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Jbstract

We demonstrate the construction of an immunoarray to categorize, identify and quantitate different triazine herbicides or
their environmental metabolites in water. In a first step cluster analysis is used to examine the performance of a small subset
of antibodies out of a larger library, and hence to select a small array that is capable of categorizing the triazine herbicides
into different groups. At the 1 ppb level it is possible to categorize an analyte as a chloro-s-triazine, a hydroxy metabolite, or
as a methoxy /methylthio substituted triazine when using only 2—4 antibodies. At higher concentrations even the identity of
the triazine can be determined with the same number of antibodies. A selected combination of antibodies is then used to
identify and quantify unknowns by comparing their immiinoassay responses to an array of calibration curves and using the

maximum likelihood criterion.

Keywords: Immunoarray construction; Triazine herbicides; Herbicides; Environmental analysis

1. Introduction

Triazines are a heavily used class of herbicides
throughout the world, and atrazine is the most com-
monly applied single herbicide in the US alone.
Jthough it is most likely to find atrazine when one
‘s analyzing soil or water samples for presence of
tiazines, chances are good that one will find instead
or in addition to atrazine one of a number of com-
pounds such as simazine, cyanazine or their metabo-
lites. Gas chromatography (GC) [1,2], liquid chro-
matography (LC) [3-5] or capillary electrophoresis
(CE) [7,8] are suitable methods to identify and quan-

* Corresponding author.

titate different analytes within a class of compounds
(here: triazines). For screening large numbers of
samples, screening a wide range of analytes within a
class of compounds and for on-site analysis, im-
munoassays sometimes are a more powerful and
simpler tool than instrumental analytical methods.
Immunoassays can either be independent methods or
complement instrumental analytical techniques by
sorting out contaminated samples.

Many groups have developed immunoassays for
triazine herbicides such as atrazine [9-12], cyanazine
[13], terbutylazine [14], terbutryn [15], hydroxyatra-
zine [16,17], or N-dealkylated triazines [18-20].
Cross reactivity to any other triazine herbicide be-
sides the one an antibody has been developed for is
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disadvantageous if the triazine present in a sample is
not the target analyte. The data obtained will be
incorrect, because one immunoassay alone may lack
the discriminatory power to distinguish among cross
reacting compounds. On the other hand, cross reac-
tivity is a very useful feature for the quantitation of
multiple analytes of the same chemical class since
structurally similar compounds will most likely cross
react. Especially in the case of small analytes such as
pesticides, many cross reacting compounds may exist
for a given antibody. With many compounds it is
possible to design immunizing haptens that will give
assays that are specific for a single molecule or will
detect a range of related structures.

Recently, several groups have used cross reactiv-
ity of antibodies to perform multianalyte immunoas-
says within a class of compounds [21-23]. Muldoon
et al. [21] assayed concentrated ternary mixtures of
atrazine, simazine and cyanazine in pesticide waste
and rinsate using multiple regression. They assumed
that the log standard curves of different analytes are
parallel. In their multianalyte ELISA (MELISA)
Jones et al. [22] extended the four parameter log-lo-
gistic curve to mixtures where log parallelity was not
assumed. Wortberg et al. [23] applied the MELISA-
methodology of [22] for analysis of ternary and
quaternary mixtures of triazines at low to sub-ppb
levels.

Multivariate statistical analysis as a means of
identifying (and sometimes quantitating) analytes is
a well-established method. An example for the iden-
tification of triazine herbicides by pattern recognition
has been described in [24]. The underlying assump-
tion is that the characteristic pattern generated by
each analyte is consistent over a certain range of its
concentration. A good overview over different math-
ematical approaches to multivariate analysis is given
in [25].

The MELISA-approach to mixture analysis is
equivalent to maximum likelihood estimation (MLE)
if the number of antibodies used exceeds the number
of analytes. Assaying a mixture requires at least as
many antibodies as there are components in the
mixture. Thus, if there is a large set of possible
analytes, a full mixture analysis becomes costly and
difficult. The simultaneous quantification of four
analytes seems to be the limit, both in terms of
accuracy and cost due to the number of antibodies

and calibration curves involved. It would be advanta-
geous to have a method that allows categorizing
analytes into certain subgroups and thus narrows
down the number of antibodies needed for MELISA.
A subgroup would comprise analytes with similar
substitution patterns or the same functional group,
thus highly cross reacting analytes.

Very importantly, categorization and identifica-
tion of an analyte by immunoassay would be a novel
confirmation method for conventional single analyte
immunoassays. The immunoarray could replace ex-
isting confirmation strategies which now are based
on GC, GC-MS or HPLC.

The categorization would also help select the
appropriate method in case instrumental analysis is
still needed. For example, one would use different
HPLC methods for chromatographic analysis of
metabolites (hydrophilic) than for parent compounds
(more lipophilic). If one were using an immuno-
chemical detection system for HPLC, prior catego-
rization would facilitate selection of the optimum
assay for postcolumn detection.

It is desirable to find a small subset of antibodies
from a larger pool which will differentiate suffi-
ciently between analytes. In practice one may have
prior knowledge of likely candidates for inclusion,
i.e., the cross reactivity patterns may indicate the
potential usefulness or uniqueness of a certain anti-
body. Cheung et al. [24] suggest principal component
analysis (PCA) as a means of eliminating antibodies
with little to contribute. Our approach is to use
cluster analysis to examine the performance of se-
lected antibody subsets. Since the cluster method
enables immediate visual assessment of the results, it
is a useful and user friendly tool, allowing many
possible combinations to be compared. As Karu et
al. [25] point out, cluster analysis is not suitable for
quantitation of unknowns. We suggest that it is
useful for the above task of selecting antibodies, and
with an appropriate metric, which we derive below,
can be interpreted in terms of statistical likelihood.
This gives the advantage of a firm basis for deciding
whether two samples are different or identical, based
on the actual assay responses. We demonstrate our
methodology and the application of the resulting
assay to triazine herbicides. Although we focus on
triazine herbicides, they are meant to serve as an
example representing a more general problem.
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As the cross reactivity of antibodies among com-
pound classes or groups of compounds becomes less,
the power of this technique increases. We have
selected assays in common use and /or assays which
we feel are typical of those generated in the field.

2. Methods
2.1. Materials

The monoclonal K1F4 antibody [15] was kindly
provided by B. Hock and T. Giersch (TU Weihen-
stephan, Germany), AM7B2.1 [29] was donated by
A. Karu (University of California, Berkeley, CA).
The polyclonal antibodies 194, 841 and 842 were
produced by Harrison et al. [9]. The polyclonal anti-
body 2652 was produced by Lucas [18], the poly-
clonal 4653 is described in [30]. Five of the triazine
herbicide derivatives were synthesized by Goodrow
et al. [31], one by Muldoon et al. [20]. Triazine
herbicide standards were from Ciba-Geigy (Greens-
boro, NC). Horseradish peroxidase (HRP) conjugates
of anti-mouse IgG and anti-rabbit IgG as well as
ovalbumin grade VI, crude ovalbumin, 1-ethyl-3-(3-

Table 1
Structure of the triazine herbicides used in this study
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dimethylaminopropyl) carbodiimide (EDC), and te-
tramethylbenzidine (TMB) were purchased from
Sigma (St. Louis, MO). Dimethylformamide (DMF)
and dimethylsulfoxide (DMSO) of LC grade and
N-hydroxysuccinimide (NHS) were obtained from
Aldrich (Milwaukee, WI). Buffer reagents of analyti-
cal grade were purchased from Fisher Scientific (Fair
Lawn, NJ). For purification of ovalbumin—hapten
conjugates we used 5 ml Presto desalting columns
(Pierce, Rockford, IL). Microtiter plates were ob-
tained from Nunc (Denmark). For reading the optical
densities we used a Molecular Devices UVMax
Reader (Sunnyvale, CA) equipped with the standard
ELISA software Softmax. Cluster analysis and MLE
were performed with the S Plus software package.

2.2. Analytes

Triazine herbicides are derived from cyanuric
chloride by substitution of 2 of the chlorine atoms
with alkylamino groups. Additionally the third chlo-
rine may be substituted with a methoxy or meth-
ylthio group. The general structure of triazine herbi-
cides as well as the structures of the eight triazines
used in this study are shown in Table 1. Atrazine,

A

NON
RN J\N*u R
H
Analyte R! R?2 e
Group 1: ‘““azines”
Atrazine Cl ethyl isopropyl
Cyanazine Cl ethyl (cyano)isopropyl
Simazine Cl ethyl ethyl
Group 2: hydroxymetabolites of “‘azines’’
Hydroxyatrazine OH ethyl isopropyl
Group 3: dealkylated “azines”’
Decthylatrazine Cl H Isopropyl
Group 4: ““tryns/tons’’
Prometon OCH, isopropyl isopropyl
Prometryn SCH, isopropyl isopropyl
Terbutryn SCH, ethyl tert. butyl

The classification into 4 groups was-done according to similarities and differences of the substitution patterns. The group ‘‘names’’ were

derived from the compounds’ common names.
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simazine, deethylatrazine and cyanazine all have one
Cl-atom as R'. In hydroxyatrazine the third chlorine
is substituted with a hydroxy group. Prometon bears
a methoxy group in the R' position, terbutryn and
prometryn a methylthio group. The differences in
positions R*/? are less distinct.

Abiotic degradation of chloro-s-triazines leads to
the loss of the third chlorine and formation of a
hydroxy metabolite [26]. Bacterial or fungal degrada-
tion in soil leads to N-dealkylation and therefore to
the loss of one or both alkyl side chains [27,28).
Roughly, triazine herbicides can be grouped into four
different structural ‘‘classes’: (1) one chlorine left
(““azines”’), (2) hydroxy metabolites of (1), (3) N-
dealkylation products of (1) or (2), and (4) meth-
ylthio /methoxy substituted (‘‘tryns /tons”’).

2.3. Antibodies and haptens

We utilized several different anti-triazine herbi-
cide antibodies, both monoclonals (mAb) and poly-
clonals (pAb) which have been characterized else-
where. Table 2 shows the cross reactivities of the
antibody-hapten systems used here. The pAb 194
prefers atrazine and prometryn [9], 841 and 842
show the highest cross reactivity for atrazine and
simazine [9], whereas the mAb AM7B2.1 [31] prefers
cyanazine and atrazine. MAb K1F4 prefers analytes
substituted in the R'-position (terbutryn, prometryn,
prometon) but cross reacts with some other analytes
as well [15]. Pab 4653 reacts almost exclusively with
hydroxyatrazine, but at higher concentrations prome-
ton can be also detected [30]. Pab 2652 detects only

Table 2

N-monodealkylated triazines, to a lower extent also
didealkylated ones [18]. The last two antibodies are
almost specific, so that their incorporation should
largely facilitate the pattern recognition process and
improve the cluster analysis. However, the antibody
for the N-dealkylated compounds is insensitive com-
pared to the other antibodies in terms of limit of
detection. Therefore, quantitation of low concentra-
tions of deethylatrazine will be difficult without bet-
ter reagents.

2.4. Coating hapten format enzyme-linked immuno-
sorbent assays for cluster analysis

The assay and the synthesis of ovalbumin—hapten
conjugates (coating haptens) has been described pre-
viously [23]. Plates were coated with ovalbumin—
hapten conjugates and the surface of the wells was
subsequently blocked with ovalbumin.

The competitive ELISA comprised 3 steps: com-
petitive incubation of sample together with the spe-
cific antibody, introduction of a secondary HRP-.
labeled antibody and conversion of the enzyme sub-
strate hydrogen peroxide into a colored product by
using TMB. Optical densities (ODs) were read at
450 nm with a 650 nm background correction. For
each antibody the assay was optimized in a way that
the curve midpoints (IC,,s) for the main analytes

‘were as similar as possible to achieve comparable

limits of detection for all analytes. As mentioned
above this was not possible with pAb 2652 which
had a 10 times higher limit of detection than the
other antibodies.

Cross reactivities of the antibodies AM7B, K1F4, 194, 841, 842, 2652 and 4653 used in the study towards the chosen 8 triazine herbicides

Analyte Antibody cross reactivity (%)

AM7B [32]

K1F4 [16] 194 *

841 [0] 842 [9] 2652 [19] 4563 *

Atrazine
Cyanazine
Simazine
Hydroxyatrazine
Deethylatrazine
Prometon
Prometryn
Terbutryn

The percentages quoted from the literature were converted by setting the most cross reacting of the 8 analytes to 100%. Data indicated with
a * are original data. Some cross reactivities vary from literature data, because there are slight variations depending on the coating hapten.
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Initially we only compared antibody responses to
identical concentrations (in ppb) of the eight ana-
lytes. Standards of 1, 2 and 10 ppb of each triazine
were pipetted in quadruplicate on the same plate and
incubated with just one antibody. The same samples
were run on several other plates, using a different
antibody for each. It was important to have all
samples on one plate because the raw optical densi-
ties were used for clustering, and plate to plate
variation would have an effect on the absolute read-
ings. Using four replicates of each sample allowed to
split them into two sets of duplicates and treat them
as independent samples in clustering. Details about
the clustering procedure are described in Section 3.

2.5. ELISA for the identification of unknowns by
maximum likelihood estimation (MLE)

The clustering assay helped select the final com-
bination of antibodies for an assay that is capable of
identifying and possibly quantifying unknown ana-
lytes within a class of compounds. We used the Abs
AM7B2.1, K1F4, 2652 and 4653 for the following
experiments.

For the MLE assays we generated standard curves
for all triazines with 4 antibodies. On each plate
standards of 0, 0.5, 1, 2, 10 and 10,000 ppb (= blank)
were assayed in duplicate. The remaining wells were

used for the samples, a dilution series of each of the

8 different triazines (5, 1.5 and 0.75 ppb). Eight
wells were dedicated to negative controls. The sam-
ple concentrations were chosen to fall between cali-
bration standard concentrations. Using a dilution se-
ries ensures that an unknown falls within the useful
range of the assay. We were also interested in whether
assaying a dilution series as opposed to unrelated
samples would improve the performance of the as-
say. The ‘‘unknowns’’ in each dilution series were
classified separately and quantitated using a maxi-
mum likelihood routine (see Section 3).

3. Statistical methods
3.1. Cluster analysis

The ODs for an unknown assayed with n differ-
ent antibodies can be represented by a point y =

(¥1,¥25.-..y,) in n-dimensional space. Here y; is
the OD for the unknown (or an average of replicates
of the unknown) assayed with antibody i. Given a
number of unknowns, the method of cluster analysis
can then be used to group them according to the
distances between the corresponding points. It is
important however to use an appropriate metric for
measuring this distance.

We assume here that the ODs have constant
coefficient of variation (C.V.), in which case the log
transform is variance-stabilizing, i.e., log y has con-
stant variance. If we assume further that log y is
approximately normally distributed then we can
write:

logy=logu+e¢

where u is the mean OD for the unknown and ¢ is a
Gaussian error term.

The Euclidean distance d between two points y,
and y, for two identical unknowns can now be
expressed as:

n

d* = Z (&1 32;‘)2

(i=1)

If the C.V.s are the same for assays with different
antibodies, it can be shown that for the means of two
k-replicates of the same unknown, kd’/2s* will
have approximately a chi-square distribution with n
degrees of freedom. Here s? is the variance of log y
estimated from the replicates on the plates. (If the
variances are found to vary significantly from plate
to plate, the components of the distance could be
weighted appropriately; this was not found to be
necessary for our data.)

By using upper percentage points of the chi-
squared distribution we can now find a distance d”
within which points from unknowns which are really
the same would be expected to lie with a high
probability. On our cluster diagrams we show two
lines representing 95% and 99.9% probability. If
however the unknowns are different (either different
analytes or different concentrations), the us will be
different and thus the distance between points will
tend to be larger. Thus if two points on the cluster
diagram are joined at a distance larger than d~, this
can be regarded as an indication that they are differ-
ent.
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Clearly the power of this method depends on the
us being different enough, which in turn depends on
the discriminatory power of the antibodies used. By
examining cluster diagrams we get a clear picture of
whether a particular panel of antibodies achieves
sufficient discrimination, as well as a grouping of

0.8

0.6

0.4

0.2 ‘

———

our analytes according to their similarities. Most
statistical packages which perform cluster analysis
will enable the selected antibodies to be changed
easily, so many different selections can be examined
quickly in this way.

The statistical interpretation of the distances de-
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Fig. 1. Clustering diagrams of 8 triazines using the 2 antibodies K1F4 and AM7B2.1. (a) At 1 ppb and (b) at 10 ppb. The dotted lines
represent distances which, with probabilities of 95% and 99.9% respectively, would not be exceeded by two samples of the same identity.
Two samples are regarded (with 95% or 99.9% confidence) as identical if joined undemeath the line or as different if joined above the line.
The distances were derived from a chi-square-distribution. Four replicates of each sample were split in two sets of duplicates. Atl.1: atrazine
1 ppb, set 1; Atl.2: atrazine 1 ppb, set 2; Cy: cyanazine; De: deethylatrazine; OH: hydroxyatrazine; Pr: prometon; Pre: prometryn, Sim:

simazine; Terb: terbutryn.
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Fig. 2. Clustering diagram of the same 1 ppb samples as in Fig. 1A but using all 7 antibodies instead of 2.

pends on the many assumptions listed above. To test
the appropriateness of our d* values, we included in
our diagrams pairs of unknowns which were really
the same. It can be seen that in most cases these
were joined at a distance less than d*, but there are
a few glaring inconsistencies. The assumptions might
be violated in a number of ways; in particular we
believe that outliers and spatial effects on the plate
might cause problems. Nevertheless the statistical
interpretation does seem to hold reasonably well for
our data.

2.0

1.5 1

1.0 1

3.2. MLE analysis

Suppose we have an unknown which might be
any one of m possible analytes (we assume here that
it is not a mixture). We obtain the ODs y of the
unknown and the m X n calibration curves, with n
being the number of antibodies. As above, we as-
sume that for each component log y, is approxi-
mately normally distributed, its mean being given by
the appropriate points on the correct calibration
curves.
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Fig. 3. Clustering diagram of the 1 ppb samples as in Fig. 1 and 2, using the 4 antibodies AM7B2.1, K1F4, 2652 and 4653.
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Fig. 4. Clustering of 8 triazines at 3 different concentrations (1, 2, and 10 ppb) when (a) using all 7 antibodies and (b) using only the 4
antibodies AM7B2.1, K1F4, 2652 and 4653. Atl: atrazine 1 ppb; At2: atrazine 2 ppb, etc.

Identification and quantitation of an analyte is
performed according to the following algorithm: for
an analyte j from 1 to m, we first assume that the
unknown is analyte j and then minimize the sum of
squares of the distances from log y to the mean
point given by the calibration curves for analyte j.
This gives a least squares estimate x; of the concen-
tration and a minimized sum of squares F;. Then we
repeat the minimizing procedure by assuming the
analyte now is a different one and repeat this for all
possible analytes. Now we choose the minimum
among the Fjs: this gives the analyte and concentra-
tion which minimizes the sum of squares of the

errors overall. This is also, by the assumption of
normality of the errors, the MLE. Although we have
used here a constant C.V. model, the method is
easily adapted for other assumptions about the vari-
ance structure.

4. Results and discussion

4.1. Cluster analysis

In the clustering experiment 8 triazines were as-
sayed at 1, 2 and 10 ppb using 7 different antibodies.
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A zero sample was included to serve as a negative
control. We subsequently performed cluster analysis
on the ODs from selected subsets of antibodies.
Likely antibody combinations were chosen according
to their individual cross reactivity patterns. If one
uses two antibodies with very different cross reactiv-
ity patterns one can gain more information about the
analytes than when one uses two very similar anti-
bodies. Also, if none of the antibodies chosen cross
reacts with an analyte to be identified, categorization
might be impossible or just work by an exclusion
principle. Considering this, certain less useful combi-
nations can be excluded right away.

As an example Fig. 1a shows a clustering diagram
obtained with combining only the ODs of the two
monoclonal antibodies K1F4 and AMT7B2.1.
AM7B2.1 is essentially an antibody for ‘‘azines”,
whereas K1F4 preferably binds to the ‘‘tryns/tons’’.
For the plot the four replicates of each sample were
split into two sets of duplicates, which were treated
as independent samples. Replicates of the same ana-
lyte and the same concentration (here: 1 ppb) should
cluster with themselves, which was observed. The
dotted lines represent probabilities of 95% (and
99.9%, respectively) that two samples are joined
below the lines if they are the same. All samples
joined above these lines are considered different. The
location of the lines has been derived from the
chi-square distribution as described in Section 3. At
the 1 ppb level the analytes fall nicely into two
categories, the ‘‘azines’’ and all metabolites vs. the
“‘tryns /tons’’. The group of the ‘‘azines’’ is divided
in a subgroup comprising cyanazine and atrazine and
a second subgroup containing simazine and the
metabolites deethylatrazine and hydroxyatrazine. The
zero is sorted out clearly. By the exclusion principle
the two antibodies can categorize an analyte as a
member of two groups or as a non-member, then
forming a third category. At 10 ppb the atrazine
metabolites form a separate cluster together with the
zero (Fig. 1b), and all analytes can even be discrimi-
nated from each other.

When the ODs of all seven antibodies are used for
clustering, all analytes can clearly be distinguished at
the 1 ppb level already (Fig. 2), i.e., different ana-
lytes are joined above the lines (dissimilarity) and
the replicates of the same analytes are joined below
(similarity). The discriminative power of this anti-

body combination is superior to the one of just 2
antibodies as was to be expected. Hydroxyatrazine is
sorted out very distinctly because of the presence of
a highly selective antibody for hydroxyatrazine.
Simazine is sorted out clearly from the other
‘‘azines’’, and terbutryn and prometryn also can be
distinguished.

To reduce the number of antibodies but to still be
able to categorize the compounds we chose antibod-
ies K1F4, AM7B2.1, 4653 and 2652. The monoclon-
als K1F4 and AM7B2.1 already ensured a classifica-
tion into ‘‘azines’’ and ‘“tryns /tons”’. Including 4653
and 2652 should help categorize hydroxyatrazine and
deethylatrazine, respectively. Results are shown in
Fig. 3. Due to the lack of a sufficiently sensitive
antibody for deethylatrazine and because of exclud-
ing the most cross reacting antibody for simazine,
842, these analytes cluster closely together at 1 ppb.
Since the IC,, for deethylatrazine was found to be
10 ppb with 2652, identifying deethylatrazine at all
at these concentrations is difficult. Terbutryn and
prometon are indistinguishable now, but are sepa-
rated from prometryn. Overall there is little loss in
discriminative power with the four antibodies com-
pared to all 7 antibodies. This suggests that the 3
antibodies that were left out did not contribute much
valuable additional information.

So far we compared only identical concentrations
for all analytes, except for a ‘‘zero’’ as a negative
control. The actual clustering not only depends on
the analyte but also on its concentration level: one
analyte at one concentration might look like another
at a different one. At a low concentration cross
reactivity of an analyte may not yet be evident,
whereas it will be obvious at higher concentrations.
Thus, clustering analytes at different concentration
levels will lead to different pictures, since at higher
concentrations classification of an analyte becomes
easier, unless the upper limit of the linear dynamic
range of the calibration curve is exceeded. In our
case cross reactivity of an analyte may not be appar-
ent at the 1 ppb level but be obvious when its
concentration reaches 10 ppb. To visualize the situa-
tion where different concentrations of each triazine
are allowed, Fig. 4a shows clustering of 8 analytes at
the concentration levels 1, 2 and 10 ppb, using all 7
antibodies. For reasons of clarity we clustered means
of quadruplicates instead of two sets of duplicates.
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The diagram indicates that the only obvious mix-
up occurs between 1 and 2 ppb simazine. Two zero
samples are identified as being the same and fall
within a single cluster. When the same clustering
analysis is done with only four antibodies, some
discriminative power is lost (Fig. 4b). Especially the
methoxy /methylthio-substituted triazines prometon,
prometryn and terbutryn cannot be distinguished well,
but the different concentration levels itself form indi-
vidual clusters. Low simazine concentrations cannot
be distinguished from low deethylatrazine concentra-
tions. Hydroxyatrazine on the other hand forms a

Table 3

M. Wortberg et al. / Analytica Chimica Acta 319 (1996) 291-303

very distinct cluster containing all possible concen-
trations.

4.2. Maximum likelihood analysis (MLE)

The immunoarray was then evaluated in another
experiment which was based on maximum likelihood
estimation utilizing the standard curve parameters A,
B, C and D. These four parameters are routinely
used for immunoassays to fit the sigmoidal dose—re-
sponse curves. The idea was to identify and quanti-
tate one unknown analyte at an unknown concentra-

Identification and quantitation of an analyte, demonstrated for three different herbicide samples

¢ (ppb) Analyte chosen F (AMTB) F{KIF4) F (2652) F (4633) LF?
-0.142 0.034 0.018 —1.566 2473
-0.128 0.068 0.018 —1.566 2.472
-0.079 0.090 0.018 -1.565 2.465
-0.027 0.079 0.018 -1.565 2.458
—-0.076 0.048 0.018 0.004 0.008
-0.142 0.034 0.018 —1.566 2473
-0.142 0.034 0.018 —1.566 2.473
—0.142 0.034 0.019 -1.566 2473
(B) Atrazine 0.75 ppb
0.00 Prometon -0.182 -0.279 —0.044 0.011 0.133
0.68 Atrazine 0.002 —0.001 -0.044 0.011 0.002
2.66 * Simazing ™ 0.052 —0.058 —0.042 0.013 0.008
0.73 Cyanazine 0.076 -0.175 —-0.043 0.011 0.039
0.00 Hydroxyatrazine -0.182 -0.279 ~0.044 0.011 0.113
0.37 Prometryn -0.176 0.004 —-0.044 0.011 0.033
0.34 Terbutryn —-0.175 0.004 —0.044 0.011 0.033
0.00 Deethylatrazine —-0.182 -0.279 0.000 0.011 0.111
(C) Negative control
0.00 Prometon -0.123 0.054 0.004 0.085 0.025
0.00 Atrazine -0.123 0.054 0.004 0.085 0.025
0.61 Simazine -0.091 0.090 0.005 0.085 0.024
0.31 Cyanazine -0.035 0.089 0.005 0.085 0.016
0.00 Hydroxyatrazine -0.123 0.054 0.004 0.085 0.025
0.00 Prometryn -0.123 0.054 0.004 0.085 0.025
0.00 Terbutryn -0.123 0.054 0.004 0.085 0.025
0.00 Deethylatrazine -0.123 0.054 0.005 0.085 0.025

The maximum likelihood routine first estimates a concentration for each possible analyte and subsequently gives the corresponding lack of
fit (F) for each of the four antibodies as well as an oveall lack of fit (TZF?2). The combination of an analyte and a corresponding
concentration with the lowest lack of fit is the one chosen as the estimate. Sometimes 2 or 3 analytes have a very similar lack of fit. The
final choice is made by picking the minimal lack of fit: the lowest overall lack of fit of a combination analyte /concentration means the
combination is the most likely one. As an example the data for 0.75 ppb hydroxyatrazine (A), 0.75 ppb atrazine (B) and a negative control
(C) are given. For hydroxyatrazine the decision is very distinct, whereas for atrazine there are two similarly likely choices. For the negative
control all choices are almost equally likely, therefore the choice is interpreted as ‘‘zero™.
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tion level. Since for a maximum likelihood analysis
knowledge of the calibration curve parameters is
necessary we had to assay several standard concen-
trations of all analytes. The concentrations of the
unknowns were chosen to fall in-between the stan-
dard concentrations of 0.5, 1, 2 and 2 ppb.

The maximum likelihood routine first estimates a
concentration for each possible analyte and subse-
quently gives the corresponding lack of fit for each
of the four antibodies as well as an overall lack of
fit. The combination of an analyte and a correspond-
ing concentration with the lowest lack of fit is the
one chosen as the estimate. However, sometimes 2
or 3 analytes have a very similar lack of fit. Table 3
shows some original lack of fit data obtained for
each possible pair of analyte and concentration
demonstrated for 0.75 ppb atrazine, 0.75 ppb hy-

droxyatrazine and a negative control. The lack of fit
shows a distinct minimum for the two positive sam-
ples. Interestingly, if the sample is a negative con-
trol, a uniform and relatively low lack of fit for each
possible combination of analyte and concentration is
observed, thus making a decision impossible. A uni-
form and very low lack of fit seems to indicate that
the sample is a negative. Low concentrations of
simazine or deethylatrazine show the same uniformly
low lack of fit (data not shown). This corresponds
with the antibodies’ low sensitivity or selectivity for
these analytes. At this point it is not possible to
define a threshold level for a lack of fit value which
identifies a negative sample. In our experiments,
however, a correctly identified analyte had a lack of
fit much lower than the maximum lack of fit for the
““worst’’ choice. For making a choice the absolute

Table 4

Maximum likelihood estimations for 3 different concentrations of single analytes

Actual conc. (ppb) Actual analyte Found conc. (ppb) Identified as
0.75 0.70

15 1.08

5 3.54

0.75 At 0.68

1.5 1.34

5 3.63

0.75 Sim Bl

1.5 - T -

5 4.61 Sim

0.75 Cy 0.75/2.29 Cy/Sim

1.5 1.64 Cy

5 4.57 Cy

0.75 Pre 0.72 /0.64 /0.44 Pre /Terb /Pr
1.5 1.31/1.05/1.62 Terb/Pr/Pre
5 4.06 Pre

0.75 Pr 1.10/0.92/0.69 Pre /Terb /Pr
15 1.79/2.04 Pr/Terb

5 6.09 Pr

0.75 Terb 0.84/0.73 /0.52 Pre /Terb /Pr
1.5 141/1.67 Pt /Terb

5 4.75 Terb

0.75 De

15

5

Sometimes the estimates are ambiguous, i.e., there are two or three possibilities for the identity of the analytes. Depending on the choice of
the actual analyte the concentration estimate also varies. The combination of the “‘right’’ analyte with its concentration is printed in bold.
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numbers for highest and lowest lack of fit are less
important, but their ratio may be useful in interpret-
ing the resulting choice. In the present system we
observed that the highest lack of fit is between 10
and 1000 times higher than the minimum. In am-
biguous cases, i.e., when the analyte concentration is
below the limit of detection or when the sample is a
true negative, the ratio between the two numbers
drops to 4:1 or lower. Ambiguous lack of fit data
therefore seems to indicate that each analyte is as
likely as any other to be present, which is only
possible when the concentration is zero. Further
work is being done on the interpretation of these
ambiguous cases.

The estimated concentrations and the respective
identified analytes are listed in Table 4.

From Table 3 the discriminatory importance of an
antibody can be derived. The strongest variations in
lack of fit occur with K1F4 and AM7B2.1 with most
analytes. For most analytes the polyclonal antibodies
do not contribute much to the decision process.
However, when hydroxyatrazine is present, antibody
4653 shows a very distinct minimum of the lack of
fit. Again, since antibody 2652 is relatively insensi-
tive to deethylatrazine the difference of lack of fit
when deethylatrazine is present is small (data not
shown). It can be concluded that 2652 contributes
very little to the overall estimation and can therefore
be regarded as having little weight in terms of
discriminative power. The lack of fit data of the
MLE can be used to assess discriminatory power of
different antibodies and can thereby help to decide
which antibodies are useful and which are not.

5. Conclusions

We have shown that it is possible to categorize
the structural identity of an unidentified analyte out
of a class of related compounds (triazine herbicides)
by using an array of antibodies and cluster analysis.
In this particular case categorization meant identify-
ing the substituent in the R'-position of the triazine
ring as a chlorine (‘‘azine’’), a methylthio (‘‘tryn’’)
or methoxy (‘“ton’’) group or as a hydroxy group.
The absence of an alkyl side chain (N-dealkylated
metabolite) was less easily categorized due to the
relatively high limit of detection of all antibodies

available for analysis. At 1 ppb a categorization was
possible with just two antibodies. At 10 ppb even the
identity of the analyte could be determined, with
deethylatrazine being regarded as a zero sample. The
same was accomplished at 1 ppb when using more
antibodies. The possibility to even identify an ana-
lyte with immunoassay has the potential to replace
instrumental analytical confirmation methods, which
generally accompany single analyte immunoassays
once positive samples are sorted out.

Using a combination of four antibodies that
showed good discriminative power in cluster analy-
sis we utilized maximum likelihood analysis to addi-
tionally quantify an unknown analyte. This was ac-
complished by using calibration data for each ana-
lyte—antibody combination.

Sometimes the presence or absence of different
functional groups in structurally related molecules is
an indicator for toxicity. In dioxin analysis it is
necessary to know the structure of a congener to
assess its toxicity. In cases where, e.g., a metabolite
and the parent compound possess different physio-
logical or environmental effects, it is also critical to
distinguish among them. Thus, knowing the substitu-
tion pattern or identifying certain groups of a com-
pound can in some cases reveal sufficient analytical
information and further specification is not neces-
sary. ‘ S

We want to extend the analysis to Binary and
possibly more complex mixtures and study the clus-
tering behavior. In the future we hope to avoid the
necessity of running calibration standards for the
maximum likelihood analysis every time the assay is
performed.

We anticipate that various approaches to pattern
recognition in environmental immunoassay will be-
come increasingly important over the next few years.
This trend will improve the value of immunoassay in
addressing multianalyte problems. One driver for this
trend will be the improvement in mathematical ap-
proaches to the interpretation of immunoassay data
from multiple assays [21-25], another driver will be
the decrease in cost and increase in computing power
and more sophisticated software associated with mi-
crotiter plate readers. A third aspect is the increased
availability of many antibodies recognizing environ-
mental contaminants. Finally, for a number of rea-
sons we also can anticipate that immunoassays will
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become smaller and faster [32,33]. This will allow
large number of samples to be processed in tiny,
convenient arrays employing a variety of mathemati-
cal paradigms.
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