suitable C2 depending on the
ratio r1/r2. In particular it is more or less inconsequential that the radii in lemmas
(2.2.1) and (2.2.2) are different, so long as their ratio is bounded away from zero
and infinity.

Lemma 2.2.1. Let (Mn, g) be a Riemannian manifold. Assume p0 ∈ M is given.
Then

V ol(W1(p0)) ≤ C(n)V ol(B(p0, 5))2

for some C(n) depending only on the dimension.

Lemma 2.2.2. Let (Mn, g) be a Riemannian manifold. Assume p0 ∈ M is given
and that the diameter diam(M, g) of M satisfies diam(M, g) ≥ 6. Then there exists
a choice of µ such that for all p ∈ B(p0, 1) and all 1 < t < 2,

dpu
(
φt
(
Wt(p0)

)
∩ Sp,µ

)
> c1V ol(B(p0, 1))

where
µ = c2vol(B(p0, 1))

for c1, c2 depending only on the dimension.

2.3 Proof of Theorem (2.1.1) assuming lemmas (2.1.2),

(2.2.1), (2.2.2)

Proof. To begin the proof, we first argue why we can assume diam(M, g) ≥ 6.
Assume R := 6

diam(M,g)
> 1. Define the rescaled manifold (M, gR), where gR(·, ·) :=

R2g(·, ·). Let RicR, BR(p0, r) and dRp denote the Ricci curvature, r-ball and volume
form respectively, each with respect to gR. Note that, because R > 1, we preserve
the condition Ric ≥ −1 for the rescaled manifold. Because of the way the Ricci
curvature and the volume form scale with respect to a scaling of the metric, we have
the following:

||Ric||
1
2
−ε

L1/2−ε(B(p0,1))
= R−n+1−2ε||RicR||

1
2
−ε

L1/2−ε(BR(p0,R))

≤ R−n+1−2ε||RicR||
1
2
−ε

L1/2−ε(BR(p0,6))

Where the last inequality follows because the diameter of the rescaled manifold is 6.
Now, we can cover BR(p0, 6) with K-many balls BR(pi, 1), where K only depends
on the dimension and a lower bound on the Ricci curvature, and so assuming we
have proven the theorem for the case diam(M, g) ≥ 6, and using the Bishop-Gromov
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volume comparison, it follows that

||Ric||
1
2
−ε

L1/2−ε(B(p0,1))
≤ R−n+1−2ε ·

∑
||RicR||

1
2
−ε

L1/2−ε(BR(pi,1))

≤ R−n+1−2ε ·KC(n) · V olR(BR(pi, 1))2ε

≤ R−n+1−2ε · C ′(n) · V olR(BR(p0, 1))2ε

≤ R−n+1−2ε · C ′′(n) · V olR(BR(p0, R))2ε

= R−n+1−2ε · C ′′(n) ·R2εnV ol(B(p0, 1))2ε

≤ C ′′(n)V ol(B(p0, 1))2ε

where the last line follows because R > 1, n ≥ 2 and ε < 1/2. Now, with the
assumption that the diameter of M satisfies diam(M, g) ≥ 6, we assume lemmas
(2.1.2), (2.2.1), and (2.2.2) hold. Firstly, for 1 < t < 2 we have

ˆ
B(p0,3)

ˆ
Wt,p

R(φt(u))
1
2
−εdpu dp =

ˆ
Wt

R(φt(u))
1
2
−εdu

=

ˆ
φt(Wt)

R(u)
1
2
−εdu

≥
ˆ
φt(Wt)

⋂
Sµ

R(u)
1
2
−εdu

=

ˆ
M

ˆ
φt(Wt)∩Sp,µ

R(p, v)
1
2
−εdpu dp

≥
ˆ
B(p0,1)

ˆ
φt(Wt)∩Sp,µ

R(p, v)
1
2
−εdpu dp

≥
ˆ
B(p0,1)

ˆ
φt(Wt)∩Sp,µ

(
µ2

n
|Ric|(p))

1
2
−εdpu dp

≥
ˆ
B(p0,1)

c1V ol(B(p0, 1))(
µ2

n
)
1
2
−ε(|Ric|(p))

1
2
−εdp

≥ c1V ol(B(p0, 1))(
µ2

n
)
1
2
−ε||Ric||

1
2
−ε

L1/2−ε(B(p0,1))

≥ cV ol(B(p0, 1))2−2ε||Ric||
1
2
−ε

L1/2−ε(B(p0,1))
(2.3.1)

where we have used µ as in Lemma (2.2.2).
Because this holds for all 1 < t < 2, we similarly obtain

ˆ 2

1

ˆ
B(p0,3)

ˆ
Wt,p

R(φt(u))
1
2
−εdpu dt dp ≥

ˆ 2

1

cV ol(B(p0, 1))2−2ε||Ric||
1
2
−ε

L1/2−ε(B(p0,1))
dt

(2.3.2)

= cV ol(B(p0, 1))2−2ε||Ric||
1
2
−ε

L1/2−ε(B(p0,1))

We obtain an upper bound for the term on the left as follows. By Fubini’s
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theorem, lemmas (2.1.2) and (2.2.1) and the assumption that Ric ≥ −1 on B(p0, 5),

ˆ 2

1

ˆ
B(p0,3)

ˆ
Wt,p

R(φt(u))
1
2
−εdpu dt dp =

ˆ
B(p0,3)

ˆ
W1,p

ˆ β2(u)

1

R(φt(u))
1
2
−εdt dpu dp

≤
ˆ
B(p0,3)

ˆ
W1,p

C(q) dpu dp

≤ C(q)V ol(W1)

≤ C(q)V ol(B(p0, 5))2

≤ C(q, n)V ol(B(p0, 1))2

Where q = 1
2
− ε. It finally follows that

cV ol(B(p0, 1))2−2ε||Ric||
1
2
−ε

L1/2−ε(B(p0,1))
≤ C(q, n)V ol(B(p0, 1))2

which, after redefining C(q, n), is equivalent to theorem (2.1.1).

31



2.4 Proofs of Lemmas (2.1.2), (2.2.1), (2.2.2)

Proof of Lemma (2.1.2). Along a minimising geodesic γ parametrized by arc length,
choose E1(t), ..., En−1(t) to be orthonormal parallel vector fields along γ that are per-
pendicular to γ′. If h is a nonnegative continuously differentiable function vanishing
at 0 and l, by the second variation formula,

0 ≤
ˆ l

0

(h′(t))2dt−
ˆ l

0

(h2sec(γ′(t), Ei(t)))dt

and by approximation the same holds if h is only continuous and piece-wise differ-
entiable. Summing over i = 1, ..., n− 1 givesˆ l

0

h(t)2Ric(γ′(t), γ′(t))dt ≤ (n− 1)

ˆ l

0

(h′(t))2dt (2.4.1)

Let Ric+(·, ·) := max{Ric(·, ·), 0} and Ric−(·, ·) := −min{Ric(·, ·), 0}. By assump-
tion Ric− ≤ 1. Therefore, we only need to show

ˆ l

0

Ric+(γ′(t), γ′(t))
1
2
−εdt ≤ C(ε)

to complete the proof. It follows from (2.4.1) that

0 ≤
ˆ l

0

h(t)2Ric+(γ′(t), γ′(t))dt

≤ (n− 1)

ˆ l

0

(h′(t))2dt+

ˆ l

0

Ric−(γ′(t), γ′(t))dt

≤ (n− 1)

ˆ l

0

(h′(t))2dt+ 2 (2.4.2)

since l ≤ 2. Define hl(t) := t on [0, l/2], and hl(t) := (l − t) on [l/2, l]. For fixed
a > 0, using (2.4.2) and the construction of hl

ˆ l

0

hl(t)
1+aRic+(γ′(t), γ′(t))dt =

ˆ l

0

(
hl(t)

1+a
2

)2

Ric+(γ′(t), γ′(t))dt

≤ (n− 1)

ˆ l

0

(
(
1 + a

2
)h
−1+a

2
l h′l(t)

)2

dt+ 2

= (n− 1)

ˆ l/2

0

(
(
1 + a

2
)t
−1+a

2

)2

dt

+ (n− 1)

ˆ l

l/2

(
(
1 + a

2
)(
l

2
− t)

−1+a
2

)2

dt+ 2

= 2(n− 1)
(1 + a)2

4

ˆ l/2

0

t−1+adt+ 2

=
(n− 1)(1 + a)2

2a

( l
2

)a
+ 2
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Let 0 < ε < 1/2 be given. Using Hölder’s inequality with exponents p = 2
1−2ε

and q = 2
1+2ε

gives

ˆ l

0

Ric+(γ′(t), γ′(t))
1
2
−ε =

ˆ l

0

hl(t)
1−ε
2

hl(t)
1−ε
2

Ric+(γ′(t), γ′(t))
1
2
−εdt

≤

(ˆ l

0

hl(t)
1−ε
1−2εRic+(γ′(t), γ′(t))dt

)1/p(ˆ l

0

hl(t)
ε−1
1+2εdt

)1/q

≤

(
(n− 1)(1 + a)2

2a

( l
2

)a
+ 2

)1/p( ˆ l

0

hl(t)
ε−1
1+2εdt

)1/q

= k1(ε)
(1− 2ε

ε

) 1
p
(1− 2ε

ε

) 1
q

= k2(ε)
(1

ε

)
= C(ε)

Where a satisfies 1 + a = 1−ε
1−2ε

and ki(ε) are functions bounded away from both zero

and infinity. Noting that, if we take q = 1
2
− ε, C(ε) can be re-expressed as C(q),

the result follows.

Fix u = (p, v) ∈ SM . For u ∈ SM , let β(u) denote the distance to the cut locus
in the direction of u, i.e.

β(u) := sup{t > 0|tv ∈ seg(p)}

For k > 0 let βk(u) := min{β(u), k}. u determines a minimizing geodesic γv :
[0, l] → M parameterized by unit speed for some l > 0. In exponential coordinates
based at p = γv(0), the volume form can be expressed as

f(t, v)dt ∧ dv

where t represents the radial coordinate and v ∈ SM determines a direction in Sn−1.
Restricting to our fixed v, this determines a function fv(t) for 0 < t < l, which we
think of as the magnitude of the volume form along γ starting from p. By volume
comparison and our curvature assumption, this function cannot be larger than the
corresponding function for a manifold of constant curvature equal to -1. It can,
however, be much smaller.
If we consider instead a new starting point along γv, say γv(s) for some s < l, we
can let v̄ := γ′v(s) and consider the magnitude of the volume form in exponential
coordinates along γv̄ based at γv̄(0) = γv(s). This defines a new function fv̄(t) for
0 < t < l − s in the same fashion as above. In this way, we can examine the
magnitude of the volume form along any minimizing geodesic starting from any
base point along that geodesic. Accordingly, we define F : SM × R+ → R so that
it satisfies, for a given u = (p, v) ∈ SM and t ∈ (0, β(u))

F (u, t) := fv(t)
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We will use the following, lemma 9 from [10], which says that on average, the
function determined in this way cannot be too small.

Lemma 2.4.1. Let (Mn, g) be a complete Riemannian manifold and u ∈ SM . Then
for every l ≤ β(u) (the distance to the cut locus in the direction of u):ˆ l

0

ˆ l−t

0

F (φt(u), s)ds dt ≥ C(n)
ln+1

πn+1

where F (u, s) restricted to SpM ×R+ is the magnitude of the volume form in expo-
nential coordinates on M , i.e. it satisfiesˆ

SpM

ˆ β(u)

0

F (u, s)ds dv = V ol(M) (2.4.3)

Proof of Lemma (2.2.1). The following inequality follows directly from the lemma,ˆ 1

0

ˆ
B(p0,3)

ˆ
W1,p

ˆ 1−t

0

F (φt(u), s)ds dpu dp dt

=

ˆ
B(p0,3)

ˆ
W1,p

ˆ 1

0

ˆ 1−t

0

F (φt(u), s)ds dt dpu dp

≥
ˆ
B(p0,3)

ˆ
W1,p

c dpu dp

= cV ol(W1)

We also have ˆ
B(p0,4)

ˆ
SpM

ˆ β1(u)

0

F (u, s)ds dpu dp ≤ V ol(B(p0, 5)2

which is clear from the definition of F and β1, and from (2.4.3). It then follows thatˆ 1

0

ˆ
B(p0,3)

ˆ
W1,p

ˆ 1−t

0

F (φt(u), s)ds dpu dp dt

=

ˆ 1

0

ˆ
W1

ˆ 1−t

0

F (φt(u), s)ds du dt

=

ˆ 1

0

ˆ
φt(W1)

ˆ 1−t

0

F (u, s)ds du dt

≤
ˆ 1

0

ˆ
B(p0,4)

ˆ
SpM

ˆ β1(u)

0

F (u, s)ds dpu dp dt

≤ CV ol(B(p0, 5))2

The second to last line follows since all elements u = (p, up) ∈ W1 correspond to
vectors v of magnitude |v| = 1 based at some p ∈ B(p0, 3). Therefore, the image
under the geodesic flow at time t of such an element is (q, uq) for some uq with
|uq| = 1 based at q for some q ∈ B(p0, 4) if t < 1.

The two inequalities give the desired result.
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Proof of Lemma (2.2.2). Notice that for all p ∈ B(p0, 1) and v ∈ Wt,p, for 1 < t < 2,
(p,−v) ∈ φt(Wt) ∩ SpM , which is clear by reparameterizing the relevant geodesics
to go in the opposite direction. Therefore for any δ > 0,

dpu(Wt,p) ≥ 2δ

implies
dpu(φt(Wt) ∩ SpM) ≥ 2δ

Therefore, if we let µ := δ
C

for C satisfying (2.2.5), then

dpu(φt(Wt) ∩ Sp,µ) = dpu(φt(Wt) ∩ SpM)− dpu(φt(Wt) ∩ (SpM\Sp,µ)) ≥ 2δ − δ ≥ δ

Therefore we only need to show

dpu(Wt,p) ≥ δ

with δ on the order of V ol(B(p0, 1)) to complete the proof. Furthermore, observe
that if we show the result for t = 2, it immediately follows for t < 2.
For any p ∈ B(p0, 4)

V ol(B(p, 8)) ≥ vol(B(p0, 4))

and therefore, by Bishop-Gromov volume comparison,

V ol(B(p, 1)) ≥ C(n)vol(B(p0, 1))

By the diameter assumption on M , for any p ∈ B(p0, 1) there exists q ∈ B(p0, 4)
such that d(p, q) = 3. We must similarly have

V ol(B(q, 1)) ≥ C(n)vol(B(p0, 1))

But, once more using Bishop-Gromov and letting V n
−1 denote the volume of the

sphere of radius 1 in n-dimensional hyperbolic space, this implies

V ol(B(q, 1)) ≤
ˆ β3(u)

1

ˆ
W2,p

F (u, s)dpu ds

≤
ˆ 3

1

ˆ
W2,p

F (u, s)dpu ds

≤ 2V n
−1vol(W2,p)

implying
dpu)(W2,p) ≥ CV ol(B(p0, 1))

where F is defined in the proof of Lemma (2.2.1).
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Chapter 3

Volume on Surfaces of Bounded
Genus

3.1 Introduction

We first restate Theorem (1.1.15) in slightly more detail.

Theorem 3.1.1. For r > 0, consider all metric balls of radius r in all complete n-
dimensional Riemannian manifolds with Ricci curvature greater or equal to −(n−1).
Equip this space with the Gromov-Hausdorff topology. Then the volume function is
continuous, i.e. for any ε > 0 there exists δ(ε) > 0 such that if B(p1, r) ⊂ M1 and
B(p2, r) ⊂M2 are as described and satisfy

dGH(B(p1, r), B(p2, r)) < ε

then
|V ol(B(p1, r))− V ol(B(p2, r))| < δ(ε).

Recalling our discussion in chapter 1, we restate Theorem (1.1.18), the main
result of this chapter

Theorem 3.1.2. For r > 0, consider all metric balls of radius r in all complete
2-dimensional Riemannian manifolds with Euler characteristic uniformly bounded.
Equip this space with the Gromov-Hausdorff topology. Then the volume function
is lower semi-continuous. i.e. for any ε > 0 there exists δ(ε) > 0 such that if
B(p, r) ⊂M and B(pi, r) ⊂Mi are as described and satisfy

lim
ı→∞

dGH(B(pi, r), B(p, r)) = 0

then
lim
ı→∞

V ol(B(pi, r)) ≥ V ol(B(p, r)).

It is easy to see that, without a curvature assumption, upper semi-continuity
cannot be obtained even if all spaces involved are simply connected. Furthermore,
the result does not hold in higher dimensions, as can be observed by decomposing S3
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into two handlebodies M1,M2 with shared boundary one of the surfaces T δε defined
in Example (1.1.16) and writing

S3 ∼= M1#(T δε × [a, b])#M2,

where # denotes the gluing of each pair of surfaces along their boundary. π1(S3)
is trivial, but the lack of lower semicontinuity captured in Example (1.1.16) clearly
holds on T δε × [a, b] as well, at least provided a, b are sufficiently large.

3.2 Preliminaries

A geodesic γ into a Riemannian manifold M will always be parametrized by the
interval [0, 1], i.e. we don’t allow for more general domains [a, b]. Therefore when
we talk about a broken geodesic γ1 · ... · γn, where it is assumed that γi+1(0) = γi(1),
it is understood that such a composition has been reparametrized to satisfy this
condition. Furthermore, for t1, t2 ∈ [0, 1], γ|[t1,t2] defined as the restriction to [t1, t2]
of γ, has also been reparametrized in this way.
For a curve γ and a ∈ Z, aγ will mean γ composed with itself a times, with negative
numbers reversing the direction of γ. We say a finite sequence of geodesics γ1, ..., γn :
[0, 1] → M connects two points p and q, or p and q are connected by γ1, ..., γn, if
γ1(0) = p, γn(1) = q. A geodesic loop based at p ∈ M means a geodesic curve
γ : [0, 1]→M with γ(0) = γ(1) = p.

[γ] will represent the homotopy class in π1(M, p) of a geodesic loop γ : [0, 1]→M
based at p.
For a metric space M and a point p ∈ M , BM(p, r) and B̄M(p, r) will denote the
open and closed balls, respectively, of radius r at p.

We refer to chapter 1 for definitions of the Hausdorff and Gromov-Hausdorff
distances, dH , dGH , between sets induced by a metric d.

We restate Theorem (3.1.2) in the alternate form in which we prove it:

Theorem 3.2.1. Let (Mi, gi) be a sequence of complete 2-dimensional Riemannian
manifolds of Euler characteristic χi ≤ h < ∞. Consider corresponding 1-balls
BMi

(pi, 1) centered at points pi ∈ Mi and let B(0, 1) denote the unit ball at 0 ∈ R2.
If

lim
i→∞

dGH(BMi
(pi, 1), B(0, 1)) = 0 (3.2.1)

then

lim inf
i→∞

VoliBMi
(pi, 1) ≥ VolB(0, 1) (3.2.2)

where Voli, Vol denote the volume of a subset on the corresponding manifolds.

We state some results relating to the Gromov-Hausdorff distance, Chapter 10
section 1.1 of [24]:
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Lemma 3.2.2. If compact metric spaces (M1, d1), (M2, d2) satisfy

dGH(M1,M2) ≤ ε

then there exist finite subsets {x1, ..., xn} ⊂M1 and {y1, ..., yn} ⊂M2 such that

1. ∀x ∈M1, ∃k such that d1(x, xk) < ε

2. ∀y ∈M2, ∃k such that d2(y, yk) < ε

3. |di(xj, xk)− d(yj, yk)| < ε for all 1 ≤ j, k ≤ n

Furthermore if 1, 2, and 3 hold, then

dGH(M1,M2) ≤ 3ε.

I.e. we need only consider how the metrics compare on finite, suitably dense
subsets of the relevant metric spaces to understand the Gromov-Hausdorff metric.
We refer to subsets satisfying the property of 1 or 2 in the lemma above as being
ε-dense in the corresponding metric space.

From Lemma (3.2.2), we have the following characterization of compact metric
spaces (Mi, di) converging in the Gromov-Hausdorff metric to (M,d), which is our
main tool in much of what follows

Lemma 3.2.3. If compact metric spaces (Mi, di), (M,d) satisfy

lim
i→∞

dGH(Mi,M) = 0

then there exists a metric d̄ on
⊔
i∈N
Mi

⊔
M , restricting to the appropriate metric on

each subspace, such that d̄H(Mi,M) → 0. Furthermore, for any {x1, ..., xn} ⊂ M
there exist subsets {xi1, ..., xin} ⊂Mi such that for all 1 ≤ j, k ≤ n,

d̄(xik, xk) < i−1

and

|d̄(xij, x
i
k)− d̄(xj, xk)| < i−1

and lastly, if for some ε > 0 {x1, ..., xn} is ε-dense in M , the sets {xi1, ..., xin} can be
chosen so that, for all but finitely many i, they are ε-dense in Mi.

From now on, we will only be concerned with the metric space

X :=
⊔
i∈N

BMi
(pi, 1)

⊔
B(0, 1)

where BMi
(pi, 1) are as in Theorem (3.2.1), and the metric d̄ as in Lemma (3.2.3).

We will write BMi
to denote BMi

(pi, 1). There is an obvious correspondence between
p ∈ (BMi

, di) ⊂ (Mi, di) and p ∈ (BMi
, d̄) ⊂ (X, d̄), and because the metric we use on
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X restricts to the corresponding metric on each BMi
, the distinction is insignificant

in what follows.

As our first step, we show that the minimizing geodesics in BMi
(pi, 1) for large i

are L∞ close in d̄ to geodesics in B(0, 1) (each considered as subsets of X):

Proposition 3.2.4. Let X :=
⊔
i∈N
BMi

(pi, 1)
⊔
B(0, 1) and d̄ the metric on X guar-

anteed by Lemma (3.2.3). For each i, assume γi : [0, 1] → BMi
is a minimiz-

ing geodesic with γi(0) = pi, γi(1) = qi for some qi ∈ BMi
. Assume further that

lim
i→∞

l(γi) = λ > 0. Then there exists a subsequence γik and q ∈ B(0, 1) such that

sup
t∈[0,1]

d̄(γik(t), γ(t)) →
k→∞

0, where γ : [0, 1] → R2 is the unique minimizing geodesic

connecting 0 and q in B(0, 1).

Proof. We first show that lim
i→∞

d̄(pi, 0) = 0 (where the first 0 ∈ B(0, 1) ⊂ R2). If this

were not true, the sequence pi would contain a subsequence satisfying d̄(pi, x)→ 0 for
some x ∈ B(0, 1) ⊂ X, x 6= 0. Choose a sequence p′i ∈ BMi

converging to y ∈ B(0, 1)
with d̄(x, y) > 1. Then for large i, d̄(pi, p

′
i) > 1, which is not possible. Furthermore,

there clearly exists q ∈ B(0, 1) and a subsequence qik such that d̄(qik , q) → 0. Let
γ : [0, 1]→ R2 be the unique minimizing geodesic connecting 0 and q in B(0, 1) and
assume there exists t ∈ (0, 1) and ε > 0 such that d̄(γik(t), γ(t)) > ε for arbitrarily
large k. Since each γik is minimizing, we have d̄(pi, γik(t)) = tl(γik) → tλ = tl(γ).
But, after possibly passing to a further subsequence, we also must have d̄(γik(t), x)→
0 for some x ∈ B(0, 1), x 6= γ(t), satisfying d̄(0, x) = tl(γ). Since γ(t) uniquely
satisfies both d̄(0, γ(t)) = tλ and d̄(γ(t), q) = λ−tλ, it must be that d̄(x, q) > λ−tλ.
This implies that lim inf

k→∞
l(γik) > λ which is a contradiction.

3.3 The Function φ

Next, we construct a map φ : X → R2 that we will use to map certain subsets
of BMi

(pi, 1) into B(0, 1), and use the images of these subsets to determine lower
bounds on their volumes. We collect the properties of φ in the following lemma

Lemma 3.3.1. There exists φ : X → R2 such that

1. when restricted to BMi
(pi, 1) or B(0, 1), the map is

√
2-Lipschitz and volume

non-increasing

2. for some small ε > 0 and x ∈ B(0, ε), |φ(x)− x| < Cε2

3. for any δ > 0 there exists iδ such that d̄(φ(x), φ(x′)) ≤
√

2d̄(x, x′) + δ for any
x, x′ ∈

⊔
i>iδ

BMi
(pi, 1)

⊔
B(0, 1),

i.e. on the tail of X, φ satisfies an almost Lipschitz condition.

Let x̂, ŷ ∈ B(0, 1) x̂ := (1, 0) and ŷ := (0, 1) and choose x̂i, ŷi ∈ BMi
such that

lim
i→∞

d̄(x̂i, x̂) = 0, lim
i→∞

d̄(ŷi, ŷ) = 0
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and define for x ∈ BMi

φ(x) := (d̃(pi, x̂
i)− d̃(x, x̂i), d̃(pi, ŷ

i)− d̃(x, ŷi))

φ is 1-Lipschitz in each coordinate, and so the
√

2 bound follows. Where the distance
functions in the definition of φ are smooth, we can think of their differentials as
1-forms on vectors in the tangent space of BMi

, each of norm 1, and by direct
calculation the jacobian of φ is their wedge product, which therefore has norm less
than or equal to 1. Because the union of the sets where these functions are not
smooth is the union of their cut loci, which has measure zero, we can use their
differentials to integrate the volume form almost everywhere, and we therefore have

Vol(φ(U)) ≤ Vol(U)

whenever U ⊂ BMi
for some i. The differential of φ at 0 ∈ B(0, 1) is the identity.

This implies that there exists C > 0 such that for small ε > 0 and x ∈ B(0, ε),

|φ(x)− x| < Cε2. (3.3.1)

Furthermore, assume {x1, ..., xn} is δ-dense in B(0, 1) and {xi1, ..., xin} ⊂ BMi
(pi, 1)

are as in Lemma (3.2.3). We can assume

x1 = x̂, x2 = ŷ

and
xi1 = x̂i, xi2 = ŷi

Finally, because the pairwise distances between points d̄(xij, x
i
k) for 1 ≤ j, k ≤ n

converge to d̄(xj, xk) as i → ∞, it follows that φ(xik) → φ(xk). Since for large
enough i, the sets {xi1, ..., xin} are δ-dense and φ is Lipschitz on any BMi

(0, 1) and
B(0, 1), we reach that for any δ > 0 there exists iδ such that

d̄(φ(x), φ(x′)) ≤
√

2d̄(x, x′) + δ (3.3.2)

3.4 Closures of Surfaces with boundaries

In examining the sets BMi
(Pi, ε) ⊂Mi., observe that there is no general relationship

between χ(Mi) and χ(BMi
(pi, ε)), because BMi

(pi, ε) may be incomplete, with its
boundary containing any number of components. To control this, we introduce, for
an orientable surface S, the set Sclosed, denoting the closed surface obtained by gluing
a disc at each boundary component of S. It is a classical fact that this construction
is unique up to homotopy. Observe also that the Euler characteristic and genus of
Sclosed never exceed those of S.

We require some basic facts pertaining to Sclosed, that we compile into a lemma.

Lemma 3.4.1. For S and Sclosed as above,

1. If φ : S → R2\B(0, r) is continuously differentiable, there exists an extension
φ′ : Sclosed → R2\B(0, r) that is continuously differentiable.
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2. If (S, g) and (Sclosed, g
′) are such that g′ restricts to g on S, then dg′(p, x) ≥

min{d(p, y) | y ∈ ∂S} for any p ∈ S and x ∈ Sclosed\S.

Proof. 1 follows from the fact that Sclosed\S is a union of discs whose boundaries
are mapped to

R2\B(0, r)

by φ. Because R2\B(0, r) is simple connected, 1 follows immediately.
2 follows from the fact that any curve connecting p and x must intersect ∂S.

3.5 Proof of Theorem (3.2.1)

The longest portion of our proof deals with the following proposition, stating the
existence of certain collections of geodesic loops in a Riemannian manifold having
useful properties, whose proof we postpone until the following section. In what
follows, an element γ of a subset G of geodesics is essential if it is not homotopic
to a point and nonperipheral if it is not homotopic to a cusp. Thus, for an essen-
tial, nonperipheral curve γ, each component of M\γ([0, 1]) is neither a disc nor an
annulus.

Proposition 3.5.1. Let (M, g, p) be an oriented, complete, pointed 2-dimensional
Riemannian manifold of Euler characteristic χ, BM(p, r) the open ball of radius
0 < r < ∞ at p, and π1(BM(p, r)closed, p) the fundamental group of BM(p, r)closed,
considered as its own topological space. Then there exists a (possibly empty) collec-
tion of geodesic loops Er ⊂ {γ : [0, 1] → BM(p, r)| γ(0) = γ(1) = p} satisfying the
following:

1. geodesics in Er are essential, minimizing on each half of [0, 1], pairwise non-
homotopic and intersecting only at p

2. The group elements [γ] ∈ π1(BM(p, r)closed, p) corresponding to γ ∈ Er gener-
ate π1(BM(p, r)closed, p)

3. |Er| < Zχ for some Zχ which depends only on χ

Note that Er is empty exactly when π1(BM(p, r)closed, p) is trivial. The following
proposition follows from Proposition (3.5.1), and is the version we use in the proof
of Theorem (1.1.18):

Proposition 3.5.2. In the context of Theorem (3.2.1), for any 0 < r < 1 there exists
(possibly empty) collections of geodesic loops Eε

i ⊂ {γ : [0, 1] → BMi
(pi, ε)| γ(0) =

γ(1) = pi} such that, for each i, the following holds:

1. geodesics in Eε
i are essential, minimizing on each half of [0, 1], pairwise non-

homotopic and intersecting only at pi
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2. The group elements [γ] ∈ π(BMi
(pi, ε)closed, pi) corresponding to γ ∈ Eε

i gen-
erate π(BMi

(pi, ε)closed, pi)

3. |Eε
i | < Zχ for some Zχ which depends only on h.

Assuming the existence of the sets Eε
i in Proposition (3.5.2), we continue by

showing the following

Proposition 3.5.3. In the context of Theorem (3.2.1), for all sufficiently small
ε > 0, Eε

i ⊂ {γ : [0, 1] → BMi
(pi, ε)| γ(0) = γ(1) = pi} as in Proposition (3.5.1),

there exists a subsequence, which we will also call Eε
i , such that we can order the

elements of Eε
i as {γi1, ..., γini} for each i and the following 4 properties hold:

1. ni = n̄ for some n̄ and all i

2. lim
i→∞

l(γik) = 2λk ≥ 0 for all 1 ≤ k ≤ n̄

3. for all 1 ≤ k ≤ n̄ such that λk > 0, there exists qk ∈ B(0, 1) and geodesics
γk : [0, 1] → B(0, 1) connecting 0 and qk such that sup

t∈[0, 1
2

]

d̄(γik(t), γk(2t)) → 0

and sup
t∈[ 1

2
,1]

d̄(γik(t), γk(2− 2t))→ 0

4. For all δ > 0 sufficiently small, there exists iδ such that for any γik with i > iδ,
φ◦γik has winding number 0 around any x ∈ B(0, 1) with inf

t∈[0,1]
|φ◦γik(t)−x| ≥ δ

Proof. Order the elements of Eε
i as {γi1, ..., γini} (where for all i, ni ≤ Zχ). We can

iteratively take sub-sequences in i until the first 3 properties hold. That we ulti-
mately can achieve properties 1 and 2 is obvious, and given 1 and 2, 3 follows from
Proposition (3.2.4) and the fact that geodesics in Eε

i for any i are minimizing on
[0, 1/2] and [1/2, 1].

Now, for δ > 0, because of properties 2 and 3 in Lemma (3.3.1) of φ as well
as 3 above, it follows that there is an iδ such that for i > iδ, φ ◦ γik([0, 1]) ⊂
{x ∈ R2|d(x, φ(γk)) < δ}. The δ-neighborhoods of γk([0, 1]) are of course simply
connected, and so the curves φ ◦ γik can each be homotoped to a point, with these
homotopies occuring completely within the sets {x ∈ R2|d(x, φ(γk)) < δ}. This
implies that there exists homotopies F i : [0, 1] × [0, 1] → R2 such that F i(0, t) =
φ(γik(t)) and F i(1, t) ≡ 0 and F i satisfies

F i([0, 1]× [0, 1]) ⊂ {x ∈ R2 | d(x, φ(γk)) < δ}

In particular, if x ∈ {x ∈ R2|d(x, φ(γk)) < δ}c, for i > iδ the winding number of any
curve φ ◦ γik about x is 0.

Property 4 of Proposition (3.5.3) immediately implies that, for fixed i > iδ and
any composition α1γ

i
k1
· ... · αjγikj , there is a homotopy F : [0, 1] × [0, 1] → R2 such

that F (0, t) = φ(α1γ
i
k1
· ... · αjγikj(t)) and F (1, t) ≡ 0 and F satisfies
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F ([0, 1]× [0, 1]) ⊂ S :=
⋃
k

{x ∈ R2|d(x, φ(γk)) < δ}

and therefore that the winding number of any such composition about x is zero for
all x ∈ Sc.

We now prove Theorem (3.2.1), under the assumption of proposition (3.5.1):

Proof of Theorem (3.2.1). We show that, for any subsequence of the balls BMi
, there

exists a further subsequence satisfying

lim
i→∞

VoliBMi
(pi, 1) ≥ VolB(0, 1),

which implies the theorem.
Choose ε > 0 satisfying Proposition (3.5.3). Fix 0 < ε1 < 1 and choose m large

enough so that the points {x1, ..., xn} ⊂ B(0, 1) with coordinates integer multiples
of 1/m are ε2-dense in B(0, 1). Define {xi1, ..., xin} ⊂ BMi

(pi, 1) as in Lemma (3.2.3).
For any ε2 > 2ε2, there exists {xn1 , ..., xnk} ⊂ {x1, ..., xn} such that each of the
following hold:

1. each element xni is within ε2 of the circle {|x| = ε1}

2. no two distinct elements xni and xnj lie on the same ray through the origin

3. |xni − xni−1
| < ε2

We can furthermore assume the points are arranged in counterclockwise fashion.
Therefore, we can connect xni to xni+1

with a minimizing geodesic, so that the
composition of these geodesics forms a polygonal curve Pε1 : [0, 1] → B(0, 1) with
winding number 1 about any point in its interior. Because of property 2 of Lemma
(3.3.1) describing φ, if ε1 has been chosen sufficiently small, Pε1 defined this way does
not intersect B(0, ε1/2). We can form corresponding curves P i

ε1
: [0, 1]→ BMi

formed
from the points {xin1

, ..., xink} and minimizing geodesics connecting them. Then by
property 3 of Lemma (3.3.1), it follows, again if ε1 has been chosen sufficiently small,
that we can pick iε1 so that φ ◦ P i

ε1
also does not intersect x ∈ B(0, ε1/2) for i > iε1 .

By this fact and the closeness of P i
ε1

to Pε1 , it follows that, for i > iε1 , φ ◦ P i
ε1

winds
around any point x ∈ B(0, ε1/2) exactly once as well.

Because of the properties of the sets {xi1, ....xin} given in Lemma (3.2.3) and the
fact that Pε1([0, 1]) ⊂ B(0, ε1 +ε2), it follows that, for any ε3 > 0 and i large enough,
P i
ε1

([0, 1]) ⊂ BMi
(pi, ε1 + ε2 + ε3).

Now, let ε̄ := ε1 + ε2 + ε3. Consider the collections E ε̄
i of Proposition (3.5.2). Fix

each BMi
(p, ε̄)closed with φ′ restricting to φ such that

φ′(BMi
(p, ε̄)\BMi

(p, ε̄)closed) ⊂ B(0,
ε̄

2
)c.

Because of property 2 in Proposition (3.5.2), for each i, P i
ε1

is freely homotopic
within BMi

(pi, ε̄)closed to a curve of the form α1γ
i
k1
· ... · αjγikj , where γik, ..., γ

i
j ∈ E ε̄

i .

This induces a homotopy of φ ◦ P i
ε̄ and φ(α1γ

i
k1
· ... · αjγikj). But for i > iδ, for
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x ∈ B(0, ε̄/2) ∩ Sc we have shown that the winding number about x of these two
induced curves is different, and therefore that there exists y ∈ BMi

(pi, ε̄)closed with
φ′(y) = x. But by the choice of φ′, we must have y ∈ BMi

(pi, ε̄).
We have shown that

B(0, ε̄/2) ∩ Sc ⊂ φ(BMi
(pi, ε̄)).

Now, express

B(0, ε̄/2) = (B(0, ε̄/2) ∩ S)
⋃

(B(0, ε̄/2) ∩ Sc).

Because of property 3 in Proposition (3.5.2), S can be covered by balls of radius√
2δ with total area less than

√
2δ(l(γ1) + ... + l(γk)) ≤

√
2δ(Zχ(2ε̄)) →

δ→0
0. This

shows that

lim
i→∞

Vol(φ(BMi
(pi, ε̄))) ≥ VolB(0, ε̄/2).

But note that, by property 2 of Lemma (3.3.1), we in fact have

lim
i→∞

Vol(φ(BMi
(pi, ε̄/2 + C(ε̄/2)2))) ≥ VolB(0, ε̄/2).

Now, ε was chosen arbitrarily, and then ε2 > 2ε2 was chosen with only this depen-
dence. Furthermore, ε1 and ε3 may be chosen arbitrarily small. Ultimately we can
therefore choose each constant as small as necessary to obtain that, for small enough
ε̄ > 0,

lim
i→∞

Vol(φ(BMi
(pi, ε̄))) ≥ VolB(0, (1− ε′)ε̄) = (1− ε′)2VolB(0, ε̄)

for some ε′ > 0 which we can make arbitrarily small by choosing ε small enough.
Because Voli(BMi

(pi, ε)) ≥ Vol(φ(BMi
(pi, ε))), we have

lim
i→∞

Voli(BMi
(pi, ε)) ≥ (1− ε′)2VolB(0, ε).

Now, for any sequence p′i ∈ BMi
(pi, 1) converging with respect to d̄ to x ∈ B(0, 1),

we can argue similarly to obtain

lim
i→∞

Voli(BMi
(pi, ε(x))) ≥ (1− ε′)2VolB(x, ε(x))

for some continuous function ε : B(0, 1) → R+. Now, it is only possible that
lim
i→∞

ε(xi) = 0 if xi approach the boundary of B(0, 1). We therefore obtain,

Lemma 3.5.4. Let 0 < ε′ < 1 be given. For any 0 < δ < 1, there exists ε > 0 such
that

lim
i→∞

Voli(BMi
(pi, ε)) ≥ (1− ε′)2VolB(x, ε)

whenever pi → x ∈ B(0, 1− δ).
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Now, it follows from Lemma (3.2.3) that, if B(x1, ε), B(x2, ε) ⊂ B(0, 1 − δ) are
disjoint, and p1

i → x1, p2
i → x2, then BMi

(p1
i , ε) and BMi

(p2
i , ε) are disjoint for all

but finitely many i. Thus, if disjoint balls B(xj, ε) ⊂ B(0, 1− δ) satisfy

Vol(
⋃
j

B(xj, ε)) ≥ cVol(B(0, 1− δ)) (3.5.1)

for some c < 1 and we have sequences pji → xi, then by Lemma (3.5.4)

lim
i→∞

Voli(
⋃
j

B(xj, ε)) ≥ (1− ε′)2cVol(B(0, 1− δ)).

Since, by the Vitali covering lemma, we can achieve (3.5.1) for any c < 1, and since
ε′ can be chosen arbitrarily small, it follows that

lim
i→∞

Voli(BMi
(pi, 1)) ≥ VolB(0, 1− δ).

Taking δ → 0 finishes the proof.

3.6 Existence of the sets Er

First, assume M is bounded, so that there is r large enough that BM(p, r) = M ,
and so that every essential curve is automatically nonperipheral. Let (M̃, π) be the
universal cover of M with projection map π : M̃ → M . We endow M̃ with the
pullback metric g̃ := π∗g and define

Fε := {x ∈ M̃ | inf
p̃∈π−1(p)

d̃(x, p̃) ≤ ε}.

Note that for p̃1, p̃2 ∈ π−1(p), BM̃(p̃1, ε) ∩BM̃(p̃2, ε) 6= ø if and only if p̃1 = p̃2 or
there exists a minimizing geodesic γ̃ in M̃ connecting p̃1 to p̃2 with l(γ̃) ≤ 2ε . Say
p̃ ∼ε q̃ if there exists a finite sequence p̃1, ..., p̃n such that BM̃(p̃i+1, ε)∩BM̃(p̃i, ε) 6= ø,
and p̃1 = p̃, p̃n = q̃. This is clearly an equivalence relation and is equivalent to the
condition that p̃ and q̃ can be connected by a finite sequence of geodesics each of
length less than or equal to 2ε each starting and ending on elements of π−1(p). It is
also equivalent to the condition that p̃ and q̃ are in the same component of Fε:

Lemma 3.6.1. For p̃, q̃ ∈ π−1(p), p̃ ∼ε q̃ if and only if they are in the same
component of Fε.

Proof. Clearly, if p̃ ∼ε q̃ then p̃ and q̃ are in the same component of Fε. For the
opposite direction, let Fε(p̃) denote the subset of Fε determined by the equivalence
∼ε p̃, i.e.

Fε := {x ∈ M̃ | inf
p̃′∼εp̃

d̃(x, p̃′) ≤ ε},

and define Fε(q̃) similarly. If Fε(p̃) ∩ Fε(q̃) 6= ø, there exists x ∈ Fε(p̃) ∩ Fε(q̃),
p̃′ ∈ Fε(p̃) and q̃′ ∈ Fε(q̃) such that

d̃(x, p̃), d̃(x, q̃) < ε.
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Thus, p̃′ ∼ε q̃′ and so p̃ ∼ε q̃. Therefore, if p̃ �ε q̃, then these two points are elements
of disjoint components of Fε.

Now let
ε0 := inf{ε ≥ 0 | Fε is connected}.

Proposition 3.6.2. Fε0 is connected, so that for any p̃, q̃ ∈ π−1(p), p̃ ∼ε0 q̃, and
ε0 ≤ diam(M).

Proof. inj(p) > 0 implies that the distance function d̃(·, ·) on M̃ × M̃ restricted to
π−1(p)× π−1(p) has discrete range. If this were not true, there would have to exist
p̃i, q̃i ∈ π−1(p) with εi := d̃(p̃i, q̃i) satisfying εi → ε for some finite limit. Because
any deck transformation of M̃ preserves distance, we can assume p̃i = p for all i.
Then there would exist a finite radius ball BM̃(p,R) around p̃ such that each q̃i
corresponds to a unique point of π−1(p)

⋂
BM̃(p̃, R), which contradicts that π−1(p)

is discrete. In the case of ε0 this gives us that there exists δ > 0 such that if
some geodesic γ connects two points in π−1(p) and satisfies |l(γ) − 2ε0| ≤ 2δ, then
l(γ) = 2ε0. Therefore, for any p̃, p̃′ ∈ π−1(p), if p̃ ∼(ε0+δ) p̃

′ then p̃ ∼ε0 p̃′. since Fε0+δ

is connected, this implies Fε0 is connected.
For the second part, assume ε0 > diam(M) = D and choose γ̃ connecting them.

If there exists t such that d(π(γ̃(t)), p) > D, then, choosing γ′ a minimizing geodesic
connecting p and π(γ̃(t)), the curves (γ′)−1 · γ|[0,t] and γ|[t,1] · γ′ each have shorter
length than γ, and their composition equals γ in π1(M, p). This shows that p̃ ∼ε0 q̃,
and since p̃, q̃ ∈ π−1(p) were arbitrary, this shows that ε0 is not minimal.

Proof of Proposition (3.5.1). We combine the preceding ideas to assert that there
exist minimizing geodesics connecting elements of π−1(p) which have length exactly
2ε0 and such that without them, Fε0 is not connected. Because F(ε0−δ) is not con-
nected, there exists p̃1, p̃2 ∈ π−1(p) such that p̃1 �(ε0−δ) p̃2, i.e. p̃1 and p̃2 cannot be
connected by a finite sequence of minimizing geodesics of length less than or equal
to 2(ε0 − δ). But because Fε0 is connected, and therefore p̃1 ∼ε0 p̃2, there does exist
a finite sequence of minimizing geodesics connecting p̃1 and p̃2 of length less than or
equal to 2ε0, and there must be at least one minimizing geodesic γi in that collection
satisfying |l(γi) > 2(ε0 − δ), and so l(γi) = 2ε0.

The Base Case

Our proof of Proposition (3.5.1) will proceed by induction, constructing a growing
class of geodesic loops. We begin with an initial set defined as follows: Consider all
geodesic loops γ in M based at p such that γ is the projection of some minimizing
geodesic γ̃ connecting two points in π−1(p) satisfying l(γ̃) = 2ε0 and call this col-
lection G0. |G0| is finite, since otherwise we could lift each γ to a corresponding γ̃
with common base point p̃ ∈ π−1(p), and again contradict that π−1(p) is discrete by
considering the distinct end points of each lift.
Now define Lγ ⊂ M̃ as Lγ := π−1(γ([0, 1])), i.e. the union of the images of all
possible lifts γ̃ of γ. We want to pick out some sub-collection γ0, ..., γn ∈ G0 having
the following 2 properties:

1. there exists ε1 < ε0 such that Fε1 ∪
⋃

1≤i≤n
Lγi is connected
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2. Any proper sub-collection γn0 , ..., γnk ∈ G0 does not satisfy 1.

Because any 2 points p̃, p̃′ ∈ π−1(p) can be connected by minimizing geodesics
of length either 2ε0 or less than 2(ε0 − δ), with δ defined above, condition 1 holds
for the entire collection with ε1 := ε0 − δ. Therefore condition 2 can be met by
removing elements one at a time and asking whether 1 still holds. We now choose
any subcollection satisfying 1 and 2 and call it G0 := {γ0, ..., γn}.

Note that 2 implies that no [γi] corresponding to γi ∈ G0 satisfies [γi] =
∑n−1

j=1 aj[γσ(j)]

for γj ∈ G0 and σ any permutation of the indices {1, ..., i−1, i+1, ..., n}, for if it did,
then [γi] =

∑n−1
j=1 aj[γσ(j)] could be lifted to connect any two points in π−1(p) that

are connected by γ̃i, and so we could remove γi from G0 and property 1 would still
hold. Furthermore, by nearly the same logic, no [γi] could be expressed as a finite
combination of, say, [α1], ..., [αn] ∈ π1(M, p) represented by loops α1, ..., αn such that
for all 1 ≤ j ≤ n, l(αj) < 2ε0, for the image α̃i([0, 1]) of any α̃i would have to satisfy
α̃i([0, 1]) ⊂ F(ε0−δ), which also shows that γi could be removed from G0.

Recall that we parametrize any geodesic by γi : [0, 1] → M . We now show that
each element of G0 has the further property of being a minimizing geodesic when
restricted either to [0, 1/2] or [1/2, 1].

Proposition 3.6.3. For all γi ∈ G0,

l(γi|[0, 1
2

]) = d(γi(0), γi(
1

2
))

and
l(γi|[1/2,1]) = d(γi(1/2), γi(1)).

Proof. Assume t ∈ (0, 1/2). For t ∈ (1/2, 1) the argument is the same, and the
point {1/2} follows by continuity. If l(γi|[0,t]) > d(γi(0), γi(t)), then there exists
γ′i : [0, 1] → M satisfying γ′i(0) = γi(0), γ′i(1) = γi(t), and l(γ′i) = d(γi(0), γi(t)).
Then the curves (γ′i)

−1 · γi|[0,t] and γi|[t,1] · γ′i each have shorter length than γi, and
their composition equals γi in π1(M, p), which is not possible for γi ∈ G0.

The Inductive Step

We proceed by induction to define sets Gi+1 as follows. Assume {[γ]|γ ∈ Gi} doesn’t
generate π1(M, p). Choose minimal εi+1 > 0 such that Fεi+1

∪
⋃
γ∈Gi

Lγ is connected.

In the same way as above, there exists a set Gi+1 of geodesic loops of length 2εi+1

such that its elements are pairwise non-homotopic and:

1. there exists εi + 1 < εi such that Fεi+1 ∪
⋃
j≤i

(
⋃
γ∈Gj

Lγ) is connected

2. Any proper sub-collection of Gi does not satisfy 1.

As in Proposition (3.6.3), at every step, the chosen geodesics are minimizing on
each half of [0, 1]. We now argue that this process terminates after finitely many
steps.
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Proposition 3.6.4. There exists ī such that the set {[γ] | γ ∈ G0∪...∪Gī} generates
π1(M, p).

Proof. If for all i ∈ N this process did not terminate, we would have an infinite
collection of pairwise non-homotopic geodesic loops of uniformly bounded length
based at a common point, which could be lifted to M̃ and contradict the discreteness
of π−1(p). Therefore, for some n the process terminates, which immediately implies
π−1(p) ∪

⋃
j≤n

(
⋃
γ∈Gj

Lγ) is connected.

We now define
Er :=

⋃
1≤i≤ī

Gi.

There is one last property of the elements of Er that we require, described by the
following proposition.

Proposition 3.6.5. for any γ1 6= γ2 ∈ Er, γ1 and γ2 intersect once, at p.

Proof. This follows from the fact that γ1 and γ2 can be lifted to minimizing geodesics
in M̃ based at a common initial point, and such curves cannot intersect on their
interiors.

We have constructed a collection Er of geodesic loops satisfying 1 and 2 of
Proposition (3.5.1). We have furthermore shown that Er is a collection of simple,
pairwise non-homotopic, essential closed curves each intersecting any other at most
once. The following is Theorem 1.4 in [20]:

Theorem 3.6.6. The cardinality of a set E of nonperipheral, essential simple closed
curves on a surface M of genus h and Euler characteristic χ that are pairwise non-
homotopic and intersecting at most once is at most

h(|χ|+ 1) + |χ| − 1

where χ is the Euler characteristic of M .

This theorem guarantees that |Er| < Zχ for some constant Zχ depending only
on the Euler characteristic χ of M .

Until now, we have only constructed the set Er corresponding to BM(p, r) = M ,
but the proof is nearly identical for both unbounded M and arbitrary r, with the
exception that, in general, BM(p, r) for r finite is not necessarily complete and our
construction for the set Fε0 above cannot be carried out directly. We remedy this
by considering instead the sets BM(p, r)closed, fixed with any complete metric g′

that restricts to g on BM(p, r). Then we note that any closed loop γ : [0, 1] →
BM(p, r)closed can be continuously deformed to a curve, which we will also denote γ,
whose image lies entirely in B̄M(p, r).

If l(γ) > 2r, we follow the argument in Proposition (3.6.2). There must be t
such that l(γ|[0,t]) > r. but then there exists γ′ : [0, 1] → M satisfying γ′(0) = p,
γ′(1) = γ(t), and l(γ′) = d(p, γ(t)). Then the curves (γ′)−1 · γ|[0,t] and γ|[t,1] · γ′ each
have shorter length than γ, but their composition equals γ in π1(M, p), which is not
possible for γ ∈ G0. This shows that any element of G0 must be of length 2r or less,
and therefore cannot intersect BM(p, r)closed\BM(p, r) = B̄M(p, r)c ⊂ BM(p, r)closed,
and we are done.
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Chapter 4

A Construction for the
Development of Positive
Curvature Under the Ricci Flow

The Ricci flow

∂g

∂t
= −2Ric(g) (4.0.1)

is a quasilinear parabolic evolution of the metric g and, as in the discussion of the
comparison of Ric to ∆ above, we review here how this evolution behaves similarly to
the standard heat equation. Again the distinction between upper and lower bounds
is significant. We begin immediately with the evolution of curvature quantities with
respect to (4.0.1):

For the curvature tensor

∂

∂t
Rmijkl = ∆Rmijkl + 2(Bijkl −Bijlk +Bikjl −Biljk) (4.0.2)

− (RicsiRmsjklx+ RicsjRmiskl + RicskRmijsl + RicslRmijks)

The Ricci curvature

∂

∂t
Ricij = ∆Ricij + RmsjktRicst − 2RicsiRicsj (4.0.3)

and the scalar curvature
∂

∂t
R = ∆R + 2|Ric|2 (4.0.4)

(4.0.4) is particularly simple and in particular implies that

∂

∂t
R ≥ ∆R +

2

n
R2

from which it can be shown by the scalar maximum principle that, if M is closed,
R0 denotes the scalar curvature at time t = 0 and u : M × [0, T ]→ R solves

∂

∂t
u = ∆u+

2

n
u2 (4.0.5)
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u( · , 0) ≤ R0

then R ≥ u for all t ∈ [0, T ]. One implication of this principle is that lower bounds
for the scalar curvature at time t = 0 extend to time dependent bounds. taking
uK( · , 0) = K ∈ R and solving (4.0.5) gives

uK( · , t) =
K

(1− 2Kt
n

)

Figure 4.0.1: a positive lower bound Ric ≥ K > 0 forces a finite time singu-
larity at t = n

2K and a negative lower bound Ric ≥ K < 0 improves toward 0
as time progresses.

The images above show the behavior of solutions for K > 0 and K < 0. For
K = 0 the solution is u(·, 0) ≡ 0. Because the curvature of g(t) is bounded from
below by uK . These bounds in particular indicate that positively curved metrics
on closed manifolds develop arbitrarily positive scalar curvature everywhere as they
evolve under the Ricci flow and that any (smooth) metric for which a solution to
(4.0.1) exists for all t > 0 becomes arbitrarily almost non-negative in the sense that
for any ε > 0 there exists t0 such that R(t) > −ε for all t > t0.

It is well known that with respect to (4.0.1) a variety of curvature conditions
are preserved, see [13], [14], [7], [3] for a number of examples. As in the case of the
application of the maximum principle to (4.0.5) above these conditions often take
the form of a lower bound on some curvature quantity.

A stronger example, due to Hamilton [13], states that the eigenvalues of the Ricci
curvature of a metric of positive Ricci curvature on a 3-manifold do not only remain
positive, but become pinched together in a certain sense under the Ricci flow:

Theorem 4.0.1. (Hamilton) Assume (M3, g(t)) satisfies the Ricci flow equation for
t ∈ [0, T ), with g(0) = g0. satisfying Ric(g0) ≥ 0. If λ, µ, ν denote the eigenvalues
of Ric, Then there exist constants C <∞ and δ > 0 such that

1

3
((λ− µ)2 + (µ− ν)2 + (ν − λ)2) ≤ CR2−δ

In particular, wherever the scalar curvature blows up, after renormalizing by
the factor R2 the eigenvalues must converge to a common limit. In [13] Hamilton
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uses this result to show that compact manifolds admitting a metric of positive Ricci
curvature also admit a metric of constant positive curvature.

On the other hand, upper bounds do not tend to be preserved in general, as
follows for instance from the lower bound on the scalar curvature above which implies
that the scalar curvature of any compact manifold of strictly positive curvature will
blow up in finite time. With this in mind we show the following

Proposition 4.0.2. There exist compact Riemannian manifolds with negative sec-
tional curvature which develop a positive sectional curvature at some point under the
Ricci flow.

4.1 Motivating Example

We first examine Riemannian manifolds (M3, gs) where M ∼= R3 and gs are expressed
in cylindrical coordinates as follows:

gs = dr2 + φ2(r, z, s)dθ2 + cosh2(r)dz2

Here φ : R+ × R × (−s0, s0) → R is a smooth function that, for s = 0, we will
use to interpolate between two metrics in the following way: we assume there are
rectangles C(r0, z0) := {(r, z)| 0 ≤ r < r0,−z0 < z < z0} and C(R0, Z0) defined
similarly for R0 > r0 and Z0 > z0 such that we have φ(r, z, 0) = r within C(r0, z0)
and φ(r, z, 0) = sinh(r) outside of C(R0, Z0).

We furthermore impose the condition φ(r, z, s) = sinh(r) everywhere outside of
C(R0, Z0)× (−s0, s0), and otherwise for s 6= 0 our only goal is that gs has negative
sectional curvature. Observe that if, for some s, over all of M we have φ(r, z, s) =
sinh(r) then (M, gs) = H3 = (M, gH3), where

gH3 = dr2 + sinh2(r)dθ2 + cosh2(r)dz2

i.e. we recover hyperbolic space. This implies that we will be able to glue our
interpolation metrics gs into appropriate compact hyperbolic manifolds.

We identify restrictions on φ to ensure the desired behavior below, but first we
examine the behavior of g0 within C(r0, z0).

4.2 the metric g̃

The Riemann curvature of the metric

g̃ = dr2 + r2dθ2 + cosh2(r)dz2

is diagonalized in these coordinates and is described by the matrix

Rm = Rmg̃ =

0 0 0
0 −1 0

0 0 − sinh(r)
r cosh(r)

 . (1)
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This can be shown using the Christoffel symbols in these coordinates [24], where

g̃rr = 1, g̃θθ = r2, g̃zz = cosh2(r)

and g̃ij = 0 otherwise. Because the functions g̃ij depend only on r, these formulas
give Γkij = 0 whenever r does not appear as an index. Furthermore, because g̃ij is
diagonal, Γkij = 0 whenever i, j and k are distinct. Otherwise we have

Γkrr = 0 for all k ∈ {r, θ, z}
Γrθθ = −r
Γrzz = − cosh(r) sinh(r)

Γθrθ =
1

r

Γzrz =
sinh(r)

cosh(r)
.

Because of the symmetries of the Christoffel symbols, this information fully deter-
mines Γ. We then apply the formula for the Riemmann curvature in terms of the
Christoffel symbols

Rml
ijk = ΓsjkΓ

l
is − ΓsikΓ

l
js + Γljk,i − Γlik,j.

Observe first that if r occurs only once as an index, then every term in the expression
above must vanish. If instead it occurs twice, with θ and z each occurring once, the
same is true. Otherwise we have

Rmr
rθθ = (−r)(0)− (

1

r
)(−r) + (−1)− (0) = 0

Rmr
rzz = (− cosh(r))(0)− (

sinh(r)

cosh(r)
)(− cosh(r) sinh(r)) + (− sinh2(r)− cosh2(r))− (0) = − cosh2(r)

Rmz
zθθ = (−r)( sinh(r)

cosh(r)
)− (0)(0) + 0− 0 = −r sinh(r)

cosh(r)
.

Raising the last lower index in each of the above expressions then gives (1).

Observe also that for any v ∈ R3

(∇vRm)rθθr = Dv(Rmrθθr) + 2vr(RmrθθrΓ
θ
rθ)

+ 2vθ(RmrθθrΓ
θ
θr) + 2vz(RmrθθrΓ

r
zr) (2)

= 0

Strictly speaking this calculation only holds away from the origin, but by continuity
it in fact holds over all of R3. Re-expressing our metric in Euclidian coordinates as

g̃ = dx2 + dy2 + cosh2(
√
x2 + y2)dz2,

it is immediate that in these coordinates the Christoffel symbols vanish at the origin.
Therefore, combining with (2),

(∆Rm)xyyx(0, 0, 0) = 0

52



This is equivalent to the corresponding statement in our original coordinates that

(∆Rm)rθθr(0, 0, 0) = 0.

Now, we are primarily interested in what happens when we evolve the metrics
gs by the Ricci flow

∂g

∂t
= −2Ric(g).

Under this evolution, if the Riemannian curvature at a point for a given metric
is expressed in coordinates as

Rm =

κ1 0 0
0 κ2 0
0 0 κ3


then whenever we also have

∆Rm =

0 . . .
...

. . .


then we have the following

d

dt
κ1 = 2(κ2

1 + κ2κ3)

(see [13]). In our case, if we let sect(·, ·) denote the sectional curvature of the metric
g̃ at time t this implies that at the origin we have

d

dt

∣∣∣
t=0

sect(∂r, ∂θ) = 2(−1)(−1) = 2

and in particular we see that g̃ instantly develops a positive sectional curvature at
a point despite being of non-positive sectional curvature on M at t = 0. It is this
behavior in g̃ that we wish to preserve in our metric g0.

4.3 Conditions on the metrics gs

Referring again to the Christoffel symbols, we calculate the curvature for the metrics
gs. Similarly to g̃ we have the nonzero terms

Γrθθ = −φφr
Γrzz = − cosh(r) sinh(r)

Γθrθ =
φr
φ

Γzrz =
sinh(r)

cosh(r)
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and because φ may depend on z we also have

Γzθθ = − φφz

cosh2(r)

Γθzθ =
φz
φ
.

All terms that are not determined by the symmetries of the Christoffel symbols from
the values above are equal to zero. For the curvatures, firstly we have

Rmr
rθθ = (φφr)(0)− (

φr
φ

)(−φφr) + (−φ2
r − φφrr)− (0) = −φφrr

Rmr
rzz = (− cosh(r))(0)− (

sinh(r)

cosh(r)
)(− cosh(r) sinh(r)) + (− sinh2(r)− cosh2(r))− (0) = − cosh2(r)

Rmz
zθθ = (−φφr)(

sinh(r)

cosh(r)
)− (

φz
φ

)(− φφz

cosh2(r)
) + (

φ2
z − φφzz
cosh2(r)

)− 0 = −φφr sinh(r)

cosh(r)
− φφzz

cosh2(r)

and for the remaining curvature terms, we have

Rmr
rθz = 0

Rmz
rθθ = (− φφz

cosh2(r)
)(

sinh(r)

cosh(r)
)− (

φr
φ

)(− φφz

cosh2(r)
)

+ (
φrφz + φφrz

cosh2(r)
+

2 sinh(r)φφz

cosh3(r)
)− 0

=
φφz sinh(r) + φφrz cosh(r)

cosh3(r)

Rmz
rzθ = (

φz
φ

)(0)− (
φr
φ

)(0) + 0− 0 = 0.

We again express Rm with respect to an orthonormal basis by normalizing each
term to give

Rmgs =

 −φrr
φ

0 φz sinh(r)+φrz cosh(r)

φ cosh2(r)

0 −1 0
−φz sinh(r)+φrz cosh(r)

φ cosh2(r)
0 −φr sinh(r)

φ cosh(r)
− φzz

φ cosh2(r)

 ,
which we put into the more digestible form

Rmgs =

f1 0 ε
0 −1 0
ε 0 f2

 ,
and we note, if f1 and f2 are negative functions, that the eigenvalues of this matrix
are nonpositive when

f1f2 − ε2 ≥ 0.

Thus, φ must determine f1, f2, and ε such that, on C(R,0 , Z0), we have that f1, f2 ≤
0 and f1f2 − ε2 ≥ 0 for gs to have nonpositive sectional curvature, and to force
negative sectional curvature these inequalities must be made strict.
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4.4 a construction for φ

We first take φ of the form

φ(r, z) = ψ(r) + a(z)(sinh(r)− ψ(r))

for smooth one variable functions ψ : R+ → R+ and a : R → [0, 1]. We assume
a(z) = 0 for |z| < z0 and a(z) = 1 for |z| > Z0, for some constants 0 < z0 < Z0.
The function ψ will model how we interpolate between r and sinh(r), so we impose
the following:

ψ(r) ≤ sinh(r), ψ′′(r) ≥ 0

ψ(r0) = r for r < r0 (3)

ψ(r) = sinh(r) for r > R0.

We deconstruct the functions

f1(r, z) = −φrr
φ

f2(r, z) = −φr(r, z) sinh(r)

φ(r, z) cosh(r)
− φzz

φ(r, z) cosh2(r)

ε(r, z) =
φz(r, z) sinh(r) + φrz(r, z) cosh(r)

φ(r, z) cosh2(r)

by first noting that, on C(R0, Z0), we have

0 < c1 <
sinh(r)

ψ(r)
< C1

0 ≤ sinh(r)− ψ(r) < C2r
2

0 ≤ cosh(r)− ψ′(r) < C3r
2

0 < c4 <
sinh(r)− ψ(r)

cosh(r)− ψ′(r)
< C4

for suitable constants c1, C1, C2, C3, c4, C4 depending on ψ. Thus, because the deriva-
tives of φ take the form

φr(r, z) = ψ′(r) + a(z)(cosh(r)− ψ′(r))

φz(r, z) = a′(z)(sinh(r)− ψ(r))

φrz(r, z) = ψ′(r) + a′(z)(cosh(r)− ψ′(r))

φrr(r, z) = ψ′′(r) + a(z)(sinh(r)− ψ′′(r))

φzz(r, z) = a′′(z)(sinh(r)− ψ(r))

we have
0 ≤ k1a(z) < |f1(r, z)|

0 < k2 − k3a
′′(z) < |f2(r, z)|
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0 ≤ |ε(r, z)| < K4a
′(z)r2

for suitable constants k1, k2, k3, K4. Now, by rescaling φ so that

φ(r, z) = ψ(r) + a(ξz)(sinh(r)− ψ(r))

for some small ξ > 0, we can make the terms |a′(z)| and |a′′(z)| arbitrarily small,
and we can therefore achieve the inequalities

0 ≤ k1a(z) < |f1(r, z)|

0 <
k2

2
< |f2(r, z)|

0 ≤ |ε(r, z)| <
√
k1k2

2
|a′(z)|.

Thus, if for all z we have |a′(z)|2 < a(z), we arrive at the inequality

f1(r, z)f2(r, z)− ε2(r, z) ≥ 0.

Because the only conditions on ψ and a are those given in (3) and the added
condition |a′(z)|2 < a(z), all of which are easily achieved, we see that there exist
φ such that the corresponding metric g0 has nonpositive sectional curvature. We
finally observe that, had we imposed the strict condition ψ′′(r) > 0, then we could
have similarly achieved a negative sectional curvature condition, and so we can set

φ(r, z, s) = ψ(r, s) + a(z)(sinh(r)− ψ(r, s))

where ψ(·, s) are a smooth family of functions satisfying ψ(r, 0) = ψ(r) and otherwise
satisfying ψrr(r, s) > 0, and the resulting family of metrics gs have negative sectional
curvature away from s = 0.

4.5 Behavior of gs under the Ricci flow

If gs(t) are solutions to the Ricci flow with initial condition gs, then wherever these
solutions are defined we have that

lim
s→0

gs(t) = g0(t)

smoothly and thus, if Rm(s, t) denotes the curvature tensor for gs(t), that

lim
s→0

Rm(s, t) = Rm(0, t).

This implies that for small s, gs must also develop positive curvature under the Ricci
flow. We now give the proof of proposition 0.1.
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Proof. Our chosen metrics gs all have the property that the identity map restricted
to C(R0, Z0)c gives an isometry to the complement of a cylinder in H3. Furthermore,
for any R > 0 there exists a compact hyperbolic Riemannian manifold (N, h), a point
p ∈ N and a local isometry

π : H3 → N

such that the restriction of π to B = B(π−1(p), R) ⊂ H3 is an isometry ( see for
instance [22], chapter 11). We can also assume that π|−1

B (p) = ~0 in our chosen
coordinates above. Noting that the metrics gs and gH3 are defined over the same
underlying manifold, the map

π|B : M → N

pushes forward the metrics gs to metrics

g′s := (π|B)∗gs

defined on the image of π|B. If R has been chosen sufficiently large, these metrics
are all identical to h in a neighborhood of the boundary of π(B) and so the metrics
g′s immediately extend to smooth metrics defined on all of N by the equality g′s = h
outside of the image of π|B.

4.6 General Setting

In this section we assume we are only given a non-positively curved Riemannian
manifold (Mn, g) that is locally isometric to Hn outside of a compact set but for
which we are not explicitly given an embedding into Hn from this region, as we have
in the example above (the inclusion I). We show that we can replicate the above
construction by finding such an embedding.

Proposition 4.6.1. For any complete simply connected n-dimensional Riemannian
manifold (M, g) with n ≥ 3 satisfying sec ≤ 0 and for which there exists K ⊂⊂
M with such that M\K is locally isometric to Hn, there exists a (noncompact)
Riemannian manifold (N, h) and a compact set B ⊂ N such that B is isometric to
a ball in (M, g) containing K and Bc is isometric to the complement of a compact
set in Hn.

Proof. Fix x ∈ M . Because (M, g) satisfies sec(·, ·) ≡ −1 outside of a compact set,
there exists l > 0 for which

(B(x, l)c, g)

is hyperbolic, Were B(x, l) denotes the ball of radius l centered at x. Furthermore,
the condition sec ≤ 0 implies that for any p ∈M

expP : TpM →M

is a diffeomorphism and therefore that any metric ball entirely contained in B(x, l)c

is isometric to a ball in Hn. Thus, by increasing if necessary we can choose l such
that there exists r > 0 such that for all p ∈ B(x, l)c, B(p, r) is isometric to a ball in
Hn. Because B(x, l)c is also simply connected (n ≥ 3), this implies that there exists
a local isometry
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φ : B(x, l)c → Hn

We fix a point p ∈ B(x, l)c.

claim 1. For all sufficiently large R1 > 0 there exists R1 > 0 such that the image
of φ restricted to B(p,R1)c contains B(φ(p), R1)c.

Proof. Let R1 > 0 such that B(p,R1)c ⊂ B(x, l)c. Let d′ be the induced dis-
tance defined as the infimum of lengths of curves lying entirely in B(p, l)c. Choose
R1 := max{d′(q, p) | q ∈ ∂B(p,R1)c)}. Let x in B(φ(p), R1)c be given. choose
p′ ∈ B(p,R1)c satisfying dHn(φ(p), φ(p′)) = dH(p, p′) > R1. This can be done by
considering the image of a geodesic ray based at p and contained in B(p, l)c, since
local isometries map geodesics to geodesics and any geodesic in Hn is minimizing.

Now choose a curve γ : [0, 1]→ Hn with γ(0) = φ(p′), γ(1) = x and dHn(γ(t), φ(p)) >
R1 for all t ∈ [0, 1]. Because φ is invertible on B(p′, r), for some ε1 > 0 we can lift γ
uniquely to a curve

φ−1 · γ : [0, ε1)→ B(p′, r)

Because φ is distance non-increasing with respect to d′, if φ−1 ◦ γ(t) ∈ ∂B(p, r1) for
some t, then R1 < dHn(φ(p), γ(t)) ≤ d′(p, φ−1 ◦ γ(t)) ≤ R1. Thus every point on this
curve must lie within B(p,R1)c. Thus for some ε2 > ε1 we can extend this lift

φ−1 ◦ γ : [0, ε2)→ B(p,R1)c

and because we are able to choose the radius r of the ball within which we invert
φ independently of its center we can ultimately extend to a curve

φ−1 ◦ γ : [0, 1]→ B(p,R1)c

terminating at x. Thus φ is surjective.

claim 2. For any R1 as above, there exists R2 > R1 such that φ restricted to
B(p,R2)c is mapped to B(φ(p), R1)c.

Proof. Choose R2 > 2R1 + R1. For any q ∈ B(p,R2)c there exists a geodesic
γ : [0, 1] → B(p,R1)c of length 2R1 with γ(0) = q and γ(1) = q′ ∈ ∂B(p,R1).
Because geodesics are mapped to geodesics, all geodesics in Hn are minimizing and
we have dHn(φ(p), φ(q′)) ≤ R1, it folows that

dHn(φ(p), φ(q)) ≥ R1.

claim 3. φ restricted to B(p,R2)c injects into B(φ(p), R2)c.

Proof. Let p1, p2 ∈ B(p,R2)c satisfying φ(p1) = φ(p2) ∈ B(φ(p), R2)c be given.
Connect p1 and p2 with a curve γ : [0, 1] → B(p,R2)c. The projection φ ◦ γ is a
closed loop and by claim 2 lies entirely within B(φ(p), R1)c. It can therefore be
continuously contracted to a point. Furthermore, following the argument in claim
1, We can lift this to a contraction of γ, and therefore p1 = p2.

58



If we set

H = φ−1(B(φ(p), R2)c)

it now follows that

φ : H → B(φ(p), R2)c

is a diffeomorphism and therefore an isometry. Furthermore it follows from claim
2 above that for some R3 > R2 H

c is compactly contained in B(p,R3) . Therefore,
if we let

N = B(p,R3) ∪φ φ(B(p,R3)c)

(i.e. the gluing of these two sets along their boundaries by the map φ) and

h = { g on B(p,R3)
gHn otherwise

then (N, h) is a smooth Riemannian manifold with the desired properties.
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