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Multi-omics profiles of the intestinal 
microbiome in irritable bowel syndrome and its 
bowel habit subtypes
Jonathan P. Jacobs1,2,3*, Venu Lagishetty1, Megan C. Hauer1, Jennifer S. Labus1,2, Tien S. Dong1,3, Ryan Toma4, 
Momchilo Vuyisich4, Bruce D. Naliboff1,2, Jeffrey M. Lackner5, Arpana Gupta1,2, Kirsten Tillisch1,2,6 and 
Emeran A. Mayer1,2* 

Abstract 

Background Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is thought to involve altera-
tions in the gut microbiome, but robust microbial signatures have been challenging to identify. As prior studies have 
primarily focused on composition, we hypothesized that multi-omics assessment of microbial function incorporating 
both metatranscriptomics and metabolomics would further delineate microbial profiles of IBS and its subtypes.

Methods Fecal samples were collected from a racially/ethnically diverse cohort of 495 subjects, including 318 IBS 
patients and 177 healthy controls, for analysis by 16S rRNA gene sequencing (n = 486), metatranscriptomics (n = 
327), and untargeted metabolomics (n = 368). Differentially abundant microbes, predicted genes, transcripts, and 
metabolites in IBS were identified by multivariate models incorporating age, sex, race/ethnicity, BMI, diet, and HAD-
Anxiety. Inter-omic functional relationships were assessed by transcript/gene ratios and microbial metabolic mod-
eling. Differential features were used to construct random forests classifiers.

Results IBS was associated with global alterations in microbiome composition by 16S rRNA sequencing and 
metatranscriptomics, and in microbiome function by predicted metagenomics, metatranscriptomics, and metabo-
lomics. After adjusting for age, sex, race/ethnicity, BMI, diet, and anxiety, IBS was associated with differential abun-
dance of bacterial taxa such as Bacteroides dorei; metabolites including increased tyramine and decreased gentisate 
and hydrocinnamate; and transcripts related to fructooligosaccharide and polyol utilization. IBS further showed 
transcriptional upregulation of enzymes involved in fructose and glucan metabolism as well as the succinate path-
way of carbohydrate fermentation. A multi-omics classifier for IBS had significantly higher accuracy (AUC 0.82) than 
classifiers using individual datasets. Diarrhea-predominant IBS (IBS-D) demonstrated shifts in the metatranscriptome 
and metabolome including increased bile acids, polyamines, succinate pathway intermediates (malate, fumarate), and 
transcripts involved in fructose, mannose, and polyol metabolism compared to constipation-predominant IBS (IBS-
C). A classifier incorporating metabolites and gene-normalized transcripts differentiated IBS-D from IBS-C with high 
accuracy (AUC 0.86).

*Correspondence:
Jonathan P. Jacobs
JJacobs@mednet.ucla.edu
Emeran A. Mayer
emayer@ucla.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-022-01450-5&domain=pdf


Page 2 of 18Jacobs et al. Microbiome            (2023) 11:5 

Conclusions IBS is characterized by a multi-omics microbial signature indicating increased capacity to utilize 
fermentable carbohydrates—consistent with the clinical benefit of diets restricting this energy source—that also 
includes multiple previously unrecognized metabolites and metabolic pathways. These findings support the need 
for integrative assessment of microbial function to investigate the microbiome in IBS and identify novel microbiome-
related therapeutic targets.

Keywords: Irritable bowel syndrome, Bowel habit subtypes, Microbiome, Multi-omics, Metatranscriptomics, 
Metabolomics, Biomarkers

Introduction
Irritable bowel syndrome (IBS) is the most common 
gastrointestinal disorder, affecting 10–15% of the USA 
population [1]. IBS is currently defined by symptom cri-
teria, including recurrent abdominal pain associated 
with altered bowel habits in the absence of detectable 
anatomic, inflammatory, or biochemical pathology [2]. 
There has been considerable interest in the role of the gut 
microbiome in IBS. This is supported by the development 
of IBS symptoms following gastrointestinal infections 
in some patients, the relationship of IBS symptomatol-
ogy with diet, and effects of GI microbiota on intestinal 
motility and visceral sensitivity [3]. Moreover, microbiota 
transfer from IBS patients into rodents has been reported 
to confer alterations in intestinal transit and visceral sen-
sitivity to recipient animals [4, 5].

Despite a strong scientific rationale and gastrointestinal 
symptom improvements following interventions believed 
to act via the microbiome including rifaximin and FOD-
MAPS diet, existing human microbiome association 
studies have shown mixed results. Large studies of micro-
biome composition by 16S rRNA gene sequencing or 
shotgun metagenomics have in some cases shown mini-
mal diversity change and taxonomic associations with 
IBS, while others have reported reduced diversity and 
taxonomic shifts that were not consistent across stud-
ies [6–10]. Recent studies have shifted to focus on func-
tional characterization of the microbiome by shotgun 
metagenomics, which assesses functional potential by 
microbial gene content, or metabolomics, which assesses 
products of bacterial metabolism detected in feces [7, 
11–16]. While these studies have reported significant 
shifts in gene content and metabolites, the specific fea-
tures have not been consistent across studies. Overall, no 
robust compositional or functional microbiome signature 
has emerged for IBS diagnosis, unlike other gastrointesti-
nal conditions such as inflammatory bowel disease [17]. 
This likely reflects variability in clinical definitions of IBS, 
demographic heterogeneity across studies, confounding 
factors that influence the microbiome, differences among 
phenotypic subsets of IBS (with some studies argu-
ing that only certain bowel habit subtypes show differ-
ences compared to controls), and challenges of inferring 

bacterial metabolism from bacterial gene content or fecal 
metabolite measurements alone.

To provide further insight into the functional proper-
ties of gut microbes in IBS, we assembled a diverse, well-
phenotyped cross-sectional cohort of 318 IBS patients 
and 177 healthy controls for multi-omics analysis of 
the gut microbiome. This encompassed compositional 
assessment by 16S rRNA gene sequencing and functional 
assessment by a combination of metatranscriptomics and 
fecal metabolomics. We found that IBS could be robustly 
distinguished from healthy controls by a functional sig-
nature derived from differential bacterial transcripts and 
microbiome-associated metabolites after adjusting for 
multiple covariates influencing the microbiome, and that 
IBS bowel habit subtypes were similarly distinguished by 
multi-omics functional signatures.

Methods
Participants
Two hundred seventy-five IBS patients and 177 healthy 
controls were recruited from the Los Angeles area by 
community advertisement and an additional 43 IBS 
patients were recruited from the Buffalo area for a study 
of cognitive behavioral therapy [18]. IBS patients were 
eligible if they were over age 18 and diagnosed with IBS 
via Rome III criteria [19]. Potential participants were 
excluded if they had accompanying organic GI disease 
that could contribute to presenting IBS symptoms, malig-
nancy in the past 5 years, body mass index (BMI) greater 
than 35, reported a gastrointestinal infection within 2 
weeks before evaluation, or used a gut-sensitive antibi-
otic during the 12 weeks prior to evaluation. Participants 
were asked to provide a fecal sample and complete demo-
graphic and medical questionnaires. Dietary pattern 
was assessed using our previously validated dietary pat-
tern form [20]. Psychological and symptom instruments 
included Hospital Anxiety and Depression (HAD), State-
Trait Anxiety Inventory (STAI), Visceral Sensitivity Index 
(VSI)—a measure of gastrointestinal symptom-specific 
anxiety, and Pennebaker Inventory of Limbic Languid-
ness (PILL)—an assessment of frequency of stress-sensi-
tive somatic complaints. The IBS Symptom Severity Scale 
(IBS-SSS) was used to measure IBS symptom severity 



Page 3 of 18Jacobs et al. Microbiome            (2023) 11:5  

including pain, distention, bowel dysfunction, and quality 
of life [21]. This study was approved by the Institutional 
Review Boards at UCLA and the University at Buffalo.

Fresh frozen fecal sample collection
Participants were provided with home stool collection 
kits and asked to store their stool samples in a freezer 
immediately after collection until they could either be 
dropped off to a study coordinator or picked up by a 
courier service within 24–48 h of collection. Study coor-
dinators then transferred samples to lab freezers for long-
term storage at − 80°C. Frozen fecal samples were later 
ground into a coarse powder by mortar and pestle under 
liquid nitrogen then aliquoted.

Fecal 16S rRNA gene sequencing
DNA extraction by bead beating and amplification of 
the V4 hypervariable region of the 16S rRNA gene were 
performed according to our published protocol [22, 23]. 
Sequencing libraries underwent 2 × 150 or 2 × 250 
sequencing on Illumina HiSeq 2500 to a mean depth of 
67,801 merged sequences per sample. Samples in each 
of two sequencing batches (292 and 195 samples) were 
separately processed using the DADA2 R package to 
generate tables of denoised amplicon sequence variants 
(ASVs) which were then merged [24]. Taxonomy was 
assigned to the 11,429 ASVs using the SILVA 138.1 data-
base. The final ASV table was inputted into PICRUSt2 to 
predict abundances of bacterial gene families annotated 
as KEGG orthologs (KOs) based on nearest reference 
genomes to 16S sequences [25, 26].

Fecal metatranscriptomics
Fecal aliquots were sent to Viome Life Sciences, Inc., for 
RNA extraction, metatranscriptomics sequencing, and 
annotation as previously described [27]. In brief, RNA 
extraction by bead beading was performed, DNA degraded 
by DNase, and 16S/23S ribosomal RNA depleted by sub-
tractive hybridization. Sequencing libraries were prepared 
from the resulting RNA and underwent 150 × 2 paired-end 
sequencing on Illumina NovaSeq. Taxonomy was assigned 
by aligning sequencing reads to a precomputed database of 
unique k-mers; 898 taxa were identified, including bacteria, 
fungi, viruses, and bacteriophages. Functional annotation 
was performed by aligning sequencing reads to the inte-
grated gene catalog from the MetaHIT consortium then 
mapping these genes to the KEGG database; 5896 distinct 
transcripts annotated as KOs were identified [28].

Fecal metabolomics
Fecal aliquots were shipped to Metabolon, Inc., for analy-
sis on their global HD4 metabolomics platform. Sam-
ples were run in three batches; the largest contained 250 

samples and additional batches included 75 and 43 sam-
ples. Compounds were identified by comparison of spec-
tral features to Metabolon’s proprietary library, which 
includes MS/MS spectral data on more than 3300 puri-
fied standards. Within each batch, features were retained 
that were detected in over 30% of samples. Imputa-
tion of missing data was performed separately for each 
batch using a k-nearest neighbor algorithm (kNN, k = 
10) as previously described for Metabolon datasets [29]. 
The three batches were then combined using reference-
based ComBat implemented in the sva package in R with 
the largest batch used as a reference and IBS vs. HC as a 
covariate; only the 601 metabolites with greater than 30% 
detection rate in all three batches were retained [30–32]. 
Metabolomics data subsequently underwent log2 trans-
formation and normalization by the vsn2 package in R 
prior to downstream analyses [33].

Alpha and beta diversity analyses
Microbial alpha diversity was assessed on unfiltered 16S 
data (rarefied to 10,000 sequences/sample) and metatran-
scriptomics taxonomy data using the Shannon index of 
richness and evenness calculated with the phyloseq pack-
age in R [34]. Significance was assessed by the Mann-
Whitney U test and multivariate ANOVA using the aov 
function in R with sex, age, race, BMI, diet category, and 
HAD-Anxiety as covariates. Beta diversity analysis was 
performed on all five datasets including 16S composition, 
predicted metagenome, metatranscriptome taxonomy, 
metatranscriptome KO, and metabolome. Bray-Curtis 
dissimilarity was applied for all datasets except metabo-
lomics, for which Euclidean distance was used since it is 
not a compositional dataset. In each case, datasets were 
filtered to remove features present in less than 10% of 
samples, leaving 228 ASVs, 5370 predicted genes, 269 
metatranscriptomics taxa, 3837 transcripts, and 601 
metabolites. Constrained ordination of these distance 
matrices was performed using distance-based redun-
dancy analysis (dbRDA) implemented with the capscale 
function of vegan in R [35]. Models for dbRDA included 
sex, age, race/ethnicity (African-American, Asian, His-
panic, non-Hispanic white, multiracial), BMI, diet cat-
egory (standard, restrictive, other), HAD-Anxiety, batch 
(sequencing or metabolomics), and IBS group. Missing 
HAD and dietary pattern data were imputed by kNN 
using the VIM package in R for use as covariates in these 
and other multivariate models. Visualization of categori-
cal and continuous variables on the first two constrained 
axes of dbRDA ordination was performed using the envfit 
function of vegan. The significance of differences in beta 
diversity was assessed using permutational multivariate 
analysis of variance (PERMANOVA) implemented with 
the adonis2 function of vegan with 10,000 permutations 



Page 4 of 18Jacobs et al. Microbiome            (2023) 11:5 

[36]. Univariate models included IBS group or one of the 
covariates and batch (sequencing or metabolomics); mul-
tivariate models also included sex, age, race, BMI, diet 
category, and HAD-Anxiety. Adonis2 was run by “mar-
gin,” which calculates the marginal R2 for each variable 
after adjusting for the other variables in the model (i.e., 
running separate models for each variable in which it is 
ordered last).

Differential abundance testing
Differentially abundant microbes, genes, transcripts, and 
metabolites were identified using multivariate general 
linear models implemented in MaAsLin2 [37]. Sequenc-
ing data underwent total sum scaling to generate relative 
abundances which were log-transformed prior to model 
fitting. Normalized, log-transformed metabolomics data 
did not undergo further transformation. All datasets 
were filtered to retain features present in > 10% of sam-
ples. P alues were adjusted for multiple hypothesis test-
ing by the Benjamini-Hochberg method to generate q 
values. Significance was set at q < 0.25 for all analyses as 
is recommended for MaAsLin2 [37]. Functional annota-
tions were made using KEGG pathway assignments and 
metabolite categories provided by Metabolon.

Inter‑omic comparisons
Global comparison of datasets was performed by apply-
ing the Mantel test to distance matrices of Bray-Curtis 
dissimilarity (or Euclidean distance for metabolomics) 
using vegan in R. The resulting Mantel r was calculated 
using Spearman correlation, with significance deter-
mined by 10,000 permutations. Visualization of global 
similarities across datasets was performed by rotating 
then superimposing one dbRDA ordination onto another 
using Procrustes in vegan.

Comparison of RNA vs. DNA taxonomic represen-
tation was performed at the genus level to maximize 
matching of taxa between the metatranscriptome and 
16S data given the limitations of taxonomic resolution 
with 16S rRNA gene sequencing. For each genus, ratios 
of relative abundances were calculated for samples in 
which there was non-zero abundance in both the 16S and 
metatranscriptomics data; if a genus was not detected 
in one dataset, no ratio was calculated. The same strat-
egy was used to calculate RNA/DNA ratios comparing 
transcript relative abundances to predicted gene relative 
abundances. RNA/DNA ratios for genera and KOs were 
only further analyzed if the features were detected in > 
25% of both DNA and RNA samples. Log-transformed 
ratios were analyzed by multivariate general linear mod-
els in MaAsLin2 to identify statistically significant dif-
ferences (q < 0.25) between IBS and HC in RNA/DNA 
ratios after adjusting for covariates. This approach has 

previously been applied to simulated and real fecal data-
sets and shown to be suitable for differential expression 
analysis [38]. Missing values were dropped for model 
fitting in MaAsLin2 and imputed by kNN for input into 
random forests classifiers.

Pathway enrichment analysis for differentially 
expressed KOs was performed using Gene Set Enrich-
ment Analysis (GSEA) software [39]. q values were used 
to rank KOs by their strength of association with IBS or 
IBS bowel habits, and KO assignments to KEGG path-
ways were inputted as gene sets. Significance was cal-
culated using the classic enrichment statistic, 10,000 
permutations, and a threshold of p < 0.05.

Identification of metabolites associated with microbial 
metabolism
Metabolic modeling was performed using MIMOSA2 to 
estimate the community-wide metabolic output of the 
metatranscriptome and predicted metagenome as sum-
marized by Community-wide Metabolic Potential (CMP) 
scores [40, 41]. The scores are a surrogate for the rela-
tive capacity of the metagenome or metatranscriptome 
to produce or deplete the metabolite. MIMOSA2 per-
forms regression of CMP scores for each metabolite with 
measured levels of that metabolite to identify a subset 
of metabolites with significant positive association with 
microbial metabolic potential. The recommended thresh-
old of p < 0.10 was used.

Random forests classifiers
Datasets were divided 60%/40% into training and test sets 
with equivalent proportion of IBS subjects (or BH sub-
types) and random forests classifiers were constructed 
using the caret R package [42]. Differentially abundant 
features were inputted into the classifiers. Contribution 
of each feature to classifier accuracy was assessed by vari-
able importance scores, which represent the decrease in 
classifier accuracy when that variable is permuted. Fea-
tures were retained in the final model if they had an 
importance score > 2 in the initial model iteration using 
training data. The accuracy of the resulting classifiers was 
determined by calculating the area under the receiver 
operating characteristic curve (AUC) using test data. 
Significance of differences in classifier performance was 
assessed using the bootstrap method of roc.test in the 
pROC R package.

Results
IBS is associated with shifts in microbial taxa, transcripts, 
and metabolites
Four hundred ninety-five subjects, including 318 IBS 
patients and 177 healthy controls (HC), provided fecal 
samples and completed demographic, dietary, and 
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psychological questionnaires (Table 1). IBS patients and 
HC did not differ by age (median 30 vs. 29 years old) but 
a higher proportion of IBS subjects were females (77% vs. 
60%). The cohort was racially diverse, with 56% of sub-
jects belonging to a racial/ethnic minority group in the 
USA. The IBS subjects and HC showed different racial/
ethnic composition, with the IBS group having increased 
proportion of non-Hispanic whites and corresponding 
reduced proportions of other racial/ethnic groups. There 
was no statistically significant difference in educational 

attainment between the two groups, with the major-
ity of subjects being college graduates. Dietary patterns 
were grouped into one of three categories using a para-
digm recently established by our group for IBS studies: 
standard diet, restrictive diet (which includes gluten-free, 
lactose-free, and FODMAPS diets), and other (represent-
ing dietary patterns considered exclusionary but not in 
one of the IBS-associated restrictive dietary patterns) 
[20]. Consistent with our prior findings, IBS patients 
had increased frequency of restrictive diets—specifically, 
gluten-free and lactose-free diets (15% vs. 3% and 13% 
vs. 4%, respectively)—and a corresponding reduction in 
the frequency of a Standard or Modified American diet 
(Additional file 1: Table S1). Participants also completed 
psychological questionnaires including the HAD and 
STAI, which together measure depression, current anxi-
ety, and trait anxiety, respectively. All three instruments 
showed elevated scores in IBS compared to HC. As 
anticipated, IBS patients showed markedly higher scores 
for visceral sensitivity (VSI) and stress-sensitive somatic 
complaints (PILL). Approximately equal numbers of IBS 
patients were diarrhea-predominant (IBS-D, 38%) and 
constipation-predominant (IBS-C, 35%), and most had 
moderate (IBS-SSS of 175–300, 49%) or severe (IBS-SSS 
of 301–500, 27%) symptom severity.

Fecal samples underwent analysis by 16S rRNA gene 
sequencing (n = 486), metatranscriptomics sequenc-
ing (n = 327), and untargeted global metabolomics (n 
= 368). Microbial composition was assessed by 16S 
rRNA gene abundances and by taxonomic assignment 
of sequenced transcripts, which reflects composition 
weighted by transcriptional activity. Alpha diversity 
(i.e., within-sample diversity) was compared between 
IBS and HC using the Shannon index of richness and 
evenness. Both compositional datasets showed no sig-
nificant difference in Shannon index by non-paramet-
ric tests and multivariate linear models (Fig.  1A). In 
contrast, beta diversity analysis (i.e., diversity across 
samples) using Bray-Curtis dissimilarity demonstrated 
statistically significant differences in composition by 
16S rRNA profiles and metatranscriptomics taxonomy 
between IBS and HC (Fig.  1B). Many covariates were 
also found to be significantly associated with microbial 
composition in one or both datasets, including age, sex, 
race, BMI, dietary category, HAD-Anxiety, and HAD-
Depression. Given the strong correlation between anxi-
ety and depression and the greater differential between 
IBS and HC in HAD-Anxiety, this was selected as a 
covariate to represent the association of mood with 
the microbiome. In multivariate analyses adjusting 
for these covariates, IBS remained significantly asso-
ciated with microbial composition by 16S rRNA and 

Table 1 Cohort demographics

Values shown as median (interquartile range); p values calculated by the Mann-
Whitney U test (numerical traits) or Fisher’s exact test (categorical traits)

HC (N = 177) IBS (N = 318) P value

Samples

 16S rRNA sequencing 174 312

 Metatranscriptomics 119 208

 Metabolomics 139 229

Gender

 Male 40% 23% 0.00013
 Female 60% 77%

Age 30 (23–38) 29 (23–41) 0.57

BMI 26.9 (23.4–30.2) 23.4 (21.0–26.0) 3 × 10−12

Race/ethnicity

 Non-Hispanic white 31% 52% 0.00016
 Hispanic 25% 20%

 African-American 12% 7%

 Asian 21% 14%

 Multiracial 10% 7%

Education

 Some high school 1% 1% 0.12

 High school grad 7% 6%

 Some college 28% 39%

 College grad 33% 24%

 Any postgrad 31% 30%

Diet

 Standard 79% 55% 0.0005
 Restrictive 8% 30%

 Other 13% 15%

HAD-Anxiety 3 (1–6) 7 (4–10) 8 × 10−14

HAD-Depression 1 (0–3) 2 (1–5) 7 × 10−6

STAI Trait Anxiety 32 (26–38) 37 (27–44) 0.0055
PILL 4 (2–7) 16 (11–22) < 2 × 10−16

VSI 2 (0–8) 40 (28–54) < 2 × 10−16

Bowel habit subtype

 IBS-D 38%

 IBS-C 35%

 IBS-M 17%

 IBS-U 9%

IBS-SSS 241 (184–312)
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metatranscriptomics sequencing, as did several of the 
covariates including age and race (Fig. 1B, C).

Multivariate general linear models were then used to 
identify microbial taxa that significantly differed in IBS 
compared to HC after adjusting for covariates identified 
by beta diversity analysis as influencing the microbiome 
including age, sex, race, BMI, diet, and HAD-Anxiety. 

IBS was found to be characterized by increased abun-
dance of Alistipes ihumii, Bacteroides dorei, Actino-
myces odontolyticus, and multiple members of the 
Firmicutes phylum such as Intestinibacter bartlettii 
and Roumboutsia ilealis (Fig. 2A). IBS showed reduced 
abundance of Facealibacterium prausnitzii and Bacte-
roides thetaiotamicron. When assessing the taxonomic 

Fig. 1 IBS is associated with global alterations in microbiome composition and function. A The Shannon index of microbial richness and evenness 
in fecal samples from IBS subjects and healthy controls (HC) is shown for 16S rRNA sequencing and metatranscriptomics data. B Beta diversity 
was assessed by Bray-Curtis dissimilarity for 16S rRNA sequence data, predicted metagenomics (PM), metatranscriptomics taxonomy (MT-T), and 
KEGG orthology transcript annotations (MT-KO). Euclidean distance was used for normalized metabolomics data (MET). Contribution of clinical and 
demographic traits to variation in these five datasets was determined by R2 calculated from univariate (left) and multivariate (right) PERMANOVA. 
R2 in the multivariate model reflects the remaining explained variance after accounting for the other variables. All PERMANOVA analyses included 
batch (sequencing or metabolomics) as a covariate. Significance of differences was calculated by permutation and is denoted by color. (C) 
Distance-based redundancy analysis (dbRDA) was performed to visualize variation in beta diversity related to IBS status, age, sex, race/ethnicity, BMI, 
dietary category, and HAD-Anxiety (HAD-A). IBS group and statistically significant categorical variables are denoted by letters or symbols indicating 
the centroid for each category. Statistically significant continuous variables are shown as arrows originating from the centroid of all samples, with 
length proportional to strength of association. F = female, M = male, A = Asian, B = African-American, H = Hispanic, W = non-Hispanic white, R = 
multiracial
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profiles of the metatranscriptome, only B. dorei showed 
concordant change with the 16S sequencing findings 
(Fig. 2B). Bacteria with increased transcript abundance 
in IBS included Eggerthella lenta, two Bacteroides spe-
cies (B. dorei and B. fluxus), Phascolarctobacterium 
succinatutens, Blautia hydrogenotrophica, Prevotella 
timonsensis, Clostridium hylemonae, Catonella morbi, 

and an unidentified Actinomyces species. IBS showed 
decreased transcript abundance of Bilophila wadswor-
thia, Roseburia inulinivorans, Bifidobacterium ani-
mals, and two Bacteroides species (B. plebeius and B. 
barnesiae).

Microbial function was assessed by bacterial tran-
script abundances (annotated by KEGG orthology 

Fig. 2 IBS is characterized by altered abundances of bacterial taxa, metabolites, and transcripts, including for genes involved in 
fructooligosaccharide utilization. A, B Differentially abundant bacterial taxa (q < 0.25) between IBS subjects and HC were identified in multivariate 
models adjusting for batch, age, sex, race/ethnicity, BMI, dietary category, and HAD-A. Results are shown for A 16S rRNA sequence data (n = 486) 
and B metatranscriptomics data (n = 327), with bold indicating the single overlapping taxon (B. dorei). Effect size is represented as log2 of the fold 
change (FC). Color indicates phylum and dot size is proportional to taxon abundance. Bars indicate standard error of log2 fold change estimates. 
C Differentially abundant fecal metabolites (q < 0.25 in multivariate models) detected by global untargeted metabolomics (n = 368) are shown, 
with color representing functional category. Bold indicates metabolites that were associated with microbial community metabolic potential by 
MIMOSA2. D Differentially abundant bacterial transcripts, annotated by KEGG KO number, gene symbol, and gene name. Transcripts for genes that 
were also differentially abundant in the predicted metagenome are shown in bold. Dot size is proportional to transcript relative abundance and 
color represents KEGG pathway annotation (legend above the plot)
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(KO)), bacterial gene abundances predicted from 16S 
rRNA compositional data using phylogenetically-near-
est reference genomes (predicted metagenome), and 
metabolite levels. IBS status was significantly associ-
ated with variation in beta diversity of all three datasets 
in univariate analyses (Fig. 1B). Among the covariates, 
age, sex, race, BMI, dietary category, and HAD-Anxiety 
were significantly associated with the metatranscrip-
tome and metabolome; age, race, and BMI also were 
significantly associated with the predicted metage-
nome. After adjustment for these six covariates, IBS 
remained significantly associated with the metatran-
scriptome and predicted metagenome but no longer 
had a significant association with the metabolome 
(Fig. 1B, C).

Differential abundance testing identified 16 bacte-
rial transcripts with increased abundance in IBS and 3 
with decreased abundance (Fig.  2D). Similar analysis 
was performed to identify differential genes from the 
predicted metagenome, but given the potential inac-
curacies at the KO level of predicted abundances, these 
were used only to highlight differential KOs found 
in the metatranscriptomics data [25]. A total of four 
transcripts showed concordant changes in the pre-
dicted metagenome, including increased abundance of 
D-proline reductase, 1-2-diacylglycerol 3-glucosyltrans-
ferase, and two components of the fructooligosaccha-
ride transport system (permease and substrate-binding 
protein). This suggests that increased levels of these 
transcripts could be attributable to differences in abun-
dance of their corresponding genes in the metagenome. 
Other notable shifts in the metatranscriptome included 
increased abundance of butyrate kinase and the phos-
photransferase system for uptake of mannitol (a fer-
mentable polyol).

While IBS was not associated with significant global 
change in the metabolome after adjusting for covari-
ates, IBS showed statistically significant increases in 
12 metabolites (Fig.  2C). Nine of these were classi-
fied as lipids including free fatty acids such as palmi-
tate and margarate, a bile acid (glycodeoxycholate), 
and N-acetylsphingosine. The other elevated metabo-
lites included L-urobilinogen (a product of bacterial 
metabolism of biliruben), 3-aminoisobutyrate, and 
tyramine. There were 14 metabolites with reduced 
levels in IBS, which included 6 amino acid derivatives 
(e.g., 3-methylhistidine, N-acetyl-1-methylhistidine, 
gentisate, xanthurenate), anserine (a dipeptide that 
includes 3-methylhistidine), benzoate as well as two 
related metabolites (3-(2-hydroxyphenol)propionate 
and hydrocinnamate), and riboflavin.

Inter‑omic analyses reveal consistent metabolic shifts 
across datasets that differentiate IBS from HC
Given that all five datasets demonstrated alterations in 
IBS compared to HC, we then assessed whether there 
were conserved compositional and functional shifts 
across multiple data types. Global correlations of datasets 
were assessed by the Mantel test. All pairwise combina-
tions of the five datasets showed statistically significant 
positive correlation, with the greatest association (other 
than 16S and the metagenome predicted from 16S) 
observed for metatranscriptomics and the metabolome 
(Additional file  1: Figure S1). These significant asso-
ciations across datasets were visualized by Procrustes, 
which highlighted the separation of IBS from HC in 
superimposed datasets.

We further investigated three categories of inter-omic 
association. First, we assessed the ratio of microbial 
abundances in the metatranscriptome (RNA) to those 
from 16S sequencing (DNA). These ratios broadly repre-
sent transcriptional activity of microbes [43]. This analy-
sis was performed at the genus level to facilitate matching 
of taxonomic assignments from 16S sequencing (which 
does not consistently achieve species resolution) with 
those from metatranscriptomics. Consistent with prior 
reports, transcriptional representation of microbes could 
differ by orders of magnitude compared to their abun-
dance in the metagenome, differentiating microbes that 
are transcriptionally active from those that are quiescent 
(Fig.  3A). The most transcriptionally active genus was 
Veillonella (median RNA/DNA 89 in HC and 114 in IBS) 
and the least transcriptionally active genus was Faecali-
bacterium (median RNA/DNA 0.074 in HC and 0.087 in 
IBS). Comparing IBS to HC, the two groups were found 
to have similar patterns of microbial transcriptional 
activity at the genus level (Fig. 3B). No taxa showed a sta-
tistically significant difference between IBS and HC.

Second, we calculated gene-normalized transcript 
abundances using the ratio of transcript abundances 
(RNA) to predicted gene abundances (DNA) for differen-
tial gene expression analysis. This approach provides an 
assessment of transcriptional upregulation or downregu-
lation, which is not possible with transcript abundances 
alone as these reflect a combination of gene abundance as 
well as transcriptional regulation. Transcripts were found 
to have a wide range of ratios relative to genes, from less 
than 0.1 to over 1000 (Fig. 3C). While RNA/DNA ratios 
were highly correlated between IBS and HC, 182 KOs 
were found to be differentially regulated between IBS 
and HC after adjusting for covariates (Fig.  3D, Addi-
tional file  1: Table  S2). To identify consistent functional 
shifts among gene-normalized transcript abundances, 
pathway enrichment analysis was performed. This dem-
onstrated that the pathways of citrate cycle, fructose and 
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mannose metabolism, carbon fixation in prokaryotes, 
and aminoacyl-tRNA biosynthesis were enriched in dif-
ferentially regulated transcripts (Fig.  3E). Within these 
pathways, 21 differential transcripts were highlighted 
which were all upregulated in IBS. This included multi-
ple key enzymes in the citric acid cycle including pyru-
vate carboxylase, phosphoenolpyruvate carboxylase, 

succinate dehydrogenase, fumarate hydratase, and 
malate dehydrogenase. The carbon fixation pathway 
transcripts included acetyl-CoA synthetase as well as 
methylmalonyl-CoA mutase and methylmalonyl-CoA 
epimerase (which are involved in the production of the 
short chain fatty acid, propionate) [44]. Taken together, 
the transcripts in these two pathways encompass nearly 

Fig. 3 Inter-omic comparison of bacterial taxonomy and function demonstrated upregulation in IBS of transcripts involved in the succinate 
pathway of carbohydrate fermentation. A Scatterplots depicting median relative abundances of genera in 16S rRNA sequence data and in the 
metatranscriptome for the 322 subjects with both data types available. B Median ratios of genus abundances in the metatranscriptome (RNA) 
vs. 16S data (DNA) are plotted for IBS subjects and HC. C Scatterplots of median gene abundances in the predicted metagenome compared to 
median transcript abundances. D Median transcript/gene abundance ratios are plotted for IBS subjects and HC. Transcripts that were significantly 
upregulated or downregulated in IBS compared to HC (adjusting for batch, age, sex, race/ethnicity, BMI, dietary category, and HAD-A) are colored. 
E Pathways that were significantly enriched in differentially regulated transcripts were identified. Significant transcripts within these pathways 
(represented by dot color) are shown, with dot size proportional to RNA/DNA ratio. Bars indicate standard error of log2 fold change estimates. F 
Succinate pathway of carbohydrate fermentation. Enzymes transcriptionally upregulated in IBS are colored blue
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all of the enzymes in the succinate pathway for carbo-
hydrate fermentation to propionate (Fig. 3F) [45]. There 
were also three transcripts for subunits of the 2-oxoglu-
tarate ferredoxin oxidoreductase, which fixes carbon in 
the reductive tricarboxylic acid cycle by adding  CO2 to 
succinyl-CoA to generate 2-oxoglutarate. The fructose- 
and mannose-related metabolism transcripts included 
fructan beta-fructosidase (breakdown of fructans such 
as inulin), 6-phosphofructokinase 1 (entry of fructose 
into the glycolytic pathway), diphosphate-dependent 
phosphofructokinase, and phosphomannomutase. Three 
tRNA synthetases (glutaminyl, cysteinyl, tryosyl) were 
also upregulated, though with low magnitude of effect 
compared to the other transcripts.

Third, we identified fecal metabolites that were likely 
influenced by microbial metabolism by modeling micro-
bial metabolic potential from metatranscriptomics and 
predicted metagenomics. Using this strategy, 5 differ-
ential metabolites were associated with the microbiome 
(Additional file 1: Figure S2). Of these, only one metab-
olite had increased levels in IBS–tyramine, which was 
associated with metabolic potential from the metatran-
scriptome. Of the four decreased metabolites, hydrocin-
namate was found to be significantly associated with 
microbial metabolic potential by both metatranscriptom-
ics and predicted metagenomics. Benzoate and gentisate 

were associated with the predicted metagenome and xan-
thurenate with the metatranscriptome.

These three sets of inter-omic analyses yielded a group 
of features associated with IBS based upon analyses 
incorporating two datasets. This included differentially 
abundant gene-normalized transcripts in enriched path-
ways, transcripts that were differentially abundant in both 
the metatranscriptome and predicted metagenome, and 
differentially abundant metabolites that were associated 
with microbial metabolic potential. Using these multi-
omics features, a random forests classifier was trained 
to differentiate IBS from HC that had AUC of 0.82. This 
performance was statistically significantly superior to 
classifiers constructed using microbial features from sin-
gle datasets, which achieved AUC of 0.67–0.70 (Fig.  4). 
The three microbial features that contributed most to this 
classifier were metabolites: gentisate, hydrocinnamate, 
and tyramine. The other ten features in the classifier 
included three transcripts related to fructooligosaccha-
ride metabolism (diphosphate-dependent phosphofruc-
tokinase, 6-phosphofructokinase 1, fructooligosaccharide 
transport permease protein), three transcripts in the cit-
ric acid cycle (pyruvate carboxylase, malate dehydroge-
nase, fumarate hydratase), glutaminyl-tRNA synthetase, 
D-proline reductase, 1,2-diacylglycerol 3-glucosyltrans-
ferase, and methylmalonyl-CoA epimerase.

Fig. 4 Multi-omics microbiome classifier for IBS showed increased accuracy compared to classifiers using single datasets. A ROC curves for random 
forest classifiers constructed from differentially abundant features in each of the five datasets (colored in red) are compared to the ROC curve for 
a multi-omics classifier (colored in blue). The multi-omics classifier was constructed from transcripts that were differentially abundant in both the 
metatranscriptome and predicted metagenome, significantly upregulated transcripts in enriched pathways, and differentially abundant metabolites 
associated with microbial community metabolic potential. All classifiers were trained on 60% of the dataset and tested on the remaining 40% of 
samples (n = 230 with all three data types). Colored areas indicate the 95% confidence intervals of the ROC curves. P values for the AUC of single 
dataset classifiers compared to the multi-omics classifier were calculated by bootstrapping. B Importance scores are shown for features included 
in the multi-omics classifier, colored by feature type. Bar color indicates whether each feature shown was enriched or depleted in IBS subjects 
compared to HC
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Bacterial transcripts and metabolites differentiate IBS 
bowel habit subtypes
Having identified robust microbial profiles differentiating 
IBS from HC, we then assessed the relationship of micro-
bial composition and function to phenotypes within IBS. 
Bowel habit subtypes were significantly associated with 
metatranscriptomics KOs and metabolomics but not 
with microbiome composition or the predicted metage-
nome (Fig. 5). Visceral sensitivity (VSI), general physical 
symptom perception (PILL), and IBS-specific symptom 
severity (IBS-SSS) were not significantly associated with 
either global microbiome composition or function by 
transcripts, predicted genes, and metabolites.

To further delineate microbial functional features 
that were associated with IBS bowel habit subtype, we 
focused on comparison of the diarrhea-predominant 
(IBS-D) and constipation-predominant IBS-C) subtypes. 
These are the two most numerous BH subtypes and show 
more consistent BH patterns compared to the remain-
ing two subtypes (IBS-mixed, IBS-M; IBS-unspecified, 
IBS-U). Differential abundance testing further supported 
the absence of a clear taxonomic signature of IBS-D vs. 
IBS-C, as only 2 taxa were significantly different by 16S 

sequencing and 4 taxa by metatranscriptomics with no 
overlap between the two datasets (Additional file 1: Fig-
ure S3A). In contrast, metatranscriptomics functional 
assessment demonstrated 54 differential transcripts 
belonging to diverse pathways, included 51 increased in 
IBS-D (Additional file 1: Figure S3B). Among these, many 
were associated with fructose and mannose metabolism 
pathway, including L-iditol 2-dehydrogenase (polyol 
dehydrogenase), three components of the mannose-spe-
cific phosphotransferase system, and L-fucose/D-arab-
inose isomerase (which produces ribulose). There was 
also enrichment of transcripts involved in D-glutamate 
synthesis (glutamate synthase and glutamate racemase) 
and ethanolamine utilization. None of these overlapped 
with differential predicted gene abundances.

Inter-omic analysis was then performed of gene-nor-
malized transcript abundances to assess transcriptional 
regulation patterns in IBS-D vs. IBS-C. IBS-D was asso-
ciated with significant shifts in 140 transcript RNA/DNA 
ratios, of which 128 were upregulated in IBS-D (Fig.  6, 
Additional file  1: Table  S3). Pathway analysis demon-
strated 10 pathways enriched for differentially abundant 
transcripts, including fructose and mannose metabolism, 

Fig. 5 IBS bowel habit (BH) subtypes have distinct functional profiles by metatranscriptomics and metabolomics. A Multivariate PERMONOVA 
models were used to assess the association of phenotypes within IBS including BH subtype, visceral sensitivity (VSI), general physical symptom 
perception (PILL), and IBS severity (IBS-SSS) with the five datasets, adjusting for batch, age, sex, race/ethnicity, BMI, dietary category, and HAD-A. B 
DbRDA plots for each of the five datasets visualizing differences in beta diversity related to BH subtype and significant categorical or continuous 
covariates. F = female, M = male, A = Asian, B = African-American, H = Hispanic, W = non-Hispanic white, R = multiracial
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propanoate metabolism, aminoacyl-tRNA biosynthesis, 
terpenoid biosynthesis, and pentose and glucuronate 
interconversions. The most significantly upregulated 
transcripts were involved in proprionate metabolism, 
including 2-methylcitrate synthase, three subunits of 
propanediol dehydratase, and glycerol dehydrogenase. 
Upregulated fructose and mannose metabolism-related 
transcripts included those that had been enriched in 
the metatranscriptome without consideration of gene 
abundance (mannose phosphotransferases, L-iditol 
2-dehydrogenase, L-fucose/D-arabinose isomerase) as 
well as others including diphosphate-dependent phos-
phofructokinase, GDP-L-fucose synthase, and butanol 
dehydrogenase.

Consistent with the functional shifts in the micro-
biome in IBS-D vs. IBS-C, there were 46 differentially 
abundant metabolites (Additional file  1: Figure S3C). 

This included increased levels of two bile acids (cho-
late and isoursodeoxycholate), polyamine products of 
amino acid fermentation (cadaverine, N-acetyl-cadav-
erine, N-acetylputrescine), carbohydrates (mannose, 
glucose, ribulose, glucuronate, ribose), intermediates 
in the citric acid cycle (malate, fumarate), and nucleo-
tides (hypoxanthine, thymidine, 2’-deoxycytidine). 
IBS-D had decreased levels of fatty acids (myristate, 
palmitate, stearate), food components (carotene diol, 
phytanate, digalacturonic acid), phenylacetate, and 
the bacterial metabolites P-cresol and enterolactone. 
Of these metabolites, fumarate and hypoxanthine 
were significantly associated with microbial metabolic 
potential by both the metatranscriptome and predicted 
metagenome; glucose and nicotinate were associated 
with the metatranscriptome; and cholate, cadaver-
ine, glucuronate, thymidine, and phenylacetate were 

Fig. 6 IBS-D is characterized by transcriptional upregulation relative to IBS-C of genes involved in proponoate metabolism, terpenoid biosynthesis, 
fructose and mannose metabolism, and glycolysis. A Pathways that were significantly enriched in transcripts differentially regulated in IBS-D vs. 
IBS-C were identified. Significant transcripts within these pathways (q < 0.25 adjusting for batch, age, sex, race/ethnicity, BMI, dietary category, 
and HAD-A) are shown, with color denoting pathway and dot size proportional to RNA/DNA ratio. Bars indicate standard error of log2 fold change 
estimates. B Transcript/gene abundance ratios are plotted for the 205 IBS-D and IBS-C subjects with both data types available. Transcripts that were 
significantly upregulated or downregulated in IBS-D compared to IBS-C are colored
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associated with the predicted metagenome (Additional 
file 1: Figure S2).

We then assessed the ability of differential transcripts, 
metabolites, and multi-omics features (gene-normalized 
transcript abundances and differential metabolites with 
significant association with microbial metabolic poten-
tial) to differentiate IBS-D from IBS-C. The multi-omics 
classifier had the highest performance with AUC 0.86, 
which was significantly greater than that of the predicted 
metagenome, which only had AUC of 0.65 (Fig. 7A). Clas-
sifiers constructed from metatranscriptomics KOs and 
metabolites each had AUC 0.79, which was not signifi-
cantly different from the multi-omics classifier. Random 
forests classifiers were not constructed using microbial 
composition (16S or metatranscriptomics taxonomy) 
given the lack of differentially abundant taxa. Transcripts 
in the metatranscriptomics classifier included ethan-
olamine utilization proteins, propanediol dehydratase, 
sodium/proline symporter, and N-acetylglucosamine 
phosphotransferase (Fig.  7B). The metabolomics classi-
fier incorporated all three differential products of amino 
acid fermentation (cadaverine, N-acetyl-cadaverine, 
N-acetylputrescine), malate, fatty acids (mytristate and 
2-palmitoylglycerol), and digalacturonic acid (a product 

of pectin breakdown) (Fig.  7C). The features contrib-
uting to the multi-omics classifier included fumarate 
and transcripts in pathways for fructose and mannose 
metabolism (diphosphate-dependent phosphofructoki-
nase, GDP-L-fucose synthase), terpenoid biosynthesis 
(isopentenyl-diphosphate delta-isomerase, 4-hydroxy-3-
methylbut-2-en-1-yl diphosphate reductase, 4-diphos-
phocytidyl-2-c-methyl-d-erythritol kinase), pentose and 
glucuronate interconversions (L-arabinose isomerase), 
and propionate metabolism (2-methylcitrate synthase, 
glycerol dehydrogenase) (Fig. 7D).

Discussion
In this study, we present the results of the first large-scale 
metatranscriptomics analysis of a well-phenotyped IBS 
cohort and one of the two largest IBS cross-sectional 
global metabolomics studies to-date [15]. In combina-
tion with 16S rRNA sequencing data and predicted 
metagenomics, five datasets were analyzed to provide 
a comprehensive multi-omics assessment of microbial 
composition and function. Each dataset included micro-
bial features that were significantly associated with IBS 
status but could only achieve modest accuracy in clas-
sification algorithms. Using multi-omics features that 

Fig. 7 Metabolites, transcripts, and transcript/gene ratios can differentiate IBS-D from IBS-C with high accuracy. A ROC curves for random forest 
classifiers constructed from differentially abundant predicted genes, transcripts, and metabolites (colored in red) are compared to the ROC curve for 
a multi-omics classifier (colored in blue). The multi-omics classifier was constructed from significantly upregulated transcripts (by RNA/DNA ratio) 
in enriched pathways and differential metabolites associated with microbial community metabolic potential. All classifiers were trained on 60% of 
the dataset and tested on the remaining 40% of samples (n = 126 with all three data types). Colored areas indicate the 95% confidence intervals of 
the ROC curves. P values were calculated by bootstrapping. B–D Importance scores are shown for features included in the B metatranscriptomics, C 
metabolomics, and D multi-omics classifiers, with bar color denoting features that were enriched or depleted in IBS-D
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incorporated information from two related datasets (e.g., 
metatranscriptome KOs and predicted KO gene abun-
dances, metabolites, and metatranscriptome metabolic 
potential), an accurate classifier for IBS vs. HC could be 
achieved. This supports that IBS is characterized by a dis-
tinct microbial functional state across a large cohort rep-
resentative of the racial/ethnic diversity in the USA.

Compositional shifts in the microbiome of IBS com-
pared to HC were observed based on both 16S relative 
abundances and transcriptional representation. A con-
sistent finding in both 16S and metatranscriptomics data 
was increased Bacteroides dorei, which has not been 
previously reported in IBS. Both datasets also showed 
increased levels of Actinomyces spp., which is consist-
ent with a large shotgun metagenomics study describ-
ing enrichment of multiple Actinomyces spp. including 
A. odontolyticus as seen here [7]. Additional species 
level microbial shifts detected by 16S sequencing or 
metatranscriptomics that have been previously noted in 
large shotgun metagenomics studies include increased 
Streptococcus species (S. parasanguinis), Eggerthella 
lenta, and Blautia hydrogenotrophica as well as reduced 
Faecalibacterium prausnitzii, Bacteroides thetaiotaomi-
cron, and Bilophila wadsworthia [11, 16, 23]. Other 
taxonomic shifts observed in this study have not been 
previously reported and many taxa that were reported in 
prior studies were not significant in our study. We also 
did not observe reduced alpha diversity in IBS, which 
has been reported in some prior studies but not others 
[6–9]. These differences could reflect multiple factors 
that differentiated our study including racial/ethnic com-
position, recruitment of subjects from the community 
rather than specialty clinics, and differences in analyti-
cal approach. Importantly, this study differed from many 
prior ones in using multivariate strategies to adjust for a 
wide range of covariates differing between IBS and HC 
that could confound analyses [7, 11, 13–16].

Among the functional microbial features associated 
with IBS, the largest contribution to the multi-omics 
IBS signature came from three microbiome-related fecal 
metabolites: gentisate, hydrocinnamate, and tyramine. 
None of these or the other differentially abundant metab-
olites in IBS vs. HC have been previously implicated in 
IBS, possibly due to differences in metabolomics pipe-
lines across studies which affect the specific metabolites 
that are detected and validated [13–15]. Gentisate, the 
most strongly predictive metabolite, is an intermediate 
in bacterial aerobic metabolism of aromatic compounds 
including hydroxybenzoates [46]. It has been reported 
to be undetectable in the serum of germ-free mice and 
strongly induced by bacterial colonization [47]. Genti-
sate inhibits fibroblast growth factor signaling to reduce 
tumor growth and associated angiogenesis [48]. It is 

unclear whether the decreased levels in IBS have any 
functional consequences for intestinal fibroblast growth 
factor signaling, which plays important roles in epithe-
lial homeostasis and bile acid regulation [49]. Hydrocin-
namate (3-phenylpropionate) is produced by microbial 
metabolism of polyphenols and serum levels of hydrocin-
namate are positively associated with microbial alpha 
diversity [50–52]. IBS feces also showed reduced lev-
els of benzoate and another member of the benzoate 
class, 3-(2-hydroxyphenol)propionate, which can also 
be derived from bacterial metabolism of polyphenols 
[53, 54]. These changes may reflect altered microbial 
metabolic activity or reduced polyphenol intake by IBS 
patients that was not captured by assessment of global 
dietary patterns. Tyramine is a biogenic amine that sig-
nals through trace amine-associated receptors. Bac-
teria can synthesize tyramine from tyrosine, and fecal 
tyramine levels are greatly increased by microbial colo-
nization of germ-free mice and modulated by diet [55–
57]. Tyramine induces intestinal contraction, mesenteric 
vasodilation, serotonin release by enterochromaffin cells, 
and inflammatory response by intestinal epithelial cells 
and macrophages, potential mechanisms by which it may 
promote symptoms in IBS [58–60]. Among the other dif-
ferentially abundant metabolites, IBS was notably char-
acterized by increased levels of many lipids including 
the bile acid glycodeoxycholate—which was previously 
reported to be elevated in IBS—and multiple free fatty 
acids [61]. Interestingly, IBS-D showed reduced free fatty 
acids compared to IBS-C. The increased levels of free 
fatty acids particularly in IBS-C may reflect increased 
delivery to the colon from dietary intake, altered intes-
tinal epithelial lipid metabolism, or bacterial fatty acid 
metabolism. Gut microbes are thought to be unable to 
utilize fatty acids for energy harvest but are capable of 
synthesizing free fatty acids and using exogenous fatty 
acids for phospholipid biosynthesis [62, 63].

Despite the many metabolite associations with IBS 
and the strong contribution of three metabolites to the 
multi-omics classifier, the metabolomics only classifier 
had a modest AUC of 0.7 similar to what was reported in 
the two largest previously published fecal metabolomics 
studies [15, 16]. This supports that metabolic end prod-
uct measurements need to be considered in the context 
of bacterial transcriptional profiles to accurately char-
acterize the microbial metabolic state in IBS. We found 
that IBS was characterized by upregulation of transcripts 
involved in bacterial uptake and breakdown of fructoo-
ligosaccharides, polyols, and glucans. We further iden-
tified upregulation of bacterial enzymes involved in the 
succinate pathway of carbohydrate fermentation, which 
culminates in the production of propionate [45]. This 
increased capacity for carbohydrate utilization by the 
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IBS microbiota is consistent with a prior large shot-
gun metagenomics study reporting increased carbohy-
drate degradation and fermentation pathways in IBS [7]. 
Moreover, a recent shotgun metagenomics reported that 
carbohydrate-metabolism associated genes (CAZy) were 
associated with symptom severity in IBS, further sup-
porting a role for bacterial carbohydrate metabolism in 
IBS pathophysiology [64]. Preferential utilization of the 
succinate pathway in IBS for carbohydrate fermentation 
is supported by a meta-analysis of fecal short chain fatty 
acids (SCFAs) in IBS demonstrating increased propor-
tion of propionate relative to other SCFAs [65]. Taken 
together, our findings and those of others support that 
gut microbes in IBS patients have increased capacity 
to utilize certain fermentable carbohydrates. Reliance 
of IBS-associated bacteria on this energy source may 
explain the clinical association of fermentable carbohy-
drates with IBS symptoms and clinical improvement with 
the FODMAPS diet, which restricts dietary intake of fer-
mentable oligosaccharides, disaccharides, monosaccha-
rides, and polyols [66]. It is important to note that there 
was low prevalence of FODMAPS diet in our IBS cohort 
(2%) and that IBS populations with greater prevalence of 
FODMAPS diet may not show the same transcriptional 
profile.

In addition to identifying metabolic features of IBS, we 
further found that IBS BH subtypes were robustly dis-
tinguished by functional microbial profiles. IBS-D was 
characterized by increased cholate and isoursodeoxy-
cholate, which is consistent with prior studies reporting 
increased levels of cholate in IBS-D compared to IBS-C 
and bile acid malabsorption in IBS-D [14, 16]. Bile acids 
are known to induce diarrhea by triggering colonic 
chloride secretion, supporting direct involvement in 
the bowel habit phenotype of IBS-D [67]. Besides these 
bile acid shifts, IBS-D was characterized by upregula-
tion of multiple metabolic pathways for bacterial energy 
harvest including transcripts involved in fructose, man-
nose, and polyol metabolism. This increased machinery 
for carbohydrate utilization corresponded to increased 
levels of multiple monosaccharides including mannose, 
glucose, ribulose, and ribose. IBS-D also had increased 
levels of intermediates of the succinate pathway of car-
bohydrate fermentation including fumarate and malate 
(succinate showed a non-significant increase and other 
intermediates were not detected), suggesting increased 
flux through this pathway compared to IBS-C. IBS-D also 
showed transcriptional upregulation of components of 
an alternative fermentation pathway to generate propion-
ate via the 1,2-propanediol pathway. This included upreg-
ulation of three components of propanediol dehydratase 
as well as glycerol dehydrogenase, which participates in 
the generation of propanediol from monosaccharides 

[45]. Beyond carbohydrate metabolism, IBS-D also dem-
onstrated evidence of increased amino acid catabolism 
based upon higher levels of several polyamines includ-
ing cadaverine, N-acetylcadaverine, and N-acetylputres-
cine. Cadaverine and putrescine are products of arginine 
and lysine fermentation, respectively, which can further 
undergo N-acylation by gut microbes [68, 69]. Our find-
ings are consistent with a prior study reporting elevated 
putrescine in IBS-D compared to IBS-C [13]. In addition, 
IBS-D demonstrated increased levels of three ethanola-
mine utilization proteins. Ethanolamine is released from 
breakdown of the membrane phospholipid phosphatidy-
lethanolamine and has been reported to be metabolized 
primarily by enteric bacteria with pathogenic poten-
tial [70]. Overall, gut microbes in IBS-D demonstrate a 
profile consistent with increased utilization of multiple 
energy sources. It is unclear if these metabolic shifts pro-
mote symptoms in IBS-D or reflect adaptation of gut 
microbes to altered GI motility and secretion in IBS-D 
[71]. Of note, metabolites reported in other studies to dif-
ferentiate IBS bowel habit subtypes such as tryptamine 
were not differentially abundant in this study, potentially 
reflecting the previously noted differences in study popu-
lation and analytic strategy [14].

The strengths of this study include the large cohort 
size, inclusion of diverse racial/ethnic groups, extensive 
clinical phenotyping of IBS and control subjects, adjust-
ment for relevant covariates in all analyses, and inte-
gration for the first time of metatranscriptomics and 
metabolomics to assess functional profiles in IBS. How-
ever, we acknowledge some limitations. Controls differed 
from IBS subjects in important parameters including 
sex, BMI, race/ethnicity, and diet. While considerable 
effort was made to account for these covariates, we can-
not exclude residual effects of confounding. This study 
had a cross-sectional design, which may provide a less 
accurate assessment of complex microbial compositional 
and functional relationships compared to longitudinal 
studies [14]. Diet was assessed by a dietary pattern ques-
tionnaire, but this may not capture nutrient differences 
such as in polyphenol intake that may underlie observed 
microbial profiles. In addition, bacterial gene content 
was predicted from 16S rRNA gene sequencing rather 
than directly assessed by shotgun metagenomics. While 
predicted abundances of individual genes were not used 
directly as differential features for IBS or its BH subtypes, 
they were incorporated into gene-normalized transcrip-
tional analyses. Predictions made using PICRUSt2 have 
been reported to have Spearman correlation of between 
0.79 and 0.88 with shotgun metagenomics data, support-
ing that they are robust overall [25]. However, given the 
potential inaccuracies of gene abundance prediction, 
further studies incorporating shotgun metagenomics 
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are required to confirm the findings of gene-normalized 
transcriptional analyses. Finally, the global metabolomics 
pipeline used for this study does not detect SCFAs, so we 
were unable to assess whether transcript patterns were 
associated with altered fecal levels of SCFAs.

Conclusions
IBS is characterized by both compositional changes and 
robust shifts in microbial function that emerge from 
multi-omics integration of bacterial transcriptional pat-
terns and fecal metabolite levels. The metabolic signature 
of IBS supports the utilization of multiple fermentable 
carbohydrates through the succinate pathway. This is 
consistent with the efficacy of interventions such as 
FODMAPS diet that exclude such energy sources. Addi-
tional novel metabolic pathways and metabolites such as 
tyramine were also identified. Further investigation of 
these pathways could elucidate mechanisms by which gut 
microbes contribute to IBS pathophysiology and inform 
our understanding of current microbiome-directed ther-
apeutic strategies for IBS. Moreover, IBS BH subtypes 
showed strong functional differentiation, implying a criti-
cal role for microbial metabolic activity in dictating the 
bowel habit alterations seen in IBS. Our findings support 
the need for integrative assessment of microbial function 
incorporating both metabolomics and metatranscrip-
tomics in IBS microbiome studies to identify relevant 
pathways that impact symptom generation and could 
represent novel mechanistic targets for microbiome-
directed interventions.
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