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ABSTkACT 

Estimating tlow properties of a heterogeneous 
reservoir consisting of two or more layers with 
different flow properties is often a ~oblem of 
great interest to reservoir engineers. Analysis of 
pressure transient data from a partially penetrat­
ing well producing from either layer of a two-layer 
reservoir may be used to estimate the individual 
transmissivi ties. 

An analytic solution has been derived to inves­
tigate the transient pressure response of two-layer 
reservoirs with cross-flow. Results of the analytic 
metnod have been verified using a finite-element 
model and they reveal important details of pressure 
transient behavior such aa the lillli tl.ng condi tiona 
for detecting a multilayer situation. A procedure 
has been aeveloped to evaluate the permeability of 
the producing layer as well as that of the second 
layer. The method can be applied to both pressure 
buildup and interference well tests. As has been 
previously shown from earlier numerical techniques, 
tne early-time response of such a two-layer reser­
voir producing from a fraction of the thickness of 
one of the layers closely follows the behavior of a 
single-layer case. An inflection point in the pres-

· sure response can be expected under certain circum­
stances, and this provides important data. At large 
times the syst- behaves like an equivalent homoge­
neous reservoir. 

INTRODUCTION 

The behavior of a layered reservoir under the 
influence of a pumping well is a problem of inter­
est in the field of reservoir engineering~ Numerous 
papers have been written on various aspects of this 
problem. Hantush and Jaco~1 have presented solu­
tions for steady state flow to a well draining one 
of the layers of a two-layer bounded reservoir. 
Lefkovits et a1.2 studied the transient performance 
of a stratified bounded reservoir where the produc­
ing well is completely ~etrating and there is no 
crossflow. Papadopulos has studied the same prob­
lem for only t110 layers of infinite areal extent. 

References and illustrations at end of paper. 

A sillilar problem, but with crossflow between adja­
cent layers, has also been investigated by Katz4 
and Russell and PratsS for the case of constant 
head at the wellbore, and by Jacquard6 and Boulton 
and Streltsova 7 for constant flow rate. 

In addition to the above works, which are all 
based on the analytical approach, many authorsB-13 
have applied numerical as well as analog models to 
handle problems of flow in layered reservoirs. 
Recently, Javandel and Wi therspoon14 studied the 
problem of flow to a partially penetrating well in 
a two-layer aquifer where the well is cpen in the 
top layer and the lower layer is considered to be 
infinitely thick. 

In this paper ve shall present an analytic 
solution to the problem of transient flow to a 
partially penetrating well that is open in either 
layer of a two-layer system where both layers are 
finite in thickness. cross flow is permi ttea at the 
interface between the two layers. 'nlese solutions 
can reaaily be evaluated numerically. Asymptotic 
for.a of the solution for small and large values of 
time are developed from the qeneral solution. The 
approach here is to start with the problem when the 
pumping well is open only in the top layer. A solu­
tion is then developed for the case when the well 
is partially penetrating only in the lower layer. 
the analytical solutions are evaluated numerically 
and results are presented in dimensionless form on 
semiloqarithlllic plots for a few different parameters. 
Based on the application of these results, a method 
is proposed for interpretation of the pump-test 
data in two-layer reservoirs. 

WEI..L OPEN IN 'roP LAYm 

Let us consider a reservoir consisting of two 
layers that are confined above and below by imper­
Vious layers as illustrated on Figure 1. Each layer 
has its own flow properties, is finite in thickness, 
and extends radially to infinity. The interface 
between the two layers is an open boundary, meaning 
that no discontinuity of potential or its gradient 
is allowed across this surface. The top layer of 
the ayste• is partially penetrated by a well of 
infinitesimal radius for a length t from the top of 
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the aquifer. If the well is pumped at a constant 
rate, q, we are interested in determining the poten­
tial distribution t(rlz,t) within the reservoir 
after pumping starts. '!'he differential equations 
and initial and boundary condi tiona to describe this 
problem can be written as& 

2 .2 
if .i 1 awi a wi 
-2- +--- + 

az2 
or 

r ar 

ti (r, z, 0) . "o 

lim t
1

(r 1 &1 t) • •o 
r-

• 

t
1

(r, o, t) • .,2~r 1 o 1 t) 

ati , 
- ilt I i . 1, 2 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

lim (r 
••, ) - --.SJL_ , for (h
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-U < z < h

1 
(8) 

r+O 
ar- • 211k1 J4p 

lim (r::i)• o, for -h
2 

< z < (h, - ..&) (9) 

r•o 

In order to handle tlle nonuniform boundary ecndition 
along the .. axia of the well, one can arbitrarily 
divide the top layer of the reservoir into oro ae~ 
arate layers by considering an imaginary interface 
at the elevation of z • h 1 - .&. 'Dle sy*te• is 
then -de of three layers, oro of them having the 
s- flow properties. Let us then designate three 
different symDola for p&tential t 1 for the top 
layer in the zone between the top of the reservoir 
and the imaginary horizontal plane passing through 
the bottom of the well1 t 2 for the bottom layer' 
and 9 3 for the zone between the elevation of the 
bottom of the well and the tap of the lower layer. 

Solution for the TWo-layer Case 

'nle general solution of the Pz-oblea can be 
octained by successive application of Laplace &Dd 
Hankel ·triUUifor-tioca over t and r, r .. pectively. 
'l'be detail& of the analytic solution are qiven 
ela-here1 S. By introducing the following di-n­
sionless paraaeters& 

p • 
71lt"b1 < • - t 0 > 

tz, 
",t r 

' ·-- ' rD • r' D q~ 2 r "' w 

b2 .& 
a 

bD ·- I .& 
-~· 

D•_! 
2 rw D a, 

the expressions for di-nsionless pressure in the 
different layers -Y be given by the following set 
of equa ti ems. 

•., . ~ !.". "•'""•{ :. -.,,., 
+ ~,:: -{-(j:··) ... }] .. 

PD 
2 . ~ I.". "•'""•' [····· 

+ ~, =~ -{-(~ .. ··) ... }] .. (11) 

PD 
3 . ~ !.". "•'""•' [ .,, .. 
. ~, =~ -{-(~. + ··) ... }] dx 

( 12) 

Definitions for t
1

(x), f
2

(x), f
3

(x), A', a;, 8l, 
and B) are given in Appendix A. 

Solution for Single-layer Case 

Javandel and Wi tberspoon 15 have shown that 
if the per.eabillty of the lower layer vanishes, 
Bq. 10 will take tbe following fora: 

-
p .1. f D

1 
2 

u 

o COS(DW(Z -
D. 1)) {- {-·-

( 13) 

which is tbe Bentush16 solution for single-layer 
partial penetration. Bquation 13, thus, provides 
an independent checlt on tbe tvo-layer solution. 

Solution for Small Values of Time 

It can be showntS that at early time, Bq. 10 
reduces to Bq. 13, provided 

'l'his means that for sufficiently small values of 
time, the oro-layer reservoir behaves as if the 
lower layer were ~ento 
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Solution for Large Values of Time 

At large values of time and at radial distances 
that exceed t:hethicltness-oCtile reservoir, the 
pressure transient behavior of the producing layer 
may be given by15: 

where 

2[1 + (k h /k h )] 
2 2 1 1 

CD 

J 
v 

Equation 14 may be approximated by: 

( 14) 

( 15) 

This is an interesting result because it indicates 
that a semilog plot of dimensionless pressure 
versus dimensionless time at the wellbore or at any 
shut-in observation well will yield a straight line 
when the pumping time becomes sufficiently large. 
From Eq. 16, it is apparent that the slope of this 
line will be: 

( 17) 

When r > (h1 + h2 l the value of to
0 

corresponding 
to P01 ~ 0 will be given by 

2 r 0 [1 + (~chl 2/(~ch) 1 ] 

2.25[1 + k2h2/k1h1] 
( 18) 

Although Eq. 18 holds for r > (h1 + h2 ), Eq. 17 is 
true for all radial distances. 

WELL OPEN IN LOWER LAYER 

When the pumping well is open along length i 
in the upper part of the lower layer (Fig. 2), the 
general solution for this particular case is given 
by the following set of equations15: 

CD 

x J 0(xr0 ) {~1 (x) Po, 
1 J =-

iD 
0 

CD 

+2: E1 [ ( 2 2) ~ 2 J } ( 19) 6 exp - ln + x t 0/h
02 

dx 

n=1 

CD 

(20) 

(21) 

Definitions for R1(x), R
2

(x), a
3
(x), E

1
, E

2
, E

3 
and 

o are given in Appendix A. 

DISCUSSION OF RESULTS 

Figure 3 shows a semilog plot of dimensionless 
pressure versus dimensionless time to illustrate 
how the effects of partial penetration at different 
radial distances in a two-layer reservoir differ 
from those for the single layer. These results 
were determined for the particular location z = h 1 , 
which means the top of the producing well, but as 
will be shown below, the average pressure drop over 
the open wellbore does not differ significantly 
from these values. This has been reported earlier 
by Kazemi and Seth13. One notes that at early 
time the solution for the two-layer reservoir coin­
cides with that of the single-layer case. This was 
shown to be the case from the properties of the 
two-layer solution. At large values of time, the 
slopes of the curves are in agreement with the val­
ues obtained from Eq. 17. As is apparent on this 
figure, the .slopes of the curves must converge to 
m = 1.15 when k2h2 = 0, which of course corres­
ponds to the single-layer case for large values of 
time. 

Figure 4 illustrates the effects at the well 
bore of partial penetration in the upper layer of 
a two-layer reservoir as the penetration increases 
from 10% to 100%. As can be anticipated from Eq. 17, 
the slopes of the curves at large values of time are 
independent of the depth of penetration. 

To illustrate the effect of transmissibility 
contrast (k2h2/k1h1 ) on pressure drawdowns in a 
shut-in observation well, Figure 5 has been prepared 
for the particular case of a radial distance corres­
ponding to r 0 = 40. Note that the effect of the 
second layer becomes significant when to > 10. 

Figure b shows a type curve for the pressure 
effects at the wellbore of a partially penetrating 
well for the particular case of 10% penetration in 
the upper layer. The Theis, or line source, solu­
tion is also included to illustrate that drawdowns 
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in this particular case are approximately ten times 
greater than would be observed with full penetration 
in a single layer equal in thickness to that of the 
top layer. 

The partial penetration results on Figure 6 
are for pressure drawdowns calculated for the top 
of the upper layer (z = h1 l. TO examine the varia­
tion of pressures along the wellbore, an average 
value was determined and is shown on the figure. 
At early times (t0 < 1) the averaged result is 
essentially the same as at z = h1 , and at large 
values of time the averaged results are about 10\ 
low. It is important to note that the slopes of 
the semilog straight lines for either result are 
s ti 11 in accord with Eq. 1 7. 

A finite-element model was also used to pro­
vide a numerical approach to this same two-layer 
problem. Figure 7 shows a comparison of dimensi·on­
less results for r 0 = 10, 20, and 100. Two differ­
ent meshes were used to duplicate the conditions of 
the analytical model. The first mesh only included 
323 nodal points and it is evident that computed 
drawdowns at any given time were too low when r 0 = 10 and 20 and too high when r 0 = 100. A second 
mesh using b81 nodal points gave much better agree­
ment with the analytical results. · This suggests 
that some care must be exercised when approaching 
this kind of complex problem from the numerical 
standpoint. 

APPLICATION TO RESERVOIR PUMP TESTS 

If a well is completed through the total thick­
ness of a two-layer reservoir and is pumped at 
constant rate, the analysis of the results can only 
yield the properties of the equivalent system. How­
ever, if the well is completed in only one part of 
either layer of the system, the following procedure 
can be used to investigate the properties of the 
individual layers. The properties of the layer be­
ing pumped can be determined from the early time 
response in the pumping well or an appropriately 
located observation well. The late time response 
can then be used to determine the properties of the 
unpumped layer. 

Properties of Pumped Layer 

Two different methods can be used to obtain 
results for the pumped layer: (a) the inflection 
method, and (b) the type-curve method. We shall 
present both below and then discuss a method of 
determining the properties of the unpumped layer. 

The inflection method has been introduced by 
Hantush17 for a single-layer aquifer with partial 
penetration and will be reviewed briefly. One 
should construct a semilog plot of pressure draw­
down data from the pumping well or a nearby shut-in 
observation well versus time. The data may reveal 
an inflection as is illustrated by the dimensionless 
plot on Figure a. If an inflection point is clearly 
indicated, the slope of the tangent at the point of 
inflection, mi, can be easily determined. Hantush17 
has shown that: 

2 2 
p ;IR • xex erf(xl (22) 

At the pumping well, or when the observation well 
is open only at the top of the reservoir, or when 
r > R. and the depth of the observation well is less 
than that of the pumping well, then P = R.jr. On 
the other hand, when the observation well is open 
at approximately the elevation of the bottom of the 
pumping well, a = 2.2./r. Knowing ~. one can eval­
uate x from Eq. 22 and then compute 

u. = 
l. 

(23) 

The permeability k1 can then be determined from: 

2.3 Sll 
-u. 

k1 
l. = 411m.Pgi e erf(xil' 

l. 

if ll = R.jr 

or 

2.3 qiJ -u. 
k1 

l. 
erf(xil' 811millgt 

e if I) 2i/r 

The next step is to evaluate a function that 
Hantush17 defined as: 

... 

f 
-y 

M(ui, p) = · T erf(I)/Yl dy 

u. 

(24) 

l. 

and that has been tabulated18,19. One then cal­
culates pressure drawdown at the inflection point 
from 

(25) 

where B = 4 when p = R./r and B = 8 when p = 2R./r. 

From the semilog plot of pressure drawdown 
data, one reads the time, ti, corresponding to the 
value of APi. Finally, the product of (~cl 1 can be 
computed from: 

(26) 

The type-curve method is essentially the same as the 
standard log-log, type-curve method except that one 
must prepare a special plot of P0 versus t 0 for the 
appropriate parameters corresponding to Hantush's16 
solution for a single layer with partial penetration. 
In other words, the effects of the second layer are ,.., 
ignored. This method will again yield k1 and (~c) 1 • 

,) 

The application of the inflection and type- \l 
curve methods is based on the assumption that the 
early time response of the two-layer system is 
essentially controlled by the properties of the 
pumped layer. This is generally the case when the 
observation well is located at a radial distance 
from the pumping well that is less than half the 
thickness of the pumped layer. 
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Properties of Unpumped Layer hydraulic conductivity of upper 
and lower layers, respectively __ L~ 

To obtain the properties of the unpumped layer, __ ..IL. __ -depth- of -penetrat:ion- -- ------ L 
- the_semilog-plot-ment-ioned-above-shoul:d-reveal a -­

straight line if the pumping test has been run for 
a sufficiently large period of time. The slope, m, 
of this straight line can be used to obtain 
(k 2h2 + k 1h1) from: 

m 
1.5 qll (27) 

Since k1 has been evaluated and h1 is known, k2h2 
is readily calculated. If h2 is also known, k2 is 
easily determined. 

In order to determine the storage term, (~cl 2 , 

of the unpumped layer, it is necessary to have 
interference drawdown data from a shutin observa­
tion well at a distance large enough to satisfy 
r > h1 + h2• As indicated by Eq. 16, an extrapola­
tion of the straight-line portion of a semilog plot 
of up1 versus log t back to the axis for zero draw­
down yields the time intercept, to• From ·Eq. 18, 
one can then derive: 

(28) 

CONCLUSIONS 

An analytic solution for the problem of tran­
sient flow toward a partially penetrating well in a 
two-layer reservoir has been presented. Solutions 
have been developed for the effects of a pumping 
well that is open in either layer. The solutions 
have been evaluated numerically, and graphical 
results for some typical cases are presented. The 
results have also been checked by comparison with 
finite-element calculations. It was shown that the 
solutions reduce to the case for a single layer with 
partial penetration. Asymptotic solutions for small 
and large values of time have been developed to show 
that: ( 1) at early times With partial penetration, 
the behavior of the pumped layer is exactly the same 
as that of a single layer, and (2) at large values 
of time, a semilog plot of drawdown versus time 
yields a straight line whose slope is only a func­
tion of the ratio k2h2/k1 h1 • Finally, a method of 
analyzing field data to determine ·the hydraulic 
properties of both the pumped and unpumped layers 
is proposed. 

NOMENCLATURE 

A 
c 
D 
erf(x) 
h, 
h2 
ho1 
ho 
H 2 

H 

Jo<xl 

k2h,/k1h2 
compressibility 
a2/u 1 
error function 
thickness of the top layer 
thickness of the lower layer 
= h 1/rw 
= h2/rw 
h2/h, 
h,/h2 
Bessel's function of the first 
kind and zero order 

L~/M 

L 
L 

t 

to 

to 
ti 
u 
z 
zo 
zo 

R./h, 
R./h2 
slope of the tangent at the 
inflection point 
rate of discharge 
radial distance 
r/hw 
radius of the pumping well 
[2wk 1 h1 p<~i - w0 ll/qll, 
dimensionless pressure 
[2wk2h2~<~i - ~oll/qll, 
dimensionless pressure 
pressure drawdown at the 
inflection point 
time 

2 a 1t;rw, dimensionless time 

I 
2 d' . 1 . a 2t r , 1mens1on ess t1me 

time at the inflection point 
= r2/4a1t 
vertical coordinate 
Z/h1 
z/h2 

L 

T 
L 
L 

a,, a2 diffusivity of layer 1 and 2, 
respectively 

Yn 
II 
p 

~ 

roots of characteristic equations 
viscosity of fluid 
density of fluid 
porosity 

M/TL 
M/L3 

4>1' q,2 potential in upper and lower 
layer, respectively 
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APPENDIX A 

Following are definitions of some of the 
functions used in Eq. 1 0 through 12 and 19 through 
21 in the text: 

f1 (x) = 

cosh[xh (1 - z
0

)] 
01 

2 
X 

AHtanh(xh
0 

)cosh(x~ (1 - t
0

)] + sinh[xh
0 

(1 - t
0

)J 
2 1 1 

AH tanh(h
0 

x)cosh(xh
0 

) + sinh(xh
0 

) 
2 1 1 

1 =-. 2 
X 

cosh[xh
0 

(z
0 

+ H)]sinh(xh t
0

) 
1 01 

AH sinh(xh
0 

)cosh(xh
0 

) + cosh(xh
0 

)sinh(xh
0 

2 1 2 1 

sinh(xh t ) 
· o

1 
D 

f 3 (x) = -----:2,.....:~­
x 

(A-1) 

(A-2) 

AH sinh(xh
0 

)sinh(xh
0 

z
0

) + cosh(xh
0 

)cosh(xh
0 

z
0

) 
2 1 2 1 

AH sinh(xh
0 

)cosh(xh
0 

) + cosh(xh
0 

)sinh(xh
0 

) 
2 1 2 1 

(A-3) 

• cos Yn sin ~n + s~ (AH
2 

+ D)cos YnCOS ~n 

+' ~: + "" ::) '~ sin yn sin '•] 

B1 .. cos [Pn (z0 - 1 >] { Aynsinyncos[pn (1 

+ f!ncosynsinGn(1 - t 0 >]} 

B) .. sin(~nt0 ) { Aynsinynsin((lnz0 ) 

- p cosy cos(~ z0 >} n n n 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

Yn.and fln are roots of appropriate characteristic 
equations 1 5. 
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A 

H)] cosh[xh (z -o
2 

D 
R1 (x) = ----2~---­

x 

A 

sinh(xh
0 

) - sinh[xh
0 

(1 - 1
0

)] 
2 2 

cosh(xh )sinh(xh ) + (H/Alsinh(xh )cosh(xh 
01 02 01 02 

(A-8) 

x 2 [cosh(xh
0 

)sinh(xh
0 

) + (H/A)sinh(X~ )cosh(xh
0 

l 
1 2 1 2 

• {(If/A) sinh(xh0 )cosh[xh0 <;0+ 1 l l 
1 2 

+ sinh [xh
0

/ 1 - .1.
0
1 ][cosh(xh

01 
)cosh(xh

02 
z

0
l 

- (H/A)sinh(xh
0

; )sinh(xh
0 

11} 
2 D 1 

cosh[xh <i + 1)] o
2 

D 

(A-9) 

2[cosh(xh
0

. )sinh(xh ) + (H/A)sinh(xh
0 

)cosh(xh )l 
X 1 °2 1 °2 J 

[ -(H/A)sinh(xh
0 

l + (H/A)sinh(x~ )cosh(xh
0 

i0 1 . 
1 1 2 

+ cosh(xh )sinh(xh ~ >] o
1 

o
2 

D 
(A-10) 

( 
2 ){ ( 2 2 ) 

1 '( 2 DH '( 1 
- ~ + x ~ sin~ cos'( __ n_ - -
2 h2 n n n A~2 A 

02 n 

(A-11) 

E
2 

sin[Y (1 - i )] {r cos~ cos(Y ~0 ; 
n D n n n 

+ (~ /A)sin(Y ;0 )sin~ } 
n n n 

+ (A-13) 

- sinLYn(1 - t0 lj} 

(A-12) 

cos [Y (~ + 1) l { (P /A)sin~ 
n D n n 

(A-14) 
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z 

f 

------~~in~fe"~fo~c~e~--~-----------------------.r 

XBL 797-757511 

Figure 1. TWo-layer reservoir with a partially 
penetrating well in the upper layer. 

z 

t 
c~~, k 1,4f> 1,c1 

interface 

.l ___________ t.. 

XBL 797·75748 

Figure 2. TWo-layer reservoir with a partially 
penetrating well in the lower layer. 

m• 
1'15 •0.92 

I+ kzhzlk1h1 
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·Figure 3. Dimensionless pressure versus dimension­
less time for partial penetration in the 
upper layer of a two-layer reservoir for 
the case to= 0.1 1 k2(k1 a 0.5 1 
h2/h, = o.sl ~2c2 m ~1c11 z = h11 and 
rw/h 1 = 0.01 •. --· 

35r-------r-------r-----~r------,-------, 

30 

;i: 25 

~ :t_20 
_u 
~ 

f 15 
N 

'd­o: 

10 

XIIL828-1006 

Figure 4. Dimensionless pressure versus dimension­
less time at the wellbore for partial 
penetration in the upper layer of a two­
layer reservoir for the case k2/k1 = 0.51 
h 2/h1 0.5, 41 2c 2 = 41 1c 1 1 z == h1 1 and 
rw/h1 = 0.01. 

Figure 5. Effect of transmissibility contrast on 
pressure drawdowns in a shutin observa­
tion well with partial penetration in 
the upper layer or a two-layer reservoir 
for the case r 0 = 401 to = 0.21 
41 2c 2 = 4> 1c 11 z = h11 and rwfh 1 = 0.01. ,. 
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"d"' a: 

Figure 6. 

"-0..0 

.... ········-c;.:;~; ····----····----··-· 

Comparison of pressure drawdowns at the 
wellbore from the Theis solution with 
those of partial penetration in the 
upper layer of a two-layer reservoir for 
the case t 0 = 0.1, k2/k 1 = 0.5, 
h2/h1 = 0.5, ~2c 2 = ~ 1 c 1 , z = h1 , and 
rw!h1 = 0.01. 

Analytic solution -
Finite-element solution 

"323 nodes 
a 681 nodes 

/ 

1000 

Figure 7. Comparison of analytic solution with 
finite-element calculation for the case 
.1c.0 '= o.5, k 2/k 1 = o.5, h 2/h1 = o.5, 
o/2c 2 = q> 1c 1 , z ~ h1 , and rw!h 1 = 0.01. 
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Figure 8. 

Tant;~ent at lnfltcllcn paint 

XBL828-1007 

Example of occurence of an inflection in 
the dimentionless results for pressure 
versus time at the wellbore for the 
particular case .2o = 0.1, k2/k 1 = o. 5, 
h2/h 1 0.5, ~2c 2 = q> 1c 1 , z = h1' and 
r...,!h1 = 0.01. 
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