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Causal mechanisms as temporal bridges in
a connectionist model of causal attribution

Michael E. Young
Dept. of Psychology
University of Minnesota
317 Elliont Hall
Minneapolis, MN 55455
young @turtle.psych.umn.edu

Abstract

We use a connectionist model which relies on the
encoding of temporal relationships among events to
investigate the role of causal mechanisms in causal
attribution. Mechanisms are encoded as intervening
events with temporal extent that occur between the
offset of a causal event and the onset of an effect. In
one set of simulations, the presence of intervening
events facilitated acquisition of a relationship between
cause and effect via the mechanism. In a second set of
simulations, prior experience with mechanisms
enhanced development of a cause-effect relationship
during later training absent the mechanism. The results
provide evidence that causal mechanisms can facilitate
causal attribution via Humean cues-to-causality.

Introduction

Our intuitive notion of causality leads us to believe that
causes and effects are linked via some underlying
physical mechanism. However, it becomes readily
apparent that we do not perceive this mechanism in
operation. When we see a billiard ball strike another
causing it to move, we do not see energy passing from
one to the other. Psychological theories which rely on
our intuitive notions of causality (e.g. White, 1988)
focus on adult introspection as a valid indicator of our
cognitive processes. In this paper, we wish to explore
the foundations of our causal attributions, relying upon
the most objective of perceptual information. This
motivates a focus on learning and on basic object and
event attributes. This contrasts with a focus on the
precise scientific basis for causal relationships.
Singularists believe single-observation causal attri-
butions to be paradigmatic. For the singularist the sub-
ject learns causal principles or rules which are applied
to current perceptions. The rule of generative transmis-
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sion or causal mechanism is argued to be primary in
making causal judgments (e.g. Bullock, Gelman &
Baillargeon, 1982; Shultz, 1982; Shultz & Kestenbaum,
1985). This rule presupposes the presence of an objec-
tive, knowable causal mechanism (Harré & Madden,
1975) to mediate between the proposed cause and
effect. Candidate mechanisms are identified as a result
of prior experience with similar instances or by
applying culturally transmitted knowledge.

Neo-Humean theorists require observation of
various cues-to-causality to build knowledge of
causation (Hume, 1739/1978). While it may often seem
otherwise, both classes of theorists are relying on the
subject learning the relations among events. For the
neo-Humean the causal judger gathers empirical
evidence, principally relying upon the cues-to-causality.
These cues include temporal priority (causes must pre-
cede their effects), temporal contiguity (causes should
occur near in time to their effects), spatial contiguity,
and contingency or covariation (causes consistently
precede an effect and do not occur in its absence) (see
Einhorn & Hogarth, 1986). When two events possess
all of these cues, a causal association from the earlier to
the later is made. When any of the cues are absent this
detracts from the certainty of a causal attribution (e.g.
Koslowski & Okagaki, 1986; Siegler & Liebert, 1974;
for a review, see Shultz & Kestenbaum, 1985). The
cues are differentially weighted in their importance to
the causal judgment (e.g. Einhorn & Hogarth, 1986).
Singularist arguments against the Humean position
involve causal judgments made after only one observ-
ation, demonstrating the non-necessity of covariation.
Yet Hume (1739/1978) offered an explanation: "...this
difficulty will vanish, if we consider, that tho' we are
here suppos'd to have had only one experiment of a
particular effect, yet we have many millions to convince
us of this principle; that like objects, plac'd in like
circumstances, will always produce like effects...." (p.
105). When the events are sufficiently similar to known
causally related events, we will readily (i.e. after a
single observation) infer causality.
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The Role of Causal Mechanisms

For neo-Humeans it is necessary to explain causal
ascriptions in the absence of cues. Lack of contingency
can be overcome by a subject positing unknown or
unobserved factors mediating the cause/effect relation-
ship. Lack of temporal or spatial contiguity can be
explained by hypothesizing the presence of an inter-
vening event (with temporal duration) or object/force
(which has spatial extent) to bridge the gap. This inter-
vening event or force then becomes the causal mecha-
nism. For a singularist the mechanism provides a
medium for transmission of physical energy while a
neo-Humean argues that, due to the mechanism, a series
of events is perceived each of which is spatially and
temporally contiguous with the subsequent event in a
causal sequence.

Causal mechanisms are used as explanations for a
lack of spatial or temporal contiguity between a (pre-
viously attributed) cause and an effect. They are also
used as explanations when there is spatial and temporal
contiguity but specific cause-effect mechanisms are
unknown, as when an appeal is made to a lower level of
analysis (e.g. the subatomic). Despite the evidence (via
the cues-to-causality) which suggests that two events
are causally related, the lack of an adequate explanation
may indicate that the two events are merely correlated.
However, if the two events are readily connected by a
sufficient explanatory construct, then less evidence (e.g.
covariation data) is necessary. Note that even in the
presence of sufficient mechanisms, absence of support
for a causal judgment from the cues-to-causality results
in a significant negative impact on the likelihood of
attribution (Koslowski, et al, 1989). Thus, while the
cues-to-causality may be insufficient for causal
atribution by adults, they are necessary.

One of the problems with the causal mechanism rule
as defined by the singularist is the lack of specification
regarding its source. There are many occasions under
which knowledge of causal mechanism is not necessary,
e.g. operation of a light switch (mechanism is elec-
tricity), operation of a remote control (mechanism is
some sort of electric beam - even we don't know the
real mechanism), and starting a car (how does that work
anyway?). Under circumstances like these causal attri-
butions are readily made and mechanisms are fre-
quently manufactured as post facto explanations by
individuals (who are frequently wrong, if my personal
experience is any indication). Three year old children
show no such concern for identifying a causal mecha-
nism (Bullock, 1984; Shultz & Mendelson, 1975).
When 4-5 year olds in Bullock's study discovered that
the obvious causal mechanism was absent, they did not
change their causal attribution in the absence of the
mechanism but instead 77% of them hypothesized
alternative mechanisms, from magnets (to bridge a
spatial gap) to invisible strings and magic.

In addition to their explanatory role, causal
mechanisms may also serve a facilitatory role during
the early learning process. This role is suggested by
the human and animal conditioning literature. Shanks
& Dickinson (1987) and Wasserman (1987) suggest
that causal judgments are built on the basic processes of
learning as exemplified by classical and instrumental
conditioning. Similar factors affect both conditioning
and causal attribution (most notably the cues-to-
causality). A temporal gap between cause (conditioned
stimulus) and effect (unconditioned stimulus) makes
learning the cause-effect relationship more difficult, but
filling the temporal gap with intervening events, thus
establishing an uninterrupted chain of contiguous
events, facilitates learning (e.g. Kehoe, 1979; Reed,
1992). These intervening events may serve the same
role that causal mechanisms do in causality judgment.
That this facilitatory effect is observed in animals
suggests that this role of "mechanism" may not be
based on prior knowledge of how mechanisms operate
but rather may be rooted in the conditioning processes
underlying learning.

A Connectionist Model of Causality

Connectionist models manifest some of the principles
espoused by the suggested conditioning-causal attri-
bution homology. We present evidence that intervening
events for a connectionist model demonstrate the
explanatory and facilitatory properties ascribed to
causal mechanisms. This is done without any hypo-
thesis of energy transmission. The present model relies
heavily on the temporal cues-to-causality: temporal
contiguity and temporal priority (covariation can also
be processed by the system but is not varied in the
present simulations). The system learns the temporal
relationships among events and predicts consequents
from presentations of antecedents. An event "causes"
another if its presence predicts the occurrence of the
second. There is a strict reliance on temporal priority as
a causal cue. Temporal contiguity is important for the
model in that the longer the time interval between onset
and offset of a cause's occurrence and the onset of a
effect, the longer it will take the system to learn the
relationship, if it learns it at all.

The architecture of the model is based upon that pre-
sented by Elman (1990). At a given instance of time, it
predicts future events from an internal memory of past
events and current conditions. For the purposes of
causal attribution, the model predicts effects from
causes. The model's architecture was designed to ac-
commodate data from the literature on conditioning and
causality and was developed to test the proposal that
conditioning processes may underlie causal attribution
processes (Shanks & Dickinson, 1987; Wasserman,
1987). The constraints placed upon the connections
from the hidden units to the predictions of the causes



System Architecture: Recurrent
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Figure 1: Architecture used for the Model of causal
attribution. Weights represented by gray arrows are
constrained to values within the range [minimum, maximum].

(not the final effect) are one technique for encouraging
cue competition among the alternative predictors. Cue
competition is a facet of conditioning, as exemplified
by the well known phenomenon of blocking, and of
causal attribution (e.g. Waldmann & Holyoak, 1992 on
analogs to blocking and Einhorn & Hogarth, 1986 and
the role of alternative causes).

Simulations of the model in a serial conditioning
paradigm (Young, 1992) demonstrated that the presence
of an intervening event (B) which fills a time gap
between two events, A and C facilitates acquisition of
the A->C relationship (i.e. expectation of C after A's
occurrence develops faster following A->B->C
experience than after A->gap->C experience). This
facilitation has been demonstrated in human and animal
conditioning experiments (e.g. Kehoe, 1979; Reed,
1992). Without the intervening event in the causal
chain, the lack of temporal contiguity between the two
events implies the absence of a causal relation.
However, the presence of the event serves to fill the gap
thus “explaining” the lack of contiguity and establishing
a causal chain.

A replication of the facilitatory effect of an
intervening event will be presented for a model that is a
simplified version of that presented in Young (1992).
The simulations involve training with much higher
learning and momentum settings (.4 and .5 respectively)
to increase the rate of learning without creating
prediction instabilities. A second set of simulations will
then be presented which demonstrate the effect that
prior learning with a perceptible causal mechanism has
on later experience in its absence (i.e. A->B->C trials
followed by A->gap->C trials).

Simulation 1

A series of simulations were run using the recurrent
architecture of Figure 1. This network differs from that
presented in Young (1992) in that there are 6 hidden

and context units here rather than 4, and there were 3
additional, constant inputs used in Young (1992) that
played no role in those simulations and were not used in
the present ones. Time is represented in an Elman
(1990) network by using discrete time slices of a
constant duration (one “time step"). Event occurrence
is identified as an increase in activation for one of the
network inputs (from 0 to 1). There are three
orthogonal events used here (A, B and C) as input to the
model, one input unit representing each event.

Seven architecturally equivalent networks with dif-
ferent random initial weights were used. These net-
works received two different forms of training. The
Mechanism group was trained on repeated A->B->C
event sequences. The last event in this and all sub-
sequent simulations was one time step long. All other
events were two time steps. All sequences of events
were separated by a 20 time step intertrial interval
during which all inputs to the network were 0. The No-
Mechanism group received repeated A->gap->C event
sequences, where the gap was 2 time steps long and
consisted of presentation of 0’s at all inputs.

A trial consisted of one presentation of the
appropriate event sequence. Every 25 or 50 trials, the
network's responses to a set of test events were re-
corded. During these test trials, no learning took place.
The set of test stimuli consisted of three trial types: 1)
presentation of A alone, 2) presentation of B alone, and
3) presentation of A->B (A followed by B). All test
events were two time steps in duration. The network’s
expectancy of the occurrence of event C (the “effect”)
was the dependent measure of interest. The expectancy
is the value of an event’s output node. Unless otherwise
noted, all figures and discussions will refer to the C
expectancy at the appropriate time step, i.e. 4 time steps
after A's onset or 2 time steps after B's onset.

Results and Discussion

C expectancies after presentation of A, B and A->B are
plotted in Figure 2. The formation of the A->C rela-
tionship is stronger after A->gap->C training than after
A->B->C training. The obvious reason for this
difference is that the No-Mechanism group was trained
to expect C following only A while the Mechanism
group’s experience suggests that the presence of B is
expected as a forerunner to C. The C expectancy for
the latter is significantly higher and develops much
quicker after presentation of A->B, the sequence on
which this group was trained. Note that the C
expectancy following the series of stimuli is much
greater than the sum of the expectancies following A or
B individually. This demonstrates that the strong C
expectancy following the A->B configuration is not
carried solely by the contiguous B event but is the result
of an interaction of the two (although it can be argued
that the individual expectancies are sub-threshold and



Effect of presence of intervening B event
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Figure 2: Growth of predictive relationship between earlier
events (A, B or A->B) and the effect (C) as a function of
experimental group (A* is for No-Mechanism group).

their co-occurrence exceeds this threshold, resulting in
the higher expectancy to the configuration (Kehoe,
personal communication)). During early training the C
expectancy following A->B is carried almost entirely
by the contiguous B event, but as training progresses B
facilitates the early development of the A->C
relationship (compare A->gap->C). B provides an early
bridge from A to C. However, this advantage
disappears with time (after approximately 700 trials).

In the networks, an intervening event (our reification
of a causal mechanism) can facilitate acquisition of a
cause-effect relationship by bridging a temporal gap.
This facilitation is limited to occasions on which the
mechanism is present - the mechanism strengthens the
A->C relationship via B, not in its absence. These
results contrast with those found in Young (1992). In
the latter, the intervening event facilitated development
of A->C despite the lack of A->gap->C experience. For
many of the networks the B played an early facilitatory
role but contributed little later in training once the A->C
relationship had been established. Informal simulations
with the current model using lower learning rate and
momentum values exhibited performance similar to
those of Young (1992), demonstrating that the
difference was due to parameter values and not the
change in architecture. The second set of simulations
investigated other potential benefits (or disadvantages)
afforded by experience with intervening events.

Simulation 2

This set of simulations investigated the effect prior ex-
perience with a causal mechanism has on later training
in its absence. This was investigated by training net-
works (the same networks used in the other simulations,
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Figure 3: Comparison of effects of experience with A->B->C
trials (none, 500, or 1500) on later learning of the A->C
relationship during A->gap->C training.

i.e, same initial weight settings) on A->gap->C trials,
but each group of networks had differing degrees of
prior experience with A->B->C. Group No-Pretraining
is identical to the A->gap->C group used in the earlier
simulations; Groups 500 and /500 had 500 and 1500
trials of A->B->C pretraining, respectively. Two
groups were chosen to examine the effect that amount
of experience with causal mechanism would have on
later learning.

Results and Discussion

The basic results are presented in Figure 3. We first
note that prior experience with a mechanism filling the
gap facilitates the later acquisition of the A->C
relationship during A->gap->C trials. The benefit
provided by the pretraining is immediately apparent.
After as few as 25 trials, the expectancy of C following
A alone progressed from an initial median value of 058
(value at the end of pretraining) to a median value of
793 for Group 500. For Group 1500 results were
mixed. Average improvement appears significant as
evident in Figure 4, but this non-zero average was
entirely the result of two networks who benefited from
the 1500 trials of pretraining (C expectancy median at
25 trials was .843); the other 5 networks had C
expectancies of zero. This trend continued: after 500
trials of A->gap->C the medians were .95 (for the two)
and 0 (for the five). It is interesting to note that these
two networks were the ones which began with the
highest C expectancies to A alone at the end of 1500
trials (.683 and .089).

Figure 4 graphically depicts the special benefit
afforded by prior mechanism experience for Group 500.
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Acquisition of A->C after 500 pretraining trials
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Figure 4: Strength of C expectancy following presentation of
A alone. These networks were trained with A->B->C for 500
trials before receiving the graphed A->gap->C training.

Only one network failed to learn the A->C relation after
500 trials. Prior experience with an intervening event
(the causal mechanism) has tremendous benefit for the
group pretrained for 500 trials yet retards those net-
works receiving more of this apparently beneficial
experience.

As a network attempts to learn an A->gap->C
relationship, it is necessary for it to construct an
internal, mediating representation that persists internally
throughout the duration of the gap. A recurrent network
of the type used here (Elman, 1990) bridges time by
creating such intermediary representations, The prior
experience with A->B->C provides such a mediating
event explicitly. During the trials where the mechanism
is now absent the network need only learn not to
explicitly expect B (i.e. the output of the B node should
not be appreciably above zero or an error will back-
propagate through the network), while maintaining the
internal representation of B as a mediating event. This
unlearning requires changes in the weights between the
hidden layer and the output layer only. Evidence for
this use of B as an internal mediator is evident in the
correlation between similarity in internal representa-
tions (hidden unit vector after pretraining and after 25
trials of A->gap->C) and the performance of the
network. Table 1 shows the similarity between the in-
ternal representations (measured using a normalized dot
product between hidden unit vectors) and the network's
performance after 25 trials of A->gap->C (performance
is captured as the strength of the A->C relationship).

The similarity in B internal representations (the two
vectors represent the first and second time steps) was
positively correlated with the network’s success at
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event. This correlation held even after partialling out
the effect of A’s similarity. Given the advantages
afforded later learning in the absence of the earlier
causal mechanism, there should be greater facilitation
when perceptual support for the presence of B exists
(e.g. a low input activation value for the B unit rather
than zero) and when the intervening event is similar to
B (through generalization). The latter is especially
interesting since there appears to be many occasions
when the perceptual support for a causal mechanism
consists of events or objects that are similar to but not
identical to experienced mechanisms.

We suggest that overlearning explains why too much
experience with a mechanism results in a benefit for
only two of the seven networks. The networks appear
to have so overlearned the A->B->C relationship that
they lacked generalizability. This is not surprising in
the context of causal attribution. It has been repeatedly
demonstrated that spatial and temporal gaps in a
launching paradigm (a rather overlearned attribution)
have significant impact on subjects’ reports of a causal
relationship. These results suggest that training studies
involving such gaps should be more effective in
younger subjects than they would in older subjects.
How young human subjects must be to behave like
Group 500 rather than Group 1500 is an open question.

General Discussion

The results presented here suggest that encoding causal
relations in the environment is reducible o representing
the regularity of temporal sequences given that other
cues-to-causality are present (e.g. spatial contiguity).
There's a lot of debate on this notion of causality (see
White, 1990). Our intuitions tell us otherwise, suggest-
ing hypotheses similar to White's (1989) theory of
causal powers. Our work is addressing the origins of



our knowledge of causal powers: how do we know that
electricity can serve as a mechanism for the illumin-
ation of a light? Our networks use intervening events in
a manner analogous to facilitatory causal mechanisimns,
without the use of singularist notions of encrgy trans-
mission or causal powers. Events facilitate leaming by
bridging a temporal gap through their explicit presenta-
tion. After experience with mechanism sequences the
internal representations can be effective through their
implicit presence. An intervening event can also ex-
plain a single novel temporal sequence when the novel
sequence is similar to known causal sequences.

It is important to remember that Hume did not sug-
gest multiple experiences with a particular sequence
were necessary for causal attribution. Experience with
similar sequences is adequate for a judgment of causali-
ty after a single observation of a novel series of events.
The singularist should differ with the neo-Humean pri-
marily over the representational form prior experience
takes and its function in generating current perceptions.
For the singularist, prior experience is stored in sym-
bolic rules with varying generality. No representational
form is specified by Hume but prior experience impacts
current perception via similarity and inference. The
present neural network model encodes prior experience
in a non-symbolic form, which gives the surface
appearance of rule-like behavior to an outside observer.

The singularist view is premised on knowable causal
relations (Harré & Madden, 1975), following Kant's
view of nature as conforming to general laws (Kant,
1781/1929). The concept of causality advocated by
Hume is counter-intuitive to many adults: causality is a
psychological construct and has no provable physical
instantiation. "It appears that in single instances of the
operation of bodies we never can, by our utmost
scrutiny, discover anything but one event following an-
other, without being able to comprehend any force or
power by which the cause operates..." (Hume,
1748/1955, pp. 84-85). While we do not deny the
Kantian metaphysics, we suggest that people are
Humean cognizers.
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