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ARTICLE

Integration of epigenetic and genetic profiles
identifies multiple sclerosis disease-critical cell
types and genes
Qin Ma 1,3, Hengameh Shams1,3, Alessandro Didonna2, Sergio E. Baranzini 1, Bruce A. C. Cree1,

Stephen L. Hauser 1, Roland G. Henry 1 & Jorge R. Oksenberg 1✉

Genome-wide association studies (GWAS) successfully identified multiple sclerosis (MS)

susceptibility variants. Despite this notable progress, understanding the biological context of

these associations remains challenging, due in part to the complexity of linking GWAS results

to causative genes and cell types. Here, we aimed to address this gap by integrating GWAS

data with single-cell and bulk chromatin accessibility data and histone modification profiles

from immune and nervous systems. MS-GWAS associations are significantly enriched in

regulatory regions of microglia and peripheral immune cell subtypes, especially B cells and

monocytes. Cell-specific polygenic risk scores were developed to examine the cumulative

impact of the susceptibility genes on MS risk and clinical phenotypes, showing significant

associations with risk and brain white matter volume. The findings reveal enrichment of

GWAS signals in B cell and monocyte/microglial cell-types, consistent with the known

pathology and presumed targets of effective MS therapeutics.
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Multiple sclerosis (MS) is an autoimmune disease affect-
ing the central nervous system (CNS), and common
cause of non-traumatic neurological disability in young

adults. MS pathogenesis is complex and multifactorial with a
well-established, albeit partially understood polygenic suscept-
ibility component. Genome-wide association studies (GWAS)
have identified 201 independent genome-wide significant asso-
ciations outside the major histocompatibility complex (MHC)
and 32 within the MHC region, leading to a catalog of 551 can-
didate risk genes1. These variants, together with additional
416 suggestive effects, explain approximately half of the disease
heritability. Like other complex diseases and traits, most MS-
associated variants identified by GWAS map to noncoding seg-
ments of the genome and are concentrated in regulatory regions2,
thus likely contributing to risk through cell-type specific tran-
scriptional regulatory mechanisms mediated by short- and long-
range chromatin interactions. Using open epigenetic databases,
the enrichment of disease variants and associated pathways
operating primarily on immunological competent cells has been
consistently reported, confirming the autoimmune model of
pathogenesis2–4. More recent analyses of genomic data have also
implicated microglia in driving disease risk1. Annotating the
precise susceptibility gene roster and cellular compartments from
GWAS datasets remain a priority and a key step for any trans-
lational application of genetic discoveries.

Here, we used the GARFIELD5 classification approach on the
latest MS GWAS dataset to perform a detailed enrichment ana-
lysis of regulatory annotations and describe the cellular basis of
disease susceptibility. We further applied Hi-C-coupled multi-
marker analysis of genomic annotation (H-MAGMA)6 to inte-
grate GWAS and three-dimensional (3D) chromatin interaction
profiles, and this approach led to the identification of cell-specific
susceptibility genes in B cells, monocytes, and microglia. Finally,
we leveraged the resulting information to develop cell-specific
polygenic risk-scores (CPRS) to associate cell-specific genetics to
clinical phenotypes of interest.

Results
MS GWAS-associated loci are enriched in open chromatin
regions in microglia and peripheral immune cells. To link MS
susceptibility variants to genes active in specific cellular com-
partments, we integrated GWAS data with single-cell and bulk
chromatin accessibility data, histone modification profiles, and
3D chromatin contacts information, following the workflow
shown in Supplementary Fig. 1. Two studies have generated
accessible chromatin reference maps from single-cell ATAC-seq
(scATAC-seq) screenings on healthy peripheral blood and brain
tissue from cognitively healthy individuals7,8. Building on the
granularity of these datasets, the GARFIELD algorithm was
applied to estimate the enrichment of MS GWAS associations in
6 primary brain cell types and 14 peripheral immune cell types.
The distinct advantage of GARFIELD is that it accounts for major
sources of confounding, which include minor allele frequency,
distance to the nearest transcription start site, and the number of
LD proxies (r2 > 0.8). Significant enrichment of associated loci
was observed in all peripheral immune cell types at four different
GWAS P-value thresholds (T < 10−5 to T < 10−8), with slightly
higher levels in naïve B cells (Fig. 1a). Within the brain cell types,
GWAS signals were significantly enriched in microglia, but not in
astrocytes, oligodendrocyte precursor cells (OPCs), oligoden-
drocytes, or neurons (Fig. 1a).

We next sought to extend the analysis using the algorithm
default regulatory annotation of open chromatin regions (OCRs)
at eight GWAS P-value thresholds (T < 0.05 to T < 10−8) in 424
cell lines or primary cell types. Blood was the most significantly

enriched tissue type in MS risk genetics (Fig. 1b). Follow-up
analysis of regulatory annotations denoting OCRs in the immune
system and CNS available from the Encyclopedia of DNA
Elements (ENCODE) and the Blueprint projects also found
significant enrichments of GWAS signals in multiple immune cell
types, with the highest levels of enrichment observed in B cells
and monocytes from ENCODE and Blueprint data, respectively
(Fig. 1c and Supplementary Fig. 2). Interestingly, modest
enrichment of GWAS associations (odds ratio values range from
1.34 to 2.52 at GWAS P-value threshold T < 10−5) in the CNS
chromatin accessibility datasets, including brain microvascular
endothelial cells, was detected in this analysis (Fig. 1c).

Growing evidence suggests that MS has significant genetic
correlations with autoimmune and neuropsychiatric disorders6,9–11.
We tested therefore the cell-type-specific OCRs enrichment within
14 peripheral immune cell types and 6 brain cell types for GWAS
associations in the context of systemic lupus erythematosus (SLE)12,
rheumatoid arthritis (RA)13, celiac disease (CD)14, inflammatory
bowel disease (IBD)15, systemic sclerosis (SS)16, type 1 diabetes
(T1D)17, Alzheimer disease (AD)18, schizophrenia (SCZ)19, and
bipolar disorder (BPD)20. As expected, we found the immune cell
types enriched in MS also enriched in other autoimmune diseases,
in particular RA, IBD and SLE, yet B cells and monocytes showed
highest enrichment in MS (Supplementary Fig. 3). Noteworthy, a
certain degree of enrichment for immune cells was also detected in
the canonical neurological disease AD, BDP, and SCZ. Regulatory
T cells, cytotoxic CD8+ T cells and memory CD8+T cells have the
highest level of enrichment in T1D, RA, and SLE respectively. The
enrichment of microglia seems to genetically link MS, AD, and
surprisingly, SLE.

MS GWAS signals are enriched in active enhancer regions. To
gain additional insights into the regulatory function of genetic
variants in immune cells, we examined the enrichment for MS
GWAS risk loci in chromatin immunoprecipitation sequencing
(ChIP-seq) peaks targeting key histone modifications (H3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3)
available from the ENCODE and Blueprint projects. Significant
overlaps between GWAS signals and H3K27ac, H3K4me3,
and H3K4me1 ChIP-seq peak regions were observed (Fig. 2a and
Supplementary Fig. 4), whereas B cells consistently represented
the cytotype displaying the highest enrichment in genetic signals
(Fig. 2a and Supplementary Fig. 4). H3K4me1 is enriched at
active and primed enhancers, while H3K27ac is a marker for
active enhancers and H3K4me3 is highly enriched at active
promoters21, suggesting that MS genetic risk associations are
enriched at active enhancers and promoters.

Using the ENCODE Encyclopedia Registry of candidate cis-
Regulatory Elements (cCREs), GWAS hits mapped to proximal
and distal enhancer-like signatures (pELS and dELS), especially in
B cells and monocytes (Fig. 2b). Altogether, the data indicate that
MS-associated variants concentrate in active regulatory regions,
especially in enhancer elements, and B cells and monocytes
represent the main target cytotypes.

Integration of genetic and 3D chromatin interaction data
identifies putative causal genes. Next, we applied the
H-MAGMA framework to update the roster of cell-specific sus-
ceptibility genes, integrating the reported GWAS summary sta-
tistics (14,802 subjects with MS and 26,703 controls)1 with
promoter capture Hi-C22 (PCHiC) and H3K4me3 HiChIP23

datasets obtained from B cells, monocytes, and microglia, which
are the most significantly impacted cellular compartments
described above. Through this analysis, we identified 1247 genes
in B cells, 1148 genes in monocytes, and 1183 genes in microglia
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(FDR < 0.05) (Supplementary Data 1). A total of 717 genes are
shared by all cell types, while 234, 136 and 281 genes are unique
to B cells, monocytes, and microglia, respectively (Fig. 3a and
Supplementary Data 2). Moreover, the cell-specific genes overlap
with 283 (51.4%), 265 (48.1%), and 294 (53.4%) of the 551

previously prioritized genes based on cis expression quantitative
trait loci effect (cis-eQTL) and regulatory networks1 (Supple-
mentary Data 3).

Gene ontology (GO) analysis on the 717 common genes
highlighted an enrichment in immune-related pathways, with
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“cytokine signaling in immune system” being the most significant
term (Fig. 3b and Supplementary Data 4). GO analysis on the
unique gene lists found “positive T cell selection”, “neutrophil
degranulation”, and “PRC2 methylates histones and DNA” as the
most significantly enriched categories for B cell, monocyte, and
microglia, respectively (Fig. 3c and Supplementary Data 5).
Notably, DNMT3A, which encodes the DNA (cytosine-5)-
methyltransferase 3 A enzyme, is among the unique genes in
microglia and drives the enrichment in the “PRC2 methylates
histones and DNA” pathway. Interestingly, some of the MS
associated SNPs (T < 10−5) are within the enhancer regions and/
or interact with the promoter regions of DNMT3A in microglia
(Supplementary Fig. 5), which further validates the possible
functional effects of the SNPs.

Cell-specific polygenic risk score analysis. To link genetics to
MS phenotypes in a cell-specific context, we generated polygenic
risk scores (CPRS) based on B cell, monocyte, and microglia
variants as well as a combined score comprising all the above-

mentioned cell types. The CPRS were computed for the white
population in the UK Biobank and UCSF-EPIC datasets, incor-
porating the estimated variant effect sizes from the largest MS-
GWAS study1 to date. Prediction accuracies of best-performing
CPRS in the validation set, UK Biobank phase 1 (UKBB1, 601
cases/109,990 controls), were examined in two independent test
sets, UK Biobank phase 2 (UKBB2, 1354 cases/252,065 controls)
and UCSF-EPIC (494 cases/449 controls), upon adjustment for
genetic background assessed by the first twenty principal com-
ponents of ancestry (Supplementary Table 1).

The predictive power of CPRS for MS risk is very similar across
different cell subtypes as well as the combined score in all
datasets, indicated by the coefficient of determination (R2)
corrected for disease prevalence in the white population in
Western Europe24 (0.00127) as well as the area under the curve
(AUC) as shown in Supplementary Table 1. This observation is
not surprising given the high degree of overlapping variants
across the three cell-types (Supplementary Data 6) identified by
the H-MAGMA algorithm. All CPRS are significantly associated
with risk (P < 1e–20). Both significance and association levels are

Fig. 1 Enrichment of MS GWAS associations in open chromatin regions (OCRs). a MS GWAS enrichment at cell-type-specific OCRs within 6 primary
brain cell types and 14 peripheral immune cell types derived from scATAC-seq. Radial lines show odds ratio (OR) values at eight GWAS P-value thresholds
(T) for cell-type-specific ATAC-seq peaks from brain and immune cell types. b Radial lines show OR values at eight GWAS P-value thresholds (T) for 424
cell lines or primary cell types available from the GARFIELD software. c Radial lines show OR values at eight GWAS P-value thresholds (T) for immune
system and CNS available from the ENCODE project. Dots in the inner ring of the outer circle denote significant GARFIELD enrichment (if present) at
T < 10−5 (outermost) to T < 10−8 (innermost) after multiple-testing correction. The colors represent cell or tissue types. CPEpiC choroid plexus epithelial
cell, DC dendritic cell, HMVEC brain microvascular endothelial cell, HSC hematopoietic stem cell, NK natural killer, NPC neural progenitor cell.

Fig. 2 Enrichment of MS GWAS associations in histone modification ChIP-seq peaks. a Radial lines show OR values at eight GWAS P-value thresholds
(T) for histone modification peaks of immune cell types available from the ENCODE project. Dots in the inner ring of the outer circle denote significant
GARFIELD enrichment (if present) at T < 10−5 (outermost) to T < 10−8 (innermost) after multiple-testing correction. The colors represent six kinds
of histone modifications: H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3. MS shows predominant enrichment in H3K27ac,
H3K4me1, and H3K4me3. b Radial lines show OR values at eight GWAS P-value thresholds (T) for cCREs of immune cell types available from the ENCODE
project. The colors represent different kinds of cCREs. dELS, distal-enhancer-like signatures, which have high DNase and H3K27ac signals and are not
within 2 kb of an annotated transcription start site (TSS). DNase-only, cCREs with high DNase signals but low H3K4me3 and H3K27ac signals. Low-DNase,
cCREs with low DNase signals in particular cell types. pELS, proximal-enhancer-like signatures which are within 2 kb of an annotated TSS and have high
DNase and H3K27ac signals and have a low H3K4me3 signals if they are within 200 bp of an annotated TSS. PLS, promoter-like signatures which fall within
200 bp of an annotated GENCODE TSS and have high DNase and H3K4me3 signals.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04713-5

4 COMMUNICATIONS BIOLOGY |           (2023) 6:342 | https://doi.org/10.1038/s42003-023-04713-5 | www.nature.com/commsbio

www.nature.com/commsbio


enhanced in UKBB2 compared to UKBB1. Such difference may
be driven by self-reported disease status, likely leading to various
percentages of false negatives across the two stages of data
collection. Replicating risk association in the UCSF-EPIC cohort
consisting of 494 neurologist-diagnosed MS cases and 449
controls resulted in notably increased R2 and AUC compared
to UK Biobank, due to both accurately recorded disease status
and a higher case/control ratio. It should also be noted that EPIC
subjects constituted a small portion of the International Multiple
Sclerosis Genetics Consortium (IMSGC) discovery cohort,
thereby, the effect sizes were readjusted upon exclusion of the
EPIC dataset prior to risk score calculations in this cohort to
avoid inflation in classification accuracy of polygenic scores.

Next, we examined the discriminative power of CPRS without
the MHC region. The UKBB2 results expectedly showed a
reduced predictive power of non-MHC CPRS according to all
measures shown in Supplementary Table 2. Specifically, excluding
the MHC burden from the cumulative CPRS decreased the AUC
values shown in Supplementary Table 1 by 3% to 5% across all
cell types. Due to the small cohort size and larger confidence
intervals, the effect of MHC on CPRS accuracy in EPIC was less
pronounced. Furthermore, CPRS was computed with unique
variants listed in Supplementary Table 3 for each cell type, which
resulted in most significant risk associations with monocytes
(R2= 2.4%, P= 1.7e–84) and B cells (R2= 2.2%, P= 1e–69).
These were also replicated in the EPIC dataset for both

Fig. 3 Functional enrichment of the common and unique genes. a Venn diagrams showing the overlap of risk genes between each cell type. b Histograms
showing the top 20 significant enriched pathways of the shared genes. c Histograms showing the significant enriched pathways of unique risk genes.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04713-5 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:342 | https://doi.org/10.1038/s42003-023-04713-5 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


monocytes (R2= 3.1%, P= 4e-16) and B cells (R2= 2%,
P= 2.3e-11) as summarized in Table 1.

Grouping individuals according to their CPRS indicated that
subjects within the top 5% of all CPRS scores were at 3- to 5-fold
increased risk for MS relative to those in the median quantile.
Remarkably, subjects with higher monocyte-specific scores were at
higher risk compared to other groups (Fig. 4a–c and Supplemen-
tary Data 7). Similar patterns were observed in the EPIC dataset,
however, the increase of risk in tails of CPRS distributions is
greater than UKBB2 (Fig. 4d–f and Supplementary Data 7).

Association of CPRS with MS phenotypes. The MRI-based
phenotypic outcomes are hallmarks of disease activity capturing
regional tissue loss in the CNS. We assessed the association of CPRS
based on both all and unique cell-specific variants with the baseline
values of MS neuroimaging markers, including volumetric mea-
surements of the brain (BV), white matter (WMV), gray matter

(GMV), and cerebrospinal fluid (CSF) in the MS subjects of the
UCSF-EPIC cohort (n= 461). Associations of CPRS scores with
MS phenotypes were examined in linear regression models cor-
rected for age at examination, gender, and disease duration, and
goodness of fit was measured by R2. Associations remained sig-
nificant with WMV after correcting for multiple testing (P < 0.05).
The highest observed association was between monocyte-specific
scores and WMV (β =−0.13, R2= 2.1%) as shown in Supple-
mentary Table 4. Excluding MHC further improved associations of
monocyte-specific scores with both WMV (β =−0.14, R2= 2.2%,
P < 0.05) and BV (β =−0.10, R2= 1.66%, P < 0.05) as summarized
in Supplementary Table 5. A relatively strong association of WMV
with CPRS incorporating only unique SNPs in microglia (β =
−0.13. R2= 2.03%, P < 0.05) and monocytes (β = −0.11,
R2= 1.54%, P < 0.05) was observed (Table 2). Lastly, weak posi-
tive associations were found between the CSF volume and CPRS of
unique SNPs in B cell (β= 0.08, R2= 0.85%, P < 0.05) and
monocyte (β= 0.08, R2= 0.92%, P < 0.05).

Table 1 Prediction accuracy of CPRS based on unique SNPs in each cell type.

Model (r2= 0.1) UKBB2 1354 cases/ 252,065 controls UCSF-EPIC 494 cases/ 449 controls

R2* (%) P AUC (%) R2* (%) P AUC (%)

B cell 2.2 1e-69 64 2 2.3e-11 65
Monocyte 2.4 1.68e-84 64 3.1 4e-16 68
Microglia 2 7.2e-72 63 2 4e-11 65
Combined 2.9 2.9e-102 65 3.4 2e-17 69

*Adjusted for MS prevalence 0.00127.

Fig. 4 Odds ratio across CPRS strata B cell, monocyte, and microglia. a–c UKBB2 and (d–f) UCSF-EPIC datasets. Cases are enriched at the top 5%
quantile for all cell types, increasing risk by 3- to 5-fold. Individuals in the tail of monocyte-specific scores are at higher risk compared to other groups. The
difference in the OR scale between UKBB2 and EPIC should be noted. Data points in each panel are odds ratios estimated from a logistic regression and
error bars represent standard errors on the values.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04713-5

6 COMMUNICATIONS BIOLOGY |           (2023) 6:342 | https://doi.org/10.1038/s42003-023-04713-5 | www.nature.com/commsbio

www.nature.com/commsbio


Replicating these associations in the limited number of MS
cases in the UKBB2 with available phenotypic information
(n= 89) was not successful (Supplementary Table 6). This is
likely due to the small cohort size, differences in measurement
protocols, and treatment trajectories. Lastly, none of the CPRS-
phenotype associations in the UK Biobank non-MS subjects with
MRI data (n= 819) turned out to be significant (Supplementary
Table 7).

The association of CPRS with disease activity was also
investigated in the UCSF-EPIC cohort. Participants (n= 464)
were grouped according to whether they had experienced one or
more relapses within a 5-year interval from the baseline visit,
regardless of disease worsening within the same timeframe. An
increase in both B cell- and microglia-specific risk was associated
with relapse activity (βB-cell = 0.29, P < 0.005; βmicroglia= 0.29,
P < 0.005; βmonocyte= 0.25, P < 0.05), which remained significant
after correcting for age, sex, and disease duration.

Discussion
In this study, we leveraged updated algorithms and GWAS
summary statistics, together with regulatory annotations (DNase-
seq, ATAC-seq, scATAC-seq, ChIP-seq) and chromatin interac-
tion maps (PCHiC, HiChIP), to identify causal cell types and
genes in MS. We document the significant enrichment of MS-risk
associations in OCRs of microglia and peripheral immune cell
types, the later driven by active enhancers in B cells and mono-
cytes. The lack of scATAC-seq data from patients with MS is a
limitation of this analysis. Future studies will be required to
generate such datasets. Joint analysis on scATAC-seq data from
healthy individuals and MS patients will help us better under-
stand MS pathogenesis.

The importance of B cells in MS has been confirmed by the
success of B cell-depleting anti-CD20 therapies25–27. Our recent
work demonstrates widespread hypomethylation in CD19+ B
cells at clinical disease onset28, posing a mechanistic link to the
remarkable clinical efficiency of the anti-CD20 antibody treat-
ments for this disease. Increasing attention has been given to the
role of memory B cells in MS, which are enriched in the cere-
brospinal fluid of MS patients29–31, and indeed, a recent study
concluded that the genetic enrichment in B cells is driven by
OCRs in memory B cells4. Here, using single-cell and bulk
chromatin accessibility data, we show that MS GWAS signals are
significantly enriched in both naïve and memory B cells. These
results indicate that both naïve B cells and memory B cells play
important roles in MS susceptibility.

Using scATAC-seq data, we found MS GWAS signals were
significantly enriched in microglia but not in other brain cell
types. Using gene expression data, a previous study showed that
MS risk genes are only significantly enriched in microglia within
the CNS1. To our knowledge, our study demonstrates for the first
time that MS GWAS signals are significantly enriched in reg-
ulatory regions of microglia, providing direct genetic evidence for
microglia involvement in MS susceptibility.

Additionally, our analysis shows that MS GWAS signals are
significantly enriched in active enhancers. It is widely accepted
that the enhancers regulate target genes through 3D chromatin
interactions. Therefore, we applied H-MAGMA framework to
predict the putative causative genes associated with MS risk in
B cells, monocytes, and microglia. By comparing different cell
types, we further identified shared and cell type-specific genetic
signatures. GO analysis on the shared genes is consistent with
the previously established role of cytokine signaling, leukocyte
activation, antigen processing and presentation, and NF-kappa
B signaling32–35. In contrast, cell-type specific genes revealed
the involvement of other pathways such as “G2/M check-
points” and “PRC2 methylates histones and DNA”, which are
enriched in B cell- and microglia- unique genes, respectively.
Consistent with our analysis, the predicted microglia-specific
gene DNMT3A has been recently reported in a scRNA-seq
study to be over-expressed in one cluster of microglial
cells from MS patients (Fold increase: 1.21, P= 8.37e-08,
FDR= 0.0028)36. An extended body of data is consistent with
Epstein-Barr virus (EBV) infection triggering the development
of MS37. Previous studies have validated that EBV infection of
B cells results in epigenetic changes of both EBV and cellular
genomes, including expression changes in DNA methyl-
transferases (DNMTs), and the following widespread expres-
sion changes in cellular genes38,39. Altogether, these findings
suggest that DNMTs are involved in the early development of
MS through the epigenetic control of immune cells, especially
B cells and microglia.

Recent studies demonstrated that polygenetic risk scores are
informative measures of risk in MS and other autoimmune
diseases40–43. Cell-specific risk scores incorporating variants
based on 3D chromatin interaction profiles also show statistically
significant association with risk, suggesting that disease-
associated variants mediate susceptibility to a large degree
through chromatin interactions. Strong association of CPRS
based on unique genetic markers in monocytes and B cells further
confirm the importance of these cell types in MS susceptibility.
Remarkably, CPRS based on unique SNPs in all three cell-types,
particularly in microglia, have significant associations with
WMV. Furthermore, the effect of MHC genetic burden inclusion
had a different impact on phenotype association as compared to
disease susceptibility, suggesting distinct mechanisms through
which MHC regulates MS risk versus progression. To our
knowledge, this is the first study directly linking cell-type
specific risk burden statistics to MS phenotypes, although the
clinical implications of these findings require further functional
validation.

In summary, our analysis provides biological insights into MS
genetic susceptibility and pinpoint at B cells and microglia as key
mediators of disease risk variants. Further studies will be required
to functionally validate the regulatory networks in a cell-specific
manner.

Table 2 Phenotype association of CPRS based on unique SNPs.

Phenotype Combined B cell Monocyte Microglia

R2 (%) β R2 (%) β R2 (%) β R2 (%) β
BV 1 −0.08 1.03 −0.08 1.08 −0.08 1.32 −0.09
WMV 1.65a −0.12 0.99a −0.09 1.54a −0.11 2.03a −0.13
GMV 0.18 −0.03 0.44 −0.05 0.28 −0.04 0.28 −0.04
CSF 0.82 0.07 0.85a 0.08 0.92a 0.08 0.82 0.08

aP < 0.05.
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Methods
GWAS summary statistics. The International Multiple Sclerosis Genetics Con-
sortium (IMSGC) GWAS summary statistics for 8,589,720 SNPs coming
from14,802 subjects with MS and 26,703 controls of European ancestry1 were used
for the analysis. We additionally obtained GWAS summary statistics from multiple
autoimmune and psychiatric disorders: systemic lupus erythematosus (SLE)12,
rheumatoid arthritis (RA)13, celiac disease (CD)14, inflammatory bowel disease
(IBD)15, systemic sclerosis (SS)16, type 1 diabetes (T1D)17, Alzheimer disease
(AD)18, schizophrenia (SCZ)19, and bipolar disorder (BPD)20. The sample sizes,
ancestry information and covered SNPs numbers of these GWAS data were pre-
sented in Supplementary Data 8.

Epigenetic datasets. Single-cell ATAC-seq (scATAC-seq) peaks of peripheral
blood and adult human brain were obtained from Corces et al.7 and Chiou et al.8.
For each dataset, the peaks that were uniquely presented in half of all cell types or
less were defined as cell-type-specific peaks. Bulk DNase I–hypersensitive sites
and ATAC-seq peak data were downloaded from ENCODE44–46, Roadmap
Epigenomics47, and Blueprint projects48 for available cell types or tissue from the
immune system and CNS (Supplementary Data 9). The histone modification
chromatin immunoprecipitation sequencing (ChIP-seq) peaks were downloaded
from ENCODE44–46, Roadmap Epigenomics47, and Blueprint projects (Supple-
mentary Data 9). The Candidate cis-Regulatory Elements (cCREs) defined by
DNase hypersensitivity sites, histone modifications, and CTCF-binding data were
obtained from ENCODE project46.

Enrichment of GWAS associations within regulatory annotations. We applied
GARFIELD v2 (GWAS Analysis of Regulatory or Functional Information
Enrichment with LD correction)5 to the MS GWAS discovery summary statistics to
calculate the enrichment of GWASs associations within cell-type specific annota-
tions (DNase I–hypersensitive sites, ATAC-seq peak, ChIP-seq data and cCREs),
using the default LD information available from the package. Briefly, the LD was
calculated using PLINK with --tag-r2 0.01 --tag-kb 500 (and --tag-r2 0.8 --tag-kb
500) flags to identify all proxies within a 1-Mb window around each variant, at R2

0.01 and 0.8. The data were computed from 3,621 European individuals from
UK10K project. Variants were annotated in 0/1 format based on the overlap
information with each regulatory annotation. For the MS GWAS enrichment
analysis, we performed five independent GARFIELD analyses at eight GWAS
P-value thresholds (T < 0.05 to T < 10−8) based on regulatory annotation obtained
from difference resources: 1) cell-type-specific regulatory annotations derived from
scATAC-seq data of peripheral blood and adult human brain. 2) open chromatin
annotations in 424 cell lines and primary cell types available from GARFIELD
package5, 3) DNase-seq, ATAC-seq, and histone modification ChIP-seq data
downloaded from ENCODE project for immune and brain cell types, 4) DNase-
seq, ATAC-seq, and histone modification ChIP-seq data downloaded from Blue-
print project for immune cell types, 5) cCREs from ENCODE project for immune
cell types. GARFIELD was also run on the GWAS summary statistics from SLE,
RA, CD, IBD, SS, T1D, AD, SCZ and BPD to calculate the enrichment of genetic
associations of these diseases within cell-type-specific regulatory annotations
derived from scATAC-seq data.

H-MAGMA analysis. To predict the MS risk genes associated with statistically
significant risk SNPs we employed the H-MAGMA analysis6 by incorporating
chromatin interaction profiles in B cells, monocytes, and microglia. The GWAS
summary statistics (14,802 subjects with MS and 26,703 controls) was used as
one input file for the analysis. The promoter capture Hi-C (PCHiC) data22 from
B cell and monocytes and H3K4me3 HiChIP data from microglia23 were used to
generate the gene-SNP annotation files for the H-MAGMA analysis. First, the
exonic and promoter SNPs were annotated to the genes based on the genomic
location information from the reference of Gencode v26 (GRCh37). A promoter
was defined as 2-kb upstream of the transcription start site (TSS) of each gene
isoform. Next, the chromatin interaction regions were overlapped with Gencode
v26 (GRCh37) exon and promoter coordinates to identify exon-based and
promoter-based interactions. After that, the SNPs that interact with gene pro-
moters or exons were annotated to the interacting genes. The chromatin
interaction-based annotations were then combined with location-based anno-
tations to generate the final gene-SNP annotation file for each cell type. The
default setting of H-MAGMA v1.08 was used to run the pipeline. After gen-
erating the gene level P values, the false discovery rate (FDR) values were cal-
culated using the function p.adjust in R, restricting the risk genes to protein-
coding genes with FDR < 0.05.

The risk genes predicted by H-MAGMA were compared between each cell type
to identify the common and unique risk genes. To capture the biological functions
associated with the gene lists, we applied Metascape49, a web-based platform, to
provide comprehensive gene annotation and enrichment analysis.

Genotype-phenotype datasets
UK Biobank. The UK Biobank prospective cohort is an open resource providing
genetic, phenotypic, and several health-related indicators for over 500,000 indivi-
duals residing in the United Kingdom50. Genome-wide genotype data have been

collected for all participants; details described by Bycroft et al.50 Prior to polygenic
risk score validation and testing, bi-allelic variants were filtered for low imputation
quality (INFO < 0.6), low minor allele frequencies (< 1%), genotype missingness
(> 10%), and deviating from the Hardy-Weinberg equilibrium (P < 1e-6). Indivi-
duals with ‘British’ ethnicity and categorized as Caucasian according to genetic
principal components were kept for further analyses. Non-MS individuals with no
record of self-reported autoimmune, neurodegenerative, and mononucleosis
infection diagnoses according to ICD-coded diagnosis were included. Related
individuals were excluded according to their kinship coefficient (> 0.0844). Indi-
viduals withdrawn from the informed consent, and with low genotype quality
(discordance between genetically reported and inferred sex and putative sex
chromosome aneuploidy) were removed. Age of MS diagnosis is self-reported. The
total number of cases and controls were 601 and 109,990 in the UK Biobank phase
1, and 1354 and 252,065 in the UK Biobank phase 2, respectively. Selected imaging-
derived phenotypes normalized to the head size of 89 MS cases produced by an
image-processing pipeline developed on behalf of UK Biobank51,52, was used to
phenotype association.

UCSF EPIC. Genetic and baseline clinical and imaging data of the UCSF-EPIC
cohort including 462 MS patients were utilized for studying the association
between polygenic risk scores and selected MRI and clinical phenotypes53.
Variant- and individual-level quality controls were performed in accordance
with the UK Biobank. Clinical and MRI outcomes of EPIC patients included
volumetric measurements of the total brain (BV), total grey matter (GMV),
peripheral gray matter (pGMV), white matter (WM), and cerebrospinal fluid
(CSF). All studies were approved by the UCSF Institutional Review Board, and
all datasets involving human samples acquired informed consent from
participants.

Cell-specific polygenic risk score (CPRS) and phenotype association. We used
PRSice-254 to generate and validate polygenic risk score (PRS) for MS and non-MS
subjects in the UK Biobank phase 1 cohort (UKBB1). Significance values and effect
sizes from the IMSGC summary statistics were utilized to obtain the best CPRS
model, which was then tested in the UK Biobank phase 2 (UKBB2) and UCSF-EPIC
target cohorts. CPRS were computed for SNPs annotated to cell-specific gene sets
identified by the H-MAGMA algorithm, the gene-SNP annotations for each cell type
were based on chromatin interaction and location as indicated in H-MAGMA
analysis. The CPRS for each subject is generated by taking the weighted sum of the
pruned effect alleles. The r2 of 0.1 was used to ensure the inclusion of only inde-
pendent effects. Scores were optimized across a range of P value thresholds
(5e-08, 5e-07, 5e-06, 5e-05, 0.0005, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1) in the base
dataset. Coefficient of determination adjusted for MS prevalence in the white
population and area under the curve (AUC) was used as measures of prediction
accuracy.

Regression models were used to assess phenotype association of CPRS.
Covariates included in the phenotype association test were age at examination,
gender, and disease duration.

Statistics and reproducibility. The statistical tests used in this study were per-
formed using R v3.6, and details statistical analyses were described within the
methods section. Significantly GO terms and KEGG pathways were defined under
the threshold of P value < 0.05. The significant P values were marked with
*P < 0.05, **P < 0.01.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data underlying Fig. 3b, c are presented in Supplementary Data 4 & 5. The
source data underlying Fig. 4 are presented in Supplementary Data 7. The source studies
for the summary statistics are presented in Supplementary Data 8. Links for publicly
available epigenetic datasets are included in Supplementary Data 9. The cCREs data were
downloaded from https://screen.wenglab.org/. Any other data that support the findings
of this study are available through application to UK Biobank or request from the
corresponding author.
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