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An Optimal Time Algorithm for Shape from Shading * 

-R. Kimmel ll and J .A. Sethian** 

Abstract 

An optimal numerical algorithm for the reconstruction of a surface from its shading 
image is presented. The algorithm solves the 3D reconstruction from a single shading 
image problem. The shading image is treated as a penalty function and the hight of the 
reconstructed surface is a weighted distance. A first order numerical scheme based on 
Sethian's Fast Marching Method [19, 18] is used to compute the reconstructed surface. 
The surface is a viscosity solution to an Eikonal equation for the vertical light source 
case. For the oblique light source case, the surface is the viscosity solution to a different 
partial differential equation. A small modification of the Fast Marching Method yields 
a numerically consistent fast algorithm for the general shape from shading problem. 

1 Introduction 

One of the earliest problems in the field of computer vision is the reconstruction of a three 
dimensional object from its single gray level image. The problem, for the case of a diffusive 
reflectance model of the surface, also known as Lambertian reflectance, is recognized as the 
'shape from shading problem' [7, 8]. Various numerical schemes were proposed over the 
years, most of these methods were based on variational principles that require an additional 
smoothness or additional regularization terms that introduce second order derivatives into 
the minimization process, see [9]. Only two early direct models for the shape from shading 
did not incorporate extra smoothness terms, the first is the characteristic strips expansion 
method that Horn used when he first introduced the problem [7], the second is Bruckstein's 
equal hight contours tracking model [2]. Unfortunately, the first numerical implementations 
of these algorithms s~ffered from numerical instabilities. 

New numerical algorithms based on recent results in curve evolution theory, control 
theory, and the viscosity framework [4], were applied to the shape from shading problem 
in [16, 5, 10, 12]. In these advanced numerical algorithms the smoothness assumption is 
embedded within the scheme without the need for an extra smoothness as a penalty. 

Recently, Sethian [19, 18] introduced an O(N log N) computational steps sequential algo
rithm for solving the Eikonal equation. This algorithm known as the 'Fast Marching Method' 
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relies on a systematic causality relationship based on upwinding, coupled with a heap struc
ture for efficiently ordering the updated points. Using this approach, the computation of 
weighted distances, edge integration in images [3], volumetric segmentation [15], shape from 
shading with vertical light source [18], low dimensional path planning [13], simulating pho
tolithography development [17], and many other problems can now be solved in an efficient, 
accurate, and consistent way. 

An important property of the solution that distinguishes it from graph search based 
methods is its converges to the continuous physical (viscosity) solution as the rectangular 
numerical grid is refined. In a related effort, Tsitsiklis [21] was able to solve the Eikonal 
equation also on a rectangular grid, with the same computational complexity by iteratively 
solving a 'cost to go' optimization problem for the dynamically sorted _grid points. 

In this note we use Sethian's Fast Marching Method and slightly modify it to construct 
a numerical solution for the oblique light source shape from shading problem. 

2 Shape from Shading 

Let us first review the shading image formation model for a 3D Lambertian object. Assume, 
that the object we try to reconstruct is given as a function z(x, y) : R2 -+ R, whose surface 
normal at each point is given by ii(x, y) : R2 -+ S2. Next, let the light source direction be 
given by r E S2. Then, the intensity image J(x, y) : R2 -+ R of an orthographic projection of 
the object is given by the inner product of the light source direction and the surface normal, 

J(x, y) = f. ii(x, y). 

For the simple vertical light source case r = (0,0,1), in which the light source is located 
near the viewer, the shading image is given by 

1 
J ( x, y) = VI 2 2 • + Zx + Zy 

The problem in hand is the reconstruction of z( x, y) from its gradient magnitude at each 
point given by 

IVz(x,y)1 /' V(I(x,y)f 2 -l. 

This equation is known at the Eikonal equation. It was shown in [11] that with a simple 
smoothness assumption, the reconstruction problem can be solved for surfaces with compli
cated topologies as long as the surface normals are known to be pointing outwards along the 
boundaries of a given domain (e.g. the image boundaries). In the following sections we deal 
with the problem of how to solve the problem ina computationally efficient and numerically 
consistent way. 

3 Sethian's Fast Marching Method 

The Fast Marching Method is an O( N log N) numerical algorithm for solving the Eikonal 
equation, e.g. IVz(x,y)1 = f(x,y). Obviously, our shading image is usually given on a 
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rectangular pixels grid. Therefore, the Fast Marching Method can be directly applied to 
solve the shape from shading problem with a verticalligh,t source. However, for the general 
oblique light source, the model to be solved, that can be reformulated by the selection of a 
new coordinate system, reads l'Vz(x,y)1 = f(x,y,z(x,y)) as shown in the following section. 

-\ Observe that now the right hand side depends on z(x, y). We will show how to include 
this partial differential equation, which is not an Eikonal equation anymore, within the Fast 
Marching framework. Full details on the Fast Marching Method are given in [19]. 

4 Shape from Shading: Oblique Light Source 

Let us focus on the oblique light source case in which the light source direction is different 
than that of the viewer. Recall, that the shading image for this Lambertian case is given by 

J(x,y) = f.ii, 
where r = (Ill 12, 13) is the light source direction, and ii the unit normal to the surface z(x, y) 
that we want to reconstruct is given by 

(1) 

We use our freedom to choose the coordinate system so that 12 = 0, this is done by 
rotating the (x, y) image plane, so that f. (0,1,0) = 0. The shading image is then given by 

J(x, y) = (iI, 0, 13) . ii, (2) 

where Ii + l~ = 1. Eq. (2) involves the term Zx. It requires some additional thought to 
construct a monotonic approximation to this term and an appropriate update rule. 

If we would have had the brightness image in the light source coordinates l(x), then the 
problem would have become the vertical light source case, which is given by the Eikonal 
equation 

-2 -2 1 
zi; + Zy = - -1, 

J(X,y)2 
(3) 

see Figure 1 
In the light source coordinate system, the equation to solve looks like the Eikonal equa

tion, yet the right hand side depends on the surface itself via 

J(x, y) = J(13x + hz, y). (4) 

That is, we need to evaluate the value of the surface at a point in order to find the 'brightness' 
and only then plug it in Eq. (4) and use the Fast Marching Method to solve Eq. ( 3). 

In order to overcome this dependence, we use the directional propagation and 'adopt' the 
smallest z value from all the neighbors of the updated grid point. The numerical algorithm 
in this case is still consistent, one pass (since the smallest z neighbor will never change its 
value), and is thus within the fast marching framework. 

We have thus extended the method to the case of l'Vzl = F(z) relevant to the oblique 
light source shape from shading problem. A consistent solution can be computed with 
O(NlogN). 
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Figure 1: In the oblique light source case, the coordinate system is determined by the light 
source. The result is a partial differential equation that can be solved by the Fast Marching 
Method. 

5 Experimental Results 

We have tested the algorithm on a synthetic shading image of the simplest surface with the 
three basic types of local extremum points: a maximum, a minimum, and a saddle. The 
oblique light source is given by r = (0.2,0,0.96). Observe that we do not deal here with self 
casting shadows (see [14]), nor with solving the global topological structure (see [11, 20, 6]). 

The local extremum points cause singularities at the right hand side of the equation 
since the intensity at their corresponding image locations is equal to zero. This fact should 
not cause any problem to our numerical algorithm, since one could set the intensity values 
that are smaller than O( flh) to some O( flh) without reducing the global order of accuracy. 
Where flh is the grid spacing (the distance between two grid points). Figure 2 presents 
the surface, its shading image, the reconstructed surface, and the error, for the oblique light 
source case. The surface is the solution to Eq. (3) and (4) with a fixed value at the maximum 
point (one of the singular points). 

6 Conclusion 

We have presented an O( N log N) algorithm for surface reconstruction from its shading 
image. The computational complexity bound is data independent (unlike other iterative 
methods [1, 6]). It is the most efficient sequential algorithm for Horn's original formulation 
of the shape from shading problem and a natural application of the Fast Marching Method. 
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Figure 2: The reconstruction of the surface in the first (left) column, from its shading image 
in the second column is given in the third column. The forth (right) column is the difference 
between the original surface and its reconstruction. 
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