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Abstract

Gaussian Entropy Inequalities

by

Efe Aras

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Thomas Courtade, Chair

We give a broad overview of Gaussian entropy inequalities, discuss their scope, analyze their
structure, and introduce novel ones. Our new inequalities highlight the connection between
information theoretic and analytical inequalities. We then derive a Gaussian comparison
inequality that unites a bulk of pre-existing Gaussian entropy inequalities. We present
the equality conditions for the Anantharam–Jog–Nair inequalities, and thus derive equality
conditions for a wide class of inequalities including the entropy power inequality, the Zamir–
Feder inequality, and the Brascamp–Lieb inequalities. We conclude with a discussion of the
extremizers of Forward-Reverse Brascamp–Lieb inequalities.
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Chapter 1

Introduction

“A quoi sont dues les erreurs accidentelles, nous l’ignorons, et c’est justement
parce que nous l’ignorons que nous savons qu’elles vont obeir a la loi de Gauss.”
- Poincaré [1912]

1.1 Gaussian
Why do we care about Gaussians? One answer might be that Gaussians show up even when
we are not looking for them. Indeed, we can trace a direct path from the dawn of probability
involving the correspondence of Fermat and Pascal to the discovery of Gaussians. In the
1600s, Fermat and Pascal, thinking about gambling problems, ended up discussing what
would today be called binomial distributions. However, binomial probabilities can be hard
to compute, so one of the earliest sightings of Gaussian functions came when De Moivre
[1733] showed that (

n
n
2
+ d

)(
1

2

)n

≈ 2√
2πn

e−2d2/n.

It would only take a few years until Gaussian functions showed up again. In 1801, a
suspected new planet vanished behind the Sun. Where would it emerge from? Gauss,
to answer this question, assumed that the maximum likelihood estimator of a quantity
from noisy i.i.d observations is the empirical mean, and derived that the error must have
distribution

ϕ(x) =
h√
π
e−h2x2

(1.1)

which is what we now call a Gaussian function (with variance 1
2h2 )! 1 We refer the reader to

Stahl [2006] for the rest of the story and references.
1Hopefully the reader will be reassured to hear that he then predicted where the planet would emerge

from, and he was right.
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Elsewhere in the world, Jean Baptiste Joseph Fourier was trying to understand how heat
distributes along a heated rod. He showed that locally, the heat profile along the rod satisfies

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x)

[Fourier, 1807] which we now know admits a Gaussian Green’s function. There are many
other stories, ranging from Laplace’s central limit theorem Laplace [1810], to how Einstein
derived Brownian motion to explain the observations of pollen movements [Einstein et al.,
1905], to how Black–Scholes ended up getting Gaussians from an efficient market [Black and
Scholes, 1973]. This rich variety of characterizations hint at the universality of Gaussians,
so it should come as no surprise that Gaussians arose in ideas related to entropy.

1.2 Entropy
Physicists knew about the notion of entropy since the 1800s. The first mention of entropy
is credited to Clausius [1865], stemming from the Greek words “en-tropie”, meaning intrinsic
direction. Maxwell then connected statistics to thermodynamics, giving rise to statistical
mechanics [Bernstein, 1963]. Finally, Boltzmann defined entropy as the logarithm of the
number of microstates and established it on a mathematical ground. [Boltzmann, 1872]

Entropy got a whole new meaning with regards to information with the pioneering work
of Shannon [1948]. He axiomatically defined the idea of entropy and he interpreted it as a
measure of information. He defined the entropy of a continuous random variable X with
density p as

h(X) := −
∫

p(x) log p(x) dx

which is the definition we will be using throughout whenever it is well-defined. The usefulness
of this definition was not purely axiomatic; it also showed up as an essential quantity while
computing the rate of information that can be sent through a channel. Much like the last
section, his paper ended up naturally mentioning Gaussians. For starters, Gaussians are the
maximum entropy distribution subject to second moment constraints. Also, they are the
standard model for white thermal noise in electrical engineering. One important observation
he made was the entropy power inequality, which we defer to the next section.

1.3 Inequalities
Inequalities form the backbone of mathematics. For instance, the key relations underlying the
Arithmetic–Geometric inequality can be traced all the way back to Euclid. [Steele, 2004].
This would be quite a long thesis if we were to consider all inequalities, so here onward,
we do our best to specialize to Gaussian-extremized inequalities, that is, inequalities that
are met with equality when one plugs in a Gaussian (function or random variable) as an
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argument. While it sounds like a restricted class, note that this class includes a lot of
well-known functional and geometric inequalities, including the Hölder’s inequality and the
Prékopa–Leindler inequality. As a simple example, consider the claim made in the previous
section that Gaussians maximize entropy subject to second moment constraints. An alternate
formulation is that for all n-dimensional random vectors X

E|X|2 ≥ N(X) :=
1

2πe
e

2
n
h(X) (1.2)

with equality if and only if X is an isotropic Gaussian, where | · | is the standard Euclidean
norm on Rn. This inequality gives that the best signal to use in an additive channel with
power constraints has to be a Gaussian. Conversely, consider the entropy power inequality
(EPI) which states, for independent n-dimensional random variables X1, X2

N(X1) +N(X2) ≤ N(X1 +X2) (1.3)

with equality if and only if X1 and X2 are Gaussians with proportional covariances. This
inequality shows, among many other implications, that the worst-case noise in an additive
channel is Gaussian.

We will save the rest of the inequalities of interest and their implications to Chapter
3, but rest assured there are quite a few of them. We would like to repeat the following
idea: There is nothing in (1.2) and (1.3) that a priori suggests any extremal behavior by
Gaussians. However, (1.3) has the following equivalent form; if we let Zi be an n-dimensional
Gaussian with entropy equal to h(Xi) for i = 1, 2, then, for independent Z1, Z2, we have

h(X1 +X2) ≥ h(Z1 + Z2).

Turns out, we can generalize this much further. Indeed, the goal of this thesis is to give a
broad overview of major pre-existing Gaussian extremizable inequalities, generalize a portion
of them, and analyze their equality conditions.

1.4 Main results of this thesis
For the rest of the thesis, c := (ci)

k
i=1, and d := (dj)

m
j=1 will denote collections of non-negative

scalars, and B := (Bj)
m
j=1 denotes suitably dimensioned linear maps mapping Euclidean space

E0 to other Euclidean spaces (Ej)mj=1. We will refer to a triplet (c,d,B) as a datum.

Gaussian comparison inequality

Let X1, . . . , Xk be random vectors with finite second moments. Let Π(X1, . . . , Xk; ν) denote
the set of correlation-constrained couplings2 of these vectors. Then, we showed in Aras

2Full definition can be found in beginning of Chapter 4.



CHAPTER 1. INTRODUCTION 4

and Courtade [2022] that there exist Gaussians Z1, . . . , Zk with dim(Xi) = dim(Zi) and
h(Zi) = h(Xi) such that

max
X∈Π(X1,...,Xk;ν)

m∑
j=1

djh(BjX) ≥ max
Z∈Π(Z1,...,Zk;ν)

m∑
j=1

djh(BjZ). (1.4)

Inequality (1.4) has a number of consequences. It implies the entropy power inequality,
the Brascamp–Lieb inequalities, and the Barthe inequalities. An interesting corollary of
(1.4) is a novel entropy power inequality for dependent random variables. In particular, by
a judicious choice of parameters, we get, for X1, X2 ∈ Rd, ζ ∈ [0,+∞]

N(X1) +N(X2) + 2
√
(1− e−2ζ/d)N(X1)N(X2) ≤ max

Π(X1,X2):
I(X1;X2)≤ζ

N(X1 +X2), (1.5)

where the max is over all the couplings of X1 and X2 satisfying the given mutual information
constraint. We quickly mention that at ζ = 0, this inequality reduces to the EPI, and at
ζ = +∞, it implies the Brunn–Minkowski inequality by specializing to uniform random
variables supported on compact sets. Quantitatively linking the Brunn–Minkowski and the
EPI using only Shannon entropies had proved elusive, and had been somewhat of a looming
question, which our comparison inequality answers.

By taking ν be identically zero, we recover the Anantharam–Jog–Nair inequality [Anan-
tharam et al., 2019], which is the main inequality of interest for the second part of the
thesis.

Anantharam–Jog–Nair inequality: Extremizability and structure of
extremizers

Anantharam, Jog and Nair characterized the best (i.e., smallest) constant C such that the
entropy inequality

k∑
i=1

cih(Xi) ≤
m∑
j=1

djh(BjX) + C (1.6)

holds for any choice of independent Rni-valued random variables Xi with finite entropies and
second moments, 1 ≤ i ≤ k, with X := (X1, . . . , Xk).

Anantharam, Jog and Nair had left open the question of extremizability. That is, when
do there exist random vectors (Xi)

k
i=1 such that (1.6) is met with equality, and what form do

any such extremizers take?
We answer both questions in this thesis, which will be based on Aras et al. [2022]. The

precise characterization of extremizers is somewhat complicated, but the general idea is easily
understood in the context of a toy example. For λ ∈ (0, 1), the following holds: If (X, Y ) is
independent of Z, and Y and Z are of the same dimension, then

λh(X, Y ) + (1− λ)h(Z) ≤ λh(X) + h(λ1/2Y + (1− λ)1/2Z). (1.7)
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This inequality is obtained by a concatenation of subadditivity of entropy and the EPI.
Restricting attention to cases where all entropies are finite, we can use known equality cases
for both to assert that (X, Y ) and Z are extremizers in (1.7) if and only if (i) X and Y are
independent; and (ii) Y and Z are Gaussian with identical covariances.

Roughly speaking, all extremizers of the AJN inequality (1.6) resemble the above exam-
ple. That is, extremizers are characterized by a rigid factorization into independent compo-
nents, where some components can have any distribution, and the remaining are necessarily
Gaussian with covariances that are typically linked in some way.

Just as a quick example, our results immediately imply the equality conditions for the
Zamir–Feder inequality. Its extremizers are characterized by all present non-recoverable
components being Gaussian [Rioul and Zamir, 2019, Theorem 1], which has a geometric
interpretation that our characterization immediately captures.

Forward-Reverse Brascamp–Lieb inequalities: Structure of
extremizers

Similar to the development above, Courtade and Liu [2021] (see also Liu et al. [2016])
characterized the smallest constant D such that the followng entropy inequality holds:

k∑
i=1

cih(Xi) ≤ max
X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX) +D (1.8)

where we again work with Xi with finite entropies and second moments, and Π(X1, . . . , Xk)
denote the set of couplings of (Xi)

k
i=1. We give an outline of how to characterize the extrem-

izers of this inequality for a vast class of (c,d,B) that satisfy a structural assumption. The
class we consider includes the Brascamp–Lieb inequalities, the Barthe inequalities, and the
Barthe–Wolff inverse Brascamp–Lieb inequalities. We note that a special case of the Barthe
inequalities, the Prékopa–Leindler inequality, has log-concave extremizers, so we would ex-
pect the extremizers of (1.8) to potentially have components that give rise to log-concave
extremizers.

It turns out for a special set of data, the extremizers admit a factorization into inde-
pendent components, where some components are arbitrary, some have to be log-concave,
and the remainder are Gaussian with a particular covariance structure. We further observe
another subclass where the extremizers are only some of the log-concave distributions. We
recover the results of Boroczky et al. [2022] and Valdimarsson [2008], and further charac-
terize equality conditions for the Gaussian-extremizable instances Barthe–Wolff inequality
from Barthe and Wolff [2018], which were previously not known.
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1.5 Outline of the thesis
We will first outline the notation that will prevail throughout the thesis in Chapter 2. We
will then do a brief literature review in Chapter 3 while showing a duality between functional
and entropic inequalities. In Chapter 4, we will discuss the comparison principle outlined
before, and Chapter 5 will be dedicated to equality conditions of AJN inequality in detail.
Finally, we reserve Chapter 6 to summarize very recent results on FRBL extremizers.

A summary of key contributions is presented below:

1. We provide a compendium for various entropic inequalities, and their relation to ex-
isting functional inequalities. As an important example, we note that the well-known
Cover–Zhang inequality readily admits a generalization to include non-identically dis-
tributed random variables which we dub Cover–Zhang type inequalities. Our general-
ization relies on the duality between Prékopa–Leindler and Cover–Zhang type inequal-
ities.

2. We present a Gaussian comparison inequality that unifies a broad landscape of exist-
ing entropy inequalities. As a specific example, we use our comparison inequality to
interpolate between the EPI and Brunn–Minkowski just by using entropies. We extend
a Gaussian saddle point property of a well-known information game to an asymmetric
information game.

3. We analyze the structure of the Anantharam–Jog–Nair inequality. We outline the full
connection between extremizability, geometricity, and Gaussian extremizability; and we
give the full structure of the extremizers. In particular, we show that all the extremizers
have a rigid independence structure, with certain factors being isotropic Gaussians. We
note that this implies recent important structural results such as equality conditions
for the Zamir–Feder inequality [Rioul and Zamir, 2019].

4. We give a brief overview of how to establish the extremizers for the Forward-Reverse
Brascamp–Lieb inequality. We argue that the extremizers again have an induced inde-
pendence structure, and in each component, they either have arbitrary distributions,
or they have to be log-concave. We further note that our structural results unite the
results on equality conditions of Barthe’s inequality [Boroczky et al., 2022], and the
Brascamp–Lieb inequality [Valdimarsson, 2008], and further characterize equality con-
ditions for the Gaussian-extremizable instances of Barthe–Wolff inequality [Barthe and
Wolff, 2018].

Parts of the dissertation are based on Aras and Courtade [2022], Aras et al. [2022].
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Chapter 2

Preliminaries

In this chapter, we will set up the main notation that we will be using throughout the thesis.
In particular, we will be establishing the underlying Euclidean structure, and defining relative
entropy and differential entropy.

2.1 Basic setup

Spaces

We will be working on Euclidean spaces, and to be precise, we will want to work with finite
dimensional real vector spaces E equipped with an inner product, which we will denote
by the usual notation x, y ∈ E 7→ xTy. We will denote the Euclidean norm by | · |. The
(external) direct sum of finite dimensional vector spaces (Ei)

k
i=1, denoted E0 := ⊕k

i=1Ei, is
the Cartesian product of Eis. A subspace V of E0 is product-form if V = ⊕k

i=1Vi where
Vi ⊂ Ei

Remark 1. Throughout the thesis, the reader can replace Ei with Rni where ni = dim(Ei).
Similarly, the reader can thus view E0 as ⊕k

i=1Ei
∼= R

∑k
i=1 ni 1. Referring to the spaces more

abstractly helps to clearly identify them in discussion.

Note that we have a few canonical maps that come from this construction. The identity
map, denoted idE, is the identity map E → E. A vector x ∈ E0 will frequently be written
in its coordinate representation x = (x1, . . . , xk), where xi = πEi

(x), 1 ≤ i ≤ k, is the
natural coordinate projection of E0 onto Eis. We will also rely on (orthogonal) projections
and restricted projections. If V is a subspace of a Euclidean space E, then we say the linear
map PV : E → E is an orthogonal projection if P 2

V = PV = P T
V . Finally, we have the

restricted projection map πV : E → V if PV = πT
V πV . Note that the restricted projection

map notation agrees with the coordinate projections. We will need the set of quadratic forms
on E, denoted S(E), which consists of symmetric bilinear forms defined on E. We will also

1We will slightly alter this definition in Chapter 6.
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need to consider the set of positive definite quadratic forms on E, denoted S+(E), which are
quadratic forms that are strictly positive; and the set of positive semi-definite ones, denoted
S+
0 (E) which is when the quadratic form is allowed to be zero for non-zero inputs.

If (Ai : Ei → Ei)
k
i=1, are linear maps, then the direct sum of operators A = ⊕k

i=1Ai is a
linear map from E0 to itself and, without confusion, can be denoted as the block-diagonal
operator

A = diag(A1, . . . , Ak).

So, as an example of the above, we have idE0 = ⊕k
i=1 idEi

≡ diag(idE1 , . . . , idEk
). Again,

this is all compatible with the representation of linear operators as matrices. Lastly, if
Ki ∈ S+

0 (Ei), 1 ≤ i ≤ k, then we let Π(K1, . . . , Kk) denote the subset of S+
0 (E0) consisting

of those matrices K such that

πEi
KπT

Ei
= Ki, ∀1 ≤ i ≤ k.

Gaussians

It is useful to define what is meant by a Gaussian, as we will be relying on them throughout.
For a given space E, µ ∈ E, Σ ∈ S+

0 (E), a Gaussian distribution defined on E denoted by
γ(µ,Σ), or N(µ,Σ), is a distribution such that if Z ∼ γ(µ,Σ), then E[eitTZ ] = e

−tTΣt+itT µ
2 . We

reserve γ to refer to a Gaussian. Furthermore, we will use the shorthand γE ≡ γ(0, idE), and
this distribution is referred to as the standard Gaussian distribution on E. We will also
use the shorthand γi ≡ γEi

. Note that a standard Gaussian admits a density ∝ e−
|x|2
2 . We

will occasionally refer to functions that are proportional to Gaussian densities as Gaussian
functions.

Measures and couplings

We will equip Eis (and E0) with their Borel σ-algebras. We will denote the set of all signed
measures on E0 as M(E0), and the set of all positive measures as M+(E0). Let (Xi)

k
i=1 be

random vectors defined on (Ei)
k
i=1. We say that X, a random variable on E0, is a coupling

of X1, . . . , Xk if the law of πi(X) is the same as the law of Xi for all i ∈ [k]. We denote the
set of couplings by Π(X1, . . . , Xk). Note that this overloaded notation is consistent with our
notation for matrices. Indeed, if Xi ∼ N(0, Ki), 1 ≤ i ≤ k, then X ∼ N(0, K) is a coupling
in Π(X1, . . . , Xk) if and only if K ∈ Π(K1, . . . , Kk). In any integral where the measure is
unspecified (i.e.

∫
V
f), the integration is done with respect to Lebesgue measure on the space

V specified by the context.
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2.2 Shannon information quantities

Kullback–Leiber divergence and differential entropy

Let µ, ν be probability measures on E. We define the Kullback–Leiber (KL) divergence
(also referred to as relative entropy) to be

D(µ∥ν) :=
{∫

E
dµ
dν

log
(
dµ
dν

)
dν if µ ≪ ν

+∞ otherwise.

The celebrated result by Donsker and Varadhan [1983] allows writing KL divergence as a
supremum:

D(µ∥ν) := sup
f∈Cb(E)

{∫
E

fdµ− log

∫
E

efdν

}
(2.1)

where we can take Cb(E) to be continuous, bounded, real-valued functions on E. We note
that the quantity inside the sup is weakly continuous in µ for a fixed ν, and suprema of
weakly continuous functions being lower semi-continuous immediately implies lower semi-
continuity of KL divergence. If X has law µ, and Y has law ν, we will regularly use the
shorthand D(X∥Y ) ≡ D(µ∥ν).

A particularly important property of KL divergence, that results from its joint convex-
ity with respect to (µ, ν), is the data processing inequality, which says that for any
measurable map between two measurable spaces T : E → E ′,

D(T#µ∥T#ν) ≤ D(µ∥ν).
Let X be a random variable with law µ having density f with respect to the Lebesgue

measure on E. We will define the differential entropy as follows:

h(µ) ≡ h(X) = −
∫
E

f log f

provided the integral is well-defined in the Lebesgue sense. This will always be the case in
our settings. Much like KL divergence, differential entropy also admits a variational formula:

h(µ) = inf
f

{
log

∫
E

ef −
∫
E

fdµ

}
(2.2)

where the infimum over f is taken for measurable f : E → R bounded from above. We
let P(E) denote probability measures with finite entropy and second moment, and we let
G(E) denote the subset of P(E) that consists of Gaussian measures. When there is no cause
for ambiguity, we adopt the hybrid notation where a random vector X and its law µ are
denoted interchangeably. So, for example, writing X ∈ P(E) means that X is a random
vector taking values in E, having finite entropy and finite second moments. We use this
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notation to emphasize that we are restricting our domain of interest; we do not make any
claims of having results for more general distributions.

Related to differential entropy, we will define the entropy power of a random variable
in E, which is

N(X) :=
1

2πe
e

2
dim(E)

h(X).

One can view N(X) as sort of a volume, which is highlighted by

E|X|2 ≥ N(X)

with equality iff X ∼ N(0, σ2 idE) for some µ ∈ E, σ2 ∈ R+. While at it, we note another
special aspect of Gaussians that we will be using multiple times. Relative entropy of µ with
respect to γE is given by the differential entropy of µ and a second-moment term:

D(µ∥γE) = −h(µ)− 1

2
(EX∼µ|X|2 − d log 2π) (2.3)

Proof. Let f := dµ
dλ

, where λ is the Lebesgue measure on E. We note that dµ
dγE

=
dµ
dλ
dγE
dλ

, so we
can write

D(µ∥γE) =
∫
E

f log
f

1√
2π
e−

|x|2
2

=

∫
E

f log f︸ ︷︷ ︸
−h(X)

−1

2
(Eµ|X|2 + d

2
log(2π)).

Remark 2. Note that if µ and γE have the same mean and second moments, (2.3) can be
simplified to h(Z)− h(X), where Z is the standard Gaussian on E.

We will finally define two other quantities that the reader will run into while reading this
thesis. For a random pair (X, Y ) ∈ P(E1 ⊕ E2), we can define their mutual information
as

I(X;Y ) = h(X) + h(Y )− h(X, Y ).

Note that I(X;Y ) admits a simple expression using KL divergence as well. In particular,
if X and Y have laws µ and ν respectively and their joint law is ζ, we have

I(X;Y ) = D(ζ∥µ× ν)

where we use µ×ν to denote the product measure. Note that this form immediately implies
that I(X;Y ) = 0 iff X and Y are independent.
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Finally, we remind the reader that information theorists sometimes refer to Lp norms of
functions via so-called Rényi entropies. If f ∈ Lp(R) is the density of a random variable
X for some p > R+ \ {1}, then the Rényi entropy of X is given by

hp(X) :=
p

1− p
log ∥f∥p.

Under mild conditions, hp converges to Shannon entropy as p → 1. Note that Rényi
entropies do not satisfy many nice properties of Shannon entropies, such as subadditivity,
and in most information theoretic applications, Shannon entropies, and not Rényi entropies
appear naturally. See the survey by Van Erven and Harremos [2014] for more properties of
Rényi entropies and divergences.

We end this section with a few basic examples of Shannon entropies.

Example 3 (Entropy of a Gaussian distribution). Let γ ∼ N(µ,Σ) for some µ ∈ E, Σ ∈
S+(E)

h(γ) =
1

2
log det (2πeΣ) .

Example 4 (Entropy of a uniform distribution). Let X be uniformly distributed over a
measurable set S in E with nonzero finite measure |S|,

h(X) = −
∫
E

1

|S| log
1

|S| = log |S|.

We remark that uniform distributions maximize entropy subject to a support constraint.
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Chapter 3

Examples of Gaussian Inequalities

In this chapter, we will lay out some of the existing inequalities, with a particular emphasis
on chains of implications. We will demonstrate how entropic inequalities naturally give rise
to statistical, geometric and functional inequalities. We will also showcase the power of the
variational principle for entropy by going between functional inequalities and entropic ones.

3.1 Entropic examples

Entropy power inequality

Let us set the stage with the inequality that has been around since the inception of infor-
mation theory, the entropy power inequality (EPI):

Theorem 5 (EPI). Let X and Y be independent random vectors in P(Rn). Then,

N(X) +N(Y ) ≤ N(X + Y ). (3.1)

This inequality was first observed by Shannon [1948], and rigorously proved by Stam
[1959], Blachman [1965]. As such, it is sometimes referred to as the Shannon–Stam inequality.
Later on, Lieb observed an equivalent form in the context of statistical mechanics:

Theorem 6 (Lieb [1990]). Let X and Y be independent random vectors in P(Rn). Then,
for all λ ∈ [0, 1],

λh(X) + (1− λ)h(Y ) ≤ h(
√
λX +

√
(1− λ)Y ).

The entropy power inequality is used throughout information theory to characterize ca-
pacities of various channels, such as broadcast channels [Bergmans, 1974, Weingarten et al.,
2006, Mohseni and Cioffi, 2006], wiretap channels [Leung-Yan-Cheong and Hellman, 1978,
Tekin and Yener, 2006], and interference channels [Costa, 1985]. The reader interested in
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applications of the entropy power inequality in information theory are referred to the intro-
duction of Rioul [2010] and references therein. The EPI also has found use and extensions
in convex geometry. [Madiman et al., 2017]

Throughout the years, information theorists have developed more refined versions of the
EPI. Costa [1985] fixed one of the variables to be a Gaussian to strengthen the EPI (see
also Villani [2000]), which was further strengthened by Courtade [2017] to give a concise
proof of the rate region for the two-encoder quadratic Gaussian source coding problem.
Artstein et al. [2004] developed yet another strong EPI that they used to show monotonicity
of entropy along the sequence of standardized sums appearing in the classical central limit
theorem. Another generalization was given by Zamir and Feder [1993] which can be stated
as follows: Let X = (X1, . . . , Xk) be a random vector in Rk with independent coordinates
(Xi)

k
i=1. If Z = (Z1, . . . , Zk) is a Gaussian vector with independent coordinates (Zi)

k
i=1 and

entropies satisfying h(Zi) = h(Xi), 1 ≤ i ≤ k, then for any linear map B : Rk → Rn, we
have

h(BX) ≥ h(BZ). (3.2)

A generalization of the Zamir–Feder inequality is given by Anantharam et al. [2019].

The Anantharam–Jog–Nair inequality

We remind the reader of the definition of a datum given in Section 1.4. For a datum
(c,d,B), Anantharam, Jog and Nair (AJN) characterized the best (i.e., smallest) constant
CAJN(c,d,B) such that the entropy inequality

k∑
i=1

cih(Xi) ≤
m∑
j=1

djh(BjX) + CAJN(c,d,B) (3.3)

holds for any choice of independent random vectors Xi ∈ P(Ei), 1 ≤ i ≤ k, with X :=
(X1, . . . , Xk). This inequality unifies the Zamir–Feder inequality (3.2) (and consequently
Shannon–Stam inequality (3.1)), and the entropic formulation of the (Euclidean) Brascamp–
Lieb inequalities 1 under a common framework. In particular, Anantharam, Jog and Nair
showed that the best constant can be computed by considering only Gaussian Xi’s, and gave
necessary and sufficient conditions for finiteness. As we will be working with their inequality
extensively, we present their main result thoroughly below:

Theorem 7 (Anantharam et al. [2019]). Fix a datum (c,d,B). For any independent random
vectors Xi ∈ P(Ei), 1 ≤ i ≤ k and X = (X1, . . . , Xk),

k∑
i=1

cih(Xi)−
m∑
j=1

djh(BjX) ≤ Cg(c,d,B), (3.4)

1that we will further present in Theorem 16



CHAPTER 3. EXAMPLES OF GAUSSIAN INEQUALITIES 14

where Cg(c,d,B) is defined as the supremum of the LHS over independent Gaussian vectors
(Xi)

k
i=1. Moreover, the constant Cg(c,d,B) is finite if and only if the following two conditions

are satisfied.

(i) Scaling condition: It holds that

k∑
i=1

ci dim(Ei) =
m∑
j=1

dj dim(Ej). (3.5)

(ii) Dimension condition: For all product-form subspaces T ⊂ E0,

k∑
i=1

ci dim(πEi
T ) ≤

m∑
j=1

dj dim(BjT ). (3.6)

Cover–Zhang

If we relax the independence assumption between the random variables, then the EPI as
stated cannot hold (nor should one expect it to hold). However, considering the couplings
between random variables gives rise to a similar inequality. We will first give the original
form of the Cover and Zhang [1994] result.

Theorem 8 (Cover–Zhang). Let X,X ′ be random variables in P(R) with a common density
f . Then, the inequality

h(2X) ≤ max
Π(X,X′)

h(X +X ′)

holds with equality iff f is log-concave.

Remark 9. The notation maxΠ(X,X′) h(X +X ′) indicates the entropy is maximized over all
couplings of X,X ′. This notation is consistent with that commonly employed in the literature
of optimal transport [Villani, 2003].

We can actually generalize this result to include non-identically distributed random vari-
ables.

Theorem 10 (Cover–Zhang type inequalities). Let X and Y be random vectors in P(Rn),
and λ ∈ (0, 1)

(i) The following inequality holds:

λh(X) + (1− λ)h(Y ) ≤ max
Π(X,Y )

h(λX + (1− λ)Y )

(ii) Equality holds iff X − EX and Y − EY are identically distributed with a log-concave
distribution.
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We defer an informal proof to the appendix. We will however note that this inequality
is a dual form of the Prékopa–Leindler (PL) inequality that we recall here for convenience:
given λ ∈ [0, 1] and non-negative f, g, h ∈ L1(Rn), satisfying

h(λx+ (1− λ)y) ≥ fλ(x)g1−λ(y) ∀x, y ∈ Rn,

we have (∫
Rn

f

)λ(∫
Rn

g

)1−λ

≤
∫
Rn

h.

Equality conditions for the Prékopa–Leindler inequality have been shown in Dubuc [1977],
which also requires log-concavity. An immediate corollary of Theorem 10 is the Brunn–
Minkowski inequality [Brunn, 1887, Minkowski, 1910].

Theorem 11 (Brunn–Minkowski). Let λ ∈ (0, 1), and K and L be compact subsets of Rn.
Then, we have

λV (K)1/n + (1− λ)V (L)1/n ≤ V (λK + (1− λ)L)1/n.

Moreover, in the case that K,L have non-empty interior, equality holds iff K,L are convex,
with K = L+ x0 for some x0 ∈ Rn.

Proof of Theorem 11. Take X and Y to be uniform on compact sets K,L ⊂ Rn that have
non-empty interior and note that for any coupling of X and Y , λX + (1 − λ)Y has to
be supported on λK + (1 − λ)L. Note that K,L having non-empty interiors ensures
h(X), h(Y ) > −∞, and compactness ensures the boundedness of second moments of X
and Y , and h(X), h(Y ) < ∞. Thus, we see that X and Y are in P(Rn). Now, invoking
Theorem 10, we get

V (K)λV (L)1−λ ≤ max
Π(X,Y )

h(λX + (1− λ)Y ) ≤ V (λK + (1− λ)L).

This is equivalent to the form given above by a simple rescaling of sets [Madiman et al.,
2017]. The equality condition follows immediately from Theorem 10.

The implications of Brunn–Minkowski inequality are numerous [Gardner, 2002, Barthe,
2006]. It is a foundational inequality in convex geometry.

Remark 12. It has long been observed that there is a striking similarity between the Brunn–
Minkowski inequality and the EPI (see, e.g., Costa and Cover [1984] and citing works). It is
well-known that each can be obtained from convolution inequalities involving Rényi entropies
(e.g., the sharp Young inequality [Brascamp and Lieb, 1976, Lieb, 1990], or rearrangement
inequalities [Wang and Madiman, 2014]), when the orders of the involved Rényi entropies
are taken to the limit 0 or 1, respectively.
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3.2 Functional examples

Brascamp–Lieb Inequalities

Hölder’s inequality, the sharp Young inequalities and the Loomis–Whitney inequality are all
special cases of a wide class of functional inequalities commonly known as Brascamp–Lieb
inequalities.

Definition 13 (Brascamp–Lieb inequalities). Define CBL(d,B) as the smallest constant
such that the following inequality is true for all non-negative fj ∈ L1(Ej), 1 ≤ j ≤ m:∫

E0

m∏
j=1

f
dj
j (Bjx) dx ≤ eCBL(d,B)

m∏
j=1

(∫
Ej

fj

)dj

. (3.7)

Inequalities of the form (3.7) are referred to as Brascamp–Lieb inequalities

Brascamp and Lieb [1976] proved that CBL(d,B) can be computed by considering Gaus-
sian functions for (fi)

k
i=1 sharing the same domain Ej. They then used it to show sharp

Young’s inequality (that Beckner [1975] had shown a bit prior), and Nelson’s hypercontrac-
tivity [Nelson, 1973]. Then, Lieb [1990] generalized to arbitrary (Bj, E

j)mj=1.
Beyond the applications listed, the Brascamp–Lieb inequality has been used in Ball

[1989] to compute and give bounds on volumes of various convex sets. The Brascamp–
Lieb inequality has also seen a surge of interest from theoretical computer scientists [Garg
et al., 2017], ranging from robust subspace recovery [Hardt and Moitra, 2013], to analyzing
determinants of submatrices [Nikolov and Singh, 2016].

Of course, with such a high amount of interest, it is tempting to ask various structural
questions, such as decomposability, extremizability, and finiteness. Bennett et al. [2008]
addresses them to great detail. In particular, they develop a precise notion of criticality that
essentially allows decomposing any BL inequality into inequalities on smaller spaces. They
further establish the idea of geometricity; in particular, when the linear maps behave like
projections and abide by a frame condition, one can get an orthogonal decomposition of the
underlying space into critical subspaces. Finally, a major result is that for Brascamp–Lieb
inequalities, geometricity, Gaussian-extremizability and extremizability are all equivalent
modulo an equivalence that amounts to a linear change of variables. We refer the reader to
Carbery [2007] for a gentle summary of the main results in Bennett et al. [2008]. One question
they left unanswered was the structure of all extremizers of Brascamp–Lieb inequalities,
which was answered by Valdimarsson [2008].

We would be remiss to not mention the diversity of proof techniques used in the litera-
ture. The original paper of Brascamp and Lieb [1976] used rearrangement inequalities, and
Lieb [1990] used a doubling argument show Gaussian-extremizability. Barthe [1998] used
an optimal transport argument, and Bennett et al. [2008] used a heat flow argument. In
discussing equality conditions, Valdimarsson [2008] analyzed the stationary behavior of an
appropriate heat flow where the analysis further relied on properties of Fourier transforms
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of tempered distributions. Later on, Lehec [2013] used Föllmer drifts (Appendix A) to give
a concise proof in the geometric setting. All of these techniques are fundamentally reliant
on various characterizations of Gaussians.

Barthe’s Reverse Brascamp–Lieb Inequalities

Given that the Brascamp–Lieb inequality has seen so much attention, it should come as no
surprise that their reverse versions, namely Barthe’s Reverse Brascamp–Lieb Inequalities are
just as influential. We start out with their definition:

Definition 14. Let fi ∈ L1(Ei), 1 ≤ i ≤ k, be non-negative functions, Bi : Ei → E1, 1 ≤
i ≤ k, be linear maps, and h : E1 → R be a measurable function that satisfies

k∏
i=1

f ci
i (xi) ≤ h(

k∑
i=1

ciBixi) ∀xi ∈ Ei, i = 1, . . . , k.

Define CRBL(d,B) as the smallest constant such that the following inequality is true for all
such (fi)

k
i=1, h:

k∏
i=1

(∫
Ei

fi

)ci

≤ eCRBL(d,B)

∫
E

h. (3.8)

Inequalities of the form (3.8) are referred to as Barthe’s (Reverse Brascamp–Lieb) in-
equalities.

Remark 15. One can pick h(y) := supy=
∑

ciBixi

∏k
i=1 f

ci
i (xi) whenever h is measurable. The

theorem was originally stated using outer integrals [Barthe, 1998].

Barthe [1998] showed that the smallest constant CRBL(d,B) in the inequality above
can be computed by considering Gaussian functions. While doing so, he gave an optimal
transport proof that proved both Brascamp–Lieb and the reverse form (3.8). Note that it is
easy to see that (3.8) implies the Prékopa–Leindler inequality.

Furthermore, Barthe’s inequality has been used in convex geometry by Ball [1989]. Sim-
ilar to Brascamp–Lieb, the structure and the form of extremizers has been studied by
Boroczky et al. [2022].

3.3 Entropic duality and Forward-Reverse
Brascamp–Lieb inequalities

We start this section by noting that Lieb [1978] outlined a connection between the EPI and
the sharp Young’s inequality, through the realization of Shannon entropy as the limit of
certain Lp norms. This idea was placed into information theory context thanks to Dembo
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et al. [1991]. Later on, Carlen et al. [2004] went essentially the other way, deducing a sharp
Young inequality from certain sharp entropy inequalities. This connection between functional
and entropic inequalities was demystified by Carlen and Cordero-Erausquin [2009] when they
highlighted the Legendre duality principle between the Brascamp–Lieb inequalities and their
entropic dual inequalities:

Theorem 16 (Entropic Brascamp–Lieb Inequalities). For all X ∈ P(E0)

h(X) ≤
m∑
j=1

djh(BjX) + CBL(d,B),

with CBL(d,B) defined as in (3.7)

Afterwards, Lehec [2013] has provided simultaneous proofs of functional and entropic
inequalities through Föllmer drifts, and this duality between functional and entropic in-
equalities was further extended in Liu et al. [2016] to give the proof of a general inequality
that implies the other inequalities in this chapter.

Forward-Reverse Brascamp–Lieb Inequalities

Liu et al. [2016] established the Forward-Reverse Brascamp–Lieb inequalities. Later on
Courtade and Liu [2021] established the necessary conditions for finiteness, and gave the full
structural analysis. We give the main result of Courtade and Liu [2021] below:

The entropic forward-reverse Brascamp–Lieb inequality

Define

Dg(c,d,B) := sup
Zi∈G(Ei),1≤i≤k

(
k∑

i=1

cih(Zi)− max
Z∈Π(Z1,...,Zk)

m∑
j=1

djh(BjZ)

)
,

and

D(c,d,B) := sup
Xi∈P(Ei),1≤i≤k

(
k∑

i=1

cih(Xi)− max
X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX)

)
.

Theorem 17. Fix a datum (c,d,B). For random vectors Xi ∈ P(Ei), 1 ≤ i ≤ k, we have

k∑
i=1

cih(Xi) ≤ max
X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX) +Dg(c,d,B). (3.9)

Moreover, the constant Dg(c,d,B) is finite if and only if the following two conditions hold.
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(i) Scaling condition: It holds that

k∑
i=1

ci dim(Ei) =
m∑
j=1

dj dim(Ej). (3.10)

(ii) Dimension condition: For all subspaces Ti ⊂ Ei, 1 ≤ i ≤ k,

k∑
i=1

ci dim(Ti) ≤
m∑
j=1

dj dim(BjT ), where T = ⊕k
i=1Ti. (3.11)

Remark 18. Note that if Xi ∈ G(Ei), then the maximum coupling in (3.9) is a joint Gaus-
sian, as joint Gaussians maximize entropy subject to second moment constraints. (In par-
ticular, for any X ∈ Π(X1, . . . , Xk), we can take a Gaussian coupling Xg ∈ Π(X1, . . . , Xk)
with cov(Xg) = cov(X), which ensures that cov(BjXg) = cov(BjX) for all j = 1, . . . ,m.)

By a suitable choice of datum (c,d,B), and with appropriate regularization, this implies
all the entropic inequalities we have seen in this chapter so far. Of note, we recall from Liu
et al. [2018], Courtade and Liu [2021] that Theorem 17 has the following equivalent (dual)
functional form.

Theorem 19. Fix a datum (c,d,B). If measurable functions fi : Ei → R+, 1 ≤ i ≤ k and
gj : E

j → R+, 1 ≤ j ≤ m satisfy

k∏
i=1

f ci
i (πEi

(x)) ≤
m∏
j=1

g
dj
j (Bjx) ∀x ∈ E0, (3.12)

then

k∏
i=1

(∫
Ei

fi(xi) dxi

)ci

≤ eDg(c,d,B)

m∏
j=1

(∫
Ej

gj(yj) dyj

)dj

. (3.13)

Moreover, the constant Dg(c,d,B) is best possible.

By changing (c,d,B), this implies many geometric inequalities such as the Brascamp–
Lieb inequalities [Brascamp et al., 1974, Brascamp and Lieb, 1976, Lieb, 1990], and the
Barthe inequalities discussed before. Even beyond them, it includes the sharp reverse Young
inequality [Brascamp and Lieb, 1976], the Chen–Dafnis–Paouris inequalities [Chen et al.,
2015], and a form of the Barthe–Wolff inequalities [Barthe and Wolff, 2018]. Readers are
referred to Courtade and Liu [2021] for a more detailed account of these implications and
further references. An important result we want to discuss is the general entropic duality
principle that holds for Forward-Reverse Brascamp Inequalities. Namely, Theorems 17 and
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19 are formally equivalent via Fenchel–Rockafellar duality [Courtade and Liu, 2021]. Theo-
rem 16 is one such example, and as stated before, Theorem 10 (i) is the entropic dual of the
Prékopa-Leindler inequality. Here, we want to note that Theorem 19 follows from Theorem
17 by weak duality. The other direction is more difficult, relying on strong duality for convex
functions. Hence, the entropic verison (Theorem 17) can be regarded as a formally stronger
result.

Remark 20. It has been brought to our attention by Courtade [2023] that the Gaussian satu-
ration property of (3.4) follows from the Gaussian saturation property of the Brascamp–Lieb
inequalities. To give a highlight of the argument, let Xi ∈ P(Ei) for i = 1 ≤ i ≤ k and con-
sider the following instances of the Brascamp–Lieb inequalities for any X ′ ∈ Π(X1, . . . , Xk)
indexed by λ ≥ 0:

(1 + λ)h(X ′) ≤
m∑
j=1

djh(BjX
′) + λ

k∑
i=1

h(Xi) + Cλ. (3.14)

Note that Cλ ≥ CAJN(c,d,B) for any λ ≥ 0 where C is the upper bound given in (3.3), that
is

Cλ ≥ CAJN(c,d,B) := sup{
k∑

i=1

h(Xi)−
m∑
j=1

djh(BjX)},

where the supremum is taken over all Xi ∈ P(Ei) for i = 1 ≤ i ≤ k, and X is their
independent coupling. One can further show limλ→∞ Cλ = CAJN(c,d,B) using the Gaus-
sian saturation property for finite λ [Lieb, 1990]. In particular, this shows the Gaussian
saturation property of AJN data (c,d,B), when the c is the all ones vector. One can get
to the general AJN data by normalizing to ensure ci ≤ 1, and adding (1 − ci)h(Xi) for all
1 ≤ i ≤ k. Furthermore, the finiteness conditions on the Brascamp–Lieb inequalities from
Bennett et al. [2008] go through the same argument, recovering (3.5) and (3.6). Note that
the characterization of extremizers do not pass through this limiting argument.
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Forward-Reverse Brascamp-Lieb (FRBL)

Barthe (B) Anantharam-Jog-Nair (AJN)

Brascamp-Lieb (BL)

Zamir-Feder (ZF)

EPI

Prékopa-Leindler (PL)

Brunn-Minkowski (BM)

Han’s (H)

Figure 3.1: A depiction of landscape of a few major entropic inequalities. A solid arrow from
A to B means that A implies B.
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Chapter 4

Gaussian Comparisons

In this chapter, we establish a general class of entropy inequalities that take the concise form
of Gaussian comparisons. The main result unifies many classical and recent results discussed
in Chapter 3, including the Shannon–Stam inequality, the Brunn–Minkowski inequality, the
Zamir–Feder inequality, the Brascamp–Lieb and Barthe inequalities, the Anantharam–Jog–
Nair inequality, and others.

For X ∈ Π(X1, . . . , Xk) and S ⊂ {1, . . . , k}, we define the S-correlation1

IS(X) :=
∑
i∈S

h(Xi)− h(πS(X)),

where we let πS denote the canonical projection of E0 onto ⊕i∈SEi. To avoid ambiguity, we
adopt the convention that I∅(X) = 0. Observe that that IS is the relative entropy between
the law of πS(X) and the product of its marginals, so is always nonnegative. Moreover,
IS(X) = 0 iff (Xi)i∈S are independent.

For a given constraint function ν : 2{1,...,k} → [0,+∞], and Xi ∈ P(Ei), 1 ≤ i ≤ k, we
can now define the set of correlation-constrained couplings

Π(X1, . . . , Xk; ν) :=
{
X ∈ Π(X1, . . . , Xk) : IS(X) ≤ ν(S) for each S ∈ 2{1,...,k}

}
.

With notation established, our main result is the following.

Theorem 21. Fix (d,B) and ν : 2{1,...,k} → [0,+∞]. For any Xi ∈ P(Ei), 1 ≤ i ≤ k, there
exist Zi ∈ G(Ei) with h(Zi) = h(Xi), 1 ≤ i ≤ k satisfying

max
X∈Π(X1,...,Xk;ν)

m∑
j=1

djh(BjX) ≥ max
Z∈Π(Z1,...,Zk;ν)

m∑
j=1

djh(BjZ). (4.1)

1The S-correlation IS seems to have no generally agreed-upon name, and has been called different things
in the literature. Our choice of terminology reflects that of Watanabe [1960], who used the term total
correlation to describe IS when S = {1, . . . , k}. However, it might also be called S-information, to reflect
the “multi-information" terminology preferred by some (see, e.g., Csiszár and Körner [2011]).
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Remark 22. The special case where dim(Ei) = 1 for all 1 ≤ i ≤ k appeared in the earlier
work by Aras and Courtade [2021].

Remark 23. Note that certain ν can have redundant constraints due to submodularity of
entropy.

Observe that when m = 1, ν ≡ 0 and dim(Ei) = 1 for all 1 ≤ i ≤ k, we recover the
Zamir–Feder inequality (3.2). Indeed, taking ν ≡ 0 renders the set of couplings equal to the
singleton consisting of the independent coupling, and the one-dimensional nature of the Ei’s
means that the variances of the Zi’s are fully determined by the entropy constraints. Hence,
it is clear that Theorem 21 generalizes the Zamir–Feder inequality (3.2).

As a second and slightly more substantial example, we explain the connection between
the EPI and the Brunn–Minkowski inequality alluded to in the introduction. Denote the
entropy power of X ∈ P(Rn) by

N(X) :=
1

2πe
e2h(X)/n.

For a coupling X = (X1, X2), note that the mutual information I(X1;X2) is equal to IS(X)
with S = {1, 2}.
Corollary 24. For any X1, X2 ∈ P(Rn) and ζ ∈ [0,+∞], it holds that

N(X1) +N(X2)+2
√

(1− e−2ζ/n)N(X1)N(X2) ≤ max
Π(X1,X2):
I(X1;X2)≤ζ

N(X1 +X2), (4.2)

where the maximum is over couplings of X1, X2 such that I(X1;X2) ≤ ζ. Equality holds for
Gaussian X1, X2 with proportional covariances.

Proof. We apply Theorem 21 with E1 = E2 = Rn and ν({1, 2}) = ζ to give existence of
Gaussian Z1, Z2 satisfying N(Zi) = N(Xi) and

max
(X1,X2)∈Π(X1,X2):

I(X1;X2)≤ζ

N(X1 +X2) ≥ max
(Z1,Z2)∈Π(Z1,Z2):

I(Z1;Z2)≤ζ

N(Z1 + Z2).

Now, suppose Zi ∼ N(0,Σi), i ∈ {1, 2} and consider the coupling

Z1 = ρΣ
1/2
1 Σ

−1/2
2 Z2 + (1− ρ2)1/2W,

where W ∼ N(0,Σ1) is independent of Z2, and ρ := (1−e−2ζ/n)1/2. This ensures I(Z1;Z2) =
ζ, and

N(Z1 + Z2) = det(Σ1 + Σ2 + ρΣ
1/2
1 Σ

1/2
2 + ρΣ

1/2
2 Σ

1/2
1 )1/n

≥
(
det(Σ1)

1/n + det(Σ2)
1/n + 2ρ det(Σ

1/2
1 )1/n det(Σ

1/2
2 )1/n

)
= N(X1) +N(X2) + 2

√
(1− e−2ζ/n)N(X1)N(X2),
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where the inequality follows by Minkowski’s determinant inequality. It is easy to see that we
have equality in the expressions above if X1, X2 are Gaussian with proportional covariances.

Remark 25. Theorem 24 may be considered as an extension of the EPI that holds for certain
dependent random variables; it appeared in the preliminary work [Aras and Courtade, 2021]
by the authors. We remark that Takano et al. [1995] and Johnson [2004] have established
that the EPI holds for dependent random variables which have positively correlated scores.
However, given the different hypotheses, those results are not directly comparable to Theorem
24.

Now, we observe that the EPI and the Brunn–Minkowski inequality naturally emerge
from (4.2) by considering the endpoints of independence (ζ = 0) and maximal dependence
(ζ = +∞). Of course, (4.2) also gives a sharp inequality for the whole spectrum of cases in
between.

Example 26 (EPI). Taking ζ = 0 enforces the independent coupling in Theorem 24, and
recovers the EPI (3.1), which we reproduce here for visual convenience. For independent
X1, X2 ∈ P(Rn),

e2h(X1)/n + e2h(X2)/n ≤ e2h(X1+X2)/n. (4.3)

Hence, Theorem 24 may be regarded as an extension of the EPI for certain dependent random
variables with a sharp correction term.

Example 27 (Brunn–Minkowski inequality). Taking ζ = +∞ in Theorem 24 allows for
unconstrained optimization over couplings, giving

eh(X1)/n + eh(X2)/n ≤ sup
Π(X1,X2)

eh(X1+X2)/n,

where we emphasize the change in exponent from 2 to 1, relative to (4.3). This may be
regarded as an entropic improvement of the Brunn–Minkowski inequality. Indeed, if X1, X2

are uniform on compact subsets K,L ⊂ Rn that have non-empty interiors respectively, we
obtain the familiar Brunn–Minkowski inequality

Voln(K)1/n +Voln(L)
1/n ≤ sup

Π(X1,X2)

eh(X1+X2)/n ≤ Voln(K + L)1/n,

where K+L denotes the Minkowski sum of K and L, and Voln(·) denotes the n-dimensional
Lebesgue volume. The last inequality follows since X1 + X2 is supported on the Minkowski
sum K + L, and hence the entropy is upper bounded by that of the uniform distribution on
that set.

Remark 28. The above form of Brunn–Minkowski is equivalent to the one given in Theorem
11. However, note that the equality conditions are slightly different, with this version only
requiring K and L be homothetic rather than identical up to shifts.
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In the above, the Brunn–Minkowski inequality and the EPI are obtained as logical end-
points of a family of inequalities which involve only Shannon entropies instead of Rényi
entropies of varying orders. In contrast to derivations involving Rényi entropies where sum-
mands are always independent (corresponding to the convolution of densities), the idea here
is to allow dependence between the random summands.

We remark that equality cases for (4.1) in the special case where ν ≡ 0 follow from the
main results in Chapter 5, and the general case follows from the results in Chapter 6.

4.1 Proof of the main result
This section is dedicated to the proof of Theorem 21. There are several preparations to make
before starting the proof; this is done in the first subsection. The second subsection brings
everything together to prove an unconstrained version of Theorem 21 where ν ≡ +∞. The
third and final subsection proves Theorem 21 on the basis of its unconstrained variation.

Preliminaries

Here we quote the preparatory results that we shall need, and the definitions required to
state them. The various results are organized by subsection, and proofs are only given where
necessary.

Some additional notation

A datum (c,d,B) is said to be extremizable if D(c,d,B) < ∞ and there exist Xi ∈ P(Ei),
1 ≤ i ≤ k which attain equality in (3.9). Likewise, a datum (c,d,B) is said to be Gaussian-
extremizable if there exist Gaussian Xi ∈ G(Ei), 1 ≤ i ≤ k which attain equality in (3.9).
Necessary and sufficient conditions for Gaussian-extremizability of a datum (c,d,B) can be
found in Courtade and Liu [2021]. Clearly Gaussian-extremizability implies extremizability
on account of Theorem 17. We shall need the converse, which was not proved in Courtade
and Liu [2021].

Theorem 29. If a datum (c,d,B) is extremizable, then it is Gaussian-extremizable.

The proof follows a doubling argument similar to what appears in Liu et al. [2018, Proof
of Theorem 8]. We will need the following Lemma.

Lemma 30. For each 1 ≤ i ≤ k, let Zi ∼ N(0, Ki) and let (Xn,i)n≥1 be a sequence of
zero-mean random vectors satisfying

lim
n→∞

W2(Xn,i, Zi) = 0,

where W2 : P(Ei) × P(Ei) → R is the Wasserstein distance of order 2. For any K ∈
Π(K1, . . . , Kk), there exists a sequence of couplings Xn ∈ Π(Xn,1, . . . , Xn,k), n ≥ 1 such that
∥Cov(Xn)−K∥HS → 0.



CHAPTER 3. GAUSSIAN COMPARISONS 26

Proof. Let Z ∼ N(0, K), and observe that Z ∈ Π(Z1, . . . , Zk). Let Tn,i be the opti-
mal transport map sending N(0, Ki) to law(Xn,i) (see, e.g., Villani [2003]). Then Xn =
(Tn,1(Z1), . . . , Tn,k(Zk)) ∈ Π(Xn,1, . . . , Xn,k) satisfies

Tn,i(Zi)Tn,i′(Zi′)
T − ZiZ

T
i′ = Zi(Tn,i′(Zi′)− Zi′)

T + (Tn,i(Zi)− Zi)Z
T
i′

+ (Tn,i(Zi)− Zi)(Tn,i′(Zi′)− Zi′)
T .

Taking expectations of both sides and applying Cauchy–Schwarz, we conclude

∥Cov(Xn)−K∥HS → 0

since E|Tn,i(Zi)− Zi|2 = W2(Xn,i, Zi)
2 → 0 for each 1 ≤ i ≤ k.

Proof of Theorem 29. The approach will be to show that extremizers are closed under convo-
lutions, and apply the entropic central limit theorem. Toward this end, let Xi ∼ µi ∈ P(Ei)
be independent of Yi ∼ νi ∈ P(Ei), 1 ≤ i ≤ k, both assumed to be extremal in (3.9). Define

Z+
i := Xi + Yi, Z−

i := Xi − Yi, 1 ≤ i ≤ k,

and let

Z+ ∈ arg max
Z∈Π(Z+

1 ,...,Z+
k )

m∑
j=1

djh(BjZ).

Let Z−
i |z+i denote the random variable Z−

i conditioned on {Z+
i = z+i }, which has law in

P(Ei) for law(Z+
i )-a.e. z+i ∈ Ei by disintegration. Note that the a.s. finiteness of entropy

follows from the chain rule h(Z+
i , Z

−
i ) = h(Z+

i ) + h(Z−
i | Z+

i ) and independence of Xi, Yi

which ensures that h(Z+
i , Z

−
i ) is finite, and finiteness of second moments a.s. follows by

iterated expectation. Next, for z+ = (z+1 , . . . , z
+
k ) ∈ E0, let

Z−|z+ ∈ arg max
Z∈Π(Z−

1 |z+1 ,...,Z−
k |z+k )

m∑
j=1

djh(BjZ).

We can assume these couplings are such that z+ 7→ law(Z−|z+) is Borel measurable (i.e.,
law(Z−|z+) is a regular conditional probability). This can be justified by measurable selec-
tion theorems, as in Villani et al. [2008, Cor. 5.22] and Liu et al. [2018, p. 42]. With this
assumption, definitions imply

k∑
i=1

cih(Z
+
i ) ≤

m∑
j=1

djh(BjZ
+) +D(c,d,B)

k∑
i=1

cih(Z
−
i |z+i ) ≤

m∑
j=1

djh(BjZ
−|z+) +D(c,d,B),
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where the latter holds for law(Z+)-a.e. z+. Integrating the second inequality against the
distribution of Z+ gives the inequality for conditional entropies:

k∑
i=1

cih(Z
−
i |Z+

i ) ≤
m∑
j=1

djh(BjZ
−|Z+) +D(c,d,B)

≤
m∑
j=1

djh(BjZ
−|BjZ

+) +D(c,d,B),

where the second inequality follows since conditioning reduces entropy. Now, define

X =
1

2

(
Z+ + (Z−|Z+)

)
, Y =

1

2

(
Z+ − (Z−|Z+)

)
.

Observe that X ∈ Π(X1, . . . , Xk) and Y ∈ Π(Y1, . . . , Yk). So, using the above inequalities
and definitions, we have

2D(c,d,B) ≤
k∑

i=1

cih(Xi, Yi)−
m∑
j=1

djh(BjX)−
m∑
j=1

djh(BjY )

≤
k∑

i=1

cih(Xi, Yi)−
m∑
j=1

djh(BjX,BjY )

=
k∑

i=1

cih(Z
+
i ) +

k∑
i=1

cih(Z
−
i |Z+

i )

−
m∑
j=1

djh(BjZ
+)−

m∑
j=1

djh(BjZ
−|BjZ

+)

≤ 2D(c,d,B)

Thus, we conclude
k∑

i=1

cih(Z
+
i ) =

m∑
j=1

djh(BjZ
+) +D(c,d,B),

showing that Z+
i ∼ µi ∗ νi ∈ P(Ei), 1 ≤ i ≤ k are extremal in (3.9) as desired. The

scaling condition (3.5) is necessary for D(c,d,B) < ∞, so it follows by induction and scale
invariance that, for every n ≥ 1, marginally specified (Zn,i)

k
i=1 are extremal in (3.9), where

Zn,i :=
1√
n

n∑
ℓ=1

(Xℓ,i − E[Xi]),

and (Xℓ,i)ℓ≥1 are i.i.d. copies of Xi.
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Define Ki = Cov(Xi) (which is positive definite since h(Xi) is finite), and fix any K ∈
Π(K1, . . . , Kk). For any ϵ > 0, Lemma 30 together with the central limit theorem for W2

implies there exists N ≥ 1 and a coupling ZN ∈ Π(ZN,1, . . . , ZN,k) such that ∥Cov(ZN) −
K∥HS < ϵ. Letting Z

(n)
N denote the standardized sum of n i.i.d. copies of ZN , we have

Z
(n)
N ∈ Π(ZnN,1, . . . , ZnN,k) for each n ≥ 1. Thus, by the entropic central limit theorem

[Barron, 1986, Carlen and Soffer, 1991], we have

lim sup
n→∞

max
Zn∈Π(Zn,1,...,Zn,k)

m∑
j=1

djh(BjZn) ≥ lim
n→∞

m∑
j=1

djh(BjZ
(n)
N ) =

m∑
j=1

djh(BjZ
∗
N)

where Z∗
N ∼ N(0,Cov(ZN)). Our arbitrary choice of K and ϵ together with continuity of

determinants implies

lim sup
n→∞

max
Zn∈Π(Zn,1,...,Zn,k)

m∑
j=1

djh(BjZn) ≥ max
K∈Π(K1,...,Kk)

m∑
j=1

dj
2
log
(
(2πe)dim(Ej) det(BjKBT

j )
)
.

Invoking the entropic central limit theorem, and using the fact that (Zn,i)
k
i=1 are extremal

in (3.9) for each n ≥ 1, we conclude

k∑
i=1

ci
2
log
(
(2πe)dim(Ei) det(Ki)

)
= lim

n→∞

k∑
i=1

cih(Zn,i)

= lim
n→∞

max
Zn∈Π(Zn,1,...,Zn,k)

m∑
j=1

djh(BjZn) +D(c,d,B)

≥ max
K∈Π(K1,...,Kk)

m∑
j=1

dj
2
log
(
(2πe)dim(Ej) det(BjKBT

j )
)
+D(c,d,B).

Thus, by definitions, we have equality throughout, and (c,d,B) is Gaussian-extremizable.

Properties of the max-entropy term

Let us briefly make a few technical observations related to the max-entropy quantity that
appears in (3.9). First, we quote a technical lemma that will be needed several times. A
proof can be found in Liu et al. [2018, Lemma A2].

Lemma 31. Let (µn)n≥1 ⊂ P(E) converge in distribution to µ. If supn≥1

∫
E
|x|2dµn < ∞,

then
lim sup
n→∞

h(µn) ≤ h(µ).
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Now, we point out that the max-entropy term is well-defined as a maximum.

Proposition 32. Fix (d,B) and Xi ∈ P(Ei), 1 ≤ i ≤ k. The function

X ∈ Π(X1, . . . , Xk) 7−→
m∑
j=1

djh(BjX)

achieves a maximum at some X∗ ∈ Π(X1, . . . , Xk). Moreover, if each Xi is Gaussian, then
X∗ is Gaussian.

Proof. We have supX∈Π(X1,...,Xk)
E|BjX|2 < ∞ for each 1 ≤ j ≤ m since each Xi has bounded

second moments. The second moment constraint also implies Π(X1, . . . , Xk) is tight, and
it is easily checked to be closed in the weak topology. Thus, Prokhorov’s theorem ensures
Π(X1, . . . , Xk) is sequentially compact. So, if (X(n))n≥1 ⊂ Π(X1, . . . , Xk) is such that

lim
n→∞

m∑
j=1

djh(BjX
(n)) = sup

X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX),

we can assume X(n) → X∗ ∈ Π(X1, . . . , Xk) weakly, by passing to a subsequence if necessary.
This implies BjX

(n) → BjX
∗ weakly for each 1 ≤ j ≤ m. The first claim follows by an

application of Lemma 31.
The second claim now follows from the first, together with the fact that Gaussians max-

imize entropy under a covariance constraint.

Next, if Xi ∼ N(0, Ki) for Ki ∈ S+(Ei), 1 ≤ i ≤ k, then the entropy maximization in
(3.9) is equivalent to the following optimization problem

(Ki)
k
i=1 7→ max

K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j ). (4.4)

This maximization enjoys a certain strong duality property, which is a consequence of the
Fenchel–Rockafellar theorem. The following can be found in Courtade and Liu [2021, The-
orem 2.8].

Theorem 33. Fix (d,B). For any Ki ∈ S+(Ei), 1 ≤ i ≤ k, it holds that

max
K∈Π(K1,...,Kk)

m∑
j=1

dj log det
(
BjKBT

j

)
+

m∑
j=1

dj dim(Ej)

= inf
(Ui,Vj)1≤i≤k,1≤j≤m

(
k∑

i=1

⟨Ui, Ki⟩HS −
m∑
j=1

dj log detVj

)
, (4.5)

where the infimum is over Ui ∈ S+(Ei), 1 ≤ i ≤ k and Vj ∈ S+(Ej), 1 ≤ j ≤ m satisfying
m∑
j=1

djB
T
j VjBj ≤ diag(U1, . . . , Uk). (4.6)
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Corollary 34. The function in (4.4) is continuous on
∏k

i=1 S
+(Ei).

Proof. By (4.5), we see that the mapping in (4.4) is a pointwise infimum of functions that
are affine in (Ki)

k
i=1, so it follows that it is upper semi-continuous on

∏k
i=1 S

+(Ei). On
the other hand, each K ∈ Π(K1, . . . , Kk) can be factored as K = K

1/2
d ΣK

1/2
d , for K

1/2
d :=

diag(K
1/2
1 , . . . , K

1/2
k ) and Σ ∈ Π(idE1 , . . . , idEk

). Since the map Ki 7→ K
1/2
i is continuous on

S+(Ei), and determinants are also continuous, it follows that (4.4) is a pointwise supremum
of continuous functions. As such, it is lower semi-continuous, completing the proof.

4.2 Convexity properties of Dg(c,d,B)

For (d,B) fixed, define the function F : Rk ×∏k
i=1 S

+(Ei) → R ∪ {−∞} via

F
(
c, (Ki)

k
i=1

)
:= max

K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j )−

k∑
i=1

ci log det(Ki).

The motivation for the above definition is that we have

−2Dg(c,d,B) = inf
(Ki)ki=1∈

∏k
i=1 S

+(Ei)
F
(
c, (Ki)

k
i=1

)
(4.7)

by definition of Dg(c,d,B) and the fact that the scaling condition (3.5) is a necessary
condition for finiteness of Dg(c,d,B). The optimization problem above is not convex in
the Ki’s, however it is geodesically-convex. This property was mentioned to my advisor
by Jingbo Liu in a discussion of the geodesically convex formulation of the Brascamp–Lieb
constant. We do not know what argument he had in mind, but we’d like to credit the basic
observation to him.

Let us first explain what is meant by geodesic convexity. Given a metric space (M,ρ)
and points x, y ∈ M , a geodesic is a path γ : [0, 1] → M with γ(0) = x, γ(1) = y and

dM (γ(t1), γ(t2)) = |t1 − t2|ρ(x, y), ∀t1, t2 ∈ [0, 1].

A function f : M → R is geodesically-convex if, for any geodesic γ,

f(γ(t)) ≤ tf(γ(0)) + (1− t)f(γ(1)), ∀t ∈ [0, 1].

The space (M,ρ) is a unique geodesic metric space if every two points x, y ∈ M are joined
by a unique geodesic.

This is relevant to us as follows. For a Euclidean space E, the space (S+(E), δ2) is a
unique geodesic metric space, where for A,B ∈ S+(E),

t ∈ [0, 1] 7→ A#tB := A1/2(A−1/2BA−1/2)tA1/2
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is the unique geodesic joining A and B with respect to the metric

δ2(A,B) :=

dim(E)∑
i=1

log(λi(A
−1B))2

1/2

.

The matrix A#B := A#1/2B is referred to as the geometric mean of A,B ∈ S+(E).
The topology on S+(E) generated by δ2 is the usual one, in the sense that δ2(An, A) → 0

if and only if ∥An − A∥HS → 0. Hence, there are no subtleties with regards to the notions
of continuity, etc. In particular, if f : S+(E) → R is continuous and geodesically midpoint-
convex, i.e.,

f(A#B) ≤ 1

2
f(A) +

1

2
f(B), A,B ∈ S+(E),

then it is geodesically convex.

Theorem 35. Fix (d,B).

(i) The function c 7→ Dg(c,d,B) is convex and lower semi-continuous.

(ii) For fixed c, the function (Ki)
k
i=1 7→ F

(
c, (Ki)

k
i=1

)
is geodesically-convex and continuous

on
∏k

i=1 S
+(Ei).

Remark 36. As a subspace of S+(E0),
∏k

i=1 S
+(Ei) inherits its metric from S+(E0).

Remark 37. It may be the case that Dg(c,d,B) = +∞ for each c, e.g., if some Bj fails to
be surjective.

Before the proof, we recall a few basic facts about the geometric mean A#B. A linear
transformation Φ : S(E) → S(E ′) is said to be positive if it sends S+(E) into S+(E ′).

Proposition 38. Let E,E ′ be Euclidean spaces. For A1, A2, B1, B2 ∈ S+(E), the following
hold.

(i) (Monotone Property) If A1 ≥ B1 and A2 ≥ B2, then (A1#A2) ≥ (B2#B2).

(ii) (Cauchy–Schwarz) We have

⟨A1, B1⟩HS + ⟨A2, B2⟩HS ≥ 2⟨(A1#A2), (B1#B2)⟩HS.

(iii) (Ando’s inequality) If Φ : S(E) → S(E ′) is a positive linear map, then

Φ(A1#A2) ≤ Φ(A1)#Φ(A2).

(iv) (Geodesic linearity of log det) It holds that

log det(A1#A2) =
1

2
log det(A1) +

1

2
log det(A2).
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Proof. The monotonicity property can be found, e.g., in Lawson and Lim [2001, p. 802]. By
a change of variables using Lawson and Lim [2001, Lem. 3.1] and Ando [1979, Cor. 2.1(ii)],
it suffices to prove (ii) under the assumption that B1 = idE. In particular, Cauchy–Schwarz
gives

|⟨(A1#A2), (idE #B2)⟩HS|2 = |⟨(A−1/2
2 A1A

−1/2
2 )1/2A

1/2
2 , A

1/2
2 B

1/2
2 ⟩HS|2

≤ ∥(A−1/2
2 A1A

−1/2
2 )1/2A

1/2
2 ∥HS∥A1/2

2 B
1/2
2 ∥HS

= ⟨A1, idE⟩HS⟨A2, B2⟩HS.

Thus, the claim follows by taking square roots of both sides and invoking the AM-GM
inequality

√
ab ≤ (a + b)/2 for a, b ≥ 0. Ando’s inequality can be found in Ando [1979,

Thm. 3(i)]. Claim (iv) is trivial.

Theorem 35 now follows as an easy consequence of the above properties and Theorem
33.

Proof of Theorem 35. Claim (i) follows immediately from (4.7), since −Dg(c,d,B) is a
pointwise infimum of functions that are affine in c.

To prove (ii), we note that geodesic-linearity of log det implies it suffices to show geodesic
midpoint-convexity of the continuous (by Corollary 34) function

(Ki)
k
i=1 7→ max

K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j ). (4.8)

Invoking Theorem 33, this is the same as establishing geodesic-convexity of

(Ki)
k
i=1 7→ inf

(Ui,Vj)1≤i≤k,1≤j≤m

(
k∑

i=1

⟨Ui, Ki⟩HS −
m∑
j=1

dj log detVj

)
, (4.9)

where the infimum is over Ui ∈ S+(Ei), 1 ≤ i ≤ k and Vj ∈ S+(Ej), 1 ≤ j ≤ m satisfying

diag(U1, . . . , Uk) ≥
m∑
j=1

djB
T
j VjBj. (4.10)

For ℓ ∈ {1, 2}, let U (ℓ)
i ∈ S+(Ei), 1 ≤ i ≤ k and V

(ℓ)
j ∈ S+(Ej), 1 ≤ j ≤ m satisfy (4.10) with

strict inequality. As such, there exists ϵ > 0 sufficiently small such that

diag(U
(ℓ)
1 , . . . , U

(ℓ)
k ) ≥

m∑
j=1

djB
T
j V

(ℓ)
j Bj + ϵ

m∑
j=1

Tr(V
(ℓ)
j ) idE0 , ℓ ∈ {1, 2}.

Define the positive linear map Φ : S+(E0) → S+(E0) via

Φ(V ) :=
m∑
j=1

djB
T
j πEjV πT

Ej
Bj + ϵTr(V ) idE0 , V ∈ S+(E0).
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By the monotone property and Ando’s inequality in Proposition 38,

diag(U
(1)
1 #U

(2)
1 , . . . , U

(1)
k #U

(2)
k ) ≥ Φ

(
diag(V

(1)
1 , . . . , V (1)

m )
)
#Φ

(
diag(V

(2)
1 , . . . , V (2)

m )
)

≥ Φ
(
diag(V

(1)
1 #V

(2)
1 , . . . , V (1)

m #V (2)
m )
)

≥
m∑
j=1

djB
T
j (V

(1)
j #V

(2)
j )Bj.

In particular, (U (1)
i #U

(2)
i ) ∈ S+(Ei), 1 ≤ i ≤ k and (V

(1)
j #V

(2)
j ) ∈ S+(Ej), 1 ≤ j ≤ m satisfy

(4.10). Therefore, let (K
(ℓ)
i )ki=1 ∈

∏k
i=1 S

+(Ei) and use Proposition 38 to write

1

2

∑
ℓ∈{1,2}

(
k∑

i=1

⟨U (ℓ)
i , K

(ℓ)
i ⟩HS −

m∑
j=1

dj log detV
(ℓ)
j

)

≥
k∑

i=1

⟨(U (1)
i #U

(2)
i ), (K

(1)
i #K

(2)
i )⟩HS −

m∑
j=1

dj log det(V
(1)
j #V

(2)
j )

≥ inf
(Ui,Vj)1≤i≤k,1≤j≤m

(
k∑

i=1

⟨Ui, (K
(1)
i #K

(2)
i )⟩HS −

m∑
j=1

dj log detVj

)
.

By continuity of the objective in (4.9) with respect to the Ui’s, the value of the infimum
in (4.9) remains unchanged if we take infimum over Ui’s and Vj’s satisfying (4.10) with
strict inequality. Hence, by the arbitrary choice of U

(ℓ)
i ∈ S+(Ei), 1 ≤ i ≤ k and V

(ℓ)
j ∈

S+(Ej), 1 ≤ j ≤ m subject to (4.10) with strict inequality, geodesic midpoint-convexity of
(4.9) is proved.

Sion’s theorem for geodesic metric spaces

We will need the following version of Sion’s minimax theorem, found in Zhang et al. [2022].

Theorem 39 (Sion’s theorem in geodesic metric spaces). Let (M,dM) and (N, dN) be
geodesic metric spaces. Suppose X ⊂ M is a compact and geodesically convex set, Y ⊂ N is
a geodesically convex set. If following conditions hold for f : X × Y → R:

1. f(·, y) is geodesically-convex and l.s.c. for each y ∈ Y;

2. f(x, ·) is geodesically-concave and u.s.c. for each x ∈ X ,

then
min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).
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Unconstrained comparisons

With all the pieces in place, we can take a big step toward proving Theorem 21 by first
establishing the result in the unconstrained case. Namely, the goal of this section is to prove
the following.

Theorem 40. Fix (d,B). For any Xi ∈ P(Ei), 1 ≤ i ≤ k, there exist Zi ∈ G(Ei) with
h(Zi) = h(Xi) for 1 ≤ i ≤ k such that

max
X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX) ≥ max
Z∈Π(Z1,...,Zk)

m∑
j=1

djh(BjZ). (4.11)

Remark 41. It is a part of the theorem that each maximum is attained.

Before we start the proof, let’s first describe the high-level idea. To do this, recall that
Lieb’s form of the EPI from Theorem 6 is as follows: For independent random vectors
X1, X2 ∈ P(R) and any λ ∈ (0, 1),

h(
√
λX1 +

√
1− λX2) ≥ λh(X1) + (1− λ)h(X2). (4.12)

Motivated by the similarity between the entropy power inequality and the Brunn–Minkowski
inequality, Costa and Cover [1984] reformulated (4.12) as the following concise Gaussian
comparison2.

Proposition 42 (Comparison form of Shannon–Stam inequality). For independent random
variables X1, X2 ∈ P(R), we have

h(X1 +X2) ≥ h(Z1 + Z2), (4.13)

where Z1, Z2 are independent Gaussian random variables with variances chosen so that
h(Zi) = h(Xi).

To understand how this comes about, observe that a change of variables in (4.12) yields
the equivalent formulation

ch(X1) + (1− c)h(X2) +
1

2
h2(c) ≤ h(X1 +X2), for all c ∈ [0, 1],

where h2(c) := −c log(c)− (1− c) log(1− c) is the binary entropy function. Since the RHS
does not depend on c, we may maximize the LHS over c ∈ [0, 1], yielding (4.13). Now, we
draw the reader’s attention to the formal similarity to (3.9). Namely, we can apply the same
logic to bound

sup
c≥0

{
k∑

i=1

cih(Xi)−Dg(c,d,B)

}
≤ max

X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX). (4.14)

2The comparison also holds in the multidimensional setting, distinguishing it from the Zamir–Feder
inequality.
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The difficulty encountered is that, unlike c 7→ h2(c), the function c 7→ Dg(c,d,B) is not
explicit, complicating the optimization problem to be solved. Nevertheless, the task can be
accomplished with all the ingredients we have at hand.

Proof of Theorem 40. We start by noting each maximum is attained due to Proposition 32.
Now, without loss of generality, we can assume d is scaled so that

m∑
j=1

dj dim(Ej) = 1. (4.15)

Also, since there are no qualifications on the linear maps in B, a simple rescaling argument
reveals that we can assume without loss of generality that h(Xi) =

dim(Ei)
2

log(2πe); this will
allow us to consider Zi ∼ N(0, Ki) with det(Ki) = 1 for each 1 ≤ i ≤ k. Thus, by Theorem
17, we have

max
X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX) ≥
k∑

i=1

cih(Xi)−Dg(c,d,B) (4.16)

=
1

2
log(2πe)

k∑
i=1

ci dim(Ei)−Dg(c,d,B) (4.17)

for any c. Define the simplex

A :=

{
c ≥ 0 :

k∑
i=1

ci dim(Ei) =
m∑
j=1

dj dim(Ej) = 1

}
,

which is compact and convex. By Theorem 17, we have Dg(c,d,B) < ∞ only if c ∈ A, so
our task in maximizing the RHS of (4.17) is to compute

max
c∈A

−Dg(c,d,B) = −min
c∈A

Dg(c,d,B),

where the use of max and min is justified, since c 7→ Dg(c,d,B) is l.s.c. by Theorem 35 and
A is compact. For c ∈ A and (K1, . . . , Kk) ∈

∏k
i=1 S

+(Ei), define

F
(
c, (Ki)

k
i=1

)
:= max

K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j )−

k∑
i=1

ci log det(Ki),
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which is the same as that in (4.7). Theorem 35 ensures that F satisfies the hypotheses of
Theorem 39. Thus, by an application of the latter and definition of Dg(c,d,B), we have

max
c∈A

−2Dg(c,d,B)

= max
c∈A

inf
(Ki)ki=1∈

∏k
i=1 S

+(Ei)
F
(
c, (Ki)

k
i=1

)
= inf
(Ki)ki=1∈

∏k
i=1 S

+(Ei)
max
c∈A

F
(
c, (Ki)

k
i=1

)
= inf
(Ki)ki=1∈

∏k
i=1 S

+(Ei)
max

K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j )− min

1≤i≤k

log det(Ki)

dim(Ei)

= inf
(Ki)

k
i=1∈

∏k
i=1 S

+(Ei):
min1≤i≤k det(Ki)=1

max
K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j ),

where the last line made use of the observation that the function

(Ki)
k
i=1 7→ max

K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j )− min

1≤i≤k

log det(Ki)

dim(Ei)

is invariant to rescaling (Ki)
k
i=1 7→ (αKi)

k
i=1 for α > 0 by (4.15).

Now, invoking Theorem 33, we have

inf
(Ki)

k
i=1∈

∏k
i=1 S

+(Ei):
min1≤i≤k det(Ki)=1

max
K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j )

= inf
(Ki)

k
i=1∈

∏k
i=1 S

+(Ei):
min1≤i≤k det(Ki)=1

inf
(Ui)ki=1,(Vj)mj=1

(
k∑

i=1

⟨Ui, Ki⟩HS −
m∑
j=1

dj log detVj

)
,

where the second infimum is over all Ui ∈ S+(Ei), 1 ≤ i ≤ k and Vj ∈ S+(Ej), 1 ≤ j ≤ m
satisfying

m∑
j=1

djB
T
j VjBj ≤ diag(U1, . . . , Uk).

Written in this way, it evidently suffices to consider det(Ki) = 1 for all 1 ≤ i ≤ k in the last
line, so we conclude

max
c∈A

−2Dg(c,d,B) = inf
(Ki)

k
i=1∈

∏k
i=1 S

+(Ei):
det(Ki)=1,1≤i≤k

max
K∈Π(K1,...,Kk)

m∑
j=1

dj log det(BjKBT
j ). (4.18)
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Now, let c∗ ∈ argminc∈ADg(c,d,B). By (4.17) and (4.15), we have

max
X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX) ≥ 1

2
log(2πe)−Dg(c

∗,d,B). (4.19)

If the LHS of (4.19) is equal to −∞, then it is easy to see that one of the Bj’s must fail to
be surjective. Indeed, suppose each Bj is surjective and factor Bj = RjQj, where Qj has
orthonormal rows and Rj is full rank. Letting Q⊥

j denote the matrix with orthonormal rows
and rowspace equal to the orthogonal complement of the rowspace of Qj, for the independent
coupling X we have

k∑
i=1

h(Xi) = h(X) = h(QjX,Q⊥
j X) ≤ h(QjX) + h(Q⊥

j X).

Since h(Q⊥
j X) is bounded from above due to finiteness of second moments and the LHS is

finite by assumption, h(QjX) is finite, and so is h(BjX). Therefore, (4.11) holds trivially
if the LHS of (4.19) is equal to −∞, so we assume henceforth that the LHS of (4.19) is
finite. If (c∗,d,B) is extremizable, then by Theorem 29 and (4.18), there exist Gaussians
Z∗

i ∼ N(0, Ki) with det(Ki) = 1 such that

max
X∈Π(X1,...,Xk)

m∑
j=1

djh(BjX) ≥ 1

2
log(2πe)−Dg(c

∗,d,B)

= max
Z∈Π(Z∗

1 ,...,Z
∗
k)

m∑
j=1

djh(BjZ),

where we used the identity 1
2
log(2πe) =

∑k
i=1 c

∗
ih(Xi) =

∑k
i=1 c

∗
ih(Z

∗
i ). On the other hand,

if (c∗,d,B) is not extremizable, then we have strict inequality in (4.19), and it follows by
(4.18) that there are Gaussians Zi ∼ N(0, Ki) with det(Ki) = 1 such that (4.11) holds (with
strict inequality, in fact).

Proof of Theorem 21

With Theorem 40 at our disposal, it is a straightforward matter to self-strengthen it to
produce Theorem 21.

First, observe that lower semicontinuity of relative entropy implies X ∈ Π(X1, . . . , Xk) 7→
IS(X) is weakly lower semicontinuous, and therefore Π(X1, . . . , Xk; ν) is a compact subset
of Π(X1, . . . , Xk) when equipped with the weak topology. Hence, repeating the argument in
the Proposition 32, we find that each maximum is achieved the statement of the Theorem.
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Now, by the method of Lagrange multipliers,

max
X∈Π(X1,...,Xk;ν)

m∑
j=1

djh(BjX)

= max
X∈Π(X1,...,Xk)

inf
λ≥0

 m∑
j=1

djh(BjX)−
∑

S:ν(S)<∞

λ(S)(IS(X)− ν(S))


= inf

λ≥0
max

X∈Π(X1,...,Xk)

 m∑
j=1

djh(BjX)−
∑

S:ν(S)<∞

λ(S)(IS(X)− ν(S))


︸ ︷︷ ︸

=:G(λ,X)

,

where the infimum is over functions λ : 2{1,...,k} → [0,+∞). The exchange of max and inf
follows by an application of the classical Sion minimax theorem. Indeed, for any fixed X ∈
Π(X1, . . . , Xk), the function λ 7→ G(λ,X) is linear in λ. On the other hand, Π(X1, . . . , Xk)
is a convex subset of P(E0) that is compact with respect to the weak topology. For fixed
λ ≥ 0, the functional X 7→ G(λ,X) is concave upper semicontinuous on Π(X1, . . . , Xk) by
concavity of entropy and Lemma 31.

Using the definition of IS, for any λ ≥ 0, Theorem 40 applies to give existence of Gaussian
(Zi)

k
i=1 satisfying

max
X∈Π(X1,...,Xk)

 m∑
j=1

djh(BjX)−
∑

S:ν(S)<∞

λ(S)(IS(X)− ν(S))


≥ max

Z∈Π(Z1,...,Zk)

 m∑
j=1

djh(BjZ)−
∑

S:ν(S)<∞

λ(S)(IS(Z)− ν(S))


≥ max

Z∈Π(Z1,...,Zk;ν)

m∑
j=1

djh(BjZ).

The last inequality follows since we are taking the maximum over a smaller set and because
λ ≥ 0. This proves the theorem.

4.3 Applications

Constrained multi-marginal inequalities

In this section, we introduce a constrained version of the multi-marginal inequality consid-
ered in (3.9) and demonstrate how the results transfer almost immediately with the help of
Theorem 21.
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Fix a datum (c,d,B). For a constraint function ν : 2{1,...,k} → [0,+∞], let D(c,d,B; ν)
denote the smallest constant D such that the inequality

k∑
i=1

cih(Xi) ≤ max
X∈Π(X1,...,Xk;ν)

m∑
j=1

djh(BjX) +D (4.20)

holds for all choices of Xi ∈ P(Ei), 1 ≤ i ≤ k. Call (c,d,B; ν) extremizable if there are
Xi ∈ P(Ei), 1 ≤ i ≤ k which achieve equality in (4.20) with D = D(c,d,B; ν). Similarly,
let Dg(c,d,B; ν) denote the smallest constant D such that (4.20) holds for all Gaussian
Xi ∈ G(Ei), 1 ≤ i ≤ k, and call (c,d,B; ν) Gaussian-extremizable if there are Xi ∈ G(Ei),
1 ≤ i ≤ k which achieve equality in (4.20) with D = Dg(c,d,B; ν).

The following generalizes Theorem 17 and 29 to the correlation-constrained setting.

Theorem 43. For any datum (c,d,B) and constraint function ν,

(i) D(c,d,B; ν) = Dg(c,d,B; ν);

(ii) (c,d,B; ν) is extremizable if and only if it is Gaussian-extremizable; and

(iii) Dg(c,d,B; ν) is finite if and only if the scaling condition (3.5) and the dimension
condition (3.6) hold.

Proof. For any Xi ∈ P(Ei) and any c, an application of Theorem 21 ensures existence of
Zi ∈ G(Ei) with h(Zi) = h(Xi) satisfying

k∑
i=1

cih(Xi)− max
X∈Π(X1,...,Xk;ν)

m∑
j=1

djh(BjX)

≤
k∑

i=1

cih(Zi)− max
Z∈Π(Z1,...,Zk;ν)

m∑
j=1

djh(BjZ) ≤ Dg(c,d,B; ν),

where the final inequality follows by definition of Dg. This establishes both (i) and (iii). As
for finiteness, observe that definitions imply

Dg(c,d,B) ≡ Dg(c,d,B; +∞) ≤ Dg(c,d,B; ν) ≤ Dg(c,d,B; 0) (4.21)

for any ν. Now, for any K ∈ Π(K1, . . . , Kk) with Ki ∈ S+(Ei), 1 ≤ i ≤ k, observe that

K ≤ k diag(K1, . . . , Kk).

Indeed, for Z ∼ N(0, K) and u = (u1, . . . , uk) ∈ E0, Jensen’s inequality yields

uTKu = E|uTZ|2 ≤ k

k∑
i=1

E|uT
i Zi|2 = kuT diag(K1, . . . , Kk)u.
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This implies, for Gaussian (Zi)
k
i=1, that

max
Z∈Π(Z1,...,Zk)

m∑
j=1

djh(BjZ) ≤
m∑
j=1

djh(BjZ
ind) + log(k)

m∑
j=1

dj dim(Ej),

where Z ind denotes the independent coupling of the Zi’s. Thus,

Dg(c,d,B; 0) ≤ Dg(c,d,B) + log(k)
m∑
j=1

dj dim(Ej),

so that finiteness of Dg(c,d,B; ν) is equivalent to finiteness of Dg(c,d,B) by (4.21). Invoking
Theorem 17 completes the proof.

When ν ≡ 0, then the only allowable coupling in (4.20) is the independent one. Thus, we
recover the main results of Anantharam et al. [2019, Theorems 3 & 4], which simultaneously
capture the entropic Brascamp–Lieb inequalities and the EPI.

When ν ≡ +∞, then we immediately recover Theorems 17 and 29. We remark that,
while Theorem 17 admits an equivalent functional form as in Theorem 19, there is no obvious
functional equivalent when ν induces nontrivial correlation constraints. In particular, the
comparison (4.1) seems to be most naturally expressed in the language of entropies (even in
the unconstrained case).

Gaussian saddle point

The EPI has been successfully applied many times to prove coding theorems, particularly
in the field of network information theory. However, it also provides the essential ingredient
in establishing that a certain mutual information game admits a saddle point (see Pinsker
[1956], Ihara [1978], and also [Cover, 1999, Problem 9.21]). Namely, for numbers P,N ≥ 0,
we have

sup
PX :E|X|2≤P

inf
PZ :E|Z|2≤N

I(X;X + Z) = inf
PZ :E|Z|2≤N

sup
PX :E|X|2≤P

I(X;X + Z),

where the sup (resp. inf) is over X ∼ PX ∈ P(Rn) such that E|X|2 ≤ P (resp. Z ∼
PZ ∈ P(Rn) such that E|Z|2 ≤ N), and the mutual information is computed under the
assumption that X ∼ PX and Z ∼ PX are independent. It turns out that the game admits
a Gaussian saddle point, which together with Shannon’s capacity theorem, implies that
worst-case additive noise subject to a power-constraint is Gaussian.

In this section, we extend this saddle point property to a game with payoff given by

Gζ(PX , PZ) := sup
(X,Z)∈Π(PX ,PZ):

I(X;Z)≤ζ

I(X;X + Z),
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for a parameter ζ ≥ 0, where the supremum is over couplings (X,Z) with given marginals
X ∼ PX and Z ∼ PZ . Of course, by taking ζ = 0, we will recover the classical saddle-point
result above. This may be interpreted as a game where the signal and noise players fix their
strategies PX and PZ , but the signal player has the benefit during game-play of adapting
their transmission using side information obtained about the noise player’s action.

Theorem 44. For 0 < P,N < ∞ and ζ ≥ 0,

sup
PX :E|X|2≤P

inf
PZ :E|Z|2≤N

Gζ(PX , PZ) = inf
PZ :E|Z|2≤N

sup
PX :E|X|2≤P

Gζ(PX , PZ).

Moreover, PX = N
(
0, P

n
idRn

)
and PZ = N

(
0, N

n
idRn

)
is a saddle point.

Proof of Theorem 44. In a slight abuse of notation, we will write Π(X1, X2; ζ) to denote
couplings of X1, X2 satisfying I(X1;X2) ≤ ζ.

Let X and Z be a random variables with finite variance, and let X∗, Z∗ be centered
isotropic Gaussians with E|X∗|2 = E|X|2 and E|Z∗|2 = E|Z|2. Now, observe that Theorem
24 implies

max
Π(X∗,Z;ζ)

(h(X∗ + Z)− h(Z)) ≥ n

2
log

(
1 +

N(X∗)

N(Z)
+ 2

√
(1− e−

2ζ
n )

N(X∗)

N(Z)

)

≥ n

2
log

(
1 +

N(X∗)

N(Z∗)
+ 2

√
(1− e−

2ζ
n )

N(X∗)

N(Z∗)

)
= max

Π(X∗,Z∗;ζ)
(h(X∗ + Z∗)− h(Z∗)) ,

where the second inequality follows since h(Z) ≤ h(Z∗), and the last equality follows by the
equality conditions in Theorem 24. In particular, this gives

sup
Π(X∗,Z;ζ)

I(X∗;X∗ + Z) = sup
Π(X∗,Z;ζ)

(h(X∗ + Z)− h(Z) + I(X∗;Z))

= sup
Π(X∗,Z;ζ)

(h(X∗ + Z)− h(Z)) + ζ (4.22)

≥ sup
Π(X∗,Z∗;ζ)

(h(X∗ + Z∗)− h(Z∗)) + ζ (4.23)

= sup
Π(X∗,Z∗;ζ)

I(X∗;X∗ + Z∗),

where (4.22) can be justified using the supremum3, and (4.23) follows from the previous
computation. For any pair (X,Z∗), couple (X∗, Z∗) to have the same covariance. By the

3This sounds obvious, but we don’t know of a simple argument to justify the assertion. A proof is given
in Proposition 45.
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max-entropy property of Gaussians, I(X∗;Z∗) ≤ I(X;Z∗) and h(X + Z∗) ≤ h(X∗ + Z∗).
As a result, we have

sup
Π(X,Z∗;ζ)

I(X;X + Z∗) ≤ sup
Π(X∗,Z∗;ζ)

I(X∗;X∗ + Z∗) ≤ sup
Π(X∗,Z;ζ)

I(X∗;X∗ + Z).

This implies

inf
PZ :E|Z|2≤N

sup
PX :E|X|2≤P

Gζ(PX , PZ) ≤ sup
PX :E|X|2≤P

inf
PZ :E|Z|2≤N

Gζ(PX , PZ),

and the reverse direction follows by the max-min inequality. The fact that the asserted
distributions coincide with the saddle point subject to the constraints follows by direct
computation.

We now tie up loose ends by justifying (4.22), which is an easy consequence of the
proposition below.

Proposition 45. Let X ∼ N(0, idRn) and Z ∈ P(Rn) be jointly distributed with I(X;Z) ≤
ζ < +∞. For any ϵ > 0, there is a coupling (X ′, Z ′) ∈ Π(X,Z) with h(X ′+Z ′) ≥ h(X+Z)−ϵ
and I(X ′;Z ′) = ζ.

Proof. We’ll work in dimension n = 1 for simplicity of exposition. It suffices to establish
existence of (X ′, Z ′) ∈ Π(X,Z) with h(X ′ + Z ′) ≥ h(X + Z)− ϵ and ζ ≤ I(X ′;Z ′) < +∞.
Indeed, if there is such (X ′, Z ′), then we can let π0 denote the joint distribution of (X,Z)
and π1 denote the joint distribution of (X ′, Z ′). For θ ∈ [0, 1] define the mixture

πθ = (1− θ)π0 + θπ1.

Evidently, πθ ∈ Π(X,Z) for all θ ∈ [0, 1]. For (X(θ), Z(θ)) ∼ πθ, concavity of entropy gives

h(X(θ) + Z(θ)) ≥ (1− θ)h(X + Z) + θh(X ′ + Z ′) ≥ h(X + Z)− ϵ.

Now, convexity of relative entropy ensures that θ 7→ I(X(θ);Z(θ)) is continuous on (0, 1).
Weak lower semicontinuity of mutual information together with finiteness of I(X ′;Z ′) es-
tablishes continuity at the endpoints, so that the above mapping is continuous on [0, 1].
As a result, the intermediate value theorem ensures there is some θ ∈ [0, 1] such that
h(X(θ) + Z(θ)) ≥ h(X + Z)− ϵ and I(X(θ);Z(θ)) = ζ.

Toward establishing the above ansatz, fix ϵ > 0, and consider the interval I := (−ϵ, ϵ].
Define p(ϵ) := Pr{X ∈ I}, and note that p(ϵ) = Θ(ϵ) since X is assumed Gaussian. For
fixed parameters n ≥ 1 and ϵ, we’ll rearrange the joint distribution of (X,Z) on the event
{X ∈ I}. To this end, consider two partitions

−ϵ = t0 < t1 < · · · < tn = ϵ

and
−∞ = s0 < s1 < · · · < sn = +∞
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such that

Pr{X ∈ (ti−1, ti]|X ∈ I} = Pr{Z ∈ (si−1, si]|X ∈ I} =
1

n
, 1 ≤ i ≤ n.

This is always possible since X and Z are (marginally) continuous random variables. We
now define a random variable Zn, jointly distributed with X, by rearranging the distribution
of (X,Z) as follows. On the event {X /∈ I}, we let Zn = Z. Conditioned on the event
{X ∈ I}, we let the joint density of (X,Zn) be supported on the union of rectangles R :=
∪n

i=1(ti−1, ti]× (si−1, si], given explicitly by

fX,Zn|X∈I(x, z) = nfX|X∈I(x)fZ|X∈I(z)1{(x,z)∈R}.

This is well-defined since the conditional densities fX|X∈I , fZ|X∈I exist by marginal continuity
of X and Z, and the fact that Pr{X ∈ I} > 0.

Observe that this rearrangement preserves marginals, so (X,Zn) ∈ Π(X,Z). Further,
note that I(X;Zn|X ∈ I) = n by construction, therefore

I(X;Zn) = p(ϵ)I(X;Zn|X ∈ I) + (1− p(ϵ))I(X;Zn|X /∈ I) + I(Z; 1{X∈I})

≤ p(ϵ)n+ I(X;Z) +O(ϵ log ϵ).

By nonnegativity of mutual information, the first identity above also implies

I(X;Zn) ≥ p(ϵ)I(X;Zn|X ∈ I) = p(ϵ)n.

Since I(X;Z) is finite by assumption, the combination of the above estimates imply

I(X;Zn) = Θ(ϵn), (4.24)

where the asymptotics are understood in the sense that ϵ > 0 is fixed and n allowed to
increase.

For x ∈ I, let k(x) denote the integer k ∈ {1, . . . , n} such that x ∈ (tk−1, tk]. Observe
that, conditioned on {X ∈ I}, the index k(X) is almost surely equal to a function of X+Zn.
This follows since for any c ∈ R, the line {(x, z) : x + z = c} ⊂ R2 intersects a unique
rectangle of the form

(ti−1, ti]× (si−1, si].

Conditioned on {X ∈ I}, the distribution of (X,Zn) is supported on such rectangles by
construction, so the claim follows.

With the above observation together with the fact that X and Zn are conditionally
independent given {k(X), X ∈ I} by construction, we have

h(X + Zn|X ∈ I) = h(X + Zn|k(X), X ∈ I) + I(X + Zn; k(X)|X ∈ I)

≥ h(X|k(X), X ∈ I) + I(X; k(X)|X ∈ I)

= h(X|X ∈ I).
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In particular,

h(X + Zn) ≥ (1− p(ϵ))h(X + Zn|X /∈ I) + p(ϵ)h(X + Zn|X ∈ I)

≥ (1− p(ϵ))h(X + Zn|X /∈ I) + p(ϵ)h(X|X ∈ I)

= (1− p(ϵ))h(X + Z|X /∈ I) +O(ϵ log ϵ),

where the first line follows since conditioning reduces entropy, and the last line follows since
X is nearly uniform on I for ϵ small.

Now, upper bounding entropy in terms of second moments, we have

h(X + Z|X ∈ I) ≤ 1

2
log
(
2πeE[(X + Z)2|X ∈ I]

)
≤ 1

2
log
(
4πe(E[X2|X ∈ I] + E[Z2|X ∈ I])

)
≤ 1

2
log

(
4πe

p(ϵ)
(E[X2] + E[Z2])

)
.

So, by finiteness of second moments,

p(ϵ)h(X + Z|X ∈ I) ≤ O(ϵ log ϵ).

Since I(X + Z; 1{X∈I}) ≤ H(1{X∈I}) = O(ϵ log ϵ), we put everything together to find

h(X + Z) = h(X + Z|1{X∈I}) + I(X + Z; 1{X∈I})

≤ (1− p(ϵ))h(X + Z|X /∈ I) +O(ϵ log ϵ)

≤ h(X + Zn) +O(ϵ log ϵ).

Combining with (4.24) establishes the ansatz, and completes the proof.



45

Chapter 5

Anantharam-Jog-Nair Inequality

Anantharam, Jog and Nair (AJN) left open the question of extremizability in their inequality
(3.4). That is, when do there exist random vectors (Xi)

k
i=1 such that (3.4) is met with

equality, and what form do any such extremizers take? The goal of this chapter is to answer
both questions completely. The first question is addressed in Section 5.1, and the second in
Section 5.2, specifically in Theorem 61.

5.1 Extremizability and geometricity

A few preliminary definitions

We start this section by recording a few associated definitions for convenience.

Definition 46. A subspace T ⊂ E0 is said to be product-form if it can be written as
T = ⊕k

i=1Ti, where Ti ⊂ Ei for 1 ≤ i ≤ k.

Definition 47. A subspace T ⊂ E0 is said to be critical for (c,d,B) if it is product-form,
and

k∑
i=1

ci dim(πEi
T ) =

m∑
j=1

dj dim(BjT ).

Definition 48. Two data (c,d,B) and (c′,d′,B′) are said to be equivalent if c = c′,
d = d′, and there exist invertible linear transformations Aj : Ej → Ej and Ci : Ei → Ei

such that

B′
j = A−1

j BjC
−1 for each 1 ≤ j ≤ m, (5.1)

where C := diag(C1, . . . , Ck).
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We remark that, in the special case of k = 1, the definitions of critical subspaces and
equivalent data coincide with those found in Bennett et al. [2008]. For general k, all three
definitions coincide with those in Courtade and Liu [2021].

We first address the question of when (3.4) is extremizable. To make things precise, we
say that a datum (c,d,B) is extremizable if Cg(c,d,B) is finite and there exist indepen-
dent Xi ∈ P(Ei), 1 ≤ i ≤ k such that (3.4) is met with equality. We say that (c,d,B)
is Gaussian-extremizable if Cg(c,d,B) is finite and there exist independent Gaussian
(Xi)

k
i=1 meeting (3.4) with equality.

In analogy to definitions made in the context of Brascamp–Lieb inequalities, we define
the class of AJN-geometric data below. Their significance to (3.4) is the same as that of
geometric data to inequalities of Brascamp–Lieb-type. In particular, we will see that all
(Gaussian-)extremizable instances of (3.4) are equivalent to AJN-geometric data.

Definition 49 (AJN-Geometric datum). A datum (c,d,B) is said to be AJN-geometric
if

(i) BjB
T
j = idEj for each 1 ≤ j ≤ m; and

(ii) we have the operator identity

m∑
j=1

djπEi
BT

j Bjπ
T
Ei

= ci idEi
, for each 1 ≤ i ≤ k. (5.2)

Remark 50. Conditions (i)-(ii) together imply the scaling condition (3.5). This can be seen
by taking traces in (5.2), summing from i = 1, . . . , k, and using the cyclic and linearity
properties of trace together with (ii).

AJN-geometric data have the convenient property that Cg(c,d,B) = 0, and they are
extremizable by standard Gaussians. We summarize as a formal proposition.

Proposition 51. If (c,d,B) is AJN-geometric, then Cg(c,d,B) = 0 and X ∼ N(0, idE0)
achieves equality in (3.4).

Proof. We’ll use the properties of the Föllmer drift summarized in the Appendix. Begin by
fixing centered µi ∈ P(Ei), 1 ≤ i ≤ k, and let (Wt)t≥0 be a Brownian motion on E0 with
Cov(W1) = idE0 . By Theorem 94, there is a drift (ut)

1
t=0 such that E[ut] = 0 and (πEi

(ut))
k
i=1

are independent for all 0 ≤ t ≤ 1,

(W1 +

∫ 1

0

usds) ∼ µ1 ⊗ · · · ⊗ µk, (5.3)
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and D(µi∥γEi
) = 1

2

∫ 1

0
E|πEi

(us)|2ds for each 1 ≤ i ≤ k. Therefore,

k∑
i=1

ciD(µi∥γEi
) =

1

2
E
∫ 1

0

k∑
i=1

ci|πEi
(us)|2ds

=
1

2
E
∫ 1

0

m∑
j=1

dj|Bjus|2ds (5.4)

≥
m∑
j=1

djD(Bj♯(µ1 ⊗ · · · ⊗ µk)∥γEj), (5.5)

where (5.4) follows from (5.2) and the properties of ut, and (5.5) follows from (5.3) and
Proposition 92 because BjW1 ∼ γEj , due to BjB

T
j = idEj by assumption. Now, expanding

the relative entropies in terms of Shannon entropies and second moments, the second-moment
terms cancel due to independence and (5.2), giving

k∑
i=1

cih(Xi) ≤
m∑
j=1

djh(BjX) (5.6)

for any Xi ∼ µi ∈ P(Ei) and X ∼ ⊗k
i=1µi, where the centering assumption can be removed

due to translation invariance of Shannon entropy. The fact that X ∼ γE0 is an extremizer
follows immediately from the scaling condition (3.5) (see Remark 50) and the observation
that BjX ∼ γEj (since BjB

T
j = idEj).

Remark 52. In the case where the datum is such that (3.4) coincides with the Shannon–Stam
inequality, the above proof reduces to that of Lehec [2013]. The new idea is identifying and
incorporating the “correct" definition of AJN-geometricity. When k = 1, the AJN inequality
(3.4) coincides with the entropic form of the Brascamp–Lieb inequalities, and the definition
of AJN-geometricity reduces to the the definition of geometricity for Brascamp–Lieb data
found in Bennett et al. [2008].

AJN-geometric data have a relatively straightforward geometric interpretation. In par-
ticular, first note that each Ei has a natural isometric embedding into E0 via the inclusion
πT
Ei

: Ei → E0. If (c,d,B) is AJN-geometric then BjB
T
j = idEj , which means that each

Ej can be isometrically embedded into E0 by the map BT
j : Ej → E0. In this way, we can

consider (Ei)
k
i=1 and (Ej)mj=1 to be subspaces of E0, and ΠEi

:= πT
Ei
πEi

and ΠEj := BT
j Bj

define the orthogonal projections of E0 onto Ei and Ej, respectively. Thus, the geometric
instances of the AJN inequality (3.4) can be restated in a way that dispenses with the specific
linear maps B as follows.

Corollary 53. Let E1, . . . , Em be subspaces of E0 = ⊕k
i=1Ei. If c and d satisfy

m∑
j=1

djΠEi
ΠEjΠEi

= ciΠEi
, for each 1 ≤ i ≤ k, (5.7)
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then for any independent Xi ∈ P(Ei), 1 ≤ i ≤ k, and X = (X1, . . . , Xm),

k∑
i=1

cih(ΠEi
X) ≤

m∑
j=1

djh(ΠEjX). (5.8)

Equality is achieved for X ∼ N(0, idE0).

Remark 54. Entropies in (5.8) are computed with respect to Lebesgue measure on the sub-
space being projected upon. In particular, we have h(ΠEi

X) = h(Xi), but have chosen to
write (5.8) in a way to emphasize the symmetry of the inequality.

Above definitions allow us to fully characterize the (Gaussian-)extremizable instances of
Theorem 7. It is the main result of this section, and specializes to the extremizability results
in Bennett et al. [2008] for the Brascamp–Lieb functional inequalities when k = 1.

Theorem 55. The following are equivalent:

(i) (c,d,B) is extremizable.

(ii) (c,d,B) is Gaussian-extremizable.

(iii) There are Ki ∈ S+(Ei), 1 ≤ i ≤ k, satisfying

m∑
j=1

djπEi
BT

j (BjKBT
j )

−1Bjπ
T
Ei

= ciK
−1
i , 1 ≤ i ≤ k, (5.9)

where K := diag(K1, . . . , Kk).

(iv) (c,d,B) is equivalent to an AJN-geometric datum.

Remark 56. For (Ki)
k
i=1 satisfying (5.9), the Gaussians Xi ∼ N(0, Ki), 1 ≤ i ≤ k are

extremal in (3.4). In fact, the proof of Theorem 55 will show that if Xi ∈ P(Ei), 1 ≤ i ≤ k
are extremal in (3.4), then the covariances Ki = Cov(Xi) necessarily satisfy (5.9).

As a preliminary observation, we note that the extremizers in (3.4) are closed under
convolutions. This fact can be extracted from the doubling argument in Anantharam et al.
[2019]; we state and prove it here for completeness.

Proposition 57. Fix a datum (c,d,B) that is extremizable for the AJN inequality (3.4).
Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) each satisfy (3.4) with equality. If X, Y are
independent, then X + Y = (X1 + Y1, . . . , Xk + Yk) also satisfies (3.4) with equality.

Proof. Define Z+ = (Z+
1 , . . . , Z

+
k ) and Z− = (Z−

1 , . . . , Z
−
k ), where

Z+
i :=

1√
2
(Xi + Yi), Z−

i :=
1√
2
(Xi − Yi), 1 ≤ i ≤ k.
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Observe that

k∑
i=1

ci(h(Xi) + h(Yi)) =
k∑

i=1

cih(Xi, Yi) (5.10)

=
k∑

i=1

ci
(
h(Z+

i ) + h(Z−
i |Z+

i )
)

(5.11)

≤
m∑
j=1

dj
(
h(BjZ

+) + h(BjZ
−|Z+)

)
+ 2Cg(c,d,B) (5.12)

≤
m∑
j=1

dj
(
h(BjZ

+) + h(BjZ
−|BjZ

+)
)
+ 2Cg(c,d,B) (5.13)

=
m∑
j=1

dj (h(BjX,BjY )) + 2Cg(c,d,B) (5.14)

=
m∑
j=1

dj(h(BjX) + h(BjY )) + 2Cg(c,d,B). (5.15)

In the above, (5.10) is due to independence; (5.11) follows due to orthogonality of the
transformation (Xi, Yi) → (Z+

i , Z
−
i ) and the chain rule; (5.12) is two applications of (3.4);

(5.13) follows because conditioning reduces entropy; (5.14) is due to the chain rule and
orthogonality of the transformation (BjZ

+, BjZ
−) → (BjX,BjY ); (5.15) is again due to

independence.
Since X and Y are extremal by assumption, we have equality throughout. This implies

Z+ is also extremal, and hence we conclude X + Y is extremal by the scaling condition
(3.5).

Proof of Theorem 55. (i) ⇒ (ii):
Let X be an extremizer in (3.4), and put Zn := n−1/2

∑n
ℓ=1X

(i), where X(1), X(2), . . .
are i.i.d. copies of X, which we assume to be zero-mean without loss of generality. By an
application of Proposition 57 and the scaling condition (3.5) (which holds by finiteness of
Cg(c,d,B)), we have that Zn is an extremizer in (3.4) for all n ≥ 1. By an application of
the entropic central limit theorem [Barron, 1986, Carlen and Soffer, 1991], it follows that
Z ∼ N(0,Cov(X)) is also an extremizer in (3.4).
(ii) ⇒ (i): This follows immediately from Theorem 7.
(ii) ⇒ (iii): If (c,d,B) is Gaussian-extremizable, then there exist K∗

i ∈ S+(Ei), 1 ≤ i ≤ k
which maximize

(Ki)
k
i=1 7→

k∑
i=1

ci log det(Ki)−
m∑
j=1

dj log det(BjKBT
j ),



CHAPTER 5. ANANTHARAM–JOG–NAIR INEQUALITY 50

where K := diag(K1, . . . , Kk) (note this implies BjK
∗BT

j is invertible for each 1 ≤ j ≤ m).
This means, for any index i and any Ai ∈ S(Ei), we can consider the perturbation Ki =
K∗

i +ϵAi for ϵ sufficiently small, and the function value cannot increase. By first-order Taylor
expansion, this implies

ci⟨Ai, (K
∗
i )

−1⟩ =
m∑
j=1

dj⟨Bjπ
T
Ei
AiπEi

BT
j , (BjK

∗BT
j )

−1⟩

=
〈
Ai,

m∑
j=1

djπEi
BT

j (BjK
∗BT

j )
−1Bjπ

T
Ei

〉
,

where ⟨·, ·⟩ is the Hilbert–Schmidt (trace) inner product. By arbitrariness of Ai, we conclude
(5.9).
(iii) ⇒ (iv): Let K be as in (5.9). The equivalent datum (c,d,B′) defined by

B′
j = (BjKBT

j )
−1/2BjK

1/2, 1 ≤ j ≤ m

is AJN-geometric. Indeed, B′
jB

′T
j = idEj and (5.9) gives

m∑
j=1

djπEi
B′T

j B′
jπ

T
Ei

=
m∑
j=1

djK
1/2
i πEi

Bj(BjKBT
j )

−1Bjπ
T
Ei
K

1/2
i = ci idEi

.

(iv) ⇒ (ii): Let (c,d,B′) be the geometric datum equivalent to (c,d,B). In the notation
of (5.1), for any Xi ∈ P(Ei), 1 ≤ i ≤ k and X = (X1, . . . , Xk), we have by a change of
variables

k∑
i=1

cih(Xi)−
m∑
j=1

djh(BjX)

=
k∑

i=1

cih(CiXi)−
k∑

i=1

ci log det(Ci)−
m∑
j=1

djh(B
′
jCX)−

m∑
j=1

dj log det(Aj)

=
k∑

i=1

cih(Yi)−
m∑
j=1

djh(B
′
jY )−

k∑
i=1

ci log det(Ci)−
m∑
j=1

dj log det(Aj),

where we have defined Yi := CiXi, and Y = (Y1, . . . , Yk). Since each Ci is invertible, it is
clear that X is a (Gaussan-)extremizer for (c,d,B) if and only if Y is a (Gaussan-)extremizer
for (c,d,B′). The latter is Gaussian-extremizable by the assumption of geometricity and
Proposition 51, so the claim follows.

Remark 58. We remark that Theorem 7 can be derived as a limiting case of the forward-
reverse Brascamp–Lieb inequalities [Liu et al., 2018]; details can be found in [Courtade and
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Liu, 2021, Section 4]. There is a counterpart notion of geometricity for the forward-reverse
Brascamp–Lieb inequalities, for which a result parallel to Theorem 55 holds. However, the
notion of “geometricity" in the context of Courtade and Liu [2021] does not easily pass
through the aforementioned limit, so it seems the simplest proof of Theorem 55 is a more
direct one, as given here.

We end this section with a final structural lemma, namely, we note that critical subdata
of geometric data consist of geometric data. To this end, we can define the notion of a
subdata. Fix a datum (c,d,B), and a critical subspace ⊕k

i=1Ti = T ⊂ E0. Define the linear
maps:

Bj,T : x ∈ T 7→ Bjx ∈ BjT

Now, define BT := (Bj,T )
m
j=1. With notation set, we can define (c,d,BT ) as a datum on

T .

Theorem 59. Let (c,d,B) be a geometric AJN instance on E0, and let T be a critical
subspace. Then, (c,d,BT ) is a geometric AJN instance on T .

Proof of Theorem 59. Note that for the restricted maps, (5.2) still holds with equality, as
πT
Ti
Ti ⊂ T since T is product form. So,

m∑
j=1

djπTi
BT

j,TBj,Tπ
T
Ti
= ci idTi

, for each 1 ≤ i ≤ k. (5.16)

Now, we only need to check that
Bj,TB

T
j,T = idBjT

holds for each 1 ≤ j ≤ m. We note that Bj,TB
T
j,T = BjΠTB

T
j on BjT , so we have Bj,TB

T
j,T =

BjΠTB
T
j ≤ BjB

T
j = idBjT on BjT . In particular, we have Tr(Bj,TB

T
j,T ) ≤ dim(BjT ), with

equality iff Bj,TB
T
j,T = idBjT . Now, we take traces of (5.16), and sum up over i and invoke

criticality to note:

m∑
j=1

djTr(Bj,TB
T
j,T ) =

k∑
i=1

ci dim(Ti) =
m∑
j=1

dj dim(BjT )

from which the result follows.

5.2 Characterization of extremizers
The goal of this section is to give a complete characterization of the extremizers in (3.4).
In view of Theorem 55, it suffices to consider geometric instances of the AJN inequality;
indeed, the extremizers of any other extremizable instance of the AJN inequality will be
linear transformations of the extremizers for an equivalent AJN-geometric datum.
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Toward this end, let (c,d,B) be AJN-geometric, and regard (Ei)
k
i=1 and (Ej)mj=1 as

subspaces of E0, as in the discussion preceding Corollary 53. We now extend definitions
found in Valdimarsson [2008] to the present setting. For any subspace W ⊂ E0, we define
W o := W , and W⊥ to be the orthogonal complement of W in E0. Now, a nonzero subspace
K ⊂ E0 is said to be independent if it can be written as

K = Ei ∩
m⋂
j=1

(Ej)
bj ,

for some i ∈ {1, . . . , k} and b = (b1, . . . , bm) ∈ {o,⊥}m. Each independent subspace is
contained in some Ei, and distinct independent subspaces are orthogonal by construction.
So, if Ki

1, . . . , K
i
ni

is an enumeration of independent subspaces of Ei, then we can uniquely
decompose

Ei = Ki
0 ⊕Ki

1 ⊕ · · · ⊕Ki
ni
, (5.17)

where Ki
0 is defined to be the orthogonal complement of ⊕ni

ℓ=1K
i
ℓ in Ei. Now, we can uniquely

define the dependent subspace Kdep as the product-form subspace

Kdep := ⊕k
i=1K

i
0. (5.18)

Proposition 60. If Kdep is nonzero, there is an orthogonal decomposition

Kdep = ⊕n
ℓ=1K

ℓ
dep, (5.19)

where each Kℓ
dep is critical for the datum (c,d,B).

A decomposition of the form (5.19) is said to be a critical decomposition; we remark
that critical decompositions are not necessarily unique. Together with Theorem 55, the
following completely characterizes the extremizers in the AJN inequality (3.4). In the state-
ment, we let ΠV : E0 → E0 denote the orthogonal projection onto the indicated subspace
V .

Theorem 61. Let (c,d,B) be AJN-geometric, and decompose each Ei as in (5.17). Inde-
pendent Xi ∼ P(Ei), 1 ≤ i ≤ k and X = (X1, . . . , Xk) satisfy (3.4) with equality iff

(i) ΠKi
0
(X), . . . ,ΠKi

ni
(X) are independent for each 1 ≤ i ≤ k; and

(ii) there is a critical decomposition Kdep = ⊕n
ℓ=1K

ℓ
dep such that ΠK1

dep
(X), . . . , ΠKn

dep
(X)

are independent isotropic Gaussians on their respective subspaces.

In words, (i) says that each random vector Xi splits into independent factors on the
orthogonal decomposition of Ei given by (5.17). Condition (ii) tells us that the factor of
X supported on Kdep is Gaussian with Cov(ΠKdep

(X)) =
∑n

ℓ=1 σ
2
ℓΠKℓ

dep
, for some critical

decomposition (5.19) and choice of variances (σ2
ℓ )

n
ℓ=1. In effect, this links the covariances of

the Gaussian factors of the Xi’s.
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Remark 62. In the case of k = 1, the above characterization of extremizers is compatible
with that articulated by Valdimarsson [2008] for the functional Brascamp–Lieb inequalities.
As noted in Remark 58, the AJN inequality is formally implied by the Euclidean forward-
reverse Brascamp–Lieb inequalities. A characterization of extremizers for the latter remains
unknown at the moment, but will necessarily involve a new ingredient of log-concavity (since,
e.g., the Prékopa–Leindler inequality is realized as a special case (see Theorem 10), and the
extremizers are log-concave [Dubuc, 1977]).

Before giving the proof, let us consider a few quick examples to demonstrate the result.

Example 63. Consider the EPI on E1 = E2 = Rn with λ ∈ (0, 1), stated as

λh(X1) + (1− λ)h(X2) ≤ h(λ1/2X1 + (1− λ)1/2X2),

for independent X1, X2 with finite entropies and second moments. There are no independent
subspaces, and every maximal critical decomposition of Kdep = E0 = Rn ⊕Rn can be written
as

Rn ⊕ Rn =
n⊕

ℓ=1

(span{eℓ} ⊕ span{eℓ}),

with (eℓ)
n
ℓ=1 an orthonormal basis of Rn. Thus, (ii) is equivalent to the assertion that X1

and X2 must be Gaussian, with identical covariances.

Example 64. The Zamir–Feder inequality [Zamir and Feder, 1993] can be stated as fol-
lows (see, e.g., [Rioul, 2010]). If a matrix B ∈ Rk×n satisfying BBT = idRn has columns
(bi)

k
i=1 ⊂ Rn, then any random vector X = (X1, . . . , Xk) ∈ P(Rk) with independent coordi-

nates satisfies

h(BX) ≥
k∑

i=1

|bi|2h(Xi). (5.20)

Observe that this is a geometric instance of the AJN inequality, with B1 = B, d1 = 1, and
ci = |bi|2. Letting (ei)

k
i=1 denote the natural basis for Rk, it follows by definitions that any

independent subspace must be equal to span{ei} for some 1 ≤ i ≤ k, and span{ei} is an
independent subspace iff ei ∈ ker(B) ∪ ker(B)⊥. Hence, any X ∈ P(Rk) with independent
coordinates meeting (5.20) with equality has the following form:

1. If ei ∈ ker(B) ∪ ker(B)⊥, then Xi can have any distribution in P(R).

2. Otherwise, Xi is Gaussian.

Observe that ei ∈ ker(B) ⇔ bi = 0; in this case, coordinate Xi is not present in (5.20). If
ei ∈ ker(B)⊥, then Xi is recoverable from BX in the sense that there exists u ∈ Rn such that
uTBX = Xi. Hence, we might say that the extremizers in (5.20) are characterized by all
present non-recoverable components being Gaussian. This is precisely the statement given by
Rioul and Zamir in their recent work [Rioul and Zamir, 2019, Theorem 1], which gave the
first characterization of extremizers in the Zamir–Feder inequality.
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To give an application that yields a new result, consider the following inequality proposed
in Anantharam et al. [2019]:

c1h(Z1, Z2) + c2h(Y ) ≤ h(Z1 + Y, Z2 + Y ) + d2h(Z1) + d3h(Z2) + Cg, (5.21)

where the Z1, Z2, Y are random variables with (Z1, Z2) independent of Y , and all coefficients
are assumed to be strictly positive. An immediate consequence of Theorem 7 is that the
sharp constant Cg can be computed by considering only Gaussians, and conditions on the
coefficients c,d ensuring finiteness of Cg can be deduced from (3.5) and (3.6). Using Theorem
61, we can further conclude that if c and d are such that (5.21) is extremizable, then it admits
only Gaussian extremizers.

To see that this is the case, let (c,d,B) denote the datum corresponding to (5.21). In
matrix notation with respect to the natural choice of basis, we have

B1 =

[
1 0 1
0 1 1

]
, B2 =

[
1 0 0

]
, B3 =

[
0 1 0

]
.

Assuming (c,d,B) is extremizable, let C and (Aj)
3
j=1 be the matrices in (5.1) that transform

(c,d,B) to an AJN-geometric datum (c,d,B′). By rescaling, we can assume without loss
of generality that C = diag(C1, 1), where C1 is an invertible 2 × 2 matrix. In order to
show (5.21) admits only Gaussian extremizers, we need to show that (c,d,B′) admits no
independent subspaces. To do this, we will show the stronger claim that

3⋂
j=1

Vj = {0}

for any choice of Vj equal to Ej or Ej⊥, where we identify Ej = col(C−TBT
j A

−T
j ) =

col(C−TBT
j ), with col(·) denoting the columnspace of its argument. Explicitly, we have

E1 = col

([
C−T

1

1 1

])
, E2 = col

C−T
1

[
1
0

]
0

 , E3 = col

C−T
1

[
0
1

]
0

 .

Direct computation shows

E1⊥ = col

C1

[
1
1

]
−1

 , E2⊥ = col

00 C1

[
0
1

]
1 0

 , E3⊥ = col

00 C1

[
1
0

]
1 0

 .

The problem now reduces to casework. By inspection, we have E1⊥∩E2 = E1⊥∩E3 = {0}.
Next, since C1 is invertible, we have E2 ∩E3 = {0}, and it similarly follows that E1 ∩E2 =

E1 ∩ E3 = E1⊥ ∩ E2⊥ = {0}. It only remains to show that E1 ∩ E2⊥ ∩ E3⊥ = {0}. To this
end, invertibility of C1 allows us to write

E2⊥ ∩ E3⊥ = col

00
1

 .
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However, the only vector in E1 that is zero in the first two components is the all-zero vector
(again, by invertibility of C1), so it follows that E1 ∩ E2⊥ ∩ E3⊥ = {0}, and we conclude
that the datum (c,d,B′) admits no independent subspaces.

Although the above shows (5.21) can only admit Gaussian extremizers, it does not tell us
whether any exist, or their structure if they do. This is, however, the content of Theorem 55.
Namely, the covariances of Gaussian extremizers are characterized completely by solutions
K to (5.9) for the datum (c,d,B); see Remark 56. This emphasizes the complementary
nature of Theorems 61 and 55.

Proof of Theorem 61

The remainder of this section is dedicated to the proof of Theorem 61. We establish the
assertion of sufficiency first, and necessity second. The assumption that the datum (c,d,B)
is AJN-geometric prevails throughout. Accordingly we will regard Ej as a subspace of E0,
with ΠEj = BT

j Bj denoting the orthogonal projection onto Ej.

Lemma 65. Let the notation of (5.17) and (5.18) prevail. For each 1 ≤ j ≤ m, we have
the orthogonal decomposition

Ej = (ΠEjKdep)⊕

 k⊕
i=1

⊕
1≤ℓ≤ni:
Ki

ℓ⊂Ej

Ki
ℓ

 . (5.22)

Moreover, for any critical decomposition Kdep = ⊕n
ℓ=1K

ℓ
dep, we have the orthogonal decompo-

sition

ΠEjKdep = ⊕n
ℓ=1ΠEjKℓ

dep. (5.23)

Proof of Proposition 60 and Lemma 65. We first note that ΠEjKdep is orthogonal to ΠEjK,
for any independent subspace K. Indeed, by definition of an independent subspace, we
either have ΠEjK = {0} or ΠEjK = K. The former is trivially orthogonal to ΠEjKdep, and
the latter is orthogonal to ΠEjKdep since Kdep is orthogonal to K by definition and ΠEj is
self-adjoint. Indeed,

(ΠEjx)Ty = (ΠEjx)Ty = xT (ΠEjy) = xTy = 0, ∀x ∈ Kdep, y ∈ K.

This establishes (5.22).
Now, using the decomposition (5.17) and the scaling condition (3.5) (which holds by

AJN-geometricity), we have
k∑

i=1

ci

ni∑
ℓ=0

dim(Ki
ℓ) =

k∑
i=1

ci dim(Ei) =
m∑
j=1

dj dim(Ej)

=
m∑
j=1

dj dim(ΠEjKdep) +
m∑

j:Ki
ℓ⊂Ej

dj dim(Ki
ℓ).
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To summarize,

k∑
i=1

ci

ni∑
ℓ=0

dim(Ki
ℓ) =

m∑
j=1

dj dim(ΠEjKdep) +
m∑

j:Ki
ℓ⊂Ej

dj dim(Ki
ℓ). (5.24)

Since each independent subspace is of product form, the dimension condition (3.6) implies,
for each 1 ≤ i ≤ k and 1 ≤ ℓ ≤ ni,

ci dim(Ki
ℓ) ≤

m∑
j:Ki

ℓ⊂Ej

dj dim(Ki
ℓ). (5.25)

Likewise, since Kdep = ⊕k
i=1K

i
0 is of product form, (3.6) also implies

k∑
i=1

ci dim(Ki
0) ≤

m∑
j=1

dj dim(ΠEjKdep). (5.26)

Comparing against (5.24), we necessarily have equality in (5.25) and (5.26), which proves
that Kdep is critical. Thus, there exists at least one critical decomposition of Kdep (the trivial
one), and Proposition 60 follows.

It remains to show (5.23). By induction, it suffices to show if K ⊂ E0 is a critical subspace,
and K = K1 ⊕ K2 is a critical decomposition, then ΠEjK1 and ΠEjK2 are orthogonal
complements in ΠEjK. The proof is similar to that of Bennett et al. [2008, Lemma 7.12].
Letting ΠK1 : E0 → E0 denote the orthogonal projection onto K1, we have that ΠEjΠK1 is
a contraction in E0, so Tr(ΠEjΠK1) ≤ dim(ΠEjK1). Since K1 is critical, it is product-form
by definition and therefore ΠK1 =

∑k
i=1ΠEi

ΠK1ΠEi
. From (5.2), this implies

k∑
i=1

ci dim(ΠEi
K1) =

k∑
i=1

ci Tr(ΠEi
ΠK1) =

m∑
j=1

dj Tr(ΠEjΠK1) ≤
m∑
j=1

dj dim(ΠEjK1).

Since K1 is critical, we have equality throughout, implying Tr(ΠEjΠK1) = dim(ΠEjK1) for
each j. From this, we can conclude that ΠK1ΠEj is an isometry from ΠEjK1 into K1, and
similarly ΠK2ΠEj is an isometry from ΠEjK2 into K2. Since K1 and K2 are orthogonal
complements in K, it follows that ΠEjK1 and ΠEjK2 are orthogonal complements in ΠEjK.

Sufficiency of conditions (i)-(ii) in Theorem 61. Let Xi ∼ P(Ei), 1 ≤ i ≤ k be independent
and satisfy (i)-(ii), and let X = (X1, . . . , Xk). By the orthogonal decomposition (5.22) and
the independence assumptions imposed by (i), we can decompose

h(BjX) = h(BjΠKdep
(X)) +

k∑
i=1

∑
1≤ℓ≤ni:
Ki

ℓ⊂Ej

h(ΠKi
ℓ
(Xi)), (5.27)
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where all entropies are computed with respect to the subspace being projected upon. In the
proof of Lemma 65, we found (5.25) was met with equality. So, whenever Ei contains an
independent subspace (i.e., ni ≥ 1), we have

ci =
m∑

j:Ki
ℓ⊂Ej

dj.

Now, using the decomposition (5.17) and the independence assumptions imposed by (i), an
application of the above identity followed by (5.27) reveals

k∑
i=1

cih(Xi) =
k∑

i=1

ni∑
ℓ=0

cih(ΠKi
ℓ
(Xi))

=
k∑

i=1

cih(ΠKi
0
(Xi)) +

k∑
i=1

ni∑
ℓ=1

m∑
j:Ki

ℓ⊂Ej

djh(ΠKi
ℓ
(Xi))

=
k∑

i=1

cih(ΠKi
0
(Xi)) +

m∑
j=1

dj

k∑
i=1

∑
1≤ℓ≤ni:
Ki

ℓ⊂Ej

h(ΠKi
ℓ
(Xi))

=
k∑

i=1

cih(ΠKi
0
(Xi)) +

m∑
j=1

dj
(
h(BjX)− h(BjΠKdep

(X))
)
.

In summary,

k∑
i=1

cih(Xi)−
m∑
j=1

djh(BjX) =
k∑

i=1

cih(ΠKi
0
(Xi))−

m∑
j=1

djh(BjΠKdep
(X)), (5.28)

where any entropies over the trivial subspace {0} are to be neglected.
It remains to show the right hand side of (5.28) is zero. While we can show it by plugging

in isotropic Gaussians, it is more straightforward to see that the datum (c,d,BKdep
) is a

geometric datum by criticality of the dependent space as in (5.26) and Theorem 59, and as
such, the right hand side of (5.28) is upper bounded by zero, and is exactly zero when the
input is an isotropic Gaussian, as in Corollary 53.

Putting everything together shows

k∑
i=1

cih(Xi) =
m∑
j=1

djh(BjX),

so that (i) and (ii) are sufficient conditions for the Xi’s to be extremal, since Cg(c,d,B) = 0
by Proposition 51.
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We now turn our attention to the necessity part of Theorem 61. We will need the following
lemma.

Lemma 66. Let (c,d,B) be AJN-geometric, and Ai ∈ S+
0 (Ei), 1 ≤ i ≤ k. For any A ∈

Π(A1, . . . , Ak), we have

k∑
i=1

ci Tr
(
(Ai − idEi

)2
)
≥

m∑
j=1

dj Tr
(
((BjA

2BT
j )

1/2 − idEj)2
)
, (5.29)

with equality if and only if (idE0 −ΠEj)AΠEj = 0 for each 1 ≤ j ≤ m.

Proof. Using the block-diagonal structure of A and the definition of AJN-geometricity, we
have

k∑
i=1

ci Tr
(
(Ai − idEi

)2
)
=

m∑
j=1

dj Tr(Bj(A− idE0)
2Bj)

=
m∑
j=1

dj Tr(BjA
2BT

j − 2BjAB
T
j + idEj)

≥
m∑
j=1

dj Tr(BjA
2BT

j − 2(BjA
2BT

j )
1/2 + idEj)

=
m∑
j=1

dj Tr
(
((BjA

2BT
j )

1/2 − idEj)2
)
,

where the inequality follows because square root is operator monotone. More precisely,
AJN-geometricity implies

(BjAB
T
j )

2 = BjAB
T
j BjAB

T
j ≤ BjA

2BT
j ,

so that operator monotonicity of square root gives BjAB
T
j ≤ (BjA

2BT
j )

1/2. Equality in
(5.29) is therefore equivalent to equality above, which can be rewritten as

BjA(idE0 −BT
j Bj)AB

T
j = 0 ⇔ (idE0 −ΠEj)AΠEj = 0.

Necessity of conditions (i)-(ii) in Theorem 61. Let µi ∈ P(Ei), 1 ≤ i ≤ k satisfy

k∑
i=1

ciD(µi∥γEi
) =

m∑
j=1

djD(Bj♯(µ1 ⊗ · · · ⊗ µk)∥γEj) (5.30)

under the prevailing assumption of AJN-geometricity; this is the same as equality in (5.6).
Without loss of generality, we can assume each µi is centered. Moreover, since the extremizers
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of the AJN inequality are closed under convolutions (Proposition 57) and standard Gaussians
are extremal in the geometric AJN inequality (Proposition 51), we can assume without loss
of generality that each µi is of the form

µi = µ̃i ∗ γEi
(5.31)

for some extremal µ̃i ∈ P(Ei), 1 ≤ i ≤ k. Indeed, X ∼ ⊗k
i=1µi satisfies (i)-(ii) if and only if

X + Z satisfies (i)-(ii) for Z ∼ γE0 , independent of X.

Necessity of condition (i): In the proof of Proposition 51, the sole inequality is (5.5).
Hence, properties of the drift ut warrant a closer inspection; we follow the approach developed
in Eldan and Mikulincer [2020]. Toward this end, let f denote the density of µ1 ⊗ · · · ⊗ µk

with respect to γE0 , and define the function

ut(x) := ∇ logP1−tf(x), x ∈ E0, 0 ≤ t ≤ 1,

where (Pt)t≥0 denotes the heat semigroup. Note that this is the Föllmer drift in Theorem
94. Define the matrix-valued function

Γt(x) := (1− t)∇ut(x) + idE0 , x ∈ E0, 0 ≤ t ≤ 1, (5.32)

which, for each 0 ≤ t ≤ 1, takes the block-diagonal form Γt = diag(Γ1
t , . . . ,Γ

k
t ) with Γi

t ∈
S+(Ei) due to the product form of the density f and Lemma 95 applied to (5.31). Now,
recall Theorem 96, which implies that

D(µi∥γEi
) =

1

2

∫ 1

0

ETr ((Γi
t − idEi

)2)

1− t
dt. (5.33)

Next, positive-definiteness of Γt and the assumption that BjB
T
j = idEj together justify

the definition of a new process (W̃ j
t )0≤t≤1 via

dW̃ j
t = (BjΓ

2
tB

T
j )

−1/2BjΓtdWt, 1 ≤ j ≤ m.

By Lévy’s characterization, this process is a Brownian motion, since it has quadratic covari-
ation

[W̃ j]t =

∫ t

0

(BjΓ
2
sB

T
j )

−1/2BjΓ
2
sB

T
j (BjΓ

2
sB

T
j )

−1/2ds = t idEj .

Putting things together, observe that definitions give∫ 1

0

(BjΓ
2
tB

T
j )

1/2dW̃ j
t = Bj

∫ 1

0

ΓtdWt ∼ Bj♯(µ1 ⊗ · · · ⊗ µk).
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Thus, by (5.33) and an application of Lemmas 66 and 93, we have

k∑
i=1

ciD(µi∥γEi
) =

1

2

∫ 1

0

∑k
i=1 ciETr ((Γi

t − idEi
)2)

1− t
dt

≥ 1

2

∫ 1

0

∑m
j=1 djETr

(
((BjΓ

2
tB

T
j )

1/2 − idEj)2
)

1− t
dt

≥
m∑
j=1

djD(Bj♯(µ1 ⊗ · · · ⊗ µk)∥γEj)

We have equality throughout due to (5.30). Since Xt has full support for each 0 < t ≤ 1
and (t, x) 7→ Γt(x) is smooth by the regularizing properties of the heat semigroup, Lemma
66 and the above equality implies that

(idE0 −ΠEj)Γt(x)ΠEj = 0, x ∈ E0, 0 < t < 1, 1 ≤ j ≤ m. (5.34)

By definition, this implies that, for each t ∈ (0, 1), we have

(idE0 −ΠEj) ∇2 logP1−tf(x)ΠEj = 0, x ∈ E0, 1 ≤ j ≤ m.

Since f is assumed regular by virtue of (5.31), the above also holds for t = 1 by continuity
of the derivatives of the heat semigroup. Since f =

∏k
i=1 fi by definition, where each fi is

a density on Ei with respect to γEi
, the above imposes a block-diagonal structure on the

Hessian of log fi, which can be summarized as

D2(log fi)(x, y) = 0,

whenever x, y are vectors from distinct spaces in the decomposition (5.17). This implies, for
each 1 ≤ i ≤ k, that the density fi has product form

fi(x) =

ni∏
ℓ=0

fi,ℓ(ΠKi
ℓ
(x)), x ∈ Ei, (5.35)

establishing necessity of (i).

Remark 67. The above proof can be viewed as a modification of Eldan and Mikulincer
[2020]’s argument for bounding the deficit in the Shannon–Stam inequality, suitable for set-
ting of the AJN inequality. The emergence of the factorization (5.35) is new, and results
from AJN-geometricity via the matrix inequality in Lemma 66. Although Valdimarsson’s
arguments in the context of the functional Brascamp–Lieb inequalities are slightly different,
the same basic factorization emerges in Valdimarsson [2008, Lemma 13]. Hence, the above
might be regarded as a combination of ideas from both Eldan and Mikulincer [2020] and
Valdimarsson [2008]. In the next step, the Fourier analytic argument is effectively the same
as that found in Valdimarsson [2008, Lemma 14], with the drift ut playing the role of what
Valdimarsson calls ∇ logF .
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Necessity of condition (ii): Having established necessity of (i), the initial calculations
in the proof of sufficiency hold, leading to the conclusion (5.28). The reduced datum
(c,d,BKdep

) obtained by restricting the maps in B to domain Kdep remains AJN-geometric,
so without loss of generality, we can assume for simplicity that there are no independent
subspaces henceforth; i.e., Kdep ≡ E0. As in the previous step, we let f denote the density
of X ∼ µ1 ⊗ · · · ⊗ µk with respect to γE0 .

Letting definitions from the previous step prevail, Lemma 95 implies that ut has linear
growth in x for each 0 < t < 1. Hence, we are justified in taking the Fourier transform, which
we denote by ût. By (5.35), ut is additively separable in the variables ΠEj

x and (idE0 −ΠEj
)x,

and therefore ût is supported on Hj ∪ (Hj)⊥ for each 1 ≤ j ≤ m (where Hj denotes the
complex Hilbert space Ej + iEj). Similarly, since ut is additively separable in the variables
πE1(x), . . . , πEk

(x), it follows that ût is supported on ∪k
i=1Hi (where, Hi := Ei+ iEi). Taking

intersections, we find ût is supported on the set

(H1 ∪ · · · ∪Hk) ∩
m⋂
j=1

(Hj ∪ (Hj)⊥) = {0},

where the equality follows by the assumption that there are no independent subspaces. A
tempered distribution with Fourier transform supported at the origin is a polynomial [Rudin,
1991, p. 194], so the linear growth estimate in Lemma 95 implies that x 7→ ut(x) is affine
for each 0 < t < 1. As a consequence of its defnition, Γt is therefore deterministic for each
0 < t < 1, in the sense that Γt(x) does not depend on x. We conclude from the representation∫ 1

0
ΓtdWt

law
= X that X is Gaussian with covariance

Σ := Cov(X) =

∫ 1

0

(Γt)
2dt.

Note that Σ has diagonal form

Σ = Π(Σ1, . . . ,Σk), Σi ∈ S+
0 (Ei), 1 ≤ i ≤ k (5.36)

due to independence of the coordinates of X.
From (5.34), we have ΠEjΣ = ΠEjΣΠEj for each 1 ≤ j ≤ m. This implies that if

v ∈ E0 is an eigenvector of Σ with eigenvalue λ, then ΠEjv is an eigenvector of ΠEjΣΠEj

with eigenvalue λ. In particular, if we consider the spectral decomposition Σ = σ2
1ΠK1

dep
+

· · ·σ2
nΠKn

dep
with σ2

1, . . . , σ
2
n distinct, then we have the orthogonal decomposition

BjE0 = ⊕n
ℓ=1BjK

ℓ
dep, 1 ≤ j ≤ m, (5.37)

where we note each Kℓ
dep is product-form due to (5.36). To see that E0 = ⊕n

ℓ=1K
ℓ
dep is a
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critical decomposition, observe that

k∑
i=1

cih(Xi) =
m∑
j=1

djh(BjX) (5.38)

=
n∑

ℓ=1

1

2
log(2πeσ2

ℓ )
m∑
j=1

dj dim(BjK
ℓ
dep) (5.39)

≥
n∑

ℓ=1

1

2
log(2πeσ2

ℓ )
k∑

i=1

ci dim(πEi
Kℓ

dep) (5.40)

=
k∑

i=1

ci

n∑
ℓ=1

dim(πEi
Kℓ

dep)

2
log(2πeσ2

ℓ ) =
k∑

i=1

cih(Xi), (5.41)

where (5.38) is the extremality assumption; (5.39) is due to (5.37) and the spectral decompo-
sition of Σ; (5.40) is the dimension condition (3.6); and (5.41) follows due to the orthogonal
decomposition Ei = ⊕n

ℓ=1πEi
Kℓ

dep for each 1 ≤ i ≤ k, because each Kℓ
dep is of product-

form. Since we have equality throughout, this implies Kdep ≡ E0 = ⊕n
ℓ=1K

ℓ
dep is a critical

decomposition, as desired. Since K1
dep, . . . , K

n
dep are eigenspaces of Σ, (ii) holds.
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Chapter 6

Extremizers of the Forward-Reverse
Brascamp–Lieb inequalities

We recall from the introduction that a unifying generalization of various important inequal-
ities such as sharp reverse Young Inequality, Brascamp–Lieb inequalities, and the Barthe
inequalities is given by Forward-Reverse Brascamp–Lieb (FRBL) inequalities (1.8). As these
inequalities have rather disparate equality conditions ranging from requiring Gaussianity, to
requiring log-concavity, to requiring independence along various components, it is a priori
not clear what form the extremizers of FRBL should take. As such, we discuss the most
recent results we have on the extremizers of FRBL.

6.1 Preliminary definitions
We will use the same definitions of criticality, and equivalency of data as those of AJN, so
we refer the reader to Chapter 5 for those. We recall the definition of an FRBL-geometric
data from Courtade and Liu [2021]. Much like in AJN, extremizability of FRBL data means
their equivalence to a geometric data.

Definition 68 (Geometric datum). A datum (c,d,B) is said to be geometric if it satisfies
the scaling condition (3.10), and there exists a K ∈ Π(idE1 , . . . , idEk

) such that

(i)

BjKBT
j = idEj for each 1 ≤ j ≤ m (6.1)

(ii) we have the operator identity
m∑
j=1

djB
T
j Bj ≤ diag(c1 idE1 , . . . , ck idEk

). (6.2)

Furthermore, such a K is called a witness to the geometricity of (c,d,B).
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Example 69. Geometric Brascamp-Lieb data correspond to geometric (1,d,B), and Geo-
metric Barthe data correspond to geometric (c, 1,B).

Geometric data have the convenient property that Dg(c,d,B) = 0, and they are extrem-
izable by standard Gaussians. We summarize that as a formal proposition, which can be
found in Courtade and Liu [2021]

Proposition 70. If (c,d,B) is geometric, then Dg(c,d,B) = 0 and Xi ∼ N(0, idEi
)

achieves equality in (3.9), where an optimal coupling is given by X ∼ N(0, K), with K
a witness to geometricity.

The proof follows almost exactly as in the AJN case, so we omit the proof. Also, much
like the AJN case, all extremizable instances are equivalent to geometric instances, so from
now, we will restrict our attention to the geometric instances. [Courtade and Liu, 2021]. For
notational convenience, we define Λc := diag(c1 idE1 , . . . , ck idEk

). We let

V := ker(Λc −
m∑
j=1

djB
T
j Bj).

In particular, this is the subspace in which (6.2) is tight.
Now, we make the following assumption that holds in many important cases:

Assumption 71. There exists a witness K such that

range(K) = V (A)

In plain English, this assumes that there is an extremizer that is supported on all of V .
Note that it does not assert that every extremizer will satisfy this property; just the existence
of one that does. For each datum (c,d,B), there is a naturally associated Hilbert space,
which we will denote by H. H consists of vectors in E0 equipped with the inner product

⟨x, y⟩H = xTΛcy, x, y ∈ E0. (6.3)

For V ⊂ E0, we define the projection PV to be the orthogonal projection of H onto V , where
orthogonality is with respect to the inner product (6.3). For each datum (c,d,B), we can
now define the reduced datum (c,d,B) through the collection of maps BV = (BV,j : E0 →
Ej)mj=1 where

BV,j := BjPV 1 ≤ j ≤ m.

Datum is reduced if it is its own reduction; i.e. B = BV . We can now extend the definitions
of dependent and independent subspaces in Chapter 5 to FRBL. We start by defining the
spaces

Hi := range(PV π
T
Ei
), and Hj := range(PV (Λc)

−1BT
j ).
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We further define W o := W , and W⊥H to be the orthogonal complement of W in
H according to inner product (6.3). Next, given a = (a1, . . . , ak) ∈ {o,⊥H}k and b =
(b1, . . . , bm) ∈ {o,⊥H}m, we can define

Hab := PV

k⋂
i=1

(Hj)ai ∩
m⋂
j=1

(Hj)bj

We define the independent subspace Tab be the smallest product-form subspace that
contains Hab. It is an expected (but not obvious) fact that distinct independent subspaces
are orthogonal in H. Thus, we can define the independent decomposition of E0:

E0 = Tdep ⊕ (⊕a,bTab), (6.4)

where we define the dependent space, Tdep, to be the orthogonal complement of the direct
sum of all independent subspaces. Finally, let Ti,ab = πEi

Tab, and Ti,dep = πEi
Tdep be the

projections of these spaces to individual Eis. This induces the independent decomposition
of Ei as

Ei = Ti,dep ⊕ (⊕a,bTi,ab), (6.5)

which is an orthogonal decomposition since each Ta is product-form. Finally, we say that
the law of X defined on a Hilbert space S with decomposition ⊕N

l=1Sl splits along that
decomposition if (πSl

(X))Nl=1 are independent.

Remark 72. Our definitions agree with the decompositions in Valdimarsson [2008] for
Brascamp–Lieb data and Boroczky et al. [2022] for the Barthe data.

6.2 Main result and examples
Now, we are ready to write the main result that is being advertised with this chapter:

Theorem 73. Let (c,d,B) be a geometric datum. If (Xi)
k
i=1 are centered and extremal for

(c,d,B), then, under Assumption (A), we must have:

(i) The law of Xi splits along the independent decomposition of Ei for each 1 ≤ i ≤ k.

(ii) There exists an optimal coupling X∗ ∈ Π(X1, . . . , Xk) such that the law of X∗ splits
along the independent decomposition of E0.

(iii) If for any a ∈ {o,⊥H}k such that #{i | ai = o} > 1, then πTab
(X∗) = 0 almost surely,

or it is log-concave.

(iv) Each of the components (πTi,dep
(Xi))

k
i=1 is Gaussian.

Furthermore, if the datum is reduced, then (i)− (iv) are sufficient for the extremizers.
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Examples

Example 74. We described the extremizers for Brascamp–Lieb in Chapter 5. We note that
as an instance of FRBL, Brascamp-Lieb data can be represented as K = idE0. Furthermore,
since K is full rank, the assumption (A) holds. Therefore, we can indeed characterize all the
extremizers. Therefore, any extremal X splits along the independent decomposition. This is
compatible with Valdimarsson [2008]’s characterization of the extremizers in the functional
form of the Brascamp–Lieb inequalities.

Example 75. Note that Barthe inequalities (3.8) are a special case of FRBL as well. We note
that their data is reduced, and it follows that we can characterize their extremizers exactly.
In particular, we know from Boroczky et al. [2022] that in the case of Barthe, E1 splits into
independent components that are either free, required to be log-concave, or required to be
Gaussian, which then pull back to individual Eis through isometries BEi,1 : Ei → E1. As the
Barthe data are always reduced, we get the full necessity and sufficiency of the extremizers.

Example 76. An important case of the Barthe-Wolff inequalities [Barthe and Wolff, 2018]
looks like the following:

k∏
i=1

(∫
Ei

fi(xi) dxi

)ci

≤
m∏
j=1

(∫
gj

)dj ∫
E0

k∏
i=1

f ci
i (xi)

m∏
j=1

g
−dj
j (Bjx) dx. (6.6)

We note that the above corresponds to the FRBL datum (c, (1,d), {idE0}∪B) (see Cour-
tade and Liu [2021]). Since one of the linear maps is the identity map, we immediately get
that the equivalent geometric datum has to have a full rank witness. This full-rank prop-
erty implies that there are no nontrivial independent subspaces Tab with #{i | ai = o} > 1.
As such, extremizers of (6.6) split along the independent decomposition, with the depen-
dent space consisting of a Gaussian component, and the independent spaces split to be freely
chosen. Note that these are the only Gaussian-extremizable instances of Barthe–Wolff in-
equalities.

Example 77. Consider the following entropic inequality for X1, X2 ∈ P(Rn):

(λ+ t)h(X1) + (1− λ+ t)h(X2) ≤ max
Π(X1,X2)

h(λX1 + (1− λ)X2) + th(X1, X2)

which is an entropic instance of the reverse Young inequality. From our result, we know that
the only extremizer of the inequality above for any t > 0 is a Gaussian Xt whose covariance
tends to idR2n as t → ∞. As such, for any ζ > 0, there exists a finite t > 0 such that the
extremizer of

λh(X1) + (1− λ)h(X2) ≤ max
Π(X1,X2)

h(λX1 + (1− λ)X2) + tI(X1;X2)

has I(X1;X2) ≤ ζ, and that extremizer is a Gaussian. This is precisely the the case of the
dependent EPI (4.2) for when ζ ∈ (0,∞). For the end conditions ζ = 0 and ζ = ∞, we
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remember that (4.2) reduces to the EPI and the Cover–Zhang type inequality discussed in the
introduction (the entropic form of the Prékopa–Leindler inequality), whose extremizers are
Gaussian, and log-concave, respectively.

6.3 Ideas of the proof
Structural Theory

We will give a sketch of the proof for Theorem 73. First off, note that we have to show that
the characterization we have given is actually well-defined, so we first need to show that
Tab ⊥ T(ab)′ in H for distinct choices of (a, b) and (a, b)′. Once we do that, a crucial idea
that helps move forward with the proof is the observation that for any critical subspace, the
subdata (c,d,BT ) and (c,d,BE0/T ) are critical, which allows constructing a good witness.
While we will not define what a good witness is, we will illustrate it with an example:

Example 78. Consider the simple example

h(X1) + h(X2) ≤ sup
X∈Π(X1,X2)

h(πE1(X)) + h(πE2(X))

For this example,

Kρ =

[
1 ρ
ρ 1

]
|ρ| ≤ 1

are all valid witnesses, but given the inequality essentially splits along E1 and E2, a good
witness that exhibits that behaviour is K0.

This idea of a good witness helps us split our instances and data into sub-instances, so
we can specialize into cases where our domain is a single Tab, or Tdep. Furthermore, we can
show that our decomposition of E0 implies a decomposition of (Ej)mj=1s, namely,

BV,jTab ⊥ BV,jT(a,b)′

for all 1 ≤ j ≤ m, and (a, b) ∈ {o,⊥H}k×m.
Note that in the reduced case, when we restrict our domain to a single Tab, we will

be working in a setting where range(BT
j ) agrees with range(BT

j′), which follows from the
definition of independent subspaces. Turns out, in these settings, we can characterize the
unique witness to geometricity.

Theorem 79. Let (c,d,B) be a geometric datum, with dim(Ei) = dim(Ej) = d and
R(BT

j ) = R(BT
1 ) for all i, j ∈ [k]× [m]. Further, let

∑k
i=1 ci = 1. The matrix

K = (Λc)
−1BT

1 B1(Λc)
−1

is the unique witness to geometricity.
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Remark 80. The assumption
∑k

i=1 ci = 1 is without any loss of generality.

Note that in this restrictive condition range(BT
j ) = range(BT

1 ) for all j = 1, . . . ,m, for
some suitably chosen linear maps (Aj)

m
j=1, we can work with B′

j := BjAjs so that B′
1X

∗ =
B′

jX
∗ for all 1 ≤ j ≤ m, i.e. we can already observe that the distributions of (B′

jX
∗)mj=1

have to be equal almost surely.

Stochastic Argument

We will essentially reproduce the stochastic argument in Chapter 5 under Assumption (A).
Let us set the relevant notation. Let fi denote the density of µi := L(Xi) with respect to
γEi

, and define the function

ui
t(x) := ∇ logP1−tfi(x), x ∈ E0, 0 ≤ t ≤ 1,

where (Pt)t≥0 denotes the heat semigroup. Note that this is again the Föllmer drift in
Theorem 94, driving the SDE

dX i
t = dui

t(X
i
t)dt+ dW i

t

where we note that (W i
t )

1
t=0 is a Brownian motion on Ei stemming from Brownian motion

(Wt)
1
t=0 on E0. As mentioned in Chapter 5, we can also define the matrix-valued function

Γi
t(x) := (1− t)∇ui

t(x) + idEi
, x ∈ E0, 0 ≤ t ≤ 1, (6.7)

Note that Γi
t ∈ S+(Ei) because we can work with regularized µi as done in (5.31) and then

reapply Lemma 95. We define

Γt := diag(Γ1
t , . . . ,Γ

k
t ).

Note that if we define X∗
t =

∫ t

0
Γs(Xs)K

1/2dWs, then we observe that

πi

∫ 1

0

Γt(Xt)K
1/2dWt ∼ µi, 1 ≤ i ≤ k

so that X∗
1 is indeed a coupling of (Xi)

k
i=1. We denote ΓV,t(x) := Γt ◦ PV . Finally, we use

the shorthand Ld := (d1 idE1 , . . . , dm idEm).
Our main result of this section is the following:

Theorem 81. Let the setting of Theorem 73 hold. Then, for a good witness K, we have

(i) There exists an extremal coupling X∗ supported on V .

(ii) BjΓV,tKBT
j = BjKΓV,tB

T
j .

(iii) (idE0 −KBjB
T
j )KΓV,tB

T
j = 0.
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(iv) (Λc −BTLdB)ΓV,tK = 0.

Proof of Theorem 81. For the proof, we use the shorthand Γt := Γt(Xt). Similar to the AJN
case, we construct a drift on (Ej)

m
j=1 by considering (BjΓtKΓtB

T
j )

m
j=1. We can define 1

dW̃ j
t = (BjΓtKΓtB

T
j )

−1/2BjΓtK
1/2dWt, 1 ≤ j ≤ m.

By Lévy’s characterization, this process is a Brownian motion, since it has quadratic covari-
ation

[W̃ j]t =

∫ t

0

(BjΓ
2
sB

T
j )

−1/2BjΓ
2
sB

T
j (BjΓ

2
sB

T
j )

−1/2ds = t idEj .

Now, remembering (5.33) reproduced below

D(µi∥γEi
) =

1

2

∫ 1

0

ETr ((Γi
t − idEi

)2)

1− t
dt. (6.8)

we have

k∑
i=1

ciD(µi∥γEi
) =

k∑
i=1

ci
1

2

∫ 1

0

ETr ((Γi
t − idEi

)2)

1− t
dt

=
1

2

∫ 1

0

1

1− t
ETr(Λc(Γt − idE0)K(Γt − idE0))dt

≥ 1

2

∫ 1

0

1

1− t
E

m∑
j=1

djTr(BT
j Bj(Γt − idE0)K(Γt − idE0))

=
m∑
j=1

dj
1

2

∫ 1

0

1

1− t
ETr(BjΓtKΓtB

T
j − 2BjKΓBT

j + idEj
)

≥
m∑
j=1

dj
1

2

∫ 1

0

1

1− t
ETr(((BjΓtKΓtB

T
j )

1/2 − idEj
)2)

≥
m∑
j=1

djD(Bjµ∥γEj)

where the equality conditions in the above proof match the (ii)− (iv) in Theorem 81 for Γt

instead of ΓV,t on the support of domain of Γt, which is the support of L(Xt). Now, under
assumption (A), the good witness will ensure that this coupling is supported over all of V ,
and we can replace Γt with ΓV,t. We end the proof by mentioning that the equality conditions
imply the tightness of the frame condition along the coupling, which implies the equality
condition for the entropy inequality is the same as the relative entropy inequality.

1Here, we assume that (BjΓtKΓtB
T
j ) is invertible, which will indeed be the case when K is a good

witness.
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Now that we can work with ΓV,t, we observe that the invariant spaces of ΓV,t are precisely
the independent and the dependent spaces, which ensures that ΓV,t splits along those sub-
spaces, giving the necessary conditions for the extremizers. Now, for the dependent data,
we run a similar Fourier transform argument like we did in Chapter 5, where we use the fact
that the only tempered distribution with Fourier transform supported at the origin is a poly-
nomial, so the linear growth estimate we have implies ΓV,t is constant, implying Gaussianity.
For the independent subspaces, by weak duality, the best we can say is the following:

Theorem 82. Let (c,d,B) be geometric with a single independent subspace and no dependent
subspace. Then, any extremizer (Xi)

k
i=1 share a common density e−f where f satisfies

k∑
i=1

cif(xi) ≥
m∑
j=1

djf(A
−1/2
j Bjx), x ∈ E0 (6.9)

for some isometries (Aj)
m
j=1 depending on the datum.

We can further show that this condition implies log-concavity when k > 1, and if the
data is reduced, then every log-concave distribution satisfies (6.9). However, for non-reduced
data, we can get rather unexpected behavior. For instance, consider the following entropy
inequality:

1

3
h(X1) +

2

3
h(X2) ≤ sup

X∈Π(X1,X2)

1

3
h((
[
− 2

30
32
30

]︸ ︷︷ ︸
B1

X) +
2

3
h(
[
16
30

14
30

]︸ ︷︷ ︸
B2

X)

We note that the associated data is geometric with the unique witness K = 11T . As such,
the coupling would have to have X1 = X2 a.s., implying they share a common density e−f

with f satisfying

1

3
f(x1) +

2

3
f(x2) ≥

1

3
f(B1x) +

2

3
f(B2x) (6.10)

Equivalently, we could have deduced (6.10) from Theorem 82 where we would note that
A1 = A2 = 1 for this particular datum. We observe that while f(x) = |x| satisfies (6.10),
f(x) = x4 does not. Thus, extremizers of FRBL inequalities arguably involve a finer class
than those of Barthe or Brascamp–Lieb inequalities.
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Chapter 7

Concluding remarks and outlook

While we have covered a variety of new results within the dissertation, there remains many
interesting questions to be answered.

7.1 Outlook
We mark several avenues for possible future work.

1. An even bigger generalization than Theorem 21

We make no assertion that Theorem 21 is a grand unification of all entropy inequalities on
Euclidean space. Indeed, there are several important examples of inequalities that are not
obviously subsumed. Results in Liu and Viswanath [2007], Geng and Nair [2014], Courtade
[2017] provide representative examples. We concede that there may be some clever applica-
tion of Theorem 21 that can recover some of these results, but we do not know of one at the
time of this writing. Thus, at the moment, it seems that Theorem 21 may be another piece
in a larger puzzle still wanting to be put together.

2. Removing the Euclidean structure on various inequalities

Throughout the thesis, we have assumed a Euclidean structure. However, it has been known
for some time that Brascamp-Lieb inequality holds on the sphere [Carlen et al., 2004]. More
recently, there has been work that has pushed the Brascamp-Lieb inequalies onto a broader
class of Riemannian manifolds [Barthe et al., 2011]. Since Brascamp-Lieb is but a special
case of a larger class of inequalities, there is hope that there can be an FRBL-like inequality
defined on other, more interesting spaces.
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3. Stability of the entropic inequalities

Once we establish the equality conditions for entropic inequalities, it is a natural question
to ask for stability results. This was done for Prékopa-Leindler in Böröczky and De [2021]
and for EPI in Courtade et al. [2018], Eldan and Mikulincer [2020]. One can reasonably use
duality or the Föllmer drifts to extend the results to more general entropic inequalities, such
as AJN and FRBL.

4. Quantum Entropy Inequalities

An interesting area where Brascamp-Lieb inequalities have been extended to is quantum
physics, as (von Neumann)-entropy has a physical meaning regarding the wave-function
[Von Neumann, 1932]. We note that analogues of EPI [König and Smith, 2014], and
Brascamp-Lieb inequalities [Berta et al., 2019] exist in the quantum setting already, so
there is potential for quantum information theorists to investigate further generalizations of
entropic inequalities.

5. Extensions to convex geometry

As discussed in Chapter 3, Brunn-Minkowski inequality is just a special case of Cover-
Zhang result. Another important geometric inequality, Santaló inequality [Santaló, 1949],
was recently discovered to be a dual of an entropic inequality in Fathi [2018]. It is reasonable
to assume that clever uses of Theorem 21 may give rise to other useful inequalities that may
find use in convex geometry.

Concluding remarks

Why do we care about Gaussians? As Poincaré remarked about Gaussians, “Tout le monde y
croit cedependant, me disait un jour M. Lippmann, car les experimentaeurs, s’imaginent que
c’est un théoreme de mathématiques, et les mathématiciens que c’est un fait expérimental."
[Poincaré, 1896].
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Appendix A

A.1 Markov Semigroups
While we will not extensively rely on particular properties of semigroups, there are many
semigroups that are inherent in our analyses. The following is taken from Bakry et al. [2014]
specialized to Euclidean spaces.

For the rest of the section (Pt)t≥0 will be a collection of maps where Pt : (E → R) →
(E → R) for each t ≥ 0. We say that Pt has a stationary measure µ if∫

E

Ptfdµ =

∫
E

fdµ

for all bounded, positive f : E → R, and for all t ≥ 0.

Remark 83. µ need not be a probability measure.

Definition 84. Let (Pt)t≥0 have a stationary measure µ. We say (Pt)t≥0 is a Markov
semigroup if it satisfies the following:

(i) For every bounded measurable f : E → R, Ptf is also bounded measurable.

(ii) Ptf ≥ 0 if f ≥ 0.

(iii) Pt(1) = 1 where 1(x) = 1 for all x ∈ E.

(iv) Pt+s = Pt ◦ Ps for all t, s ≥ 0.

(v) P0f = f

(vi) Pt(f) → f in L2(E, µ) as t → 0.

Note that semigroups can be characterized by their (infinitesimal) generators L :=
∂
∂t
Pt |t=0. The properties above ensure that generators are well-defined.
We say (Pt)t≥0 is the heat semigroup if its generator is L = ∆. As such, the evolution of

a density under the heat semigroup solves the heat equation. This allows the heat semigroup
to inherit various smoothness properties from the heat equation from PDEs. Here is an
example from Polyanskiy and Wu [2016, Proposition 2]).
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Lemma 85. Let (Pt)t≥0 denote the heat semigroup, and let ρ denote the density of a random
variable X with finite variance. Then,

|∇ logPsρ(x)| ≤ cs(|x|+ 1), s > 0

for some finite constant cs depending only on s and the second moment of X.

Alternatively, Ptρ is the density of X + tZ where ρ is the density of X, Z ∼ γ, and X
and Z are independent. (Heat semigroup is quite special in that it is self-adjoint.)

Similarly, another semigroup of interest is the Ornstein–Uhlenbeck (O–U) semi-
group, which has the generator L := ∆− x · ∇. Alternatively, it has the representation:

Ptf(x) := EZ∼γ[f(e
−tx+

√
1− e−2tZ)]

Note that one can immediately deduce from the represenation above that a stationary
measure of the O-U semigroup is γ. Indeed, by solving the associated PDE derived from
L, one can show that it is the only stationary distribution. We end this section with an
important result that concerns both analysts and information theorists ([Bakry et al., 2014,
Proposition 5.2.2]):

Theorem 86 (de Bruijn’s identity for O–U). Let (Pt)t≥0 be the O–U semigroup. Let vt :=
(Pt)

∗v, i.e. dvt = Ptfdµ where f = dv
dµ

. Then,

∂

∂t
D(vt∥γ) = −I(vt∥γ) := −

∫ |∇f |2
f

dγ.

Let us put it to use. One of the most concise proofs of the Log–Sobolev inequality (LSI)
for Gaussians, which has found extensive use in statistics literature, especially in the realm
of convergence of diffusions used for sampling [Vempala and Wibisono, 2019], is a few lines
with the EPI and de Bruijn. Note that the Gaussian LSI also has been used to construct
a Bayesian Cramer–Rao bound, that can be used to further prove various minimax bounds
[Lee and Courtade, 2020].

Theorem 87 (Log–Sobolev Inequality). For any measure µ defined on Rn such that D(µ∥γ) <
∞, we have

D(µ∥γ) ≤ 1

2
I(µ∥γ).

Proof of Theorem 87. Take X ∼ µ, Y ∼ γ, with X and Y independent. For convenience,
denote µt the distribution of e−tX +

√
1− e−2tY , or equivalently as (Pt)

∗µ, where (Pt)t≥0 is
the O-U semigroup. We consider the instance of entropy power inequality with λ = e−2t.
Converting the entropies into relative entropies as in equation (2.3), and noting that var(µ) =
var(µt), we have

−e−2tD(µ∥γ) ≤ −D(µt∥γ)
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where we note that there is equality when t = 0. As such, assuming differentiability,

d

dt
− e−2tD(µ∥γ) |t=0≤

d

dt
−D(µt∥γ) |t=0 .

Now, using Theorem (86), the result follows.

Log–Sobolev inequalities form a strong foundation for concentration inequalities, as nor-
mally subgaussianity does not tensorize, but the above inequality very much does! [Van Han-
del, 2014]

A.2 Itô calculus
Itô calculus allows doing stochastic partial differential equations. To do so, we first need to
set the spaces we want to work in.

Let W := C0([0, 1], E0) = {ω | ω : [0,∞) → E0, ω(0) = 0} denote the set of continuous
functions from [0,∞) to E0, and equip it with the topology of uniform convergence. Further-
more, let B be the associated Borel σ-algebra. Finally, let G := (Gt)t∈[0,1] be the filtration
generated by the coordinate maps w → wt. We will assume our Wiener space (W,B) will
always come equipped with this filtration.

For any measure on this space, we will denote a Wiener process by W = (Wt)t∈[0,1].
Similarly, we let P be the Wiener measure on (W,B). Finally, we denote the coordinate
process X = (Xt)t∈[0,1] where Xt(ω) = ωt. We note that one can set W = X, i.e. construct
a Wiener process by the coordinate maps on W, if the underlying measure is the Wiener
measure P.

We call (ut)t≥0 a drift if it is a process adapted to G and is in L2([0, 1]) P−almost surely,
that is,

∫ 1

0
|ut|2dt < ∞ P-almost surely.

Remark 88. Lehec [2013] refers to Ut :=
∫ t

0
usds as the drift, however, Eldan and Mikulincer

[2020] refers to ut as the drift. We will consciously stick with the latter notation, as ut will
be our drift coefficient in an upcoming SDE.

We will regularly be writing
∫ 1

0
utdWt in this thesis where (Wt)t∈[0,1] is a Brownian motion,

and ut is some drift. For the reader uninitiated in Itô calculus, those integrals should be
read in a Riemann–Stieltjes sense, that is:∫ 1

0

utdWt := lim
n→∞

n∑
i=0

ut(Wi/n)(Wi+1/n −Wi/n).

Note that for regular Riemann integrals, it does not matter which endpoint one chooses,
but here it does. In particular, the choice of the left-hand point ensures that integrals of
form

∫
utdBt are all martingales, and we shall use that quite extensively. Of course, for

this definition to be valid, we need some sort of a control on how "big" the differences
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(Wi+1/n −Wi/n) can be, and having that control helps form the backbone of Itô calculus. In
particular, we have the following from Øksendal [2003, Lemma 3.1.7]:

Theorem 89 (Itô Isometry).

E([
∫ 1

0

utdWt)
2] = E[

∫ 1

0

∥ut∥2ds]

Föllmer Drifts

Let’s now setup Girsanov’s theorem for our setting along with Novikov’s condition, taken
from Øksendal [2003]:

Theorem 90. Let (Wt)t∈[0,1] be a standard Brownian motion defined on a filtered proba-
bility space with underlying measure P (i.e. (Wt)t∈[0,1] is a standard Brownian motion un-
der (W,B,G,P)), and let u = (ut)t∈[0,1] be a drift adapted to the same filtration satisying
Novikov’s condition (E[e

∫ 1
0 |us|2ds] < ∞). Construct a random measure Q such that

dQ
dP

= e
∫ 1
0 usdWs+

∫ 1
0 |us|2ds.

Under Q, (Wt +
∫ t

0
usds)t∈[0,1] is a standard Brownian motion.

Remark 91. In the above, we have explicitly noted the Novikov’s condition, but for us, by
localization and lower semicontinuity of entropy, we will just need the P-almost sure finiteness
written before.

The following proposition is an important reason for us looking into drifts:

Proposition 92. Let (Wt)t∈[0,1] be a standard Brownian motion defined on a filtered proba-
bility space with underlying measure P, and let u = (ut)t∈[0,1] be a drift adapted to the same
filtration. Then, if W1 +

∫ 1

0
usds ∼ µ, we have

D(µ∥γ) ≤
∫ 1

0

EP|us|2ds

Proof. Note that under Girsanov’s theorem, we have,

D(P∥Q) = EP[log
dQ
dP

] =

∫ 1

0

EP[|us|2]ds

where we note that the martingale term disappears.
Now, let T : C([0, 1]) → R with T (f) = f(1). Note that µ = T#P, and γ = T#Q. The

result follows from the data processing inequality for KL divergence.
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Sometimes, we will want finer control in constructing our drift. In particular, we want to
be able to construct matrix-valued processes that still allow us to construct a bound on KL
divergence. We will need the following adaptation of the previous proposition taken from
Eldan and Mikulincer [2020]; we sketch the proof for completeness.

Lemma 93. Fix a Euclidean space E. Consider a filtered probability space carrying an
E-valued Brownian motion (Wt)≥0, and let (Ft)≥0 be an adapted process taking values in
S+
0 (E). If

∫ 1

0
FtdWt ∼ µ, then

D(µ∥γE) ≤
1

2

∫ 1

0

ETr ((Ft − idE)
2)

1− t
dt.

Proof. Define the drift

ut =

∫ t

0

Fs − idE

1− s
dWs.

We claim that W1 +
∫ 1

0
utdt ∼ µ. To see this, write∫ 1

0

FtdWt =

∫ 1

0

idE dWt +

∫ 1

0

(Ft − idE)dWt = W1 +

∫ 1

0

∫ 1

t

Ft − idE

1− t
dsdt

= W1 +

∫ 1

0

usds,

where we used the stochastic Fubini theorem. Now, by Proposition 92 and the data process-
ing inequality, Itô isometry, and Fubini’s theorem, we have

D(µ∥γE) ≤
1

2

∫ 1

0

E|ut|2dt =
1

2

∫ 1

0

∫ t

0

ETr ((Fs − idE)
2)

(1− s)2
dsdt (A.1)

=
1

2

∫ 1

0

ETr ((Fs − idE)
2)

1− s
ds.

Circling back to the entropy bound above, a natural question to ask is when is Proposition
92 tight? Following the proof, we see that the only inequality invoked is data processing. In
particular, if the Radon-Nikodym derivative between the (random) measure Q and P only
depends on the last coordinate of ω, we would have equality in the data processing inequality.
Föllmer’s result is that for measures µ such that D(µ∥γ) < ∞, there is always a drift that
meets Proposition 92 with equality.

Theorem 94. Let µ be a measure such that D(µ∥γ) < ∞, with µ = fdγ. Consider the
Wiener space (W,B) equipped with the measure Pµ, where Pµ that satisfies

dPµ

dP
:= f(w1)

where P is the Wiener measure on (W,B).
Then, the following holds:
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(i) ut := ∇ logP1−tf(Xt) is a drift.

(ii) (Xt −
∫ t

0
usds)t∈[0,1] is a Brownian motion under Pµ.

(iii) For the drift ut := ∇ logP1−tf(Wt), we have:

D(µ∥γ) =
∫ 1

0

EP|us|2ds

As we have now established the form of the Föllmer drift, it makes sense to control how
big it is. It turns out, it is quite well-behaved.

Lemma 95. Let (Pt)t≥0 be the heat semigroup, and let X ∼ µ ∈ P(E) have density dµ =
fdγE. For each 0 < t < 1, there is a constant C depending only on t and the second moments
of X such that

|∇ logP1−tf(x)| ≤ C(|x|+ 1), x ∈ E.

If, moreover, µ is of the form µ = ν ∗ γE, then

∇2 log(P1−tf(x)) ∈ S+
0 (E), x ∈ E, 0 < t < 1.

Proof. Let ρ denote the density of X with respect to Lebesgue measure on E. By direct
calculation, we can reparametrize P1−tf in terms of ρ as

P1−tf(x) =

(
2π

t

)dim(E)/2

e
|x|2
2t P 1−t

t
ρ(x/t)

Hence,

∇ logP1−tf(x) =
1

t
x+

1

t
∇(logP 1−t

t
ρ)(x/t). (A.2)

Now, Lemma 85 states
|∇ logPsρ(x)| ≤ cs(|x|+ 1), s > 0

for some finite constant cs depending only on s and the second moments of ρ. Hence, the
first claim follows.

For the second claim, we have ρ = P1ρ0 for some density ρ0. Hence, by the semigroup
property combined with (A.2), we have

∇2 logP1−tf(x) =
1

t
idE +

1

t2
∇2(logP 1

t
ρ0)(x/t).

By a simple convexity calculation [Eldan and Lee, 2014, Lemma 1.3], it holds that ∇2(logPsg) ≥
−1

s
idE for any density g and s > 0, so we find

∇2 logP1−tf(x) ≥
(
1

t
− 1

t

)
idE = 0.
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We will conclude this chapter with the construction of a matrix valued process that meets
the upper bound in Lemma 93 with equality.

Theorem 96. Fix a Euclidean space E. Consider a filtered probability space carrying an
E-valued Brownian motion (Wt)≥0, and let (ut)≥0 denote the Föllmer process. Consider the
matrix valued function

Γt := (1− t)∇ut + idE .

Then, the following holds:

(i) ∫ 1

0

ΓtdWt ∼ W1 +

∫ 1

0

utdt

(ii)

D(µ∥γE) =
1

2

∫ 1

0

ETr ((Γt − idE)
2)

1− t
dt.

If, moreover, µ is of the form µ = ν ∗ γE, then

Γt ∈ S+
0 (E), x ∈ E, 0 < t < 1.
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(a) Drift u1(t) = 20 · 1t∈[0.9,1]
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(b) Drift u2(t) = 2

Figure A.1: Example sample paths from two diffusions spanning from two drift coefficients.
Note that they give rise to the same marginal distribution at t = 1, namely, γ(2, 1). Here,
we note that just because two drifts give rise to the same distribution at time 1 does not
mean that their time-averaged expected square norms are equal. Föllmer’s result essentially
states that there is a minimum-norm drift whose expected squared norm will indeed be its
relative entropy from a Gaussian.

A.3 Auxillary Proofs

Informal Proof of Theorem 10

While one can piece a proof from the existing literature, and it does follow from Liu et al.
[2018] and Dubuc [1977], we will provide an original (albeit only informal) information-
theoretic one, relying on the heavy machinery of optimal transport and duality principles.
It is most similar to Barthe [1998], but we do our best to stick with entropic forms, as
opposed to functional versions. We will assume that all possible densities for X and Y are
restricted to densities that are sufficiently regular [Caffarelli, 1992], though normally one can
just regularize later [Villani, 2003, Remark 6.6]. In particular, we will assume the existence
of the optimal transport maps, and that the densities satisfy the so-called Mange-Ampere
equations.

Proposition 97. Let ϕ : E → R be a convex map, and let h(X), h(∇ϕ(X)) < ∞. Then,
we have:

h(∇ϕ(X)) = h(X) + E[log |∇2ϕ(X)|
where ∇ is the gradient, and ∇2 is the Hessian.

Informal Proof of Proposition 97. We note that if the density of X is f , and f is nice, then,
the density of ∇ϕ(X) is f(∇ϕ(X))|∇2ϕ(X)|. The result then follows from definitions.
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Informal Proof of Theorem 10. (i) We will first show the inequality by constructing a cou-
pling for which the result holds. In particular, consider coupling laws of X and Y such
that X and Y be the pushforwards of a standard Gaussian Z on Rn, that is, X = T1(Z),
Y = T2(Z). We then have:

λh(X) + (1− λ)h(Y ) = h(Z) + λE[log |∇T1(Z)|] + (1− λ)E[log |∇T2(Z)|]

Similarly, we have:

h(X+Y ) = h(Z)+E[log |(λ∇T1+(1−λ)∇T2)(Z)|] ≤ sup
(X′,Y ′)∈Π((X,Y )

h(λX ′+(1−λ)Y ′)

By strict concavity of logdet, we have that

λh(X) + (1− λ)h(Y ) ≤ h(λX + (1− λ)Y ) ≤ sup
(X′,Y ′)∈Π((X,Y )

h(λX ′ + (1− λ)Y ′)

as desired.

(ii) Note that since Z has full-support, we need

log |(λ∇T1 + (1− λ)T2)(x)| = λ|∇T1(Z)|+ (1− λ)|∇T2(Z)|.

Since logdet is strongly concave, this implies ∇T1 = ∇T2, i.e. X and Y have to have
the same distribution ν with density h for equality. For notational convenience, let
B := [λ, 1 − λ]. We will further assume that a strong duality principle holds in the
argument below.

sup
(X′,Y ′)∈Π((X,Y )

h(λX ′ + (1− λ)Y ′)

= sup
(X′,Y ′)∈Π((X,Y )

inf
f

∫
E

fd(B#µ)− log

∫
E

ef

= sup
µ∈M+(R2n)

inf
f,g

∫
E

fdµ− log

∫
E

ef + λ(

∫
g1dν −

∫
g1µ1) + (1− λ)(

∫
g2dν −

∫
g2µ2)

= inf
λg1(x1)+(1−λ)g2(x2)≤f(Bx)

− log

∫
E

ef +

∫
(λg1 + (1− λ)g2)dν

≥ inf
λg1(x1)+(1−λ)g2(x2)≤f(Bx)

− log

∫
E

eg1 − log

∫
E

eg2 +

∫
(λg1 + (1− λ)g2)dν

≥ h(X)
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where we invoke the Prékopa-Leindler inequality for the first inequality, and variational
form for entropy second. Note that the equality in the swapping of sup and inf is
strong duality. Now, to enforce equality for the variational principle, we will want to
pick g1 = g2 = log h by Jensen’s so now we want:

inf
λ log h(x1)+(1−λ) log h(x2)≤f(Bx)

− log

∫
E

ef = 0

By monotonicity of the integrand, we want

f(y) = sup
x1,x2|y=λx1+(1−λ)x2

[λ log h(x1) + (1− λ) log h(x2)] .

In particular, we can always take x1 = x2 = y to observe that f(y) ≥ log h(y). However,
to ensure that

∫
E
ef = 0, this inequality better be strict almost surely, i.e. f = log h.

Now, we are done, as

log h(y) = sup
x1,x2|y=λx1+(1−λ)x2

[λ log h(x1) + (1− λ) log h(x2)]

is the definition of concavity.

Informal proof of FRBL duality

In the above example of finding equality conditions for the Cover–Zhang-type inequalities,
we invoked a powerful duality principle. It turns out, we can go much farther. The following
is a proof that mimics the formal proof for Kantorovich Duality in Villani [2003]. While only
informal, it captures the essence of the proof in a few lines. The reader can look at Liu et al.
[2018], Liu [2018] for a rigorous exposition involving Fenchel (strong) duality.

Theorem 17 =⇒ Theorem 19

Let (fi)
k
i=1, (gj)mj=1 be given. We can construct (Xi)

k
i=1 such that

k∑
i=1

cih(Xi) =
k∑

i=1

ci

(
log

∫
fi + E[log fi(Xi)]

)
Assume the fis give rise to a distribution Xi ∈ P(Ei).
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Now, we have
k∑

i=1

ci

(
log

∫
fi − E[log fi(Xi)]

)

=
k∑

i=1

cih(Xi)

≤
m∑
j=1

djh(BjX) +D(c,d,B)

≤
m∑
j=1

dj

(
log

∫
gj − E[log gj(BjX

∗)]

)
+D(c,d,B) + ε

where we pick X∗ ∈ Π(X1, . . . , Xk) to be a coupling that is at most ε away from
maxX∈Π(X1,...,Xk)

∑m
j=1 djh(BjX). Of course, if given (fi)

k
i=1, (gj)mj=1 satisfy (3.12), then, for

any coupling X∗, we have E[log gj(BjX
∗)] ≥ E[log fi(Xi)]. As ε > 0 is arbitrary, the result

follows.

Theorem 19 =⇒ Theorem 17

We have, formally,

max
X∈Π(µ1,...,µk)

m∑
j=1

djh(BjX)

= sup
X∈M+

inf
vi∈C(Ei)

m∑
j=1

djh(BjX) +
k∑

i=1

ci

∫
viµi −

k∑
i=1

ciE[vi(Xi)]

= sup
X∈M+

inf
vi∈C(Ei)

inf
uj∈C(Ej)

m∑
j=1

dj(log

∫
e−uj + Euj(BjX)) +

k∑
i=1

ci

∫
viµi −

k∑
i=1

ciE[vi(Xi)]

= inf
vi,uj

∑
dj log

∫
e−uj +

k∑
i=1

∫
viµi + sup

X
(Euj(BjX))− E[

k∑
i=1

civi(Xi)])

= inf
vi,uj ,

∑
vi◦πi≥

∑
djuj◦Bj

m∑
j=1

dj log

∫
e−uj +

k∑
i=1

ci

∫
viµi

≥ inf
vi

k∑
i=1

ci log

∫
e−vi +

k∑
i=1

ci

∫
viµi

≥
k∑

i=1

cih(Xi)
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For the proof above, note that the first equality follows from representing a joint prob-
ability measure as a solution to a restricted optimization problem, and the rest follow from
(2.2), and the asserted strong duality.
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