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Cell cycle regulation through themanipulation of endogenousmembrane potentials offers tremendous opportu-
nities to control cellular processes during tissue repair and cancer formation. However, the molecular mecha-
nisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood.
Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane
known as the transmembrane potential. This potential, generated through the combined efforts of various ion
transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular prolifer-
ation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regula-
tory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity.
We aim to present a brief discussion on the biophysical machinery involvingmembrane potential and themech-
anisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian
Schmidtea mediterranea as a tractable model system for understanding principles behindmolecular bioelectricity
at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and
transporters in cancers.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Efficient cellular communication is critical for the survival and
perpetuation of multicellular organisms. However, the mechanism by
which crosstalk among cells is translated into coordinated behavior at
both the cellular and organismal levels remains poorly understood. A
primitive mode of cellular communication relies on the exchange of
ions between the intracellular and extracellular environment. Mem-
brane proteins facilitate the transport of ions from one side of the
plasma membrane to the other. The transport of ions is essential for
the establishment of electrochemical gradients which influence the
behavior of both local and distant cells in the body. For instance, the
manipulation of endogenous ionic flows is able to alter patterns of cell
division, migration and differentiation in a wide range of embryonic
and adult stem cells of vertebrate and invertebrate models [1–4].
Although the characterization of such bioelectrical phenomena is well
established, very little is known about how endogenous electric fields
actually affect biological functions and the mechanism through which
cells respond to their influence. Nonetheless, recent findings provide
compelling evidence regarding the potential of controlling this power-
ful ionic flow communication system to induce regeneration of missing
tissues and to stimulate, or control abnormal cell behavior observed in
cancer [5–9]. This new field of research, defined as “Molecular Bioelec-
tricity”, aims to understand how voltage gradients in nonexcitable
cells coordinate morphogenesis, tissue development, repair, and cancer
formation [10].

Pharmacological manipulation of ionic flow provides relatively easy
access to regulatory properties of cell cycle parameters [9,11,12]. We
aim to offer information on the different ionic and voltage dependent
variables that modulate the cell cycle during tissue regeneration, cellu-
lar turnover and cancer formation from previous research. These volt-
age gradients are not limited to cells, but also exist at the tissue/organ
level, where they provide instructive information for specifying organ
identity and large-scale anatomical order [1,10,13]. Therefore, it is
essential to address the role of endogenous currents in the context of
the whole organism. We propose the extremely versatile planarian
model system Schmidtea mediterranea as a venue for exploring bioelec-
trical regulation at both the cellular and the organismal level to better
understand the role of voltage gradients in adult tissue maintenance,
repair and tumorigenesis.

2. The transmembrane potential (TMP)

All cells generate long-term, steady-state voltage gradients known
as transmembrane potentials (TMPs) [3,8,14]. TMP is an ancient and
evolutionarily conserved system that can be found in a variety of organ-
isms, ranging from plants to higher vertebrates, and has been reviewed
extensively [1–3,10,15,16]. It is generated by a separation of charge
across the plasma membrane, leading to a negative voltage difference
in respect to the extracellular environment [11,15]. However, gradient
changes involved in generating TMPs aremuch slower and vastly differ-
ent than the rapidmembrane depolarizations observed in both nervous
and muscle tissues [3,8]. However, similar to action potentials, TMP
changes in a single cell can be transmitted over long distances via gap
junction linkages [14,17–19]. TMPs are primarilymaintained by the con-
stant activity of various ion channels, pumps and transporters, collectively
known as ion transport mechanisms (ITMs). These ITMs segregate
charges across the plasma membrane and produce necessary current
needed to generate a voltage potential [20]. An ITM of extreme impor-
tance to living systems is the sodium/potassium ATPase (Na+/K+

ATPase), which is essential for maintaining the transmembrane poten-
tial between 10 and −90 mV, depending on the tissue type [15]. The
cell invests substantial amounts of energy to maintain TMP as changes
in membrane polarity are used to drive alterations in cell behavior
[14,15]. We will now explore the role bioelectric regulation of one such
aspect, proliferation.
3. TMP and cell cycle regulation

The cell cycle is regulated by a complex array of signals stemming
from the microenvironment as well as from intracellular signals such
as cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors and the ret-
inoblastoma (Rb) protein. Factors associated with ionic flow (i.e. ITMs),
membrane potential, and membrane composition are known to be
involved in regulating these cell cycle components [21–25]. Exciting
new results in this area unveil powerful strategies to control the cell
cycle, that may enhance genetic and biochemical interventions in
regenerative medicine and cancer therapy [11,12]. We will discuss some
of the bioelectrical mechanisms and properties known to modulate the
cell cycle in vertebrates and invertebrates.

3.1. TMP and membrane polarization

Eukaryotic vacuolar-type H+-ATPases (V-ATPase) are electrogenic
proton pumps that energize both the intracellular and plasma mem-
branes by expelling H+, changing pH levels in the extracellular
environment, which contribute to the maintenance of the TMP [26,
27]. As intracellular pH recovers, membrane potential becomes more
negative in charge, causing plasma membrane to hyperpolarize [28].
These fluctuations in TMP are particularly evident during cell cycle pro-
gression, as demonstrated in Chinese hamster lung cells [29]. During the
G0/G1 transition checkpoint, there is a gradual transition of TMP from a
state of intermediate depolarization to intermediate hyperpolarization.
As the cell passes through the G1/S phase transition checkpoint, the
TMP becomes more negative, marking the hyperpolarization of the
cell membrane. During the transition through the S phase, S/G2 check-
point and G2 phase the membrane potential is at a maximum negative
voltage and remains hyperpolarized. Entering mitosis, TMP rapidly
depolarizes to the lowest minimum voltage, indicating the completion
of cell division (Fig. 1A) [29]. Furthermore, these fluctuations in TMP
are well documented in other cell types [21–25]. These findings support
the notion that TMP fluctuations through V-ATPase are an important reg-
ulatory component for ionicflowduring the cell cycle and its deregulation
may be associated with abnormal cell behavior.

3.2. Generation of TMP and ionic flow

Transient depolarization and hyperpolarization of the plasmamem-
brane is mediated by the constant exchange of charged ions between
the cytoplasm and extracellular environments. The V-ATPase proton
pump is seen to energize themembrane through ionic gradientswhere-
as Na+/K+ ATPases participate in maintaining the chemical gradient
[30]. However, the flow of potassium ions via K+ channels eventually
aids in the establishment of TMP. Inhibition of the V-ATPase reduces
the proton gradient within the cell, leading to impairment of both the
ionic driving force and ionic homeostasis needed for cell proliferation
[31]. As intracellular concentrations of Na+ decrease, a concurrent
influx of K+ ions is seen, promoting an increase in TMP. Though low in
concentration, Cl− ions also play an important role throughout the cell
cycle. This interplay between fluctuating states ofmembrane polarization
and ionic flows serves as a regulator of cell cycle and cellular proliferation
(Fig. 1B) [5,11,22,32]

3.2.1. Chloride dynamics
Due to nature of electrogenic V-ATPases, a parallel ion conductance

must occur to aid in pH regulation and driving membrane potentials.
The flux of Cl− occurs in parallel to H+ flux via V-ATPase activity and
is required to maintain cellular electroneutrality [33,34]. In yeast cells,
inhibition of V-ATPase strongly reduces Cl− concentration in both the
vacuolar and plasma membrane [35].

Compression and swelling of a cell during the cell cycle has been
attributed to a Cl−/K+ relationship, required to gather essential amino
acids, metabolic substrates and materials for the synthesis of proteins
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Fig. 1. a. Cell cycle modulation via transmembrane potentials, ionic gradients and gene expression. (A) Depicts the phases of cellular polarization and the regulatory checkpoints in gene
expression throughout the cell cycle. M phase is a depolarized state (red), S phase is a hyperpolarized state (teal) and G0,G1 and G2 states oscillate through intermediated phases of
depolarization and hyperpolarization (yellow and green). (B) Shows physical characteristics of the cell membrane and oscillation of both gene expression and ionic concentrations during
cell cycle progression. The fluctuations in microviscosity/cholesterol to phospholipids ratio (purple). Transmembrane potential/membrane fluidity (blue). pRb gene expression (—) and
ionic concentrations of Cl− (yellow square). Ca2+ (gray rectangle) and Na+:K+ ratio (blue hexagon) are seen to fluctuate in terms of arbitrary values throughout the cell cycle.

2631P.G. Barghouth et al. / Biochimica et Biophysica Acta 1848 (2015) 2629–2637
[36,37]. Isotonic Cl− currents in the cell cycle have been found to regulate
cell volume and membrane potential [38–40]. Studies in cancer cells
indicate that volume activated Cl− channels can act as regulators of cell
cycle progression [41]. They show that although there is low expression
of Cl− currents in the G0 phase [37], it reaches a maximum threshold
in the G0/G1 and G1/S transition phases [36], reduce in the S phase and
back up during the G2/M transition [42,43]. These fluctuations of Cl−
currents are not isolated events, but rather correlate with the concen-
trations of cyclin/CDKs and CDK inhibitors throughout the cell cycle
[44]. In various cell types, a decrease in intracellular Cl− concentrations
during the cell cycle reduces the rate of cellular proliferation through
the upregulation of p21 and CDK inhibitors; therefore, causing a down-
stream effect on Cdk2 and Rb expression, halting cells in the G0/G1
transition phase [37,41,45–49]. Inducing expression of a hyperpolariz-
ing anion channel such as CLIC1 in normal cells, in the vicinity of
tumors, inhibits their growth. This process occurs through the upregu-
lation of HDAC1, an acetylating protein that in Xenopus embryos, is
critical for cell cycle progression and rate of cellular proliferation [5,6].
This further supports that theprecisemaintenance of TMPand the voltage
gradient via charged ions is key for cell cycle regulation.

3.2.2. Sodium and potassium dynamics
The efflux of H+ by the Na+/H+ transporter into the extracellular

environment of the cell generates a driving force for the influx of Na+
into the cytoplasm [30,50–52]. This influx of Na+ into the cell by the
Na+/H+ transporter is then counterbalanced by the Na+/K+ ATPase
pump tomaintain the electrochemical gradient. The ratio [K+]i/[Na+]i
created by the interplay between Na+, the most abundant inorganic
cation and K+, the second most abundant cation in the intracellular
fluid attributes to a heavily regulated electrochemical gradient, as they
run parallel in concentration [53]. However, K+ ions and TMP play
important roles as they are responsible for creating the driving force
needed for the release of intracellular Ca2+ [54,55]. Through the inhibi-
tion of membrane bound K+ channels (e.g. Kv), cell cycle progression
has been seen to halt during the early and late Gl phase, G1/S transition
and G2/M [56,57]. It has been shown in mouse neuroblastoma cells,
Na+/K+ ATPase pumping oscillates during cell cycle progression
[58]. Membrane permeabilities to K+ and Na+ are reported to be
high in M phase (membrane is in depolarized state), decreases by
threefold in G1 phase (membrane is in hyperpolarized state) and
rises through the G1/S transition into S phase [58]. As the cell pro-
gresses into G2 phase, K+ and Na+ permeabilities decrease and
rapidly increase through the G2/M transition phase [58]. Studies in
several cancer cell lines provide support for the ability of potassium
channels to modulate cellular proliferation [59–62]. For example,
the overexpression of K+ channels in Glioma cells maintains a
depolarized membrane potential, resulting in high rates of cellular
proliferation [63,64]. These findings highlight the direct relationship
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between TMP, ionic gradients and cellular proliferation through cell
cycle.

3.2.3. Calcium dynamics
Cell volume oscillations and K+ influxes during the cell cycle regu-

lates cellular proliferation by modulating the release of intracellular
Ca2+ ions [65,66]. The rate of K+ ion permeability through the mem-
brane provides a driving force for Ca2+ influx activating calmodulin.
This protein is known to activate crucial proteins such as Rb and cyclin/
CDK complexes, necessary for the cell cycle progression. Rb activation is
closely regulated by Cyclin D and Cdk4/6 release in early and mid G1
phase [57]. Rb is increasingly phosphorylated through the G1 to S phases,
at which point it remains hyperphosphorylated until the completion ofM
phase [67,68]. It is known that Ca2+ influx is required for the initiation of
S phase and the completion of M phase, possibly through its contribution
to a more negative TMP [67–69]. Ca2+/calmodulin mediates the activa-
tion of Cdk1 and Cdk2, which are known to be upregulated through the
S to M phases [70,71]. The activated Cdk2 hyperphosphorylates Rb,
releasing E2F allowing the cell to progress through the cell cycle. Inhibition
of Ca2+ binding protein calmodulin prevents Rb hyperphosphorylation
and ultimately leads to cell cycle arrest in G1 phase with subsequent
down regulation of Cyclin-D expression and loss of Cdk4/6 and Cdk2
[72]. These results strongly support a direct role of Ca2+ currents and
TMPs in the regulation of protein activity throughout the cell cycle.

3.3. Plasma membrane dynamics

TMP regulation of lipid–protein interactions in the cellularmembrane
becomes another point of interest in cellular proliferation. Microviscosity,
thephysical state describing the degree ofmembranefluidity, is a key reg-
ulator ofmembrane proteinmobility. It is thought to do so bymodulating
microtubules,microfilaments, andmembrane bound enzymes [58,73,74].
TMPhas been shown to regulatemicroviscosity by influencing the confor-
mation of transmembrane ionic channels and activity of enzymes within
the phospholipid matrix [23,24,75]. Microviscosity of the membrane
lipids varies throughout the cell cycle and is highest duringmitosis, rapid-
ly decreases through G1 phase, reaching a minimum during S phase and
finally increases during G2 phase as the cell enters mitosis (Fig. 1B) [23].

Membranemicroviscosity and fluidity also regulate cellular prolifer-
ation through the modulation of membrane binding phospholipids, ionic
headgroups, hydrophobic acyl chains and/or the binding of cholesterol
[73,76,77]. Expression and accessibility of surface antigens/receptors of
a membrane are mediated through fluctuations between membrane
microviscosity and membrane fluidity, which are reciprocals of one
another [78]. A key relationship between microviscosity and mem-
brane lipids is the ratio of cholesterol to phospholipids that affects
internal membrane viscosity, lipid motion and regulates cellular
behavior (e.g. cell migration) [24]. As a cell reaches maximum
microviscosity, the fluidity of surface membrane lipids are at a mini-
mum while the ratio of cholesterol to phospholipids is at its highest
peak [24]. Furthermore, during this microviscosity state, surface anti-
gens and receptors increase in expression, exposure and accessibility,
leading to membrane saturation [23]. The reduction of membrane
surface area happens concurrently with a decrease in TMP (Fig. 1B)
[75]. As a consequence of oscillatory microviscosity levels, the cell
surface proteins that are indirectly recruited to the membrane play a
key role in the regulation of the cell cycle.

4. TMP and cancer

Since TMP is known to control key cellular processes such as prolif-
eration, migration, and growth, its proper maintenance is crucial to
body homeostasis [12,79]. Deregulation of membrane potential can
inducedrastic changes in cells, and in some cases, cause them to become
tumorigenic. In the same virtue, TMP may also be manipulated to
prevent tumor progression [5–7,20,62].
4.1. Cancer progression

Numerous studies have shown that deregulation of TMP can lead to
tumorigenesis [20,40,80–82]. There is a general correlation between the
proliferative capacity of a cell and it's TMP, which cancer cells often use
to their advantage [1,22]. A common trait among tumor cells is that they
are more depolarized at any given time, comparable to the TMP excit-
able cells discussed previously [11,79]. A panel of breast cancer cells
shows an increase in depolarization as compared to controls [83]. For
example, MCF-7 cells exhibit lower TMP values in both the G1 and S
phases as compared to normal breast cells [25]. In addition, a K+ chan-
nel, hERG1, normally expressed in differentiated cardiac myocytes is
upregulated in various types of cancer cells [62,65,84]. Lastly, elevated
expression of Kv10.1. and Kv11.1 channels are correlated with an
increased probability of relapse and a lower survival rate in human
patients [9,12]. Intracellular Na+ levels are usually elevated in cancer-
ous tissue, supporting the notion that a state of depolarization is critical
for cancer transformation [9,20,40].

Deregulation of V-ATPase pumps can often lead to excessive cellular
proliferation. For example, in many breast cancer cell lines, there is an
upregulation in the expression of V-ATPases in the cell membrane
whereas overexpression in normal cells confers a neoplastic phenotype
[85,86]. Another voltage-gated proton pump Hv1, critical for proton
transfer, is overexpressed in high-grademetastatic human breast cancer
cell lines such as MCF-7, but shows minimal expression in low-grade
metastatic breast tumors [87]. Overall, these studies suggest that proper
ionic flow in cells is critical for the proper cellular maintenance.

4.2. Escaping cell death

TMPs not only play an important role in the proliferation required
for tissue homeostasis but also maintains constant cellular turnover. It
does so through the activation of pathways that results in cellular
degeneration via the inhibition of the cell cycle machinery or through
both the intrinsic and extrinsic components of the apoptotic pathway
[62]. Cells unresponsive to environmental cues may be forced to enter
a stage known as senescence, mediated by TMP [88], which results in
permanent cell cycle arrest, through secretion of antigrowth signals
that prevent oncogene related growth [89]. This change in the TMP
may lead to an upregulation of p16-pRb andp53, the primarymediators
of senescence [88].

Propermaintenance of TMP by ITMs is critical for determining cellu-
lar fate. For instance, downregulation the Na,K-ATPase has been shown
to markedly increase apoptosis in normal and tumor cells [90,91] K+
channels are criticalmodulators of cell fate decisions, such as controlling
the onset of apoptosis [62,65,84]. For example, expression of apoptosis-
related KCNA1 channel is significantly reduced in human cancers [92].
Blocking hERG1 channels can stop the flow of K+ into the cell, leading
to apoptosis [88]. Similarly, efflux of K+ ions is seen to be a major
perquisite behind caspase-3 activated apoptosis in HeLa cells [93]. On
the other hand, upregulation of hERG1 results in G0/G1 arrest without
undergoing apoptosis, consistent with the state of replicative senes-
cence [20,94]. These findings suggest that TMP plays an important role
in the maintenance of cellular homeostasis and the deregulation can
lead to excessive activation of apoptotic pathways leading to massive
cell death.

4.3. Cancer cell migration

Stages of invasive cancer progression begins with the loss of cell
adhesion from the primary tumor site, followed by the invasion of
cells into the circulatory system and lastly seeding of distant tissues to
form secondary tumors [95]. Although TMP is important in abnormal
cellular proliferation, it also plays an indirect role in cell migration
by modulating intracellular Ca2+ ion concentrations [9,40]. For exam-
ple, overexpression of Kca2.3, key for maintaining a hyperpolarized
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membrane potential, increases the cell's ability to migrate through the
release of intracellular Ca2+ [96]. Deregulation of K+ channel GIRK1
is correlated with higher incidence of lymph node metastasis and
poor prognosis in a small sample of patients and is overexpressed in
breast tumors [97]. RT-PCR and immunocytochemistry experiments
demonstrated that the expression levels of voltage-gated proton
pump Hv1 is increased among different breast cancer cell lines [87],
indicating that propermaintenance of TMPmaybe necessary for cellular
adhesion and function.

4.4. Abrogation of cancer growth

Manipulation of ITMs to induce changes in TMP is another potential
therapy target to prevent the transformation of normal cells into cancer
cells [11]. Membrane hyperpolarization leads to a decrease in prolifera-
tion by sustaining high levels of K+ and Ca2+, which can inhibit cell
cycle progression (Fig. 1B) [95]. Interestingly, tumor-like structures
generated in Xenopus embryos were later inhibited by the upregulation
of the anion channel CLIC1 in the stroma leading to the hyperpolarizion
of the tumor-like cells [5,6]. Inhibition of certain voltage gated Na+
channels reduces the metastatic ability of prostate cancer cells in a rat
model by abrogating their motility [96,98]. Numerous studies suggest
that the pharmacological or genetic inhibition of K+ channels can
reduce the proliferation of cancer cells [99–101]. For instance, blocking
the Kv10.1 channel causes a cessation of cellular proliferation and
migration in several myeloid leukemia cell lines [12].

A negative membrane potential has been associated with ATP
induced cell death [102,103]. The microenvironment of cancer cells
tend to be hypoxic, resulting in increased K+ efflux in the extracellular
space [102,103]. The increase in K+ in the microenvironment can
inhibit Pannexin-1, leading to apoptosis via caspase-3 activation [104].
This is supported by the observation that normal concentrations of
K+ inside a cell inhibit the activation of the apoptosome by preventing
the actions of Apaf-2 [105]. TMP across the mitochondria could also
decidewhether a cell undergoes apoptosis. Loss of normalmitochondri-
al TMP triggers the release of cytochrome c, into the cytoplasm, signal-
ing the formation of the apoptosome and the death of the cell [84].
These studies suggest that TMP modulation maybe a potential target
for directed-apoptosis and proper understanding of TMP and its effect
on cell dynamicswill be essential for developing novel cancer therapies.

5. S. mediterranea and TMP

Ion transporters and channels serve as excellent targets for cancer
therapy because they are present on the surface of cell membranes
and many molecular tools are readily available for manipulating them
[61,94,95]. Most drugs used to block or enhance ion transporter's activ-
ity have been characterized extensively and a large number have FDA
approval [79], which offers the possibility of quick translation into ther-
apies. Pharmacological deregulation of ion channels is an effective
method for disrupting TMP. It allows for precise control and timed inhi-
bition while delivering a more informative result than a gene knockout
method where there could be many complications due to functional
compensations [10,14,15]. Dissecting the molecular mechanisms by
which biophysical properties regulate tumorigenesis and metastatic
processes requires a model system that is tractable to both biophysi-
cal/physiological techniques and state-of-the-art molecular genetics
[11].

The planarianmodel organism S. mediterranea provides an excellent
base of study for understanding bioelectric regulation of tissue regener-
ation as they possess a simple anatomy along with a remarkable ability
to rapidly regenerate [19,106–112]. This regenerative ability extends to
healing any part of its body after receiving an injury, including the neu-
ral tissue, digestive system, brain, photoreceptors and connective tissue
(Fig. 2A) [19,107,109,110]. Its robust regeneration is fueled by an abun-
dant population of adult pluripotent stem cells known as neoblasts that
is responsible for cellular turnover as well as tissue regeneration [19,
107–110,113]. The genome of S. mediterranea has been sequenced
and many of molecular tools have been developed to study genetics,
physiology, and biochemistry in this model organism [19,107–110,
113].

Immunohistochemistry and in situ hybridization are often used to vi-
sualize cell migration and differentiation patterns in planarians [114].
These techniques can determine anatomical structural differences,
neoblast state and abnormalities in tissue patterning (Fig. 3A). Neoblasts
in different phases of the cell cycle can be visualized through the use
of anti-phospho histone H3 antibody (H3P) and bromodeoxyuridine
(BrdU) [115]. Fluorescent activated cell sorting (FACS) is a uniquemethod
of isolating planarian neoblast populations. Dyes such as Hoechst 33342
and calcein AM are used to stain live cell DNA content and cytoplasmic
activity [116]. FACS allows for the isolation of cell populations enriched
in radiation-insensitive differentiated cells (Xins) or radiation-sensitive
adult stem cells fractions (X1 and X2) (Fig. 3B) [106,116–119]. Cell cycle
analysis is also possible through flow cytometry [120,121].

The adult body of S. mediterranea provides unique opportunities to
analyze regulation of cell proliferation by TMP [1,13,19,122]. Localized
or systemic neoblast proliferation could be altered bymetabolic changes
(feeding or starvation) and tissue injury [17,108,121]. Furthermore,
neoblast overproliferation and tumor formation can be induced by ma-
nipulation of well-characterized tumor suppressor genes (e.g. p53,
PTEN) (Fig. 2B) [123,124]. The pattern of regeneration of entire body
parts is susceptible to molecular manipulation of ion flows, gap junc-
tional communications, and conserved signaling pathways such as
Wnt and B-catenin [17,18,107,125,126]. Regeneration in planarians
proceeds through activation of cell proliferation and application of
bioelectric fields are known to modulate repair and tissue polarity in
flatworms [127,128]. Membrane potential across the whole planarian
body could be monitored using DiBAC (4) (3) staining, and the newly
developed approach termed Planarian Immobilization Chips (PICs) to
visualize bioelectrical changes in real time while minimizing tissue
damage [13,122,129,130].

The H,K-ATPase is a major player in the regulation of tissue mainte-
nance and regeneration in the planarian model. This ion transporter is
essential for both the proper development of organ size during planari-
an regeneration and the anterior polarity in regenerating worms [13,
122]. Functional disruption of H, K-ATPase by RNA interference (RNAi)
leads to failure in tissue remodeling and proportion adjustment of
regenerated structures [13]. These results in planarians are consistent
with zebrafish studies that found bioelectric signaling regulates fin allo-
metric scaling and coordination of growth [131]. Similarly, ion trans-
porters are required for proper regeneration of lost tissue as well stem
cell maintenance in Xenopus and mice [132,133]. Together, findings
in both vertebrate and invertebrate models demonstrate that TMP and
ITMs modulate central issues of regeneration and development, such as
cell fate decisions, the establishment andmaintenance of tissue propor-
tion, and the growth of complex structures, through well conserved
mechanisms.

Furthermore, planarians are also amenable to chemical treatments
aimed at targeting ion transporters and recordings of TMP in real time
[18,122,125,129]. Drug-induced changes in TMP could be used as a
venue to perform gain of function studies in planaria, as there are
currently no other means for doing such research in this system.
Increased knowledge of bioelectricity in living systems will contribute
to our understanding of how ion flows can be used in clinical settings
to influence cellular proliferation, migration and differentiation to
control tissue function. For instance, modulation of ion transport with
chemicals could be a powerful tool to halt cell cycle progression in
abnormally proliferating cells [134] or an instrument to prompt cellular
division to re-establish form and function to lost or damaged tissues
[133]. The molecular basis of these processes could be readily investi-
gated in the planarian model and later validated in more complex
systems.
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Fig. 2. Planarian tissue regeneration and maintenance. (A) Images of a live worm (left) amputated pre-pharyngeal; images on the right show the regeneration of the anterior portion in-
cluding the head. Time-lapse images depict properwound healing response and blastema formation in a regenerating planarian. By Day 7, the fragment has regenerated into a completely
functional animal. (B) Image depicts cell division (yellowdots, H3P immunostaining) after RNAi of TOR andPTENgenes in comparison to control (mock-RNAi). TOR(RNAi) reducesmitotic
activity while PTEN(RNAi) induce the opposite effect.
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6. Concluding remarks

TMP and themany proteins that are involved in itsmaintenance, are
of great importance to the normal cellular function and to a greater
extent, the organism. The complex interplay between K+, Na+, Cl−
and Ca2+ ions in and out of the cell determines the polarization of
TMP at any given moment. Ionic oscillations during the cell cycle are
able to control passage of cells through critical checkpoints by regulat-
ing key proteins such as Cyclin/CDKs and Rb. The deregulation of a
small subset of proteins in this intricate system can lead to abnormal
cell behavior, ultimately leading to the onset of tumorigenesis. Most
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(WIHC) to stain cells in different parts of the cell cycle, including mitotic cells alone (H3P), ce
cells), cell death showing Caspase-3 and TUNEL (fragmented DNA of apoptotic cells) (B) FACS
populations based on DNA content and viability.
studies that have been performed to explore this phenomenon have
been through in vitro methods, however, this only provides a partial
view of the bioelectrical phenomena. In order to gain a comprehensive
understanding of TMP's role in cellular processes, it is critical to perform
in vivo analyses of cell cycle progression and cancer transformation in
the adult body and the planarian S. mediterranea is a well-suited
model organism for this task.

Planarians provide an excellent model for studying mechanisms of
bioelectric regulation of cell cycle as they are host to a population of
mitotically active, pluripotent stem cells that maintain their high rate
of cellular turnover and impressive regenerative capability. They are
 Cells
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the whole organism. (A) Left to right. Live worm, whole-mount immunohistochemistry
lls entering S phase of the cell cycle (BrdU positive cells, green dots indicate proliferative
plot shows gates used to isolate irradiation sensitive (X1 and X2) and insensitive (Xins)
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amenable to analysis of cellular transformation by chemical treatment
or genetic manipulation of tumor suppressor genes. The many tools
that have been developed to study these animals will prove useful for
manipulating various facets of their internal characteristics and eventual-
ly enable us to address howendogenous electricfields contribute to tissue
homeostasis and regeneration of the whole organism. Increased efforts
in this area will propel the field into creating applications, which can
eventually lead to a better understanding of human tissue homeostasis
and regeneration.
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