Lawrence Berkeley National Laboratory

LBL Publications

Title

Residual strain orientation in rolled titanium determined with synchrotron X-ray Laue microdiffraction

Permalink
https://escholarship.org/uc/item/7r14v174

Journal

Journal of Applied Crystallography, 56(Pt 1)
ISSN
0021-8898

Authors

Devoe, Michelle
Tamura, Nobumichi
Wenk, Hans-Rudolf

Publication Date

2023-02-01
DOI
10.1107/s1600576722011311

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-nc-sa/4.0/

Peer reviewed

Residual strain orientation in rolled titanium determined with synchrotron X-ray Laue microdiffraction

Authors
XMichelle Devoe ${ }^{\text {as* }}$, Nobumichi Tamura ${ }^{\text {b }}$ and Hans-Rudolf Wenk ${ }^{\text {a }}$
${ }^{\text {a }}$ Earth and Planetary Science, University of California, Berkeley, CA, 94720, United States
${ }^{\mathrm{b}}$ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States

Correspondence email: mdevoe@berkeley.edu

Funding information U.S. Department of Energy, Office of Science (contract No. DE-AC0205CH1123 to Lawrence Berkeley National Laboratory; award No. DE-SC0014664); National Science Foundation (grant No. EAR2054951; grant No. EAR2154351); U.S. Department of Energy (grant No. DE-FG02-05ER15637).
ynopsis Synchrotron X-ray Laue microdiffraction is used to measure the residual stress in rolled titanium, a metal with known deformation history, and determine the orientation of the residual stress ellipsoid. Previously the method had only been used on naturally deformed quartzites with ambiguous deformation histories.
bstract Previously, synchrotron X-ray Laue microdiffraction has been used to measure magnitudes of residual strain in materials. Recently the method was advanced to determine the orientation of the strain ellipsoid and applied to naturally deformed quartzites, however the deformation history of these quartzites is ambiguous due to their natural origin. In this study, synchrotron X-ray Laue microdiffraction ($\mu \mathrm{XRD}$) is used to measure the residual strain for the first time in a sample with known stress history, rolled titanium. A deviatoric strain tensor is calculated from each Laue diffraction image collected with two μ XRD scans of a rolled Ti sheet in different sample orientations. The principal strain axes are calculated using an eigen decomposition of the deviatoric strain tensors. The results show that the principal axis of compression is aligned with the normal direction of the titanium sheet, and the principal axis of extension is aligned with the rolling direction. Pole figures are used to represent the 3D distribution of residual strain axes.
eywords: Residual stress; residual strains; stress and strain; X-ray synchrotron radiation; Laue diffraction

1. Introduction

Residual stress has been of interest to metallurgists and structural engineers for decades (e.g. Noyan \& Cohen, 1987). It affects the strength of metals and welds and is significant for the stability of ships, pipelines, bridges (e.g. Hosford, 2005; Withers, 2005; Van Puymbroeck et al., 2019), and the strength of thin films (e.g. Noyan et al., 1995; Ma et al., 2012). Residual stress can be introduced into a material at any point during fabrication and processing from mechanical working or heat treatment, and thus its characterization is key to understanding not only the quality of the material, but also the effects of the manufacturing process on material properties.

Residual strain is a change to the lattice geometry of a crystalline material as a result of deformation or thermal changes. Residual strain, which remains in the lattice after the external forcing has been removed, can be categorized as plastic strain, which manifests as dislocations that disrupt the periodicity of the crystalline lattice, or elastic strain, which describes the shape distortion of the crystal lattice surrounding dislocations (Noyan \& Cohen, 1987). These strains are related to stress through Hooke's law. Many techniques have been developed to detect and measure strain in metals (e.g. Schajer, 2013). Bulk properties can be measured with neutron diffraction due to its great penetration depth (Krawitz \& Holden, 1990; Robinson et al., 2017; Noyan et al. 2020; Wissink et al., 2020). X-ray diffraction (XRD) has been used as a non-destructive method (Ungár \& Borbély, 1996; Ungár et al., 2001; Cauchois et al., 2014). Single crystal properties can be measured using synchrotron X-ray microdiffraction (μ XRD) (Tamura et al., 2002; Levine et al., 2006; Renversade \& Borbély, 2017; Morawiec, 2018). μ XRD utilizes a micro-focused polychromatic X-ray beam from a synchrotron X-ray source with a diameter of $\sim 0.1-1 \mu \mathrm{~m}$ to raster scan a crystalline material over a large area (mm) and collects 2D Laue images at each step. The subsequent analysis generates highresolution strain maps of polycrystalline materials (Spolenak et al., 2003; Ice et al., 2005; Hofmann et al., 2010; Kwon et al., 2013; Jiang et al., 2014; Qian et al., 2017). If the grain size is larger than the beam diameter and step size, strain differentials may be resolved across grain boundaries (Spolenak et al., 2003).

For the past 10 years, we have analyzed the orientation of macrostresses responsible for residual strain in natural quartzite using μ XRD and have found results consistent with the stress history presumed from geological events. We developed a methodology to represent the 3D orientation of residual strain axes with pole figures generally used for crystal orientations or textures (Chen et al., 2011; Chen et al., 2016; Li et al. 2020; Wenk et al., 2020). However, the stress history of geological materials is complex, enduring a variety of stresses over long time scales, and thus there remains some uncertainty about their presumed stress history. Therefore, we decided to test μ XRD

2.1. X-ray Laue Microdiffraction

X-ray Laue microdiffraction ($\mu \mathrm{XRD}$) measurements were conducted at beamline 12.3.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The methodology has been previously described (Tamura, 2014; Chen et al., 2016; Li et al., 2020; Wenk et al., 2020). The 1.8 x $1.4 \times 0.12 \mathrm{~mm} \mathrm{Ti}$ sample was loaded onto a translational stage. The stage was tilted 45° to the incident X-ray beam (Fig. 2A). A polychromatic X-ray beam with energy range of 5 to 24 keV was collimated to a spot size $1 \mu \mathrm{~m}$ in diameter. The rolled surface, perpendicular to the normal direction (ND), of the Ti sample was placed at the focal point of the X-ray beam using a laser proxy. The translational stage then rastered across the X-ray beam at the user-set step size and scan dimensions which are programmed using the beamline control software. 2D diffraction images (Fig. 2B) were collected at each step by a DECTRIS Pilatus 1 M detector positioned 90° to the incident beam. Maximum penetration depth is $100 \mu \mathrm{~m}$ (source: CXRO.lbl.gov).

Figure 1 A) Schematic of beamline experimental geometry at ALS 12.3.2 showing polycrystalline Ti sample on translational stage.- DECTRIS Pilatus 1 M Area detector located 90° above the incident X-ray beam collects a diffraction image. B) Example Ti X-ray Laue diffraction image. A few exemplary peaks have been assigned Miller indices. White lines are interstitial space between detector panels. White rectangle in bottom right is a defective submodule that has been removed from analysis.- Dark vertical shadow is the boundary of Kapton tape used to repair the detector.

A single crystal of silicon crushed into grains ranging in size from 0.05 to 2 mm were mounted on a glass slide with double-sided sticky tape and used as a calibrant. This is different from previous experiments which used a single crystal of silicon or synthetic quartz (Chen et al., 2016;

Wenk et al., 2020). The multiple peaks generated from a polycrystalline calibrant (Fig. 3A) eliminate the orientation bias that is introduced into the strain analysis from the use of a single crystal calibrant, which only has a few peaks on each detector panel (Fig. 3B). The calibration is used in data processing and does not affect the data collection.

An area of $1500 \times 2000 \mu \mathrm{~m}$ on the rolled surface of the Ti sample was scanned with the X-ray beam in $50 \mu \mathrm{~m}$ steps to cover a large area for good grain statistics (scan Ti_6). While a 1 um step size is achievable at beamline ALS 12.3.2, the grain size of the sample ranged from 5 to 30 um and thus use of a 1 um step size would sample a very limited number of grains during a reasonable collection time period. Thus, a larger step size of 50 um was chosen to measure a large number of grains and collect data more representative of the whole sample. Exposure time was 1 s and the scan took approximately 20 mins to complete. Since the maximum penetration depth of X-rays is 100 um , approximately $1 / 12$ of the depth profile of the rolled Ti sheet was sampled. The sample was then rotated 90° and approximately the same area was re-scanned (scan Ti_6_90d). The purpose of this repeated scan is to verify that the orientation of residual strain rotates with sample rotation, demonstrating that the strain measured is not an artifact due to calibration geometry uncertainties and other errors.

Figure 2 X-ray Laue diffraction images of A) polysilicon calibrant and B) single crystal silicon calibrant. A few exemplary peaks have been assigned Miller indices. White lines are interstitial space between detector panels. White rectangle is a defective submodule that has been removed from analysis.

1.1. Data Analysis Overview

A more detailed explanation on data analysis has been published by Tamura (2014) and Wenk et al. (2020). The total strain tensor $\left(\varepsilon_{i j} j^{i}\right.$ is a sum of the dilatational strain tensor $\left(\Delta_{i j} \dot{i}\right.$, which describes a change in volume of the unit cell, and the deviatoric strain tensor $\left(\varepsilon_{i j}^{\prime} \dot{i}\right.$, which describes a change in shape (Fig. 4A): $\varepsilon_{i j}=\Delta_{i j}+\varepsilon_{i j}^{\prime}$

$$
\begin{aligned}
& \text { where } \Delta_{i j}=\left[\begin{array}{lll}
\delta & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & \delta
\end{array}\right] \\
& \text { and } \varepsilon_{i j}^{\prime}=\left[\begin{array}{lll}
\varepsilon_{11}^{\prime} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33}^{\prime}
\end{array}\right]
\end{aligned}
$$ In our analysis, the deviatoric strain tensor is first transformed from the coordinate system of the diffraction image, a Cartesian coordinate system attached to the unit cell, to the sample coordinate $\operatorname{system}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ using the orientation matrix M and transformation $\varepsilon_{x y z}^{\prime}=M \varepsilon_{i j}^{\prime} M^{T}$. Such that

$$
\varepsilon_{x y z}^{\prime}=\left[\begin{array}{lll}
\varepsilon_{x x}^{\prime} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y}^{\prime} & \varepsilon_{z z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right]
$$

An eigen decomposition of $\varepsilon_{x y z}^{\prime}$ provides the geometry of the deviatoric strain ellipsoid in sample coordinates; the eigenvectors are the axes of the ellipsoid scaled by their associated eigenvalues (Fig. 4B) (Noyan \& Cohen, 1987; Tamura, 2014). Negative values are herein defined as compression, and positive values are defined as extension.

A

Figure 3 A) Hexagonal unit cell (solid lines, lattice parameters a, c_{1}, c_{2}) distorted into a new triclinic shape (dashed lines, lattice parameters $\mathrm{a}^{\prime}, \mathrm{c}_{1}{ }^{\prime}, \mathrm{c}_{2}{ }^{\prime}, \alpha, \beta, \gamma$). B) A sphere (light gray) is distorted into a strain ellipsoid (yellow) to represent the distortion shown in (A). Strain ellipsoid axes $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ are noted relative to sample coordinate axes ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).

151

152

1.2. How deviatoric strain is measured and principal stress is calculated

The XMAS software determines the crystal orientation and calculates the deviatoric strain tensor for each diffraction image. In this experiment, 1,200 diffraction images were collected for each scan. The experimental geometry was refined using the polysilicon calibrant (Fig. 3A). The strain is refined from the lattice parameters of the deformed crystal relative to those of unstrained Ti (Fig. 4A). The diffraction images are preprocessed by removing bad pixels and background signal due to air scattering and X-ray fluorescence. Next, the reflection positions are located by finding intensity maxima above a certain threshold value, and peaks are fit with a 2D Gaussian function. Then, each peak is "indexed" and assigned a corresponding $h k l$ plane by triangulation of three peak positions. The crystal orientation can then be derived from the indexation.

The deviatoric strain is calculated by measuring the difference between the observed position of the measured diffraction peaks and the ideal position of peaks calculated for an unstrained lattice. XMAS searches for three unique grain orientations per diffraction image using the "multigrain" setting. If a diffraction image cannot be indexed by XMAS, the grain orientation and strain tensor cannot be calculated and is thus excluded from the analysis. After the indexation parameters of a representative Laue image have been optimized for accurate analysis, the rest of the Laue images are automatically processed using the same parameters on a high-performance computing cluster.

The output from XMAS, a sequential list file which contains the crystal orientations and strain tensor for every diffraction image indexed, is then loaded into the MATLAB code XtalCAMP (Li et al., 2020). Orientation and magnitude of the principal strain axes are calculated for each diffraction image using an eigen decomposition of the deviatoric strain tensor. Strain maps and other visualizations are also plotted using this software. Stress (σ_{ij}) can be calculated from strain $\left(\varepsilon_{\mathrm{k}}\right)$ by applying Hooke's law: $\sigma_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ijk}} \varepsilon_{\mathrm{k} \mid}$ where $\mathrm{C}_{\mathrm{ijk}}$ is the fourth rank stiffness tensor. We used the experimental stiffness tensor components of monocrystal hcp-Ti determined by Dumontet et al. (2019). Prior to plotting the strain maps and calculating the principal strains, all diffraction images with less than 10 indexed reflections were filtered out to eliminate strain measurements with low confidence. Low indexation is likely due to peak distortion from high strain. After filtering, the deviatoric and principal strains were calculated for each diffraction image and the strain maps of the scan area were generated (Figs. $5 \& 6$). Normalized frequency distributions of equivalent strain and stress were also plotted for each scan using XtalCAMP (Fig. 7).

A)

Maps
showing the magnitude of the $\varepsilon_{x x} \varepsilon_{y y}, \varepsilon_{z z}$ components of the deviatoric residual strain tensor in sample coordinates (x, y) for Ti_6 scan of dimensions $2000 \times 1500 \mathrm{~mm}$ with step size of $50 \mu \mathrm{~m}$. Projections of principal strain axes $\varepsilon_{1}, \varepsilon_{2}$, or ε_{3} are overlain onto each pixel as a black line (enlarged inset on left). Each pixel represents one step and shows the data associated with the diffraction image collected at that step. The color of each pixel indicates the deviatoric strain magnitude at that position in millistrains $\left(10^{-3}\right)$. Red color (positive values) indicates extension, blue color (negative values) indicates compression. Gray pixels are Laue diffraction images that had less than 10 indexed reflections and were thus removed from analysis. RD is rolling direction, TD is transverse direction.
B) Normalized frequency distributions of residual strain values from plots in (A).

Figure 5 A) Maps showing the magnitude of the $\varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{z z}$ components of the deviatoric residual strain tensor in sample coordinates (x, y) for Ti_6_90d scan of dimensions $1500 \times 2000 \mathrm{~mm}$ with step size of $50 \mu \mathrm{~m}$. Projections of principal strain axes $\varepsilon_{1}, \varepsilon_{2}$, or ε_{3} are overlain onto each pixel as a black line (enlarged inset on left). Each pixel represents one step and shows the data associated with the diffraction image collected at that step. The color of each pixel indicates the deviatoric strain magnitude at that position in millistrains $\left(10^{-3}\right)$. Red color (positive values) indicates extension, blue color (negative values) indicates compression. Gray pixels are Laue diffraction images that had less than 10 indexed reflections and were thus removed from analysis. RD is rolling direction, TD is transverse direction. B) Normalized frequency distributions of residual strain values from plots in (A).

Figure 6 Normalized equivalent strain and stress distributions for Ti_6 (A) and Ti_6_90d (B).

Figure 7 Principal strain axes for Ti_6 (top) and Ti_6_90d (bottom) plotted as pole figures in equal area projection. Pole figures provide a 3D representation of the principal axes of compression $\left(\varepsilon_{1}\right)$, intermediate strain $(\varepsilon 2)$ and extension $\left(\varepsilon_{3}\right)$ relative to sample coordinates. RD is rolling direction, TD is transverse direction. Contours are in multiples of random distribution (m.r.d.).

Figure 8 Deformation textures of crystal (0001) poles plotted as equal area projection pole figures for Ti_6 (A) and Ti_6_90d (B). RD is rolling direction, TD is transverse direction. Contours are in multiples of random distribution (m.r.d.). C) Equal area projection of deformation texture for (0002) poles for rolled Ti reduced to 3% of its original thickness measured with an X-ray pole figure goniometer (Blicharski et al., 1979).

223

224

2. Results

The $\mu \mathrm{XRD}$ data are most easily understood visually using maps to spatially resolve the data collected from the scanned area. Because grain size of the sample ranged from 5 to $30 \mu \mathrm{~m}$ in diameter (Fig. 1), and the beam raster step for each scan was $50 \mu \mathrm{~m}$, grains cannot be resolved in the maps generated (Figs. $5 \& 6$). Pole figures of strain ellipsoid axes (i.e. principal strain axes) are used to compile the data into a 3D representation of residual strain orientation in sample coordinates (Fig. 8).

2.1. Strain

Strain maps for each scan are plotted in Figures 5 (Ti_6) and 6 (Ti_6_90d). Three maps are displayed for each scan, one for each deviatoric strain component ($\varepsilon_{\mathrm{xx}}, \varepsilon_{\mathrm{yy}}$, and $\varepsilon_{\mathrm{zz}}$) (Figs. 5A, 6A). $\varepsilon_{\mathrm{xx}}$ is deviatoric strain along the x -axis, $\varepsilon_{\mathrm{yy}}$ along the y -axis, and $\varepsilon_{\mathrm{zz}}$ along the z -axis. The color of each pixel corresponds to the magnitude of the deviatoric strain component; red indicates positive strain (extension) and blue indicates negative strain (compression). Deviatoric strain values range from -3 to 3 millistrains $\left(10^{-3}\right)$. The frequency distributions (Figs. 5B, 6B) of the deviatoric strain magnitudes clearly indicate the direction of the most compressive (negative), and most tensile (positive) strain. Strains are most negative in the direction normal to the sample surface ($\mathrm{z}=\mathrm{ND}$) for both $\mathrm{Ti}_{-} 6$ and Ti_6_90d. The scan for Ti_6 shows the most positive strain in the $y=R D$ direction, while strain in the $x=T D$ direction spans both positive and negative strain values (Fig. 5). A 90° sample rotation (Ti_6_90d, Fig. 6) shows a 90° rotation strain, with the most positive strain values now in the $x=R D$ direction, and strain in the $\mathrm{y}=\mathrm{TD}$ direction spans positive and negative values.

The projections of the principal strain axes are superposed as black lines onto the color maps. The axis of compression $\left(\varepsilon_{1}\right)$ is overlain onto the map showing the most negative deviatoric strain, and the axis of extension $\left(\varepsilon_{3}\right)$ is overlain onto the map showing the most positive deviatoric strain. Small portions of each scan are enlarged (Figs. 5A left, 6A left) to more clearly show the relationship between deviatoric strain magnitude and principal strain axis orientation.

For Ti_6 (Fig. 5), principal compressive strain $\left(\varepsilon_{1}\right)$ show many axes displayed as dots which is indicative of a large component in the z direction as the projection of the normalized principal axis rotates toward the z -axis, reducing the visible length of the line to a dot. Other ε_{1} axes are oriented horizontally and thus dominated by a component in the x direction. The principal tensile strain $\left(\varepsilon_{3}\right)$ axes are mostly vertically oriented and thus parallel with the sample y-axis. The intermediate axes $\left(\varepsilon_{2}\right)$ are more or less aligned along the x -axis as shown by the horizontally oriented lines. For Ti_6_90d (Fig. 6), the principal compressive strain axes also show a larger component in the z direction, displayed by the short, dot-like projections. The principal tensile strain axes are primarily oriented horizontally along the sample x-axis, and the intermediate axes are more or less vertically aligned along the sample y-axis.

Equivalent strain has been used to estimate the magnitude of the deviatoric strain tensor (Liu, 2005 p. 15, eq. 1.29). For both scans, the equivalent strain was calculated to be around 3.25 millistrains (Fig. 7). The 90° rotated sample has some low equivalent strain values between 1 and 2 millistrains that are absent in the non-rotated sample. Equivalent stress maxima obtained from equivalent strain using Hooke's law for Ti_6 are approximately 575 MPa . The equivalent stress for Ti_6_90d shows a broader distribution with two maxima at approximately 450 and 575 MPa . These fluctuations are likely due to heterogeneous stress distribution and slight variations in scan areas.

The orientation of principal residual strain axes $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3} relative to sample coordinates have been plotted as pole figures using the BEARTEX software (Wenk et al., 1998) to provide a 3D visualization of the principal strain axis orientations for each scan (Fig. 8). The pole figures display the 3D distributions of each strain axis in equal area projection with respect to the sample reference frame. For Ti_6, a concentration of principal axes of compression is parallel to the normal direction (ND), and the principal axes of extension are aligned with the rolling direction (RD). For Ti_6_90d, the principal axes of compression are also oriented parallel to ND, and the principal axes of extension are aligned with RD, now rotated 90°.

2.2. Deformation texture

The deformation texture measured in the Ti sheet is displayed with (0001) pole figures (Fig. 9A, B). The crystal orientation relative to sample coordinates is determined by XMAS for each indexed diffraction image based on relative peak position. Pole figures are then plotted in equal area projection using BEARTEX. The experimentally determined pole figure for Ti_6 shows a girdle of maxima along the transverse direction with a concentration of (0001) poles aligned close to the normal direction. The pole figure for Ti_6_90d shows a 90° rotation of the girdle, still located along the transverse direction which is now oriented vertically. The measured deformation textures are consistent with the deformation texture of rolled Ti reduced to 3% of its original thickness (Fig. 9C) (Blicharski et al., 1979).

3. Discussion

3.1. Stress and strain

Maps and pole figures are used to express the directionality of residual strain measured by μ XRD for the rolled Ti sample. The relative magnitude of the deviatoric strain tensor components (Figs. 5B, 6B) suggest compression occurred in the direction normal to the sample surface (z), the normal direction (ND), which agrees with the deformation conditions. The rolling direction (RD) is confirmed through observation of a consistent direction of principal extension. In the non-rotated sample, this is the y axis, and in the 90° rotated sample it becomes the x -axis. Similarly, the orientation of the principal
strain axes show that the axis of maximum compression is parallel with the ND, and the axis of maximum extension is parallel with the RD (Fig. 8).

These findings suggest that the residual strain measured by μ XRD is consistent with the deformation conditions used to produce rolled Ti. Hooke's law states a direct correlation between the orientation of strain to stress, thus confirming the directionality of the principal macrostress is coincident with that of the principal strains.

Some diffraction images could not be indexed sufficiently, likely due to high local plastic strain, and thus were not used in the analysis (gray pixels in Figs. 5, 6). Plastic strain distorts the shape of the reflections, and if the reflections are too highly distorted, it is difficult to accurately assign Miller indices. Additionally, recrystallization, another possibility, results in many small grains and thus very small diffracting volumes that produce overlapping, low intensity Laue peaks with many crystallites which are difficult to index. This technique is limited to samples with large enough crystal size and which have also not been severely plastically deformed. To ensure accurate analysis, a minimum number of indexed peaks per diffraction pattern is necessary, and this number is dependent upon the material. Quartz can have upwards of 50 peaks per diffraction pattern from an undeformed sample, other materials like titanium have around 15 peaks per diffraction pattern. Approximately two thirds of the expected peaks should be indexed for strong confidence in the strain measurement. If indexing is less satisfactory, it is likely due to small crystallite size or high plastic deformation for which alternative techniques would be more successful such as high resolution EBSD measurements (Qian et al., 2017), and for samples with high amounts of plastic deformation, equations have been developed to estimate the magnitude of strain based on peak shape and size (Ungár and Groma, 1989; Barabash et al., 2003; Ice et al., 2004)

The variation in stress orientation can be attributed to grain statistics and inhomogeneous stress distribution amongst the grains in the polycrystalline sample; crystal orientation, grain boundary geometries, and grain-grain interactions affect how each grain experiences stress (Wilkinson \& Dingley, 1992) (Fig. 1). Additionally, only a small portion of the overall sample was measured during this experiment and, due to the large grain size, poor grain statistics could distort the representation of strain in this sample. This is likely the cause for the broadness of strain distributions around their maxima (Figs. 5B, 6B and 8).

The equivalent stress calculations show a maximum between $400-600 \mathrm{MPa}$ (Fig. 7). This is similar in magnitude to residual stress measured in a Ti-Al-V alloy (Fig. 10 in Wang et al., 2020) and low-Fe Ti alloys (Fig. 7.25 in Schajer, 2013). The broadness of equivalent strain distributions (Fig. 7), and the variation in $\varepsilon_{z z}$ distribution (Figs. 5B \& 6B) could be due to slight variations in the areas scanned due to the manual 90° sample rotation and thus different grains were measured. This could be
ameliorated with the use of fiducial markers indicating scan start and stop points. A smaller raster step size would also decrease the variability in strain measured due to slight differences in the scanned area between sample rotations. Additionally there will be some variation in the strain measured (Figs. 5B and 6B) because the diffraction images and the optimized indexation routine are unique for each scan. Indexation parameters optimized for both scans could be averaged and applied such that the treatment of Laue diffraction images was identical for both scans, which could eliminate any variation in stress due to slight variations in indexation caused by optimization.

3.2. Deformation texture

The (0001) pole figures for both scans are consistent with the deformation texture of rolled Ti (Fig. 9). Compared to Blicharski et al. (1979), our images are more irregular which we attribute to grain statistics with relatively few grains compared with pole figure goniometry, and representative of a deformation texture reflective of the sample surface rather than the bulk material, as well as inhomogeneous strain distribution in a polycrystalline material (Wilkinson \& Dingley, 1992). The deformation textures produced have been attributed to basal and pyramidal slip and twinning (Zaefferer, 2003).

4. Conclusions

The directionality of the residual strain agrees with the deformation conditions of the rolled Ti , and the magnitudes of residual strain measured are in agreement with values measured in other studies. This suggests that μ XRD and XtalCAMP are effective methodologies that could be used to determine the directionality of residual stress reflective of the macroscopic deformation endured by crystalline materials. Our new method of residual strain pole figures provides an approach for a threedimensional representation of residual strain, analogous to crystallographic pole figures in texture analysis. It also concludes that our predictions of macrostress directionality for quartzite appear to be reliable, thus making quartz a useful "paleopiezometer" to record geological deformation histories. Future work should be done to develop the methodology for materials with different crystal symmetries.
cknowledgements All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of DOE, ORAU, or ORISE. We would like to thank Kai Chen and Jiawei Kou, both at Xi'an Jiaotong University, and Derek Gobeil from Yokogawa Fluid Imaging Technologies, Inc., for their helpful discussions and feedback. We are also appreciative to comments from the editor and two anonymous reviewers which helped improve the manuscript. This research
used Beamline 12.3.2 which is a resource of the Advanced Light Source, a U.S. DOE Office of Science User Facility under contract no. DE-AC02-05CH11231.

References

Blicharski, M., Nourbakhsh, S. \& Nutting, J. (1979). Met. Sci. 13, 516-522.
Barabash, R.I., Ice, G.E. \& Walker, F.J. (2003). J. Appl. Phys. 93, 1457-1464.
Britton, T.B., Dunne, F.P.E. \& Wilkinson, A.J. (2015). Proc. Math. Phys. Eng. 471, 20140881.
Cauchois, R., Borbély, A., Gergaud, P., Saadaoui, M. \& Inal, K. (2014). Adv. Mat. Res. 996, 930-935.
Chen, K., Kunz, M., Li, Y., Zepeda-Alarcon, E., Sintubin, M. \& Wenk, H.-R. (2016). Geophys. Res. Lett. 43, 6178-6185.
Chen, K., Kunz, M., Tamura, N. \& Wenk, H.-R. (2011). Eur. J. Mineral. 23, 169-178.
Dumontet, N., Connétable, D., Malard, B. \& Viguier, B. (2019). Scripta Mat. 167, 115-119.
Guo, Y., Collins, D.M., Tarleton, E., Hofmann, F., Tischler, J., Liu, W., Xu, R., Wilkinson, A.J. \& Britton, T.B. (2015). Acta Mat. 96, 229-236.
Hofmann, F., Song, X., Jun, T.-S., Abbey, B., Peel, M., Daniels, J., Honkimäki, A.M., \& Korsunsky, A.M. (2010). Mat. Lett. 64, 1302-1305.

Hosford, W.F. (2005). Mechanical Behaviors of Materials. United Kingdom: Cambridge University Press.
Ice, G.E., Larson, B.C., Tischler, J.Z., Liu, W. \& Yang, W. (2005). Mat. Sci. Eng. A. 399, 43-48.
Ice, G.E., Larson, B.C., Yang, W., Budai, J.D., Tischler, J.Z., Pang, J.W.L., Barabash, R.I. \& Liu, W. (2004). J. Synchrotron Rad. 12, 155-162.

Jiang, T., Wu, C., Tamura, N., Kunz, M., Kim, B.G., Son, H.-Y., Suh, M.-S. \& Im, J. (2014). IEEE Trans. Device Mater. Reliab. 14, 698-703.
Krawitz, A.D. \& Holden, T.M. (1990). MRS Bull. 15, 57-64.
Kwon, E.P., Sato, S., Fujieda, S., Shinoda, K., Kajiwara, K., Sato, M. \& Suzuki, S. (2013). Mat. Sci. Eng. A. 570, 43-50.
Levine, L.E., Larson, B.C., Yang, W., Kassner, M.E., Tischler, J.Z., Delos-Reyes, M.A., Fields, R.J. \& Liu, W. (2006) Nat. Mater. 5, 619-622.
Li, Y. Chen, K., Dang, X., Zhang, F., Tamura, N., Ku, C.-S., Kang, H. \& Wenk, H.-R. (2020). J. Appl. Cryst. 53, 1392-1403.
Liu, A. (2005). Mechanics and Mechanism of Fracture: An Introduction, Ohio, USA: ASM
International.
Lonardelli, I., Gey, N., Wenk, H.-R., Humbert, M., Vogel, S.C. \& Lutterotti, L. (2007). Acta Mat. 55, 5718-5727.
Lütjering, G. \& Williams, J.C. (2007). Titanium, second ed., Heidelberg: Springer.

Ma, Z.S., Zhou, Y.C., Long, S.G. \& Lu, C. (2012). Surf. Coat. Technol. 207, 305-309.
Mehta, A., Gong, X.-Y., Imbeni, V., Pelton, A.R. \& Ritchie, R.O. (2007). Adv. Mater. 19, 1183-1186. Morawiec, A. (2018). J. Appl. Cryst. 51, 148-156.

Noyan, I.C., Bunn, J.R., Tippett, M.K., Payzant, E.A., Clausen, B. \& Brown, D.W. (2020) J. Appl. Cryst. 52, 494-511.
Noyan, I.C \& Cohen, J. B. (1987). Residual Stress. New York: Springer.
Noyan, I.C., Huang, T.C. \& York, B. R. (1995). Crit. Rev. Solid State and Mater. Sci. 20, 125-177. Renversade, L. \& Borbely, A. (2017). J. Appl. Cryst. 50, 1144-1157.

Robinson, J.S., Truman, C.E., Pirling, T. \& Panzner, T. (2017). Mater. Sci. Forum 905, 31-39. Schajer, G.S. (2013). Practical Residual Stress Measurement Methods. United Kingdom: Wiley. Shen, H., Chen, K., Kou, J., Jia, Z., Tamura, N., Hua, W., Tang, W., Ehrenberg, H. \& Doeff, M. (2022). Mater. Today 57, 180-191.

Spolenak, R., Brown, W.L., Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B., Bravman, J.C., Marieb, T., Fujimoto, H., Batterman, B.W. \& Patel, J.R. (2003). Phys. Rev. Lett. 90, 096102.

Tamura, N. (2014). XMAS: a versatile tool for analyzing synchrotron microdiffraction data. In: G. Ice, \& B. Barabash, editors. Strain dislocation gradients from diffraction. Vol. 4. Singapore: World Scientific, p. 125-55.
Tamura, N., Celestre, R.S. \& MacDowell, A.A. (2002). Rev. Sci. Instrum. 73, 1369-1372.
Ungár, T. \& Borbély, A. (1996). Appl. Phys. Lett. 69, 3173-3175.
Ungár, T. \& Groma, I. (1988). J. Appl. Cryst. 22, 26-34.
Ungár, T., Gubicza, J., Ribárik, G. \& Borbély, A. (2001). J. Appl. Cryst. 34, 298-310.
Van Puymbroeck, E., Nagy, W., Schotte, K., Ul-Abdin, Z. \& De Backer, H. (2019). Appl. Sci. 9, 536. Wang, F., Men, X., Liu, Y. \& Fu, X. (2020). Simul. Model. Pract. Theory 104, 102121.
Wenk, H.-R., Chandler, B.C., Chen, J., Li, Y., Tamura, N. \& Yu, R. (2020). Geophys. J. Int. 222, 1363-1378.
Wenk, H.-R., Matthies, S., Donovan, J. \& Chateigner, D. (1998). J. Appl. Cryst. 31, 262-269.
Wilkinson, A.J. \& Dingley, D.J. (1992). Acta Metall. Mater. 40, 3357-3368.
Wissink, M.L., Chen, Y., Frost, M.J., Curran, S.J., Rios, O., Sims, Z.C., Weiss, D., Stromme, E.T. \& An, K. (2020). Proc. Natl. Acad. Sci. U.S.A. 117, 33061-33071.
Withers, P.J. (2007). Reports on Progress in Physics 70, 2211-2264.
Zaefferer, S. (2003). Mat. Sci. Eng.:A. 344, 20-30.

