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Egocentric Tendencies in Theory of Mind Reasoning:
An Empirical and Computational Analysis

Jan Pöppel (jpoeppel@techfak.uni-bielefeld.de) and Stefan Kopp (skopp@techfak.uni-bielefeld.de)
Social Cognitive Systems, CITEC, Bielefeld University

Bielefeld, Germany

Abstract

Humans develop an ability for Theory of Mind (ToM) by the
age of six, which enables them to infer another agent’s men-
tal state and to differentiate it from one’s own. Much evi-
dence suggests that humans can do this in a presumably op-
timal way and, correspondingly, a Bayesian Theory of Mind
(BToM) framework has been shown to match human infer-
ences and attributions. Mostly, this has been investigated with
specific, explicit mentalizing tasks. However, other research
has shown that humans often deviate from optimal reasoning
in various ways. We investigate whether typical BToM models
really capture human ToM reasoning in tasks that solicit more
intuitive reasoning. We present results of an empirical study
where humans deviate from Bayesian optimal reasoning in a
ToM task but instead exhibit egocentric tendencies. We also
discuss how computational models can better account for such
sub-optimal processing.
Keywords: Theory of Mind; Bayesian Modeling; Egocentric
Tendencies; Bounded rationality

Introduction
An important ability of humans is to infer and reason about
ones own as well as other’s mental states such as inten-
tions, (potentially false) beliefs, or emotions (Wellman & Liu,
2004). While the exact development of this so-called Theory
of Mind (ToM) (Premack & Woodruff, 1978) is still not clear,
there is a consensus that we acquire full ToM abilities around
the age of six (Wellman & Liu, 2004). This allows us to make
sense of our social environment, to learn more from the ac-
tions around us (Jara-Ettinger, Baker, & Tenenbaum, 2012)
and to better understand or even manipulate others in cooper-
ative or competitive interactions (Heyes & Frith, 2014).

Because of its importance for social interaction, there is a
great interest in endowing artificial systems with similar capa-
bilities. Recently, the most prominent approach has been the
Bayesian Theory of Mind (BToM) framework (Baker, Saxe,
& Tenenbaum, 2009). Building upon the rational agent as-
sumption (Dennett, 1989) and inverse planning, the BToM
framework constructs probabilistic generative models that re-
late hidden mental states to observable actions. These mod-
els can then be inverted to infer mental states from behavior,
while accounting for inherent uncertainty. This framework
has been shown to make inferences that correlate well with
those made by humans in a wide range of different tasks, such
as the inference of desires and beliefs (Baker, Jara-Ettinger,
Saxe, & Tenenbaum, 2017) or preferences (Jern, Lucas, &
Kemp, 2017). It is also in line with the Bayesian Brain hy-
pothesis positing that humans incorporate information similar
to optimal observers (Knill & Pouget, 2004).

At the same time, humans do not always behave like op-
timal observers or reasoners. Instead, they exhibit a range

of fallacies leading to systematic errors in different types
of inference (Haselton, Nettle, & Murray, 2015). This has
also been argued to hold for social interaction. For exam-
ple, Keysar (2007) showed that adults fail to adjust correctly
for different perspectives in communication tasks. This trait
is often referred to as egocentric tendency and refers to the
tendency to impute one’s own mental perspective on others
(Nickerson, 1999). Keysar, Lin, and Barr (2003) present an
experiment in which even adults fail a false-belief test, show-
ing that an egocentric tendency is not always effectively sup-
pressed. In other words, we do not appear to always use our
ToM capabilities to the fullest extent (cf. (De Weerd, Ver-
brugge, & Verheij, 2013)). This is often attributed to limited
mental resources, such as working memory and processing
time. Vul, Goodman, Griffiths, and Tenenbaum (2014) argue
that many biases are actually optimal when seen as the result
of the number of samples for inference being limited.

It is unclear how those limitations affect ToM reasoning in
humans. While the BToM framework has been shown to cor-
relate well with humans’ explicit ToM reasoning, it has not
been evaluated with regard to humans’ intuitive or implicit in-
ferences, i.e. when sophisticated ToM reasoning is not explic-
itly evoked. Recently, Nakahashi and Yamada (2018) showed
that a full inverse planning approach based on the BToM
framework overestimates the rationality of humans and that
modified inference achieves better correlations with human
judgments. We are interested in whether, in an intuitive set-
ting, humans employ different kinds of ToM models as a
function of, e.g., computational costs, available resources, or
current task demands. We have argued elsewhere that em-
ploying different kinds of ToM models for “satisficing men-
talizing” can be beneficial for artificial systems, where full
Bayesian models often suffer from intractabilities (Pöppel &
Kopp, 2018). Here, we study whether humans may also em-
ploy different simpler, non-optimal models depending on the
given circumstances and, specifically, whether they may fail
to realize or account for differences between one’s own and
another one’s mental states. We thus focus on the extent to
which humans employ mentalizing in a settings that is more
implicit than those used in previous BToM research.

In the remainder of this paper, we present empirical ev-
idence suggesting that humans exhibit different degrees of
egocentric tendencies in a simple ToM reasoning task, thus
deviating from rational optimal observers usually assumed in
previous BToM models. The next section first describes the
scenario we are looking at. Then, we present an empirical
study we have carried out in this scenario to investigate in-
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tuitive human ToM reasoning. After this, we present differ-
ent computational ToM models, partially based on the BToM
framework, and report their correlations with our data.

Scenario
The scenario we chose for our empirical study is the infer-
ence of an agent’s desire in a navigation task within a 2D
maze. The maze has four exits, each of which leading to a dis-
tinct destination (denoted Red, Yellow, Blue or Orange). The
agent has to find the exit that leads to one specific destina-
tion, which we consider to be the agent’s desire. In previous
work we already gathered behavioral data in the form of tra-
jectories of human participants solving this navigation task in
different mazes with differing amounts of information avail-
able (Pöppel & Kopp, 2018). Here, we consider the task of
an additional observer, who watches the agent move around
in the maze and has to infer the agent’s desire – a perceptual
and cognitive task humans solve frequently in everyday life.
According to the ToM scale by Wellman and Liu (2004), this
kind of inference is also among the first ones to be mastered
by children.

In order to create a need for differentiating between the
mental perspectives of the agent and the observer, we employ
two conditions: in the first condition, participants acting as
agents had full knowledge of the maze, the locations of all ex-
its, and the destinations behind them. That is, they could take
an optimal path in order to reach their desired destination. In
the second condition, the acting participants knew about the
locations of the exits in the maze, but had to discover the cor-
responding destinations themselves by establishing a line of
sight with the exit. Thus participants had to search for the
specific exit (one out of four) that leads to their desired des-
tination, resulting in an exploration behavior. This scenario
is similar to earlier work on BToM, e.g. (Baker et al., 2017),
in that it involves navigating a simple grid-world to achieve
a desired outcome with potential uncertainty about the true
location of that outcome.

Figure 1 shows an example of the different stimuli that the
acting participants received in the two conditions. In the bot-
tom example belonging to the second condition, the exits are
marked but covered. Note that in this situation the agent has
moved to a position, where it could see the exit thus reveal-
ing its corresponding destination (Blue). In the present study,
we use recordings of the online navigation behavior in these
two conditions and let human participants play the role of the
observer. In particular, their task is to identify the desired
destination of the observed agent at different points on the
recorded trajectory.

Empirical Study: ToM Reasoning in Humans
Humans employ their ToM capabilities rarely to their fullest
extent. However, it is still unclear what factors, apart from
cognitive load, may influence the extent to which a person
employs her ToM capabilities. Previous research has shown
that explicit asking for likelihood ratings of all alternatives

Figure 1: View of the navigating agents. Top: full knowledge
about exits and destinations; Bottom: exits only reveal their
destination once a line of sight is established.

yields responses predicted by the BToM framework. How-
ever, we conjecture that this experimental design inherently
evokes explicit reasoning about mental states in the partici-
pants, including the full consideration and comparison of all
alternatives. This evocation may be part of the reason for the
discrepancy between very good fittings in BToM research and
findings of suboptimal behavior in other research. In contrast
to previous research, we therefore deliberately chose not to
ask for likelihood ratings for all possible desires, but instead
ask for soft forced-choice responses in order to test for a more
intuitive and natural ToM reasoning. We call it soft because
we gave participants the additional option “I do not know”.

We also included a second group of participants who were
additionally prompted to self-assess their belief about the ob-
served agent’s knowledge. We included this group to test the
effect of putting an agent’s belief into focus of (more explicit)
ToM reasoning, thus testing if different task demands influ-
ence the employed ToM models.

Participants We recruited two distinct groups of partici-
pants (first group 120; second group 65) each via an online
platform called ”figure-eight” (formerly crowdflower). All
participants had a “contributor level three”, which is adver-
tised as “Highest Quality: Smallest group of most experi-
enced, highest accuracy contributors”. After completion of
the study, participants were reimbursed with $0.20 via the
figure-eight system.

Stimuli For each of the two conditions mentioned above,
we chose two typical trajectory recordings in two different
mazes. The four trajectories are shown in figure 2. Partic-
ipants could see the maze and, importantly, all destinations
behind the different exits. That is, they always had full knowl-
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Figure 2: The recordings 1 through 4 used as stimuli, one from each condition (destinations known/unknown to the agent) in
two different mazes. Numbers indicate the location of query points at which participants had to give their responses. Small
arrows indicate the agent’s next action after the query point when ambiguous.

edge about the destinations, while the agents they observed
might or might not have had the same knowledge. Partici-
pants would see the agent navigating the maze according to
the recordings, leaving behind a red trail as in figure 2, so that
participants always knew where the agent moved. We chose
to replay these recordings with fixed time intervals between
two steps in order to remove potential noise within the tra-
jectories (while also eliminating information about speed or
possible hesitations of the agents).

Procedure All participants received the same initial in-
struction that they were going to watch the recordings of four
different human players navigating a maze. They were in-
formed that the maze had four exits, each leading to a dif-
ferent destination, and that each player had her own specific
destination she had to reach as quickly as possible. We fur-
ther explained that the four players were part of two different
conditions. In one condition, they had full knowledge about
the destinations behind the exits, while in the other they had
to first discover which exit led to which destination. In order
to make this clear, we provided participants with the images
in figure 1 alongside the instructions. The instructions read:
“Now you will watch the agents follow their trajectories while
you will be able to see which exit corresponds to which des-
tination. At certain points in time you will be asked to tell
the agent’s desired destination (R,B,Y,O). You may also say
that you do not know.” The query points are those shown in
figure 2. We deliberately asked for the agent’s desired desti-
nation instead of an exit to focus on the agent’s desire instead
of the exit locations close to the agent. The second group of
participants were further instructed about the additional ques-
tion regarding the agent’s knowledge, which read “Addition-
ally, you will be asked to specify if you think the agent knows
which exit leads to which destination.”.

Upon confirming these instructions, participants got to see
the first maze as in figure 2 (without the query point num-
bers) with the agent at the beginning of its trajectory. After
hitting a Start button the agent started to move leaving be-
hind the red trail. The playback stopped at each QP and par-
ticipants were asked to choose one out of the four possible
goal destinations, or to signal that they cannot tell otherwise,
which we will refer to as Uncertain (U) from here on. In

order to avoid misinterpretations (such as having asked for
current target location only), we instructed participants with:
“Please specify which destination you think the agent wants
to reach after leaving the maze.” The second group of partic-
ipants received an additional question before identifying the
agent’s destination: “Do you think the agent you are watch-
ing currently knows which exit leads to which destination?”
Participants could respond with either “Yes” or “No”. Once
the agent reached its destination, participants could proceed
to the next recording. In total, each of the 185 participant had
to make 22 judgements (taking less than 400s on average for
the first group and less than 485s for the second group).

For the first group, we counter-balanced the order in which
participants saw the different recordings/mazes. We used a
Fisher’s exact test on the response frequencies in order to test
whether or not the order in which the stimuli was presented
had any effect on participants’ responses. The test revealed
no significant effects of the stimuli ordering for all but one
responses (recording 1, QP 6). We thus concluded that the
order of presentation of recorded trajectories/mazes did not
influence participant’s responses. We thus collapse the re-
sults of participants in the first group for the analyses in the
remainder of this paper. Furthermore, we decided to use only
one ordering for the second group in order to simplify the
design.

For analyses, we excluded all participant’s responses for a
particular recording if participants always picked the same
destination and if this destination was not the correct one
within one recording. We further excluded responses if par-
ticipants chose to predict a destination after the agent already
turned away from it in recordings 2 and 4. We assume that
these participants did not really pay attention to the actual
trajectories as these are obvious errors. After excluding such
participants, we had 110 participants in group 1 and 57 par-
ticipants in group 2 remaining.

Results Figures 3 and 4 show normalized response frequen-
cies for several interesting query points in the two groups.
Note, however, that the reported tendencies also hold for the
other recordings and query points.

For the first group of participants who only had to iden-
tify the likely destination of the agent, we find a strong bias
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Figure 3: Relative response frequencies by the participants
in both groups for Recording 1, query points 3 and 5 and
the corresponding predictions made by the models using the
likelihood modification

towards assuming that the agent is seeking the destination be-
hind the closest exit. This also holds true for points at which
an agent’s behavior was optimally directed to multiple exits
(cf. Yellow responses for QP 3 in figures 3). We also find that
participants ignore that the agent may have a knowledge state
different from their own. For example, in the Red responses
at QPs 4 and 5 in figure 4, they had already seen the agent
turning away from two exits. Thus they should assume that
the agent does not know which exit leads to which destina-
tion, even if they see the agent moving towards Red. They
thus show an egocentric tendency in their reasoning.

When looking at the second group, i.e. participants that
were first asked about the knowledge state of the agent be-
fore trying to identify the agent’s desire, we find significantly
different desire response distributions for 12 of the 22 QPs

Recording 4 and its query points

R B O Y U Yes No
0.0

0.2

0.4

0.6

0.8

1.0
Query point: 4

R B O Y U Yes No
0.0

0.2

0.4

0.6

0.8

1.0
Query point: 5

Human Responses

G1 G2

R B O Y U Yes No
0.0

0.2

0.4

0.6

0.8

1.0
Query point: 4

R B O Y U Yes No
0.0

0.2

0.4

0.6

0.8

1.0
Query point: 5

Model Predictions

Sample Mod True Belief Mod Unknown Mod

Figure 4: Relative response frequencies by the participants
in both groups for Recording 4, query points 4 and 5 and
the corresponding predictions made by the models using the
likelihood modification.

(p� 0.05 according to Fisher’s exact test). These differences
manifest themselves primarily in a difference of the percent-
age of Uncertain responses, which is significantly higher for
the second group (14.9% vs 4.7%, t = 3.86 p < 0.001), also
visible at QP 3 in figure 3 and QP 4 in figure 4. We further
find interesting results regarding the preceding question about
their belief of the agent’s knowledge state: “No” responses
(i.e. they believe the agent does not know) increase after an
agent turned away from an exit it saw, as expected (e.g. in
recording 4 “No” responses are only around 20% at QP 2, but
increase to around 45% at QP 3). However, the percentage
for “No” never exceeds 55% and quickly decreases again as
the agent moves towards any particular exit, as seen for QP 5
in figure 4.
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Computational Modeling
These results indicate that our participants in groups 1 and 2
performed their ToM reasoning differently, but neither group
appears to make use of their ToM capabilities to their fullest
extend. In fact, participants may even employ different strate-
gies at different parts of the recordings. In this section we
explore different models for the desire ToM task and present
how they correlate with our empirical data.

BToM models The first two models we are considering,
which are taken from previous work (Pöppel & Kopp, 2018),
follow the general BToM framework and were designed to
correspond to the mental states induced by the two conditions
described above.

The True Belief model assumes that the agent has full
knowledge regarding which exit leads to which destination:

P(at+1|aaat) = ∑
d∈D

P(at+1|d,b∗d)P(d|aaat) (1)

The Unknown model assumes that the agent does not ini-
tially know which exit leads to which destination, which is
why it needs to consider all possible combinations:

P(at+1|aaat) = ∑
d∈D

bd∈Bd

P(at+1|d,bd)P(bd |aaat)P(d|aaat) (2)

With D being the set of desirable destinations and Bd the set
of beliefs about which exit leads to which destination. b∗d
is the true belief, i.e. it maps exits to destinations correctly.
aaat = a1, ..,at is the sequence of past actions, observed up to
this point t.

The likelihood P(at+1|d,bd) is modeled following the
commonly used Boltzmann noisy rationality:

P(at+1|d,bd) =
exp(βU(at+1,bd ,d))

∑ai∈A exp(βU(ai,bd ,d))
(3)

with β specifying the degree of rationality. Low values of
β will allow more sub-optimal actions, while a larger β will
result in the probability mass to be concentrated on the ac-
tion with the highest utility U(at+1,bd ,d) which in this sim-
ple scenario can be equated to the remaining distance to the
exit leading to d according to belief bd after executing the ac-
tion at+1. The belief bd is updated when the agent actually
sees one of the exits by dismissing any beliefs which do not
conform to the evidence.

Simple sampling model As a third model we introduce a
model correlating to shallow processing with egocentric ten-
dencies by implementing a very naive sampling approach: At
the start of the recording, the model samples one destination
from the prior P(D). After observing each action, its likeli-
hood P(a|d,b∗d) is computed using eq. 3. We keep this sample
with the probability of the likelihood. Conversely, we draw
a new sample with probability 1−P(a|d,b∗d) again from the

prior P(D), while ensuring not to pick a previously discarded
destination. This way, the worse a sample can predict the ob-
served actions the more likely it is to be replaced. Once all
destinations have been discarded, we are considering all of
them again, as we must have discarded the correct one along
the way. The prior P(G) is computed every time we need
to draw a sample and depends on the remaining distance be-
tween the agent’s current position p and the destination:

P(d) ∝ exp(−βdist(p,d)) (4)

For our results presented below, we fit β in the range of 0.1
to 3 at 0.1 intervals via a grid search to maximize correlations
for each model separately.

Modifications As we are interested in what kind of mod-
els are required to model different ToM reasoning strategies
employed by humans, we further tested the following modifi-
cation to the likelihood function (eq. 3) in order to be able to
better reflect the biases found in our data. While these mod-
ifications may improve the correlations in this case, we note
that they may actually decrease correlation with human judg-
ments that employ more thorough ToM reasoning.

To better reflect the bias for the closest exit found in the
data, we changed the rationality constant β to a dynamic vari-
able, which decreases with the distance to the exit, effectively
dampening the likelihoods for exits that are further away and
boosting optimal actions towards closer exits.

β ∝ αexp(−γdistm(p,d)) (5)

where distm is the current Manhattan distance between the
agent’s position p and the considered destination d. In this
case α and γ are meta parameters that were fit to maximize
correlation with a grid search between 2 and 4 at 0.1 intervals
for α and between 0.025 and 0.75 at 0.05 intervals for γ for
the results.

Model evaluation We compare our models with our par-
ticipants’ responses both on each recording separately, as
well as over all responses. As has been done in previous
BToM research (e.g. (Baker et al., 2017)) we considered the
correlations between participants’ average responses and the
models’ predicted distributions at each of the different query
points. For this we stack the relative response frequencies
for the four possible destinations for all QPs within a single
recording, resulting in a vector of 4×6 = 24 elements (16 for
recording 3 as there were only 4 QPs). Likewise we stack the
destination distributions predicted by our models before com-
puting the Pearson’s r correlation. For the sampling model,
we generated 100 independent responses and used the result-
ing normalized frequencies as the model’s distribution. We
then further stack the vectors for all recordings for the over-
all comparison, yielding a vector with 88 elements. We are
deliberately evaluating in favor of our models in order to con-
sider a best case scenario: All meta-parameters (β,α and γ)
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have been fit to maximize the resulting correlation across all
recordings. Furthermore, we spread all Uncertain responses
across the other alternatives proportional to the model’s dis-
tribution.

In order to test how well the models match the participants
individually, we further had the models create actual predic-
tions and compared these to the responses of each participant.
We sampled 100 discrete responses from our models’ predic-
tions and computed how often these responses match the par-
ticipants’ responses at each of the different query points. We
then averaged these number of matches over all query points
for each recording and over all participants to get the aver-
age matching performance of our models. Again, in order to
evaluate in favor of the different models, we count Uncertain
responses as matches.

Tables 1 and 2 summarize the resulting correlations as
well as the average number of matching responses (values
in brackets) between our models and their modifications with
the human responses of the first and second group respec-
tively. Missing correlation values (–) are due zero variance in
predictions of the Unknown model in those recordings. Note
that Recording 3 contained only 4, instead of 6 query points.

Exemplary model outputs can also be found in figures 3
and 4, which shows the response distributions of the different
(modified) models for the same QPs as the human responses.

The first thing to note is that the Unknown model, being
the most rational with the least amount of biased assump-
tions, performs significantly worse than all others. This holds
true for both the average correlation, as well as the number
of matches. In Recordings 1 and 3 where we cannot compute
the correlation due to zero variance, the Unknown model fails
to make any predictions, always yielding a uniform distribu-
tion, which turns the Unknown model into a random model
when comparing response matches. The slightly higher than
chance performance of the Unknown model can mostly be
attributed to the U responses. Furthermore, we find that the
Sampling model correlates best with our human data, with a
significant difference to the True Belief model. These results
are also reflected by the average number of response matches.
All models without the modification, except for the Unknown
model correlated significantly more with participants in group
2 than in group 1. With regard to the modifications introduced
by eq. 5: The True Belief model can improve its correlation
significantly for both groups, while the Sampling model only
improves significantly for the first group. Finally, it is note-
worthy that the best meta-parameters for the Sampling model
differ quite strongly between the two groups. (All signifi-
cance claims achieved p < 0.05 on a t-test using the correla-
tion coefficients after employing a Fisher transformation.)

Discussion and Conclusion
The results reported here suggest that humans can deviate
quite strongly from optimal ToM reasoning. The rare use of
the U(ncertain) response overall indicates that participants do
not always consider the likelihood of all valid alternatives, but

rather focus on single alternatives. In particular, they often
fail to give U responses even after it became apparent that the
agent is not aware of the location of the desired destination.
In contrast, optimal reasoning would dictate the use of U re-
sponses whenever more than one destination is the most prob-
able, or whenever multiple alternatives have a non-zero prob-
ability. Instead, participants show egocentric tendencies by
ascribing their own map knowledge to the agent, and more-
over a strong bias towards the closest exit as destination. This
is also reflected in the decrease of “No” responses in the sec-
ond group as soon as the agent moves towards any exit: even
participants that briefly suppressed this tendency after hav-
ing observed the agent moving away form a seen exit, tend
to discard this evidence again at the next QPs. The results
of the second group indicate that posing a question about the
mental state of the agent before requesting the desire infer-
ence, increases the number of considered ToM alternatives
slightly. Still, even participants of the second group that cor-
rectly realised that the agent’s knowledge state differed from
their own, often did not account for it properly when rea-
soning about the desire of uncertain agents. These findings
support the hypothesis that humans may perform ToM rea-
soning differently. The task to give likelihood ratings for all
alternatives (as e.g. in (Baker et al., 2017; Jern et al., 2017))
might evoke more controlled and complex ToM reasoning,
suppressing cognitive biases and resulting in good correla-
tions with optimal Bayesian models.

One might object that the observed bias towards the closest
exit may stem from interpreting the instructions as “where do
you think the agent is currently going?”. However, the actual
instruction was deliberately chosen to prevent this interpreta-
tion by stating “Please specify which destination you think the
agent wants to reach after leaving the maze.” While we can-
not be certain about the actual interpretation by participants
in the online study, we do believe that the biases are more
likely to originate from inherent tendencies to use simpler,
less demanding mentalizing strategies.

Looking at the correlations with different computational
models, we find only comparatively weak correlations of the
Unknown model with the empirical data, indicating that par-
ticipants’ responses are quite different from optimal Bayesian
reasoning. Instead, the exhibited egocentric tendencies and
biases are matched better by the True Belief and Sampling
models. The better correlations of the Sampling model com-
pared to the True Belief model can be attributed to the fact
that the True Belief model compares all alternative destina-
tions equally, while the Sampling model sticks with the first
best guess, which conforms to a closeness bias, as long as it
is not invalidated. When introducing likelihood modifications
that shift the focus to the closer exits, the True Belief model
starts to behave similarly. The lower difference between the
correlations with the True Belief models and the Sampling
models in Group 2, as compared to in Group 1, also indicates
that priming participants with an explicit ToM-related ques-
tion reduced these biases.
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Table 1: Average correlations and number of response matches (in brackets) of models with ratings of Group 1.

Model Recording 1 Recording 2 Recording 3 Recording 4 Overall

True Belief (β = 0.3) 0.85 (4.73) 0.95 (2.43) 0.68 (3.84) 0.85 (5.24) 0.85 (4.06)
True Belief Mod (α = 2.5,γ = 0.125) 0.98 (4.81) 0.99 (2.82) 0.89 (4.02) 0.87 (5.23) 0.93 (4.22)

Unknown (β = 1.9) – (4.52) 0.30 (2.12) – (3.41) 0.62 (4.40) 0.40 (3.61)
Unkown Mod (α = 2.5,γ = 0.025) – (4.87) 0.30 (3.03) – (4.22) 0.62 (4.95) 0.40 (4.27)

Sampling (β = 1.9) 0.94 (1.89) 0.96 (1.18) 0.82 (1.85) 0.99 (3.03) 0.94 (1.99)
Sampling Mod (α = 3.7,γ = 0.125) 0.98 (1.94) 0.98 (1.18) 0.96 (1.73) 0.98 (2.95) 0.98 (1.95)

Table 2: Average correlations and number of response matches (in brackets) of models with ratings of Group 2.

Model Recording 1 Recording 2 Recording 3 Recording 4 Overall

True Belief (β = 0.3) 0.95 (5.09) 0.96 (4.75) 0.76 (2.75) 0.93 (3.99) 0.91 (4.15)
True Belief Mod (α = 2.5,γ = 0.125) 0.98 (4.95) 0.98 (4.73) 0.94 (2.84) 0.94 (4.21) 0.96 (4.18)

Unknown (β = 1.7) – (4.57) 0.34 (4.50) – (2.42) 0.72 (3.82) 0.45 (3.83)
Unkown Mod (α = 2.5,γ = 0.075) – (4.98) 0.34 (4.82) – (3.14) 0.72 (4.41) 0.45 (4.34)

Sampling (β = 0.7) 0.97 (3.36) 0.97 (2.40) 0.89 (1.33) 0.98 (2.19) 0.96 (2.32)
Sampling Mod (α = 2.7,γ = 0.075) 0.98 (3.23) 0.97 (2.44) 0.99 (1.28) 0.97 (2.32) 0.97 (2.32)

Overall, the actual ToM reasoning of humans appears to
be more differentiated than assumed in the BToM literature.
Mental reasoning is computationally expensive, especially
when considering mental states of others. Unless explicitly
triggered, humans appear not to perform a full-blown ToM
reasoning but to resort to simpler heuristics instead. Artificial
social systems can make use of these findings by adapting to
different ToM models employed by their users and assisting
when they might overlook important information.
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