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Modeling Water-Quality Parameters Using
Genetic Algorithm–Least Squares Support Vector

Regression and Genetic Programming
Omid Bozorg-Haddad1; Shima Soleimani2; and Hugo A. Loáiciga, F.ASCE3

Abstract: The modeling and monitoring of water-quality parameters is necessary because of the ever increasing use of water resources and
contamination caused by sewage disposal. This study employs two data-driven methods for modeling water-quality parameters. The methods
are the least-squares support vector regression (LSSVR) and genetic programming (GP). Model inputs to the LSSVR algorithm and GP were
determined using principal component analysis (PCA). The coefficients of the LSSVR were selected by sensitivity analysis employing
statistical criteria. The results of the sensitivity analysis of the LSSVR showed that its accuracy depends strongly on the values of its
coefficients. The value of the Nash-Sutcliffe (NS) statistic was negative for 60% of the combinations of coefficients applied in the sensitivity
analysis. That is, using the mean of a time series would produce a more accurate estimate of water-quality parameters than the LSSVRmethod
in 60% of the combinations of parameters tried. The genetic algorithm (GA) was combined with LSSVR to produce the GA-LSSVR algo-
rithm with which to achieve improved accuracy in modeling water-quality parameters. The GA-LSSVR algorithm and the GP method were
employed in modeling Naþ, Kþ, Mg2þ, SO2−

4 , Cl−, pH, electric conductivity (EC), and total dissolved solids (TDS) in the Sefidrood River,
Iran. The results indicate that the GA-LSSVR algorithm has better accuracy for modeling water-quality parameters than GP judged by the
coefficient of determination (R2) and the NS criterion. The NS static established, however, that the GA-LSSVR and GP methods have
the capacity to model water-quality parameters accurately. DOI: 10.1061/(ASCE)EE.1943-7870.0001217. © 2017 American Society of
Civil Engineers.

Author keywords: Genetic algorithm–least squares support vector regression (GA-LSSVR) algorithm; Genetic programming (GP)
method; Water quality; Modeling; Sensitivity analysis; Principal component analysis.

Introduction

The monitoring of water-quality parameters in rivers is becoming
increasingly important due to the rise in freshwater use. Field mon-
itoring and testing of freshwater is time-consuming and costly
(Chapra 2008). Alternatively, there are data-driven methods for de-
termining water-quality characteristics. Genetic programming (GP)
is one of the applications of the genetic algorithm (GA) and has
been effective in approximating complex functions (Izadifar and
Elshorbagy 2010). Aytek and Alp (2008) used GP to model rainfall
runoff. Kisi and Shiri (2010) applied GP to forecast short-term and
long-term river flow. Izadifar and Elshorbagy (2010) modeled
evapotranspiration using GP. The method was applied to model
the stage-discharge curve (Azamathulla et al. 2011). Hashmi
et al. (2011) implemented GP to downscaling precipitation data.
Genetic programming was applied to estimating the scour depth,

forecasting the suspended sediment, estimating river water quality
parameters, and total dissolved solids (TDS) (Azamathulla 2012;
Kisi et al. 2012; Ghavidel and Montaseri 2014; Orouji et al.
2013). Genetic programming is effective for solving large combi-
natorial problems (Azamathulla and Ghani 2011), yet it is very sen-
sitive to the choice of initial parameters, such as the mutation rate.

The use of support vector regression (SVR) in hydrology has
increased in recent decades. Raghavendra and Deka (2014) re-
viewed the application of SVR in hydrology. The least-squares sup-
port vector regression (LSSVR) method is a data-driven method,
which was developed by Suykens et al. (2002). Tripathi et al.
(2006) and Anandhi et al. (2008) employed the LSSVR method
to downscale precipitation data. Maity et al. (2010) forecasted
the discharge of the Mahanadi River in India by means of the au-
toregressive integrated moving average (ARIMA) and LSSVR
methods. The correlation coefficient between the observed and pre-
dicted streamflows was found to be 0.77 and 0.67 for LSSVR and
ARIMA, respectively. The comparison of results showed the supe-
rior accuracy of the LSSVR method. Bhagwat and Maity (2013)
predicted daily flow discharge in the Narmada River and the
Mahanadi River using the LSSVR method. The coefficients of
the LSSVR method were calculated by trial and error. Their results
showed that the minimum and average flow discharges were pre-
dicted by the LSSVR appropriately, whereas the accuracy of maxi-
mum flow discharge predictions was poor.

The LSSVR method has been used to forecast and model differ-
ent water-quality parameters (Tan et al. 2012). Yunrong and
Liangzhong (2009) studied the prediction of river water quality us-
ing the LSSVR model in the Liuxi River, China. They predicted
chemical oxygen demand (COD), dissolved oxygen (DO), and
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other water-quality characteristics by means of a combined
algorithm comprising the LSSVR methods and the particle swarm
optimization (PSO) algorithm. Singh et al. (2011) utilized the clus-
tering method, or support vector clustering (SVC), to optimize sur-
face water quality monitoring in the city of Lucknow, India. Tan
et al. (2012) predicted phosphorus values in China with the LSSVR
method. They compared the efficiency of the LSSVR method with
neural networks of the radial basis function (RBF) and back-propa-
gation (BP). Liu et al. (2013) addressed water-quality parameters
prediction in aquaculture employing the GP and real-value genetic
algorithm support vector regression (RGA-SVR). They used the
GA to modify the coefficients of the SVR method. Their compari-
son of results showed the superiority of the RGA-SVR algorithm
over other methods.

Several studies have dealt with the selection of input variables to
a model and determining the model structure. Yoon et al. (2011)
applied cross correlation to determine the inputs to the support vec-
tor machine (SVM) model to predict groundwater level. Noori et al.
(2010) employed principal component analysis (PCA) to select
model structure and inputs that have the greatest effect on the out-
put of an artificial neural network (ANN) model to estimate daily
monoacid concentration. Noori et al. (2011) determined ANN
model inputs by applying the gamma test to estimate solid waste
characteristics. Fallah-Mehdipour et al. (2014) employed default
(user-defined) models to predict groundwater using GP method.
Ghavidel and Montaseri (2014) implemented stepwise regression
to determine model structure to estimate TDS applying the
ANN model.

A review of the literature demonstrates that data-driven methods
are applicable in many fields of hydrology and water resources
management, but were not widely applied in recent investigations
(Ahmadi et al. 2015; Akbari-Alashti et al. 2014; Beygi et al.
2014; Bozorg-Haddad et al. 2013, 2015b, a; Farhangi et al. 2012;
Fallah-Mehdipour et al. 2013a, b, c; Jahandideh-Tehrani et al.
2015; Orouji et al. 2014a, b). The LSSVR method is a relatively
new method among data-driven ones whose capability has been
proven to predict and model phenomena in various fields. Previous
work has shown that the LSSVR’s most significant disadvantage is
its high sensitivity to the trade-off parameter between the error
margin (γ) and the width of the Gaussian basis function (σ). This
work applies an optimization algorithm (GA) with the LSSVR to
adjust and optimize the LSSVR coefficients. The GA-LSSVR al-
gorithm is applied to model various water-quality parameters in the
Sefidrood River, Iran. To this date, several authors have modeled
water-quality parameters such as biological oxygen demand
(BOD), COD, and DO (Yunrong and Liangzhong 2009; Singh et al.
2011). This work targets several other key parameters that include
Naþ, Kþ, Mg2þ, SO2−

4 , Cl−, pH, electric conductivity (EC), and
TDS. Moreover, the results of the proposed GA-LSSVR algorithm
will be compared with those obtained with the GP method in mod-
eling water-quality parameters.

LSSVR Method

The LSSVR method was developed by Suykens et al. (2002), who
modified the original method introduced by Vapnik (1995). The
LSSVR method assumes that the relation between the input and
output data is nonlinear, although by means of a mapping function
called Feature Space the relation between the input and output data
is made linear. A linear between inputs and outputs in the feature
space is expressed by Eq. (1) (Vapnik 1995)

yðxÞ ¼ ω 0 · φðxÞ þ b ð1Þ

where x and yðxÞ = input and output of the observed training data
set, respectively; ω 0 = transposed form of the weighting vector ω;
ϕðxÞ = nonlinear vectorial function that maps the data from the do-
main space to the range space; and b = bias. The parameters b and ω
are obtained by solving the following optimization equations:

minJðω; eÞ ¼ 1

2
ω 0ωþ 1

2
γ
XT
t¼1

e2t

Subject to

yt ¼ ω 0φðxtÞ þ bþ et t ¼ 1; 2; : : : ;T ð2Þ

in which Jðω; eÞ = loss function; et = error at each time step t; γ =
adjustable coefficient; and t = time step counter that varies from 1
to T. The Lagrange function of Eqs. (1) and (2) is defined as
follows:

Lðω; b; et; ltÞ ¼ Jðω; etÞ −
XT
t¼1

lt½ω 0φðxtÞ þ bþ et − yt�

t ¼ 1; 2; : : : ;T ð3Þ

where Lðω; b; et;ltÞ = Lagrange function; and lt = Lagrange coef-
ficients at the time step t, which are obtained by taking the partial
derivatives of the Lagrangian L

∂L
∂ω ¼ 0 → ω ¼

XT
t¼1

ltφðxtÞ

∂L
∂b ¼ 0 →

XT
t¼1

lt ¼ 0

∂L
∂et ¼ 0 → lt ¼ γet t ¼ 1; 2; : : : ;T

∂L
∂lt ¼ 0 → ω 0φðxtÞ þ bþ et − yt ¼ 0 t ¼ 1; 2; : : : ; T ð4Þ

where xt = tth data of input vector x. Mercer’s condition introduces
a kernel function Kðx; xtÞ as follows:

Kðx; xtÞ ¼ φðxÞ 0φðxtÞ t ¼ 1; 2; : : : ;T ð5Þ

As a result, the output y estimated (computed) by the LSSVR
method is obtained with Eq. (6)

ŷ ¼
XT
t¼1

ltKðx; xtÞ þ b ð6Þ

where ŷ = estimated value of y by the LSSVR method. The kernel
function K can be selected among the linear, polynomial, and sig-
moid functions as well as RBF and multi layer perceptron (MLP).
The RBF kernel was applied in this study

Kðx; xtÞ ¼ eð−kx−xtk2=σ2Þ ð7Þ

where σ = coefficient of the RBF. The LSSVR method is portrayed
graphically in Fig. 1.

The LSSVR method does not propose any mechanism for se-
lecting its coefficients σ and γ. Nevertheless, the LSSVR method
precision is highly dependent on the selection of these coefficients
(Liu et al. 2013).

© ASCE 04017021-2 J. Environ. Eng.
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Optimal Selection of the LSSVR Coefficients
Using the GA

Evolutionary optimization algorithms find solutions in the neigh-
borhood of global optima, and have been used in many optimiza-
tion problems related to water resources (Bozorg-Haddad et al.
2011, 2014a, b; Su et al. 2013). The GA is a heuristic search
method, inspired by the evolution of organisms in nature com-
monly applied to solve optimization problems (Chiu and Chen
2009). An optimization problem is defined as a community of gen-
otypes in the GA (Soleimani et al. 2016). According to the law of
survival of the fittest, the best individuals are selected for reproduc-
tion due to their ability to survive and adapt to their environments.
Those selected individuals produce a new generation by crossover
and mutation processes, unleashing an evolutionary process across

generations producing individuals that either adapt to their environ-
ments or go extinct. The population of best individuals obtained
through many generations approaches the near-optimal solution
of an optimization problem. Fig. 2 is a flowchart of the GA-LSSVR
algorithm.

The GAwas applied in this study with 20 populations, one elit-
ism, 0.8 crossover rate, 0.02 mutation rate, and 100 iterations, for
finding the coefficients of the LSSVRmethod (Deb and Deb 2014).
The objective function used in the study is that written in Eq. (8).
For comparison purposes, the root-mean-square error (RMSE), the
R2, and the Nash-Sutcliffe (NS) statistic were calculated also. The
NS statistic is a goodness-of-fit index that ranges from −∞ to 1,
whereby a NS statistic equal to 1 indicates that the calculated data
have a perfect match with the observed data; a value equal to 0
means that the calculated data are no better than using the average
of the data as the predictor; and a value less than 0 implies that the
calculated values are of less quality than using the average as the
predictor. The RMSE, R2, and NS criteria are respectively given by
Eqs. (8)–(10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
t¼1

ðyt − ŷtÞ2
vuut ð8Þ

R2 ¼
P

T
t¼1 ðyt − ȳÞ2ðŷt − ˆ̄yÞ2P

T
t¼1 ðyt − ȳÞ2 ×P

T
t¼1 ðŷt − ˆ̄yÞ2 ð9Þ

NS ¼ 1 −
P

T
t¼1 ðyt − ŷtÞ2P
T
t¼1 ðyt − ȳÞ2 ð10Þ

Fig. 1. Diagram of the LSSVR method

Fig. 2. Flowchart of the GA-LSSVR algorithm

© ASCE 04017021-3 J. Environ. Eng.
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where yt and ŷt = observed and calculated data at time step t,
respectively; and ȳ and ˆ̄y = average of observed and computed data,
respectively. The diagnostic variables in Eqs. (8)–(10) were applied
by Wang et al. (2009), Rajaee et al. (2009), and Orouji et al. (2013),
among others.

Genetic Programming

Genetic programming is a variation of the GA introduced by Koza
(1990). It is based on Darwin’s theory of evolution (Aytek and Alp
2008). Genetic programming is a branching algorithm in which
each branch issues from a set of input variables and main operators
(functions) (Orouji et al. 2013). From the input variables and
objective functions the GP creates a number of solutions in a tree-
like structure and develops the appropriate solution to an optimi-
zation problem by comparing the results of consecutive iterations.
Generally, GP applies four steps to find an optimal solution. These
steps are (Miller and Thomson 2000):
1. Generate an initial population of random decision variables,

functions, and constant numbers as the terminal set;
2. Evaluate each decision tree in the population by applying fitness

functions to assess how well a decision tree solves an optimiza-
tion problem;

3. Generate a new population using genetic operators such as
copying the best existing tree, crossover, mutation, and repro-
duction; and

4. The best decision tree that appeared at the time of reaching a
termination criterion is specified as the GP result.
A random set of decision trees is generated in the first iteration.

Each tree employs a number of nodes and branches for each
relation. All terminal and functional members are placed in nodes
and relate to each other by branches. In this method, each tree ex-
presses a simple or complicated mathematical relation. Two sam-
ples of tree-structured solutions in GP are shown in Figs. 3(a and b).
In these structures, fx; 5,10g and fx; y; 15g are the terminal sets and
flog;þ; =g and fsin;þ; =g are the functional sets. Next, the corre-
sponding objective function of each tree is calculated. The objective
function value measures the fitness of each tree. Trees are chosen by
selection operators according to their fitness values. Crossover is a
genetic operator in which two trees are randomly selected to create
new, fitter, trees that replace the parent trees. Finally, the other ge-
netic operator, i.e., mutation, randomly replaces the initial function
variables with random values. The crossover and mutation opera-
tors in the GP process are presented in Figs. 3(b and c), respectively.
The outputs from these operators are the generated trees and
become the GP inputs (the initial trees) for the next iteration.
The GP searching process is continued until finding a solution.

Principal Component Analysis

Principal component analysis selects a subset of variables among a
large set of regressor variables such that the subset of regressors

Fig. 3. Genetic programming construction: (a) two samples of tree-structured solutions; (b) crossover operator; (c) mutation operator

© ASCE 04017021-4 J. Environ. Eng.
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explains most of the variability of the dependent variable in a multi-
ple regression problem (Noori et al. 2011). The main purpose of
PCA is to reduce the number of predictor variables and to detect
structure in the statistical relations that might exist between varia-
bles. The PCA reduces the complexity of variables and provides a
clearer understanding of variables when the analyst is faced with a
large number of data (Camdevyren et al. 2005).

In PCA, linear combinations of p initial variables
(x1; x2; : : : ; xp) are created to produce p principal components
(PC1;PC2; : : : ; PCp). Each principal component is expressed by
Eq. (11) (Johnson and Wichern 1982)

PC1 ¼ w11x1 þ w12x2þ · · · þw1pxp

PC2 ¼ w21x1 þ w22x2þ · · · þw2pxp

..

.

PCp ¼ wp1x1 þ wp2x2þ · · · þwppxp ð11Þ

in which PCi ¼ ith principal component; wij = coefficient of the ith
principal component and the jth initial variable; and xi = ith initial
variable. In PCA the wij coefficient is estimated in such a way that
the first principal component (PC1) measures the largest possible
variance, and the second principal component (PC2) measures the
largest possible variance not accounted for by the first principle
component. The PCA process is continued until the last principle
component (PCp) completes the entire variance. The PCA coeffi-
cients satisfy the following relations:

i ¼ 1; : : : ;pw2
i1 þ w2

i2þ · · · þw2
ip ¼ 1 ð12Þ

∀i ≠ j wi1wj1 þ wi2wj2þ · · · þwipwjp ¼ 0 ð13Þ

The calculation of the wij coefficients is explained by
Tabachnick and Fidell (2001), Ouyang (2005), and Noori et al.
(2008), among others.

Study Area

The water-quality data from Astane station located on the
Sefidrood River in northern Iran served for modeling of water-
quality parameters. The length of the river and the drainage area
of the Sefidrood River basin are approximately 670 km and
13,450 km2, respectively. This river discharges into the Caspian
Sea, by the City of Rasht, Iran. Water-quality parameters consid-
ered in this paper are Naþ, Kþ, Mg2þ, SO2−

4 , Cl−, pH, EC, and
TDS. The location of the study area, Astane station, and the Sefi-
drood River are shown in Fig. 4.

The training (calibration) and testing data sets represented 70
and 30% of the total existing water-quality data. The training data
set includes the time period 1985–1998 (154 months), and the
period of 2000–2005 (69 months) was chosen for the testing data
set. The time step of the training and testing data is monthly. The
selected time series for the training and testing data sets do not have
missing values. The statistical properties of training and testing data
sets are listed in Table 1.

Selection of Inputs and Determination of Model
Structure

In this study each water-quality parameter is modeled at time step t
based on the values of the same water quality at previous time steps
(t − 1, t − 2, t − 3) and the values of other water-quality parameters

including river flow discharge at the current and previous time steps
(t, t − 1, t − 2, t − 3). Each time step t refers to 1 month.

The scale effect of different input variables was removed by per-
forming standardization, which leads to dimensionless quantities.
An input variable was standardized by subtracting its mean from its
raw value and the difference was divided by the variable’s standard
deviation. Next, the principal components of the standardized input
matrix were obtained by PCA. The cumulative percentage of the
variance of each principal component is presented in Fig. 5. In this
study 10 principal components were input to the GA-LSSVR algo-
rithm and GP method because, according to Fig. 5, 10 calculated
principal components explain 99.99% of the variance of the input
matrix, and consequently, the next 25 components only justify
0.01% of the variance of the input matrix.

Results of the Sensitivity Analysis

The sensitivity of the LSSVR method to coefficients selection was
evaluated by means of a sensitivity analysis of the coefficients γ
and σ. The interval 0.01 to 100 was considered for both coefficients
and the LSSVR method was implemented for the selected coeffi-
cients. The calculated results from sensitivity analysis of the
LSSVR method on water-quality parameter Cl− are listed in
Table 2.

According to Table 2, when γ and σ are nearly equal to 10 and
100, respectively, the RMSE value decreases drastically, but the
LSSVR method does not provide acceptable results for other values
of these two coefficients. Another trend is that the accuracy of es-
timation of the LSSVR method increases at first by increasing the

Fig. 4. Locations of the Sefidrood River basin and the Astane station

© ASCE 04017021-5 J. Environ. Eng.
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values of the coefficients, and then decreases. For example, given a
constant value of γ equal to 1, by increasing σ up to 10 the accuracy
increases, but then it decreases. It is seen in Table 2, however, that
R2 increases monotonically as σ increases. In addition, it follows

from Table 2 that the LSSVR method achieved better results than
the average of Cl− only 40% of the time. Therefore, the results
shown in Table 2 indicate high sensitivity of the LSSVR method
to the selection of coefficients γ and σ. It is concluded that there is
an optimal point, and that the closer the values of coefficients to that
optimal point are, the higher the accuracy of estimation. Further-
more, the accuracy of estimation decreases with increasing distance

Table 1. Statistical Characteristics of the Training and Testing Data Sets of the Sefidrood River Water-Quality Parameters at Astane Station

Parameter Data set Minimum Average Maximum
Standard
deviation

Coefficient
of variation (%)

Naþ (meq=L) Training 0.05 5.78 15.65 2.64 45.72
Testing 0.19 3.74 10.13 2.19 58.57

Kþ (meq=L) Training 0.01 0.09 0.22 0.04 49.14
Testing 0.01 0.08 0.15 0.03 39.76

Mg2þ (meq=L) Training 0.20 2.31 5.50 0.93 40.37
Testing 0.38 2.08 5.52 1.04 49.77

SO2−
4 (meq=L) Training 0.34 2.83 7.38 1.27 44.88

Testing 0.21 1.93 4.12 1.00 51.89
Cl− (meq=L) Training 0.80 5.72 15.60 2.65 46.37

Testing 0.20 4.27 10.90 2.45 57.31
pH Training 6.70 7.74 8.80 0.37 4.81

Testing 6.42 7.54 8.42 0.46 6.07
EC (μs=cm) Training 244.43 1,221.70 2,336.00 381.49 31.23

Testing 252.00 1,024.41 2,018.00 393.96 38.46
TDS (mg=L) Training 263.00 772.59 1,472.00 232.36 30.08

Testing 159.00 641.75 1,271.00 243.81 37.99
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Fig. 5. Percentage of the cumulative variance of the principal
components

Table 2. Results of Statistical Criteria for the Testing Data Sets
Considering Different Values of γ and σ for Cl−

Σ
Statistical
criteria

γ

0.01 0.1 1 10 100

0.01 RMSE 2.84 2.84 2.84 2.84 2.84
R2 0.11 0.1 0.12 0.11 0.13
NS −0.35 −0.35 −0.35 −0.35 −0.34

0.1 RMSE 2.84 2.83 2.8 2.78 2.78
R2 0.35 0.35 0.34 0.34 0.34
NS −0.34 −0.33 −0.31 −0.29 −0.29

1 RMSE 2.79 2.51 2.07 1.83 1.96
R2 0.61 0.63 0.7 0.72 0.64
NS −0.29 −0.05 0.27 0.44 0.35

10 RMSE 2.67 1.82 0.92 0.82 1.11
R2 0.95 0.95 0.95 0.95 0.93
NS −0.19 0.44 0.85 0.88 0.79

100 RMSE 2.8 2.52 1.37 0.75 0.93
R2 0.96 0.95 0.96 0.96 0.88
NS −0.31 −0.06 0.68 0.9 0.9

Table 4. Calculated Statistical Results with the GA-LSSVR Algorithm and
the GP Method for the Training and Testing Data Sets

Parameter Method

Training Testing

RMSE R2 NS RMSE R2 NS

Naþ (meq=L) GA-LSSVR 0.92 0.93 0.87 1.20 0.94 0.69
GP 1.31 0.87 0.75 1.19 0.91 0.72

Kþ (meq=L) GA-LSSVR 0.03 0.63 0.36 0.02 0.64 0.38
GP 0.03 0.54 0.25 0.02 0.64 0.40

Mg2þ (meq=L) GA-LSSVR 0.64 0.72 0.52 0.66 0.79 0.58
GP 0.69 0.67 0.44 0.75 0.75 0.47

SO2−
4 (meq=L) GA-LSSVR 0.76 0.79 0.63 0.67 0.84 0.54

GP 0.94 0.68 0.45 0.82 0.78 0.32
Cl− (meq=L) GA-LSSVR 0.86 0.94 0.89 0.71 0.96 0.91

GP 1.31 0.87 0.75 1.15 0.92 0.79
pH GA-LSSVR 0.02 0.99 0.99 0.31 0.75 0.52

GP 0.34 0.41 0.16 0.37 0.68 0.35
EC (μs=cm) GA-LSSVR 69.08 0.98 0.96 61.79 0.98 0.97

GP 74.32 0.98 0.96 72.86 0.99 0.96
TDS (mg=L) GA-LSSVR 39.35 0.98 0.97 55.84 0.98 0.94

GP 57.41 0.97 0.94 44.41 0.99 0.96

Table 3. Optimal Values of the Coefficients γ and σ Calculated with
the GA

Parameter σ γ

Naþ 58.31 48.75
Kþ 3.03 13.43
Mg2þ 18.88 69.87
SO2−

4 15.61 57.61
Cl− 15.77 58.04
pH 38.92 0.58
EC 21.09 75.98
TDS 17.17 66.75
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Fig. 6. Observed water-quality parameters and calculated water-quality parameters using the GA-LSSVR algorithm and the GP method: (a) Naþ;
(b) Kþ; (c) Mg2þ; (d) SO2−

4 ; (e) Cl−; (f) pH; (g) EC; (h) TDS
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from the optimal point. This optimal point can be obtained with
the GA.

According to Table 2, LSSVR is very sensitive to choosing
the coefficients of γ and σ so that choosing the best coefficients
(10, 100) instead of the worst coefficients (0.1, 0.01) for (γ, σ)
in Table 2 improves the results of RMSE, R2, and NS by 73,
860, and 360%, respectively. Selecting the LSSVR coefficient man-
ually is a slow and computationally burdensome endeavor. There-
fore, the GA-LSSVR algorithm is herein developed to find the
optimal coefficients automatically, thus making the application
of the developed algorithm fast and practical.

Results of the GA-LSSVR Algorithm and the GP
Method

The calculated optimal coefficients with the GA-LSSVR algorithm
are listed in Table 3, where it is seen that the coefficient γ varies
between 0.58 (corresponding to pH) and 75.98 (corresponding to
EC), and the coefficient σ ranges between 3.03 (corresponding
to Kþ) and 58.31 (corresponding to Naþ). The ranges of the co-
efficients of the LSSVR method indicate that the coefficients γ
and σ vary for each water-quality parameter.

Results calculated with the GA-LSSVR algorithm for the train-
ing and testing data sets with respect to different water-quality
parameters are listed in Table 4. The GP method results are also
displayed in Table 4 for comparison purposes.

The results for the statistical criteria of the GA-LSSVR shown in
Table 4 indicate that the water-quality parameters EC and TDS have
more R2 equal to 0.98 than the other water-quality parameters.
Electrical conductivity has the largest value of NS (equal to 0.97)
among the parameters. Therefore, the GA-LSSVR algorithm can
model EC more accurately than the other parameters listed in
Table 4. In contrast, the GA-LSSVR algorithm cannot model
Kþ as accurately as other water-quality parameters given that it
reached R2 and NS equal to 0.64 and 0.38, respectively, which are
the worst values among those for other water-quality parameters.

The results in Table 4 establish that GP can model TDS more
accurately than other parameters given that it features R2 and NS
equal to 0.99 and 0.96, respectively. On the other hand, GP cannot
model Kþ and SO2−

4 as accurately as other water-quality parame-
ters due of its low R2 and NS, respectively. The value of R2 for Kþ
is equal to 0.64, which is the worst value of R2 among the water-
quality parameters, and the value of NS for SO2−

4 is equal to 0.32,
which is the worst among the water-quality parameters.

It is seen in Table 4 that the GA-LSSVR algorithm provides
better results than the GP method because the GA-LSSVR algo-
rithm models water-quality parameters Mg2þ, SO2−

4 , Cl−, pH,
and EC with lower RMSE values. According to other criteria in-
cluding R2 and NS, similar results were obtained. More precisely,
the GA-LSSVR algorithm has 13, 16, 34, 18, and 15% lower
RMSE values than the GP method for Mg2þ, SO2−

4 , Cl−, pH,
and EC, respectively. Concerning the water-quality parameters
Naþ, Kþ, and TDS, the differences between the GP method and
the GA-LSSVR algorithm are negligible, the GP method being
slightly more accurate, so that the GP method achieved improve-
ments in the estimation of the NS equal to 4, 5, and 2% for the
quality parameters Naþ, Kþ, and TDS, respectively, compared with
the GA-LSSVR algorithm. The RMSE values from the GP method
for water-quality parameters Naþ and TDS exhibited improve-
ments equal to 0.8 and 20%, respectively, compared with the
GA-LSSVR algorithm. In addition, R2 values from GA-LSSVR
algorithm were improved 3, 5, 8, 4, and 10% relative to the GP
method for the water-quality parameters of Naþ, Kþ, Mg2þ,
SO2−

4 , Cl−, and pH, respectively. The GP method improves R2

by 1% for water-quality parameters EC and TDS relative to the
GA-LSSVR.

In general, given the positive values of the NS statistic, it can
be concluded that the GA-LSSVR algorithm and GP method are
able to model water-quality parameters well, as listed in Table 4.
The modeling results for water-quality parameters achieved by the
GA-LSSVR algorithm and the GP method are depicted in Fig. 6.

Orouji et al. (2013) modeled water-quality parameters including
Naþ, Kþ, Mg2þ, SO2−

4 , Cl−, pH, EC, and TDS using default (pre-
defined) models and the GP model in the Sefidrood River at
Astane station. The RMSE values of the best models for the testing
data sets associated with the cited water-quality parameters were
2.1, 0.02, 0.85, 0.93, 2.18, 0.33, 404.15, and 246.15, respectively.
By comparing the results of Orouji et al. (2013) and Table 4, it is
concluded that the selection of model inputs relying on the PCA
method improves the estimation results from 6 to 84%. In other
words, the accuracy of modeling water-quality parameters Naþ,
Kþ, Mg2þ, SO2−

4 , Cl−, pH, EC, and TDS in the Sefidrood River
at Astane station were improved by 42, 0, 22, 33, 47, 6, 84, and
77%, respectively, by applying the GA-LSSVR algorithm.

Given that monitoring of water-quality parameters in rivers is
time-consuming and expensive, the GA-LSSVR algorithm can
be efficiently implemented to estimate water-quality parameters
with associated reduction in cost.

Conclusion

The GA, which is a widely used optimization algorithm, was
employed in this study to optimize the coefficients of the LSSVR
method. A sensitivity analysis of the coefficients of the LSSVR
method established that the accuracy of this method depends
strongly on the correct selection of these coefficients. An optimi-
zation algorithm is required to calculate the LSSVR coefficients.
The GA-LSSVR algorithm was developed and applied to find
the coefficients of the LSSVR method automatically. The GP
method, which is well known and widely used in data-driven stud-
ies, was also utilized for comparison purposes. The results indicate
the superiority of the GA-LSSVR algorithm over the GP method in
such a way that the use of the GA-LSSVR algorithm led to im-
provements in several statistics including R2, RMSE, and the NS
statistic of water-quality parameters respectively equal to 3, 14, and
21% compared to the GP.
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